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Abstract

We address the system of partial differential equations modeling motion of an elastic body inside
an incompressible fluid. The fluid is modeled by the incompressible Navier-Stokes equations while
the structure is represented by the damped wave equation with interior damping. The additional
boundary stabilization -, considered in our previous paper, is no longer necessary. We prove the
global existence and exponential decay of solutions for small initial data in a suitable Sobolev space.
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1 Introduction

In this paper, we consider a system of fluid-structure interaction with interior structural damping evolving
in a domain which consists of two parts, the exterior part Q(t) for the fluid and the interior part Q.(t)
for the elastic structure. The dynamics of the fluid are described by the incompressible Navier-Stokes

equations

O —Au+ (u-V)u+Vp=0 in Qs(t) (1.1)
V-u=0 in Qs(t) (1.2)



[Tel, Te2], while the elastic structural dynamics are governed by a damped linear wave equation
Wi — Aw + aw + fw =0 in Q.. (1.3)

The interaction takes place on a common interface denoted by I'.(¢), and it is described by the transmission
boundary conditions matching the velocities and the stress forces at the interface. Our main result is
global existence of solutions and their exponential decay for small initial data, in the presence of the
interior structural damping but without the boundary stabilization used in [IKLT2]. Boundary (interface)
stabilization effect consists of absorbing boundary conditions, which are known to produce regularizing
effect on the normal derivative of the wave component.

Fluid-structure interaction models have attracted considerable attention in both engineering and
mathematical literature. This is due to a broad range of applications in various areas of applied sciences,
from fluid mechanics to biochemistry and medicine. These models were originally considered within a
finite element framework which is natural for numerical computations, cf. [DGHL, GGCC, GGCCL] and
references therein. More recently the issues related to the mathematical theory of existence, uniqueness,
and stability of solutions for such systems have become topics of major research interest. The fluid-
structure interaction model considered here is an example of a quasilinear system exhibiting parabolic-
hyperbolic coupling with an interface. The mismatch of regularity between hyperbolic and parabolic
dynamics constitutes, as noted in [CS1, CS2], a defining feature and an obstacle in the analysis of the
problem.

Earlier results in the area were mostly obtained for models where “hyperbolicity” of an elastic body
was disguised by either (i) a strong damping added to the equation (thus making it parabolic) [B, DEGL)]
or (ii) replacing the wave component with a rigid body modeled by an ODE [F, SST]. In both cases, the
analysis is more amenable due to the parabolic smoothing effects.

The interaction between parabolic and hyperbolic dynamics and induced mismatch of regularity were
highlighted in a series of works [AT1, AT2, BGLT1, BGLT2, BL, DGHL, LL1, LL2, ALT, KTZ1, KTZ2,
KTZ3], which considered the coupling between the Navier-Stokes equations and the wave equation under
the assumption that the interface is stationary (this can be justified for small latitudinal oscillations)
[L1]. The analytical tools and trace regularity results developed in some of these works have proven to
be relevant for addressing more general fluid-structure interaction models and have paved the way for
some of the recent works [BZ1, BZ2, KT1, KT2, IKLT1, RV].

The first results which pertain to genuine parabolic-hyperbolic problem with a dynamic interface
are due to Coutand and Shkoller [CS1, CS2|. In particular, they proved local well-posedness of smooth
solutions of the system [CS1]. Subsequent results pertaining to local theories but with lesser requirements
imposed on the smoothness of initial data appeared in [KT1, KT2, IKLT1]. Similar results were also
obtained for the case of compressible flows [BG1, BG2, KT3|.

In our previous work [IKLT2], we have obtained well-posedness as well as a global existence result
and exponential decay of solutions for small initial data when additional boundary damping was imposed
(see the constant v > 0 in (4.1)). The boundary damping provides regularizing effect on the normal
derivative of the wave equation (the so called effect of absorbing boundary conditions). This particular

feature has had beneficial effect on the analysis of the coupled structure where normal stresses provide



carriers for the transport across the interface. The paper [IKLT2] is the first work to address the issue
of global existence. It is well known that global existence in quasilinear dynamics is strongly tied to the
asymptotic decay of solutions, which in turn requires a damping mechanism. In the case of fluid-structure
interaction the least amount of damping necessary for forcing linear dynamics to decay is the boundary-
interface damping [AT1, AT2]. It was shown in [IKLT2] that the presence of the boundary damping
allows to prove global existence of solutions to the quasilinear model. Such result holds under certain
geometric condition known as the “star shaped” domain condition. This geometric condition is natural
for wave type dynamics when subject to boundary dissipation [LTrl]; however, it can be eliminated for
the wave dynamics altogether using micro-local methods [LTr1]. In the case of fluid-structure interaction,
it can also be eliminated, as shown in [IKLT?2], by introducing an interior dissipation term aw;. In view
of the above, the following question arises. Is it possible to obtain global existence (and decay of the
energy) without any geometric restrictions and with one damping mechanism only?

