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1. Introduction

In this paper, we address the qualitative properties of solutions to the parabolic equation

ut − 1u + b · ∇u = 0 in �, (1.1)

where b is a given divergence free vector �eld of low regularity, and � is a space-time
domain. The study of such equations with non-smooth dri�s b(x, t) is motivated by the
need to understand the qualitative and quantitative properties of nonlinear partial di�erential
equations, where the dri� depends on the solution u and its �rst derivatives and for which
we o�en do not have a priori bounds available except in some very low regularity spaces.
Advection-di�usion equations of the form (1.1) o�en arise in applications with the additional
divergence-free condition div b= 0, in particular, in problems involving incompressible
�uids. Several important recent papers have addressed regularity of the solutions of the linear
advection-di�usion equations with very little smoothness assumptions on the divergence free
dri� [2, 3, 6, 11, 16, 17, 20] (cf. also [1, 4, 10, 12]). Here we study this problem for the
parabolic equation (1.1) with a divergence-free “supercritical” dri� b. Criticality here refers
to the following property: the usual parabolic rescaling x → λx, t → λ2t leaves the equation
invariant if the dri� term in the equation satis�es b ∈ L

q
t L

p
x with 2/q+ n/p = 1. Accordingly,

we say that the dri� is critical if this relation holds, is subcritical if 2/q + n/p < 1 and is
supercritical if 2/q + n/p > 1.

The subcritical dri�s were addressed in the classical paper [15] (cf. also [5, 14, 19]). Our
main result is the Harnack-type inequality for parabolic advection-di�usion equations with
a supercritical dri�. We use the notation

Q∗
R(x0, t0) = {(x, t) ∈ R

n+1 : |x − x0| < R, t0 < t < t0 + R2} (1.2)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 209

for the parabolic cylinder centered at the bottom and

QR(x0, t0) = {(x, t) ∈ R
n+1 : |x − x0| < R, t0 − R2 < t < t0} (1.3)

for the parabolic cylinder centered at the top. For simplicity, we write QR = QR(0, 0).

Theorem 1.1. Let u be a nonnegative Lipschitz solution to the parabolic equation

ut − 1u + b · ∇u = 0 in �, (1.4)

that is,
∫

�

∂tuϕ +

∫

�

∂ju∂jϕ +

∫

�

bj∂juϕ = 0 (1.5)

for any Lipschitz function ϕ ≥ 0 in � and ϕ = 0 in �c. Assume that b ∈ Lq̄(�) ∩ L∞L2(�)

with n/2 + 1 < q̄ ≤ n + 2 and div b= 0 in the sense of distributions. Then for any Q2R ⊂ �,

sup
QR/2(0,−3R2)

u ≤

(

C + C(R1−(n+2)/q̄‖b‖Lq̄)
1/(2−(n+2)/q̄)

)C(n)/p0
inf
QR

u, (1.6)

where p0 = 1/(CMC
R ) and MR = 1 + (R1−n/2‖b‖L∞L2)

2 + R1−(n+2)/q̄‖b‖Lq̄ .

Here, and elsewhere in this paper, the symbol C denotes a large constant which depends
on the parameters q̄ and n, and on the domain � ⊂ R

n+1. Also, we denote the anisotropic
Lebesgue spaces by LpLq(�) = L

p
t L

q
x(�), and in the case when p = q by Lq(�) = L

q
x,t(�).

Remark 1.2. The statement of Theorem 1.1 remains valid for divergence-free dri�s b in
the more general anisotropic supercritical Lebesgue space LlLq̄(�) with 1 ≤ 2/l + n/q̄ <

2 and satisfying the additional condition b ∈ L∞L2(�). In Lemma 2.1, we use these
anisotropic spaces for the dri�, while in Lemma 3.1 we set l = q̄ for convenience of the
presentation.We explainmodi�cations needed to treat themore general case a�er the proof of
Lemma 3.3.

Remark 1.3. The requirement on u to be a Lipschitz generalized solution to (1.1) is su�cient
in order to guarantee that the dri� term

∫

�

bj∂juϕ (1.7)

is bounded when b belongs to a low regularity (supercritical) space. Note that the Lipschitz
assumption can be relaxed to obtain theHarnack inequality (1.6) for weak solutions satisfying
u ∈ L∞L2(�) and ∇u ∈ L2L2(�) provided some additional regularity assumptions are
imposed on the dri� (cf. [16], page 19).

The qualitative properties of solutions to the equation (1.1) have been extensively studied
in the past. In particular, Harnack’s inequality for the second order parabolic equation

ut − ∂i(aij(x, t)∂ju) = 0

in the self-adjoint form, with measurable strongly elliptic coe�cients aij was obtained in the
seminal work ofMoser [14] for subcritical dri�s and no lower order terms. In [13], Lieberman
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210 M. IGNATOVA ET AL.

established the Harnack inequality in the case of non-zero lower-order coe�cients, when the
dri� is in a subcritical Morrey space.

Recently, Nazarov and Ural’tseva proved in [16] that the assumptions on the divergence
free dri� bmay be signi�cantly relaxed to allow it to lie in the scale invariant (critical) Morrey

spaces M
n/q+2/l−1
l,q for all q and l satisfying 1 ≤ n/q + 2/l < 2. Seregin et al. (cf. [17])

established the Harnack inequality when b belongs to L∞(BMO−1), which is also a critical
(scale-invariant) condition. In our previous paper [9], we obtained a Harnack inequality for
elliptic equations with supercritical divergence-free dri�s. The purpose of the present paper
is to address the more challenging parabolic case. Note that the approach from [9] does not
apply here.

It is well-known that Harnack-type inequality implies Hölder regularity of solutions to
(1.1) when the dri� lies in a critical (scale-invariant) space. However, due to supercritical

assumptions on the dri� in Theorem 1.1, one cannot deduce from (1.6) the Hölder continuity
of the solutions. Note that in general the solutions to (1.1) with supercritical dri�s may not
satisfy even weaker continuity properties. For instance, in [18] it was proven that in two
dimension the solutions of (1.1) may become discontinuous in �nite time provided the dri�
b is divergence free and b ∈ L∞Lp(R2)with p ∈ [1, 2). On the other hand, using the Harnack
inequality (1.6), we were able to obtain in [8] the uniform continuity of solutions to (1.1) with
a divergence-free dri� that belongs to a slightly supercritical logarithmic Morrey space.