The present paper provides a positive answer to this question by showing that the viscous damping
alone provides global and decaying solutions without any constraints on the geometry.

In the remainder of the introduction we describe the ideas behind the proof of the main global existence
theorem. When proving well-posedness of the quasilinear system one is faced with a twofold task: (i)
obtaining suitable a priori estimates which close at some desired level of regularity, and (ii) construction
of actual solutions to which the a priori estimates can be applied.

Both tasks meet new substantial challenges which were not encountered previously. For the first task,
one needs to provide a priori bounds for the integrals of potential energy, without relying on the bound
on normal derivatives for the solution of the wave equation, secured by v > 0 as was the case in [IKLT2].
(Indeed, absorbing boundary conditions provide instant L? regularity of the normal derivative of w.)
However, in the case v = 0, the normal wave components of finite energy solutions reside in negative
order Sobolev spaces due to the failure of the Lopatinski condition [S]. We overcome this obstacle by
applying suitable multipliers which cancel the effects of boundary over-spill along with developing a series
of estimates on tangential derivatives by methods reminiscent to Agmon-Douglis-Nirenberg theory and
elliptic theory [GS]. We note that a related multiplier estimate was successfully employed in [LL1] where
static interface was considered and the Dirichlet-Stokes map served as the needed multiplier. However,
the same multiplier is no longer effective for dynamic interface model and suitable modifications which
exploit flow map are necessary. The second task, which is the construction of actual solutions, is even more
challenging. Cancellation of the pressure term via integration by parts, typical when performing estimates
on the solutions, no longer occurs. It is here where the mismatch of regularity comes strongly into play.
Regularizing effect of parabolicity looses its momentum and strength when passing the information on
the elastic system which exhibits the usual loss of regularity. Hence, the modern techniques developed
in the context of hidden trace regularity theory for the wave equation (cf. [L2, LLT, LTr2, KMT]) and
maximal regularity for the Stokes operator [MZ1, MZ2, PS] become critical. Maximal regularity allows
us to handle the pressure term while sharp trace estimates move forward the fluid across the interface
with no loss of derivatives, this latter phenomenon associated with the classical trace theory. The main

ideas behind the construction of the local in time solution are described in Remark 6.3 below.



2 The main result

The system, modeling the coupling of the fluid and an elastic structure, is written in the Lagrangian
variables with a precise set-up as follows. Let n(-,¢): Q — Q be the flow map under which the initial
domain configurations € and . evolve with time, so that Q¢(t) = n(Qy,t) and Q.(t) = n(Qe,t). For

simplicity, we assume that the domains are flat, i.e.,
Qf = {o = (21,22,23) : hy <23 < hy or hg <3 < hy}

and
Qe = {& = (z1,72,23) : hy < w3 < h3}

with periodic boundary conditions with period 1 in the lateral directions.

In Lagrangian coordinates, the incompressible Navier-Stokes equation takes the form

vl — 9j(alafdv') + Op(afq) =0 in Qp x (0,T), i=1,2,3 (2.1)
afopvt =0 in Qp x (0,7), (2.2)

where v(z,t) = g (x,t) = u(n(x,t),t) and q(z,t) = p(n(x,t),t) denote the Lagrangian velocity and the
pressure of the fluid over the initial domain Q. For the displacement function w(z,t) = n(z,t) — z, the

linear damped elasticity equation reads
wi, — Aw' + aw; + fw' =0 in Q. x (0,T), i=1,2,3 (2.3)

over the domain Q.. We thus seek a solution (v, w,q,a,n) to the damped fluid-structure system (2.1)—

(2.3), where the dynamics of the Lagrangian matrix a and the flow map 7 are described by the ODEs
a;=—a:Vv:a inQf x(0,7T) (2.4)
and
ne=wv in Qf x (0,T) (2.5)

with the initial conditions a(x,0) = I and n(z,0) = z in Q.