The paper is organized as follows. In Section 2, we establish the local boundedness
of nonnegative Lipschitz subsolutions to (1.1) by using Moser’s iteration. This result of
independent interest was previously obtained in [16]. However, the bound (2.2) with an
explicit dependence on the parameters is needed for establishing the validity of Theorem 1.1,
and thus we provide our proof here for completeness. The rest of the paper, Section 3, is
devoted to the lower bound of the in�mum of Lipschitz supersolutions to (1.1), stated in
Lemma 3.1. We proceed by deriving consecutive estimates on the nonnegative supersolution
w = log+(u/K), where the constant K is determined in the initial step (cf. Lemma 3.2)
and depends on the values of the supersolution u to (1.1). Here we follow the approach of
Lieberman [13]. We emphasize that this initial step requires an additional assumption on the
dri� b ∈ L∞L2(�) which was not needed in the elliptic case (cf. [9]). In Lemma 3.3, we
establish an estimate which allows us to bootstrap the initial bounds onw from Lemma 3.2 to
higher Lσ -norms for any σ ∈ [1, (n + 2)/n). Using Lemma 3.3, we also obtain a bound
on ‖∇w‖L2 in Subsection 3.3, which is essential for estimating higher norms. Then, the
aforementioned estimates on all the higher norms are deduced by using Moser’s iteration
technique (see Subsection 3.4). The lower bound on the in�mum then follows from the
auxiliary assertion in Lemma 3.5. Our main result is a consequence of Lemmas 2.1 and 3.1.

2. Local boundedness

In this section, we show that any nonnegative Lipschitz subsolution of (1.1) is locally bounded
when the divergence free dri� belongs to the anisotropic Lebesgue spaces LlLq̄(�) for all l and
q̄ satisfying 1 ≤ 2/l + n/q̄ < 2.

Lemma 2.1. Assume that u is a nonnegative Lipschitz subsolution to the equation

ut − 1u + b · ∇u = 0 (2.1)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 211

with b ∈ LlLq̄(�) for 1 ≤ 2/l + n/q̄ < 2 and div b≤ 0 in the sense of distributions. Then for

any QR ⊂ �, p > 0, and 0 < θ < τ < 1

sup
QθR

u ≤ C

(

1 +

(

R1−2/l−n/q̄‖b‖Ll(Lq̄(�))

)1/(2−2/l−n/q̄)
)(n+2)/p

R−(n+2)/p‖u‖Lp(QτR), (2.2)

where C = C(n, p, l, q̄, θ , τ) is a positive constant.

Proof of Lemma 2.1. Let u be a nonnegative Lipschitz subsolution of (2.1) in �, that is,
∫

�

∂tuϕ +

∫

�

∂ju∂jϕ +

∫

�

bj∂juϕ ≤ 0 (2.3)

for any Lipschitz function ϕ ≥ 0 in � and ϕ = 0 in �c.
Without loss of generality, we may assume that that R = 1. We use in (2.3) test functions

of the form

ϕ =

(

β

2
+ 1

)

uβ+1η2γ χ{t≤T}

with a Lipschitz cut-o� function η in Qτ , such that 0 ≤ η ≤ 1, and the constants β > 0
and γ > 0 to be set later—below, we let β → +∞ with γ remaining �xed. This gives, for
T ∈ (−τ 2, 0)

(

β

2
+ 1

)∫

Qτ

(∂tu)(u
β+1)η2γ χ{t≤T} +

(

β

2
+ 1

)∫

Qτ

(∂ju)
(

∂j(u
β+1)

)

η2γ χ{t≤T}

+

(

β

2
+ 1

)∫

Qτ

uβ+1∂ju
(

∂j(η
2γ )
)

χ{t≤T} +

(

β

2
+ 1

)

×

∫

Qτ

bju
β+1(∂ju)η

2γ χ{t≤T} ≤ 0. (2.4)

Set w = uβ/2+1, so that

∂jw =

(

β

2
+ 1

)

uβ/2∂ju.

Using (2.4), we get, integrating the �rst term by parts in time:

1

2

∫

Bτ

w2η2γ
∣

∣

∣

t=T
+

β + 1

β/2 + 1

∫

Qτ

|∇w|2η2γ χ{t≤T}

≤ −2γ

∫

Qτ

(∂jw)wη2γ−1(∂jη)χ{t≤T} −

∫

Qτ

bj(∂jw)wη2γ χ{t≤T}

+ γ

∫

Qτ

w2η2γ−1(∂tη)χ{t≤T}. (2.5)

Here we have utilized the fact that η(x,−τ 2) = 0. For the �rst term in the right side of (2.5)
we have

− 2γ

∫

Qτ

(∂jw)wη2γ−1(∂jη)χ{t≤T} = γ

∫

Qτ

w2 (η2γ−11η + (2γ − 1)η2γ−2|∇η|2
)

χ{t≤T},

(2.6)

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 0
5:

16
 0

5 
A

pr
il 

20
16

 



212 M. IGNATOVA ET AL.

while for the second term

−

∫

Qτ

bj(∂jw)wη2γ χ{t≤T} =
1

2

∫

Qτ

(∂jbj)w
2η2γ χ{t≤T} + γ

∫

Qτ

bjw
2η2γ−1(∂jη)χ{t≤T}

≤ γ

∫

Qτ

bjw
2η2γ−1(∂jη)χ{t≤T} (2.7)

since div b≤ 0.
Next, let γ0 = 2/l + n/q̄. Then, by assumption, we have γ0 ∈ [1, 2). We also choose

γ = 1/(2− γ0), so that γ γ0 = 2γ − 1. By Hölder’s inequality we have the following estimate
for the right side in (2.7):

∫

Qτ
bjw

2η2γ−1(∂jη)χ{t≤T} ≤
∫

Qτ
|bj||wηγ |γ0 |w|2−γ0 |∂jη|χ{t≤T}

≤ ‖b‖
LltL

q̄
x
‖wηγ χt≤T‖

γ0
LstL

r
x
‖w|∇η|1/(2−γ0)χt≤T‖

2−γ0

L2t,x
. (2.8)

Here s and r are determined by

1

q̄
+

γ0

r
+

2 − γ0

2
= 1

and

1

l
+

γ0

s
+

2 − γ0

2
= 1.

It is easy to verify that 2/s + n/r = n/2—this is how γ0 was chosen. Now, Young’s and the
interpolation inequality

‖f ‖LstL
r
x
≤ C‖f ‖1−α

L∞
t L2x

‖∇f ‖α

L2t,x
(2.9)

with 2/s + n/r = n/2 and α = n/2 − n/r, applied to the right side of (2.8), imply
∫

Qτ

bjw
2η2γ−1(∂jη)χ{t≤T} ≤ ǫ‖wηγ χt≤T‖2LstL

r
x
+ C‖b‖

2/(2−γ0)

LltL
q̄
x

‖w|∇η|1/(2−γ0)χt≤T‖2
L2t,x

≤
1

2

(

‖wηγ χt≤T‖2L∞
t L2x

+‖∇(wηγ )χt≤T‖2
L2t,x

)

+C‖b‖
2/(2−γ0)

LltL
q̄
x

‖w|∇η|1/(2−γ0)χt≤T‖2
L2t,x

.

(2.10)

By (2.5), (2.6), and (2.10), we obtain, for any −τ 2 < T < 0:
∫

Bτ

uβ+2(T)η2γ (T) +

∫

Qτ

|∇(uβ/2+1ηγ )|2χ{t≤T}

≤ C

∫

Qτ

uβ+2η2γ−1|1η|χ{t≤T} + C

∫

Qτ

uβ+2η2γ−2|∇η|2χ{t≤T}

+ C

∫

Qτ

uβ+2η2γ−1|∂tη|χ{t≤T} + C‖b‖
2/(2−γ0)

LltL
q̄
x

‖uβ/2+1|∇η|1/(2−γ0)χt≤T‖2
L2t,x

+
1

2
‖uβ/2+1ηγ χt≤T‖2L∞

t L2x
. (2.11)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 213

As this inequality holds for all −τ 2 < T < 0, we may take the supremum over T to eliminate
the L∞

t L2x-norm in the right side. Namely, from (2.11), we have

sup
T∈[−τ 2,0]

∫

Bτ

uβ+2(T)η2γ (T)

≤ C

∫

Qτ

uβ+2η2γ−1|1η| + C

∫

Qτ

uβ+2η2γ−2|∇η|2 + C

∫

Qτ

uβ+2η2γ−1|∂tη|

+ C‖b‖
2/(2−γ0)

LltL
q̄
x

‖uβ/2+1|∇η|1/(2−γ0)‖2
L2t,x

+
1

2
‖uβ/2+1ηγ ‖2L∞

t L2x
(2.12)

and
∫

Qτ

|∇(uβ/2+1ηγ )|2 ≤ C

∫

Qτ

uβ+2η2γ−1|1η| + C

∫

Qτ

uβ+2η2γ−2|∇η|2

+ C

∫

Qτ

uβ+2η2γ−1|∂tη| + C‖b‖
2/(2−γ0)

LltL
q̄
x

‖uβ/2+1|∇η|1/(2−γ0)‖2
L2t,x

+
1

2
‖uβ/2+1ηγ ‖2L∞

t L2x
. (2.13)

Adding the last two estimates and absorbing the L∞
t L2x-norm, we obtain

sup
−τ 2≤T≤0

∫

Bτ

uβ+2(T)η2γ (T) +

∫

Qτ

|∇(uβ/2+1ηγ )|2

≤ C

∫

Qτ

uβ+2η2γ−1|1η| + C

∫

Qτ

uβ+2η2γ−2|∇η|2 + C

∫

Qτ

uβ+2η2γ−1|∂tη|

+ C‖b‖
2/(2−γ0)

LltL
q̄
x

‖uβ/2+1|∇η|1/(2−γ0)‖2
L2t,x

, (2.14)

with an increased constant C > 0. By the interpolation inequality (2.9), used on the le� side
of (2.14) with r = s = 2(n+ 2)/n, and α = n/(n+ 2), used together with Young’s inequality,
we get the following estimate:

‖uβ/2+1ηγ ‖L2χ (Qτ ) ≤ C

(∫

Qτ

uβ+2η2γ−1|1η|

)1/2

+ C

(∫

Qτ

uβ+2η2γ−2|∇η|2
)1/2

+ C

(∫

Qτ

uβ+2η2γ−1|∂tη|

)1/2

+ C‖b‖
1/(2−γ0)

LlLq̄
‖uβ/2+1|∇η|1/(2−γ0)‖L2 (2.15)

with χ = (n + 2)/n.
We shall now use (2.15) iteratively. We take a decreasing sequence ri > 0, and at each step

choose the cut-o� function η ∈ C∞
0 (�) such that

η ≡ 1 in Qri+1

η ≡ 0 in Qc
ri
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214 M. IGNATOVA ET AL.

and

|∇η| ≤
C

ri − ri+1

|1η| ≤
C

(ri − ri+1)2

|∂tη| ≤
C

(ri − ri+1)2
.

Then (2.15) gives

‖uβ/2+1‖L2χ (Qri+1 )
≤

C

ri − ri+1
‖uβ/2+1‖L2(Qri )

+

C‖b‖
1/(2−γ0)

LlLq̄(Qri )

(ri − ri+1)
1/(2−γ0)

‖uβ/2+1‖L2(Qri )
. (2.16)

Let us choose βi in (2.16) so that χ i = βi/2 + 1. In addition, we set

ri = θ +
(τ − θ)

2i
, i = 0, 1, 2, . . .

so that ri − ri+1 = (τ − θ)/2i+1. Thus we obtain

‖u‖
L2χ

i+1
(Qri+1 )

≤

(

C2i+1

τ − θ
+

C2(i+1)/(2−γ0)

(τ − θ)1/(2−γ0)
‖b‖

1/(2−γ0)

LlLq̄(Qri )

)1/χ i

‖u‖
L2χ

i
(Qri )

≤ C1/χ i
2(i+1)/(γ1χ i)

(

(τ − θ)−1 +

(

(τ − θ)−1‖b‖LlLq̄(Qri )

)1/(2−γ0)
)1/χ i

× ‖u‖
L2χ

i
(Qri )

, (2.17)

where γ1 = min{2 − γ0, 1}. By iteration, starting from i = 0, we conclude that the estimate
(2.2) holds for p ≥ 2.

Now, let p ∈ (0, 2). The previous argument has shown that

sup
Qθ

u ≤ C
(

(τ − θ)−1 +
(

(τ − θ)−1‖b‖LlLq̄(Qτ )

)1/(2−γ0)
)(n+2)/2

‖u‖L2(Bτ )

≤ C
(

(τ − θ)−1 +
(

(τ − θ)−1‖b‖LlLq̄(Qτ )

)1/(2−γ0)
)(n+2)/2

‖u‖
1−p/2
L∞(Qτ )

‖u‖
p/2
Lp(Qτ )

,

(2.18)

which implies

sup
Qθ

u ≤
1

2
‖u‖L∞(Qτ ) + C

(

(τ − θ)−1 +
(

(τ − θ)−1‖b‖LlLq̄(Qτ )

)1/(2−γ0)
)(n+2)/p

‖u‖Lp(Qτ ).