On the common boundary I'., we assume continuity of the velocities
wi =v' onT.x (0,T) (2.6)
and the stresses
Ojw'N; = a{af@kviNj —afgNy, on T, x (0,T), (2.7
while on the outside fluid boundary I'y, we assume the non-slip boundary condition
v' =0 onT'f x(0,7) (2.8)

for i = 1,2,3, where N = (N7, Ny, N3) is the unit outward normal with respect to €2.. (Note that we use
the strain tensor Vv instead of the symmetric gradient matrix Vv + Vo7 for the sake of simplicity.)



We use the classical spaces for the fluid velocity H = {v € L*(€y) : dive = 0,v- Njp, = 0} and
V ={ve H (Q):dive =0,vp, = 0}.
We now state the first main result of the paper, which provides an a priori estimate for the global

existence.

Theorem 2.1. Let o, 3 > 0. Assume that vg € V.0 H3(Qy), v,(0) € V, v(0) € H, wy € H3(Qe), and
wy € H%(Q,) satisfying the compatibility conditions

w1 = Vg

Awy — awy — Pwy = Avg — Vqo,

Awy — aw(0) — fuwr = Av(0) — Vi (0) + 9;(8:a (0)94v" (0)) — draf (0)g(0) (2.9)
on T,
Owy vy
oN TTaN T
% ST = %(Avo — qu) T (2.10)

also on T, for tangential vectors T, and

Vo = 0)
AUO - qu = 0,
— 0;(0,a} (0)9,v*(0)) — Adw'(0) + dpay (0)0rq(0) + Dieq(0) = 0 (2.11)

on I'y. There exists € > 0 such that if
[voll s + lve ()l + llvee (0)] L2 + [lwoll s + lwill = <€ (2.12)
then any smooth solution (v,w,q,a,n) smooth solution to (2.1)—~(2.5) on [0, 00| satisfies

v e L=([0,00); H*(Qy))

v € L([0, 00); H?(2y))

v € L([0,00); L*(Q2y))

Vo € L*([0,00); L (Qf))

dwe C(0,00); H>79(Q.)),  j=0,1,2,3 (2.13)

with g € L>=([0,00); H*(Q¢)), q: € L>([0,00); H'(Q)), a,ar € L>=([0,00); H*(Qy)), ay € L>([0,00); H (L)),
awr € LY ([0,00); L2(Q)), and n|q, € C([0,00); H3(y)). Also, the norm

[v@zrs + lve() |z + [lvee (@)l 22 + [lg@) | 2 + llge ()|
+ lw) | as + lwe @)z + [[wee (@) | g2 + lwee ()| 22 (2.14)

decays exponentially.



Note that if the initial fluid velocity v belongs to V N H?*(Qy), then it satisfies the regularity assump-
tions of Theorem 2.1; namely, vo € V N H3 (), v,(0) € V, and vy(0) € H.

The proof of Theorem 2.1 is based on the energy estimates given in Section 4, which are leading to the
Gronwall-type inequality (5.18) for the norm X (¢) defined in (5.1) below. The exponential decay of X ()
is established in Lemmas 5.1 and 5.2, while the proof of Theorem 2.1 is given at the end of Section 5.

The second main result of this paper provides the global well-posedness of the system (2.1)—(2.5) for

small and more regular initial data.

Theorem 2.2. Let o, > 0. Assume that the initial data satisfy vo € V.0 H™/2(Q¢), v,(0) € V N
H2(Qy), v (0) € V, wg € HY/479(Q,), wy € HY479(Q,) for some § € (0,1/4) and that they satisfy
the compatibility conditions (2.9), (2.10), (2.11), and

8wtt(0) - 0
aN T an

Avy(0) — Vi (0) + 0;(9,as (0)0,v°(0)) — dpay (0)0rq(0)) - 7 (2.15)
for unit tangential vectors 7. Assume, in addition, that
[voll s + e () |z + [0 (0)[| 2 + [[woll s + [[wi 2 < e, (2.16)

where € > 0 is a sufficiently small constant. Then for any T > 0 (independent of €) there exists a global
in time solution (v,w,q,a,n) to (2.1)~(2.5) obeying

ve L2([0,T); HY(Q5)) N H'([0,T); H*(Qy))
v € H'Y([0,T); H*(Qy))
vee € H'([0,T); L*(2y))
dlwe C(0,T); H/4971(Q,)),  j=0,1,2,3 (2.17)

with ¢ € L*([0,T); H3()) N HY([0,T); H*(Qf)) and ¢+ € H'([0,T); H'(Q)). Also, the norm

lo@)lms + el a2 + loe @)l 22 + gl a2 + lge ()] a2
+ lw®)las + lwe @z + lwa @)l + [lwee ()] 22 (2.18)

decays exponentially.

Similarly as after the statement of Theorem 2.1, we note that if vog € V N H®(Qy), then it satisfies
the assumptions vy € VN H/2(Q}), v,(0) € H*2(Qy), and vy, (0) € V. We prefer to work with the less
regular assumptions because they remain invariant under the dynamics of the system.

We emphasize that the smallness of initial data is imposed only to a subset of regularity required by
the initial data. The same holds with the decay rates. In order to reconcile this, we need to be careful
in tracing the superlinear dependence on the higher norms, making sure that they are linear, module the
topology required for decay.

We devote the last section to the proof of Theorem 2.2, which is divided into several steps. First, in
Lemmas 6.2-6.8, we prove the existence and uniqueness of a solution to the linear problem with given
coefficients close to the identity matrix. Here, the main tools are maximal regularity for the Stokes

system used along with the sharp regularity for boundary traces of the wave operator. These allow



to transfer maximal regularity of the fluid across the interface without loosing derivatives. In order to
achieve sufficient regularity, two loops of maximal regularity are needed. The existence of a solution to the
nonlinear problem then follows by the Schauder fixed point theorem, while the uniqueness is established
via the contraction mapping theorem applied at the lower energy level (cf. Subsection 6.3 below).

Note that we address here the flat geometry, which we do in order to simplify the presentation. The
extension to general geometry though not automatic requires introducing tangential differential operators
and commutator estimates in the spirit of [BGLT2] and [KTZ3]. We suspect that the results carry over

to the most general situation.

3 Preliminary results

In this section, we give formal a priori estimates on time derivatives of the unknown functions needed in
the proof of Theorem 2.1. We begin with an auxiliary result from [IKLT1] providing bounds on the flow

map 7 and the matrix a.

Lemma 3.1. [IKLT1] Assume that |[Vv| 2o, r;m2) < M. Let p € [1,00] and i,j = 1,2,3. With
T € [0,1/CM], where C is a sufficiently large constant, the following statements hold:

(i) IVnllae < C fort € 0,T);

(ii) ||a|| gz < C fort € [0,T];

(#i) ||at|| e < C||Vo||Le fort €]0,T);

() |Giae|lLr < C||Vo||Lei||0sal|Lr: + C||VO0| e for i =1,2,3 and t € [0,T] where 1 < p,p1,p2 < o0
are such that 1/p =1/p1 + 1/pa;

(v) |0s5ac]| 2> < C|IVo| 2 IIV0|[35 + C|IVo| 2 fori,j=1,2,3 and t € [0,T];

(vi) lage]| 2 < ClVvllL2l| Vol + ClIVuelre and [lawllze < Cllvl|Fe + CllVoelre for t € 0, T];

(vii) |agee|| 2 < ClIVo[[3 + O Vol 2 [Vollpe + Cl[Vogel| 2 for t € [0,T];

(viii) for every e € (0,1/2] and all t < T* = min{e/CM? T}, we have

1655 — alaf |} <€, jk=1,2,3 (3.1)

and
166 —allf= <€, jik=1,2,3. (3.2)

In particular, the form a{affj-é‘,i satisfies the ellipticity estimate
j ki 1 n?
adlaiig > GlE% EER (3:3)
for allt € [0,T%] and x € Qy, provided e < 1/C with C sufficiently large.
The statement in [IKLT1] requires ||Vo|| Lo ((o,77,m2) < M, but the proof only needs
VUl L2 (0. 1),2) < M. (3.4)

For instance, the a priori estimate for a reads

la@®)|la> < C+/O lla(s)l[72 V0 (s) | 72 ds (3.5)



and (ii) under the condition (3.4) follows by using the Gronwall lemma, provided T' < 1/CM.
We next recall the variable coefficients Stokes-type estimates for mixed Dirichlet-Neumann boundary

conditions, obtained in our previous work [IKLT1].