(2.19)
Now, the iteration argument of [7, Lemma 4.3] may be applied to complete the proof of
Lemma 2.1 for 0 < p < 2.

3. The lower bound

The goal of this section is to prove Lemma3.1, which establishes a lower bound of the in�mum
of a Lipschitz supersolution to (2.1).
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 215

Recall (cf. (1.2) and (1.3)) that we use the notation Q∗
R(x0, t0) for the cylinder centered at

the bottom and QR(x0, t0) for the cylinder centered at the top, and QR = QR(0, 0).

Lemma 3.1. Assume that u is a nonnegative Lipschitz supersolution to (2.1), and b ∈ Lq̄(�) ∩

L∞L2(�) with n/2 + 1 < q̄ ≤ n + 2 and div b= 0 in the sense of distributions. Then there

exists a (small) positive number p0 = p0(n, q̄,R,MR) such that

(

CR−n−2
∫

Q∗
R(0,−4R2)

up0

)1/p0

≤ exp
(

1 + (R1−(n+2)/q̄‖b‖Lq̄)
1/(2−(n+2)/q̄)

)C(n)
inf
QR

u (3.1)

with

MR = 1 + (R1−n/2‖b‖L∞L2)
2 + R1−(n+2)/q̄‖b‖Lq̄ . (3.2)

We establish the proof of Lemma 3.1 in several steps, successively improving the estimate.
We primarily work with the function

v = log(u/K)

with a constant K to be determined. If u is a supersolution to (2.1), then v is also a
supersolution to (2.1). More precisely, v satis�es the inequality

|∇v|2 ≤ vt − 1v + b · ∇v in �. (3.3)

Next, we obtain various bounds on w = v+.

3.1. A bound on
∫
wα for α ∈ (0, 1)

We begin with the following initial estimate on w = v+ = log+(u/K). Note that the constant
K we choose in (3.4) below does depend on the solution u(x, t).

Lemma 3.2. Let η(x) = C(1 − |x|2/(9R2))+ be normalized so that

∫

Rn
η2(x) dx = 1, and set

K = exp

(∫

B3R

η2(x) log u(x, 4R2) dx

)

. (3.4)

Then for α ∈ (0, 1) we have
∫

Q∗
2R

wα dx dt ≤ CM0R
n+2 (3.5)

with M0 = 1 + (R1−n/2‖b‖L∞L2)
2.

Proof of Lemma 3.2. Again, without loss of generality, we assume that R = 1. We multiply
(3.3) by the cut-o� η2(x) and integrate over B3 × (t1, t2) with 0 ≤ t1 < t2 ≤ 4 in order to
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216 M. IGNATOVA ET AL.

obtain
∫ t2

t1

∫

B3

|∇v(x, t)|2η2(x) dx dt

≤

∫

B3

v(x, t2)η
2(x) dx −

∫

B3

v(x, t1)η
2(x) dx + 2

∫ t2

t1

∫

B3

(∂jv(x, t))η(x)(∂jη(x)) dx dt

+

∫ t2

t1

∫

B3

bj(x, t)(∂jv(x, t))η
2(x) dx dt. (3.6)

A�er rearranging the terms and using the Cauchy-Schwarz inequality, we have
∫

B3

v(x, t1)η
2(x) dx −

∫

B3

v(x, t2)η
2(x) dx +

∫ t2

t1

∫

B3

|∇v(x, t)|2η2(x) dx dt

≤ 2

∫ t2

t1

∫

B3

(∂jv(x, t))η(x)(∂jη(x)) dx dt +

∫ t2

t1

∫

B3

bj(x, t)(∂jv(x, t))η
2(x) dx dt

≤
1

2

∫ t2

t1

∫

B3

|∇v(x, t)|2η2(x) dx dt + C‖∇η(x)‖2L2(B3×(t1,t2)))

+ C‖b‖2L∞
t L2x(B3×(t1,t2))

‖η‖2
L2t L

∞
x (B3×(t1,t2))

. (3.7)

Absorbing the �rst term on the far right side of (3.7) leads to
∫

B3

v(x, t1)η
2(x) dx −

∫

B3

v(x, t2)η
2(x) dx +

1

2

∫ t2

t1

∫

B3

|∇v(x, t)|2η2(x) dx dt

≤ C
(

1 + ‖b‖2L∞L2(�)

)

(t2 − t1) (3.8)

since 0 ≤ η ≤ 1. Now, we set M0 = 1 + ‖b‖2
L∞L2(�)

. Using weighted Poincaré’s inequality
(cf. [13, Lemma 6.12]) on the le� side of (3.8), we get

∫

B3

v(x, t1)η
2(x) dx −

∫

B3

v(x, t2)η
2(x) dx

+
1

C

∫ t2

t1

∫

B3

∣

∣

∣

∣

v(x, t) −

∫

B3

v(x, t)η2(x) dx

∣

∣

∣

∣

2

η2(x) dx dt ≤ C0M0(t2 − t1) (3.9)

where C0 > 0 is a �xed constant.
For the rest of the proof we may proceed as in the proof of [13, Lemma 6.21]. Consider the

function

p(x, t) = v(x, t) − C0M0(4 − t), (3.10)

de�ned as a translation of v in time by the term coming from the right side of (3.9). Note that
the constant K in (3.4) was chosen so that

∫

B3

v(x, 4)η2(x) dx = 0, (3.11)

and (3.9) and (3.11) imply that
∫

B3

v(x, t)η2(x) dx ≤ C0M0(4 − t), 0 ≤ t ≤ 4. (3.12)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 217

Based on η(x) being uniformly positive for |x| ≤ 2, we claim the upper bound

∣

∣{(x, t) ∈ Q∗
2 : p(x, t) > µ}

∣

∣ ≤
C|Q∗

2|

µ
, µ ≥ 1 (3.13)

on the size of the level sets of p. In order to show (3.13), �x µ ≥ 1 and denote

Qµ(t) = {x ∈ B2 : p(x, t) > µ}, 0 ≤ t ≤ 4. (3.14)

Also, let

P(t) =

∫

B3

v(x, t)η2(x) dx − C0M0(4 − t) (3.15)

for 0 ≤ t ≤ 4 and observe that P(4) = 0. Now, we may rewrite (3.9) in the form

P(t1) − P(t2) +
1

C

∫ t2

t1

∫

B3

|p(x, t) − P(t)|2 dx dt ≤ 0. (3.16)

By (3.12), we have P(t) ≤ 0 for 0 ≤ t ≤ 4. Thus p(x, t) − P(t) > µ − P(t) > 0 on Qµ(t),
which together with (3.16) gives

P(t1) − P(t2) +
1

C|Q∗
2|

∫ t2

t1

|Qµ(t)|(µ − P(t))2 dt ≤ 0 (3.17)

for 0 ≤ t1 ≤ t2 ≤ 4. Dividing by t2 − t1 and taking the limit t2 → t1, we get

− P′(t) +
|Qµ(t)

C|Q∗
2|

(µ − P(t))2 ≤ 0 (3.18)

or equivalently

|Qµ(t)|

C|Q∗
2|

≤
P′(t)

(µ − P(t))2
(3.19)

for 0 ≤ t ≤ 4. Integrating (3.19) in time, we �nally obtain

1

C|Q∗
2|

∣

∣{(x, t) ∈ Q∗
2 : p(x, t) > µ}

∣

∣ ≤
1

µ − P(4)
−

1

µ − P(0)
≤

1

µ
, (3.20)

where we utilized P(4) = 0 in the last inequality. Thus, the validity of (3.13) is established.
Using (3.13), we obtain the bound

∫

{(x,t)∈Q∗
2 : p(x,t)>1}

pα dx dt = α

∫ ∞

1
µα−1

∣

∣{(x, t) ∈ Q∗
2 : p(x, t) > µ}

∣

∣ dµ

≤ Cα|Q∗
2|

∫ ∞

1
µα−2 dµ ≤ C|Q∗

2| (3.21)

since α ∈ (0, 1). We conclude the proof of (3.5) by noting that the function w satis�es wα ≤

Cpα + CMα
0 if p ≥ 1 and wα ≤ C + CMα

0 if p < 1.

3.2. A bound on
∫
wσ for σ ∈ [1, (n + 2)/n)

From now on, without loss of generality, we assume that R = 1. As before, we work with
w = v+ = log+(u/K) with a constant K de�ned in (3.4). The function w is a supersolution
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218 M. IGNATOVA ET AL.

to the equation for v, that is,

|∇w|2 ≤ wt − 1w + b · ∇w (3.22)

since it is a maximum of two supersolutions, v1 = v(x, t) and v2 ≡ 0. We need the following
inequality that bootstraps bounds for the Lα-norms with α ∈ (0, 1) we have obtained in
Lemma 3.2 to higher norms.

Lemma 3.3. For any σ ∈ [1, (n + 2)/n) and any α ∈ (0, 1), we have

‖w‖Lσ (Q∗
1)

≤ C(1 + ‖b‖Lq̄)
C‖w‖Lα(Q∗

2)
, (3.23)

where C = C(α, σ , n, q̄).

Proof of Lemma 3.3. Let η be a Lipschitz cut-o� inQ∗
2 with 0 ≤ η ≤ 1; note that unlike in the

proof of Lemma 3.2 the cut-o� here also depends on time.Wemultiply (3.22) by the function

(w + 1)2βη2γ χ{t≥T},

with β ∈ (−1/2, 0), γ > 1 to be determined, and T ∈ (0, 4), and integrate over Q∗
2 to obtain

1

2β + 1

∫

B2

(w + 1)2β+1η2γ
∣

∣

∣

t=T
+

∫

Q∗
2

|∇w|2(w + 1)2βη2γ χ{t≥T}

≤ 2β

∫

Q∗
2

|∇w|2(w + 1)2β−1η2γ χ{t≥T} + 2γ

∫

Q∗
2

(∂jw)(w + 1)2βη2γ−1(∂jη)χ{t≥T}

−
2γ

2β + 1

∫

Q∗
2

bj(w + 1)2β+1η2γ−1(∂jη)χ{t≥T}

−
2γ

2β + 1

∫

Q∗
2

(w + 1)2β+1η2γ−1(∂tη)χ{t≥T}. (3.24)

Here we have used the condition div b= 0. The �rst term on the right side is negative since
β ∈ (−1/2, 0), while integration by parts in the second term on the right gives

2γ

∫

(∂jw)(w + 1)2βη2γ−1(∂jη)χ{t≥T} =
2γ

2β + 1

∫

∂j
(

(w + 1)2β+1) η2γ−1(∂jη)χ{t≥T}

= −
2γ (2γ − 1)

2β + 1

∫

(w + 1)2β+1η2γ−2|∇η|2χ{t≥T}

−
2γ

2β + 1

∫

(w + 1)2β+1η2γ−1(1η)χ{t≥T}. (3.25)

This, together with (3.24) leads to

1

2β + 1

∫

B2

(w + 1)2β+1η2γ
∣

∣

∣

t=T
+

∫

Q∗
2

(w + 1)2β |∇w|2η2γ χ{t≥T}

≤ −
2γ

2β + 1

∫

Q∗
2

bj(w + 1)2β+1η2γ−1(∂jη)χ{t≥T}

−
2γ

2β + 1

∫

Q∗
2

(w + 1)2β+1 (η2γ−1∂tη + (2γ − 1)η2γ−2|∇η|2 + η2γ−11η
)

χ{t≥T}.

(3.26)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 219

Wemay use the inequality

|∇((w + 1)β+1/2ηγ )|2 ≤ 2(β + 1/2)2(w + 1)2β−1|∇w|2η2γ

(3.27)

+2γ 2(w + 1)2β+1η2γ−2|∇η|2

on the le� side of (3.26). In addition, as w > 0, we have (w + 1)2β−1 ≤ (w + 1)2β , which
altogether gives

∫

B2

(w + 1)2β+1η2γ |t=T +

∫

Q∗
2

|∇((w + 1)β+1/2ηγ )|2χ{t≥T}

≤ Cγ

∫

Q∗
2

|bj|(w + 1)2β+1η2γ−1|∂jη|χ{t≥T}

+ Cγ 2
∫

Q∗
2

(w + 1)2β+1 (η2γ−1|∂tη| + η2γ−2|∇η|2 + η2γ−1|1η|
)

χ{t≥T}. (3.28)

An application of the interpolation inequality (2.9) with r = s = 2(n + 2)/n leads to

‖(w + 1)β+1/2ηγ ‖2
L2(n+2)/n ≤ C‖(w + 1)β+1/2ηγ ‖2L∞L2 + C‖∇((w + 1)β+1/2ηγ )‖2L2

≤ Cγ

∫

Q∗
2

|bj|(w + 1)2β+1η2γ−1|∂jη|χ{t≥T}

+ Cγ 2
∫

Q∗
2

(w + 1)2β+1 (η2γ−1|∂tη| + η2γ−2|∇η|2 + η2γ−1|1η|
)

χ{t≥T}. (3.29)

Next, we may estimate the dri� term in (3.29) with the help of Hölder’s inequality as

Cγ

∫

Q∗
2

|b|(w + 1)2β+1η2γ−1|∇η|

= Cγ

∫

Q∗
2

|b|(w + 1)(2β+1)(1−λ)(w + 1)(2β+1)λη2γ−1|∇η|

≤ Cγ ‖b‖Lq̄‖(w + 1)(2β+1)(1−λ)‖L1/(1−λ)‖(w + 1)(2β+1)λη2γ−1‖L(n+2)/(nλ)‖∇η‖L∞ ,

(3.30)

where
1

q̄
+ 1 − λ +

nλ

n + 2
= 1.