Lemma 3.2. [IKLT1] Assume that v and q solve the system

vl — 0j(a]af ') + Ok(alq) =0 in Q
afopvt =0 in Qf
v=0 on Iy

a{af(?kvi]\/'j —afqNy, = ijiNj on T,

for given coefficients a;:- € L>™(Qy) with i,j = 1,2,3 satisfying Lemma 8.1 with a sufficiently small

constant e = 1/C. Then the estimate

ow
oo + Nalloss < Cllulae + € | 5] (3.10)
He+1/2(T,)
holds for s = 0,1 and for all t € (0,T). Moreover, the time derivatives vs and g satisfy
[vell 2 + llgel| e
owy /2, 1/2
< Clloullz +C | 55 + CllolZ ol (lollae + lallm) (3.11)
ON [l (r,)

for allt € (0,T), where T < 1/CM for a sufficiently large constant C.

Now, let w be a solution to the wave equation (2.3). Let D'w = (01w, drw) denote the tangential
derivative of w, and let (D’)? be the matrix with entries d;;w for i,7 = 1,2. We obtain the full regularity

elliptic estimate
Jwll s < Cllwee|l e + Cllwell e + Cllwll gy + CI(D")wl| g1 (3.12)

for all ¢ € (0,7) by applying the Agmon-Douglas-Nirenberg procedure of decomposing the elliptic
(Laplace) operator into tangential and normal coordinates.

Differentiating (2.3) in time, we also have
lwellzrz < Cllwseellrz + Cllweellzz + Cllwellzz + Cl[ D wel| (3.13)

for all t € (0,T).
From (3.10) with s = 1 and (3.12), we conclude that the Stokes type estimate

[vllms + llallzrz < Cllvella + Cllweellmr + Cllwellzr + Cllwllze + CID") *wl| g (3.14)
holds for all ¢ € (0,T"), where T' < 1/C'M. Analogous derivation shows that

[vllzz + lallzr < Clloellze + Cllweell e + Cllwllz2 + Cllwllz2 + Cl|[D'w] g0 (3.15)



By (3.11), (3.13), and (3.15), we also get

lvell 2 + llgell m
/2y 1/2
< Cllvwllez + Cllwell a2 + Cllollygs 1ol 75 (ol 2 + llallzn )

< Ollvsellzz + Cllwsse || 22 + Cllwsell 22 + Cllwel 2 + C|ID"wt|| 1
3/2
+Cloll}e (C||Ut||L2 + Cllwie|| 2 + Cllwe|| g2 + Cllwl| L2 + C||D/wH1) (3.16)

for all t € (0,T), where T < 1/CM.

4 Global in time solutions

In this section, we derive L2-estimates for the fluid-structure system (2.1)—(2.5) on several different levels

of energy. More precisely, as in [IKLT2], where we considered the system subjected to the transmission
boundary condition

‘ i

= '[}7‘ —_ ’}/7

ON

for a parameter v > 0, we rely on a priori estimates on time derivatives of the unknown functions. Also,

i
wy

on T.x (0,T), i=1,2,3 (4.1)

in order to treat the limiting case v = 0, we further need estimates on the tangential and time-tangential

derivatives. These are needed for the regularity of the wave component (cf. (3.12) and (3.13).)

4.1 First level estimates
We denote by
1
Et) = (@72 + Bllw®)[|72 + llwe ()72 + [Vw(®)]|7z) , (4.2)

the energy of the system (2.1)—(2.3). From [IKLT2, Lemma 4.1]), recall the inequality

Blt)+ / " D(s)ds < B(0), (4.3)

for all t € [0,T], where

2

D) = IVl + allun()l +7 | 500 (1.4

L2(T.)
The purpose of the next lemma is to establish estimates on the time integral of the potential energy of the

wave component from the damping, secured by the kinetic energy. This entails to establishing a suitable

equipartition of the wave energy in the context of the interface coupling.