Therefore, λ is given by λ = (n + 2)/(2q̄) and λ ∈ [1/2, 1), as 1 ≤ (n + 2)/q̄ < 2 by
assumption. Using Young’s inequality, this leads to

Cγ

∫

Q∗
2

|b|(w + 1)2β+1η2γ−1|∇η|

≤Cγ ‖b‖Lq̄‖(w + 1)2β+1‖
1−λ

L1
‖(w + 1)2β+1η(2γ−1)/λ‖λ

L
n+2
n

‖∇η‖L∞

≤
1

2
‖(w + 1)β+1/2η(2γ−1)/(2λ)‖2

L2(n+2)/n

+
(

Cγ ‖b‖Lq̄‖∇η‖L∞

)1/(1−λ)
‖(w + 1)β+1/2‖2L2 . (3.31)
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220 M. IGNATOVA ET AL.

Setting γ = 1/(2(1−λ)) ≥ 1 so that (2γ −1)/2λ = γ and using (3.29) and (3.31), we obtain

‖(w + 1)β+ 1
2 ηγ ‖2

L
2(n+2)

n

≤
1

2
‖(w + 1)β+ 1

2 ηγ ‖2

L
2(n+2)

n
+
(

C‖b‖Lq̄‖∇η‖L∞

)2γ
‖(w + 1)β+ 1

2 ‖2L2

+ C

∫

Q∗
2

(w + 1)2β+1 (η2γ−1|∂tη| + η2γ−2|∇η|2 + η2γ−1|1η|
)

. (3.32)

The �rst term on the right may be absorbed into the le� side:

‖(w + 1)β+ 1
2 ηγ ‖2

L
2(n+2)

n (Q∗
2)

≤
(

C‖b‖Lq̄‖∇η‖L∞

)2γ
‖(w + 1)β+ 1

2 ‖2L2

+ C

∫

Q∗
2

(w + 1)2β+1 (η2γ−1|∂tη| + η2γ−2|∇η|2 + η2γ−1|1η|
)

. (3.33)

We now once again use an iteration procedure, applied to a decreasing sequence of
parabolic cylinders Qri with ri+1 < ri. Choosing the cut-o� η such that η ≡ 1 in Q∗

ri+1
and

η ≡ 0 in (Q∗
ri

∪ Qri)
c, we have, from (3.33):

‖(w + 1)β+ 1
2 ‖2

L
2(n+2)

n (Q∗
ri+1

)
≤

(

Cγ ‖b‖Lq̄

ri − ri+1

)2γ

‖(w + 1)β+ 1
2 ‖2L2(Q∗

ri
)

+
C

(ri − ri+1)2
‖(w + 1)β+ 1

2 ‖2L2(Q∗
ri
)
,

or equivalently

‖(w + 1)2β+1‖L(n+2)/n(Q∗
ri+1

) ≤ C(ri − ri+1)
−2γ (‖b‖

2γ
Lq̄

+ 1)‖(w + 1)2β+1‖L1(Q∗
ri
), (3.34)

since γ ≥ 1. Set χ = (n + 2)/n, pick α ∈ (0, 1), and consider σ ∈ [1, (n + 2)/n). Possibly
increasing σ and decreasing α we may assume that σ = χ jα with j ∈ N. We shall use (3.34)
with

βi =
χ iα − 1

2

for i = 0, . . . , j so that 2β0 + 1 = α and 2βj + 1 = σ , and ri = 1 + 2−i. Then (3.34) implies
the recursive relation

‖w + 1‖
Lχ i+1α(Q∗

ri+1
)
≤ C22γ (i+1)/χ i

(‖b‖
2γ
Lq̄

+ 1)1/χ
i
‖w + 1‖

Lχ iα(Q∗
ri
)
, (3.35)

and a �nite number of iterations gives (3.23).

Remark 3.4. Observe that if b ∈ LlLq̄(�) with 1 ≤ 2/l + n/q̄ < 2, we may bound the dri�
term (3.30) using the same idea as in (2.8) and (2.10) but withw2 replaced byw2β+1, and then
apply the interpolation inequality (2.9).
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 221

3.3. An estimate for
∫

|∇w|2

The next step is to obtain bounds on ‖∇w‖L2 . Recall that w satis�es

|∇w|2 ≤ wt − 1w + b · ∇w. (3.36)

Multiplying (3.36) by η2χ{t≥T} and integrating over Q∗
2 gives

∫

B2

wη2
∣

∣

∣

t=T
+

∫

Q∗
2

|∇w|2η2 ≤ 2

∫

Q∗
2

(∂jw)η(∂jη) − 2

∫

Q∗
2

bjwη∂jη − 2

∫

Q∗
2

wη∂tη, (3.37)

where we used div b= 0. A�er estimating the right side, we get
∫

B2

wη2
∣

∣

∣

t=T
+

∫

Q∗
2

|∇w|2η2 ≤ C‖∇η‖2L2 + C‖b‖Lq̄‖wη‖Lq̄∗ ‖∇η‖L∞ + C‖ηt‖L∞‖wη‖L1

≤ C(1 + ‖b‖2L∞L2 + ‖b‖Lq̄)
C = CMC, (3.38)

where M = 1 + ‖b‖2
L∞L2

+ ‖b‖Lq̄ . In the last inequality, we used Lemmas 3.2 and 3.3 with
σ = q̄∗ and σ = 1, respectively, where q̄∗ < (n + 2)/n, as 1/q̄ + 1/q̄∗ = 1 and (n + 2)/2 <

q̄ ≤ n + 2.
Note that with the bound (3.38) in hand we may extend the argument in the proof of

Lemma 3.3 to include β ∈ [0, 1/2]. Namely, in that proof we have considered β ∈ (−1/2, 0)
and dropped the �rst term in the right side of (3.24) simply because β was negative. Now,
we may rely on (3.38) to bound this term in (3.24). The rest of the argument in the proof of
Lemma 3.3 did not rely on the negativity of β . As the aforementioned term in (3.24) involves
the product |∇w|2(w+1)2β−1 while (3.38) estimates |∇w|2, wewould still need the restriction
β ≤ 1/2.

3.4. Bound on
∫
w2β+1 for β ≥ 1/2

We now extend the bound for
∫

w2β+1

to β ≥ 1/2. As in the proof of Lemma 3.3, we let η be a Lipschitz cut-o� inQ∗
2 with 0 ≤ η ≤ 1.

This time, we multiply (3.22) by the function

w2βη2γ χ{t≥T}

with β ≥ 1/2 and T ∈ (0, 4), and integrate overQ∗
2 , using the divergence-free condition on b:

1

2β + 1

∫

B2

w2β+1η2γ
∣

∣

∣

t=T
+

∫

Q∗
2

|w|2β |∇w|2η2γ

≤ 2β

∫

Q∗
2

|∇w|2w2β−1η2γ + 2γ

∫

Q∗
2

(∂jw)w2βη2γ−1∂jη

−
2γ

2β + 1

∫

Q∗
2

bjw
2β+1η2γ−1∂jη −

2γ

2β + 1

∫

Q∗
2

w2β+1η2γ−1∂tη. (3.39)
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222 M. IGNATOVA ET AL.

For the �rst term in the right side of (3.39), we use the inequality

2β|w|2β−1 ≤
1

2
|w|2β + (4β)2β−1, (3.40)

and for the second:

2γ

∫

(∂jw)w2βη2γ−1∂jη =
2γ

2β + 1

∫

∂j(w
2β+1)η2γ−1∂jη

= −
2γ (2γ − 1)

2β + 1

∫

w2β+1η2γ−2|∇η|2 −
2γ

2β + 1

∫

w2β+1η2γ−11η. (3.41)

Together with (3.39) this gives

1

2β + 1

∫

B2

w2β+1η2γ
∣

∣

∣

t=T
+

1

2

∫

Q∗
2

|w|2β |∇w|2η2γ

≤ (4β)2β−1
∫

Q∗
2

|∇w|2η2γ −
2γ

2β + 1

∫

Q∗
2

bjw
2β+1η2γ−1∂jη

−
2γ

2β + 1

∫

Q∗
2

w2β+1 (η2γ−1∂tη + (2γ − 1)η2γ−2|∇η|2 + η2γ−11η
)

. (3.42)

Applying the estimate (3.40) for the second term on the le� side of (3.42), we obtain

1

2β + 1

∫

B2

w2β+1η2γ |t=T + 2β

∫

Q∗
2

|w|2β−1|∇w|2η2γ

≤ 2(4β)2β−1
∫

Q∗
2

|∇w|2η2γ +
2γ

2β + 1

∫

Q∗
2

|bj|w
2β+1η2γ−1|∂jη|

+
2γ

2β + 1

∫

Q∗
2

w2β+1 (η2γ−1|∂tη| + (2γ − 1)η2γ−2|∇η|2 + η2γ−1|1η|
)

. (3.43)

Next, we multiply (3.43) by (2β + 1) and use the inequality

|∇(|w|β+1/2ηγ )|2 ≤ 2(β + 1/2)2|w|2β−1|∇w|2η2γ + 2γ 2|w|2β+1η2γ−2|∇η|2 (3.44)

on the le� side to get
∫

B2

w2β+1η2γ
∣

∣

∣

t=T
+

∫

Q∗
2

|∇(|w|β+1/2ηγ )|2

≤ C(4β)2β
∫

Q∗
2

|∇w|2η2γ + Cγ

∫

Q∗
2

|bj|w
2β+1η2γ−1|∂jη|

+ Cγ 2
∫

Q∗
2

w2β+1 (η2γ−1|∂tη| + η2γ−2|∇η|2 + η2γ−1|1η|
)

. (3.45)
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We use the interpolation inequality (2.9) with r = s = 2(n + 2)/n to write

‖wβ+1/2ηγ ‖2
L2(n+2)/n ≤ C‖wβ+1/2ηγ ‖2L∞L2 + C‖∇(wβ+1/2ηγ )‖2L2

≤ C(4β)2β
∫

Q∗
2

|∇w|2η2γ + Cγ

∫

Q∗
2

|bj|w
2β+1η2γ−1|∂jη|

+ Cγ 2
∫

Q∗
2

w2β+1 (η2γ−1|∂tη| + η2γ−2|∇η|2 + η2γ−1|1η|
)

.

(3.46)

First, we note that unlike in the proof of Lemma 3.3 we now have the uniform estimate (3.38)
for the gradient:

∫

Q∗
2

|∇w|2 ≤ CMC. (3.47)

Next, we estimate the dri� term in (3.46) similarly to what we did in the proof of Lemma 3.3.
Namely, we may write

Cγ

∫

Q∗
2

|b|w2β+1η2γ−1|∇η| = Cγ

∫

Q∗
2

|b|w(2β+1)(1−λ)w(2β+1)λη2γ−1|∇η|

≤ Cγ ‖b‖Lq̄‖w
(2β+1)(1−λ)‖L1/(1−λ)‖w(2β+1)λη2γ−1‖L(n+2)/(nλ)‖∇η‖L∞ (3.48)

with λ = (n + 2)/(2q̄) ∈ [1/2, 1). An application of Young’s inequality gives

Cγ

∫

Q∗
2

|b|w2β+1η2γ−1|∇η|

≤ Cγ ‖b‖Lq̄‖w
2β+1‖

1−λ

L1
‖w2β+1η(2γ−1)/λ‖λ

L(n+2)/n‖∇η‖L∞

≤
1

2
‖wβ+1/2η(2γ−1)/(2λ)‖2

L2(n+2)/n +
(

Cγ ‖b‖Lq̄‖∇η‖L∞

)1/(1−λ)
‖wβ+1/2‖2L2 . (3.49)

As before, choosing γ = 1/(2(1−λ)), we may absorb the �rst term in the right side of (3.49)
into the le� side of (3.46). Thus, we obtain

‖(wη)β+1/2‖2
L2(n+2)/n ≤ CMC(4β)2β +

(

Cγ ‖b‖Lq̄‖∇η‖L∞

)2γ
‖wβ+1/2‖2L2

+ Cγ 2
∫

Q∗
2

w2β+1 (η2γ−1|∂tη| + η2γ−2|∇η|2 + η2γ−1|1η|
)

.

(3.50)

We are now ready to perform the iteration process. We set ri = 1+ 2−i for i = 0, 1, 2, . . . and
choose the cut-o� η such that η ≡ 1 in Q∗

ri+1
and η ≡ 0 in (Q∗

ri
∪ Qri)

c. Then (3.50) gives at
each iteration step

‖wβ+1/2‖2
L2(n+2)/n(Q∗

ri+1
)

≤ CMC(4β)2β +

(

Cγ

ri − ri+1
‖b‖Lq̄

)2γ

‖wβ+1/2‖2L2(Q∗
ri
)

+
Cγ 2

(ri − ri+1)2
‖wβ+1/2‖2L2(Q∗

ri
)
≤ CMC(4β)2β

+

(

Cγ

ri − ri+1

)2γ

(‖b‖
2γ
Lq̄

+ 1)‖wβ+1/2‖2L2(Q∗
ri
)

(3.51)

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 0
5:

16
 0

5 
A

pr
il 

20
16

 



224 M. IGNATOVA ET AL.

since γ ≥ 1. Thus, we have the relation

‖wβ+1/2‖2
L2(n+2)/n(Q∗

ri+1
)
≤ CMC

(

Cγ

ri − ri+1

)2γ
(

(4β)2β + ‖wβ+1/2‖2L2(Q∗
ri
)

)

(3.52)

between consecutive scales. As in the proof of Lemma 3.3 we use it with βi = (χ i − 1)/2
where χ = (n + 2)/n but this time we may allow β (and thus i) to be arbitrarily large. We
obtain

‖w‖
χ i

Lχ i+1
(Q∗

ri+1
)
≤ CMC2γ (i+1)

(

(2χ i)χ
i
+ ‖w‖

χ i

Lχ i (Q∗
ri
)

)

(3.53)

≤ CMC2γ (i+1)
(

2χ i + ‖w‖
Lχ i (Q∗

ri
)

)χ i

for i = 0, 1, 2, . . . Iterating the inequality

‖w‖
Lχ i+1

(Q∗
ri+1

)
≤ (CM)C/χ i

22γ (i+1)/χ i
(

2χ i + ‖w‖
Lχ i (Q∗

ri
)

)

(3.54)

obtained from (3.52) by taking 1/χ i power on both sides, we get

‖w‖
Lχ i+1

(Q∗
ri+1

)
≤ CMC

(

χ i+1 + ‖w‖L1(Q∗
1)

)

. (3.55)

By Lemmas 3.2 and 3.3, we have

‖w‖L1(Q∗
1)

≤ CMC‖w‖Lα(Q∗
2)

≤ CMC (3.56)

which together with (3.55) implies

‖w‖
Lχ i+1

(Q∗
ri+1

)
≤ CMCχ i+1. (3.57)

Thus, we may conclude
(

∫

Q∗
1

w2β+1

)1/(2β+1)

≤ CMC(2β + 1) (3.58)

for all β > 0, and
∫

Q∗
1

(p0w)2β+1

(2β + 1)!
≤ (Cp0M

Ce)2β+1 ≤
1

22β+1
(3.59)

provided p0 = (2CMCe)−1. The last inequality leads to the estimate
∫

Q∗
R

( u

K

)p0
≤ CRn+2, (3.60)

where the constant K is de�ned in (3.4) and

MR = 1 + (R1−n/2‖b‖L∞L2)
2 + R1−(n+2)/q̄‖b‖Lq̄ .

We apply Lemma 3.2 and (3.60) to the translated in time cylinderQ∗
R(0,−4R2) and obtain

∫

Q∗
R(0,−4R2)

( u

K

)p0
≤ CRn+2 (3.61)

with K = exp(
∫

B3R
η2(x) log u(x, 0) dx).
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If u is a supersolution to (2.1), then log+(K/u) is a subsolution to (2.1). The last ingredient
in the proof of Lemma 3.1 is the following result.

Lemma 3.5. We have

sup
QR

log+

(

K

u

)

≤ C
(

1 + (R1−(n+2)/q̄‖b‖Lq̄)
1/(2−(n+2)/q̄)

)C(n)
, (3.62)

where

K = exp

(∫

B3R

η2(x) log u(x, 0) dx

)

. (3.63)

Proof of Lemma 3.5. We apply Lemma 2.1 for the positive subsolution log+(K/u) to (2.1)
with p ∈ (0, 1) to obtain

sup
QR

log+

K

u
≤ C

(

1 + (R1−(n+2)/q̄‖b‖Lq̄)
1/(2−(n+2)/q̄)

)(n+2)/p
R−(n+2)/p

∥

∥

∥

∥

log+

K

u

∥

∥

∥

∥

Lp(Q2R)

.

(3.64)

Now, let v = log(u/K) with K given by (3.63). We have v = − log(K/u) and log+(K/u) =

log−(u/K). The choice of K implies that
∫

B3R

η2(x)v(x, 0) dx = 0.

We may proceed as in the proof of Lemma 3.2 to conclude
∥

∥

∥

∥

log+

K

u

∥

∥

∥

∥

Lp(Q2R)

≤ CR(n+2)/p, (3.65)

which, combined with (3.64) proves (3.62).

Proof of Lemma 3.1. Lemma 3.5 is, actually, an upper bound on K, or a lower bound on
infQR u:

K ≤ C exp

(

(

1 + (R1−(n+2)/q̄‖b‖Lq̄)
1/(2−(n+2)/q̄)

)C(n)
)

inf
QR

u, (3.66)

which together with (3.60) gives
(

CR−n−2
∫

Q∗
R(0,−4R2)

up0

)1/p0

≤ K ≤ C exp
(

1 + (R1−(n+2)/q̄‖b‖Lq̄)
1/(2−(n+2)/q̄)

)C(n)
inf
QR

u.

(3.67)

Thus, the proof of Lemma 3.1 is complete.

Proof of Theorem 1.1. The Harnack inequality (1.6) is obtained as a direct consequence of
Lemmas 2.1 and 3.1. Indeed, combining the estimates (2.2) and (3.1), we conclude

sup
QR/2(0,−3R2)

u ≤

(

C + C(R1−(n+2)/q̄‖b‖Lq̄)
1/(2−(n+2)/q̄)

)C(n)/p0
inf
QR

u (3.68)

for any Lipschitz solutions u to (2.1), where p0 = 1/(CMC
R ) andMR given in (3.2).
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