Lemma 4.1. We have

2

t
w do(x)

¢ t o 1 ol
[ vl 6 [l + Gl + G190 -0k [ | s

< CE(0) + / w25 + Cllun ()25 + Cllo@)|2s + / ol + / (B(s)n(x.s) —x)ds  (45)



for allt € [0,T], where

/ (R(s), (. s) — x) ds
0

= ;/Ot/at(a{af)ak(ni — &0, (i — ) +/Ot ds/q(s) /OS Ot O — 2) drdz.  (4.6)

Remark 4.2. Note that the equipartition estimate (4.5) in Lemma 4.1 would have had much simpler
form if the constants C' were allowed to blow up as v — 0. In such case, the last term involving R would
not be necessary. The presence of this term is due to the lack of uniform in 7 control of the L? norm of
Ow/ON. This is the reason why the presence of only frictional damping in the wave equation (without

the boundary damping) in the coupled problem leads technically to much more involved estimates.

Proof of Lemma 4.1. We take the L2-inner product of (2.3) with w® and sum for i = 1,2, 3

/witwi f/Awiwi +a/wiwi +ﬁ/wiwi =0. (4.7

Differentiating the first term in (4.7) by parts in time leads to

d i i aa 2 2
pr wiw® — /wtwt /8w8w+2dt/\w| +B/|w| /8wdea()70 (4.8)

We integrate in time

¢ ) ¢ , a ,
| fwatas [ frures [wb],
0 0 2
« t o o t o
= §/|w0|2+/ /|7~Ut|2—/w§wz l, +/w§w6+/ / O;w'w'Nj do(z) ds. (4.9)
0 o Jr.

The equality (4.9) would provide a desirable equipartition of energy relation if not for the last boundary

term, which is a result of the coupling. This term In order to estimate it, we first write
w=n—x— /—dm on I, (4.10)

which follows by integrating (4.1) in time. Multiplying both sides of (2.7) by n* — 2, summing for

1 =1,2,3 and integrating the resulting equation leads to

¢ ¢ _ o ‘ ¢ ‘ ‘
//@wiwidea(:c)dsf/ / afafc’)kvz(nzf:cZ)deU(:r)der/ / afq(n® — Y )Ny do(z) ds
0 0 Jr.
:—’y//aw/ 8NdTNda()d
__7/ " ow
=5 ).

T ds do( ), (4.11)
where we utilized (4.10) in the first equality. On the other hand, multiplying (2.1) with ° — 2%, summing

ON

in ¢ and integrating over Qs gives

/vi(ni —a2') - /8j (a{af@kvi) (n' — %) + /ak(afq)(ni —2) =0 (4.12)

10



which leads to

G [ == [ois [adaowa e - o)~ [ateon )
+ | dafopi(y’ — 2 N;do(x afq(n’ — 2")Ny do(x) = 0. (4.13)
L4

Now, we integrate (4.13) in time and integrals of the last two boundary terms in (4.13) can be obtained
from (4.11). Adding add the resulting equation to (4.9). Noting the cancellation of the troublesome

t ow

boundary integrals due to (4.11), we arrive at
——ds

! 2 ' 2 @ 2 v
| frwees [ fwee g fuel o [ 55
t t
- /|w0|2 //thIQ—/w%w’|t+/wiw6—/vz(nz—x’)\t+//|v|2
0 0

. . 1 [t ) ) ) . .
— 5 [ alafou(n’ — 2")0;(n' — ") |, +5 O (ajaf)Ok(n' — 2")0;(n* — *)
2 2 Jo

o[ [ ataonir - (414

where we also utilized integration by parts in time and the relation 7, = v. The last term on the right

dcr(:c)

side equals

t
| [ akaonta o)
0
t s ) ) t s ) )
:/ ds/q(s)/ 6ta§8k(nl—xl)d7dx+/ ds/q(s)/ afoRoi(n' — x%) dr dx
0 0 0 0
t s
z/ ds/q(s)/ orak oy (n' — ) dr dx (4.15)
0 0

since a0y, (n' — x%) dr dx = ak9v" = 0 by (3.7). In conclusion, we get

//IVwI2+ﬂ//IwI2 S [k,

1 j i i i i Y
+y [adato —aos - |+ [ |55

t
s fie [ fite [l o fee- oot | fo
t : . X . ) t - ‘
+%/ /at(a{af)ak(ﬁz7xl)aj(ﬁzfxl)+\/ ds/q(s)/ 3taf3k(nz—xl) dr do. (416)
0 0 0

For the fourth term on the left side we utilize the ellipticity of the matrix a, i.e., a{af&jf,@ > (1/0)|¢)?

for all £ € R? x R?, while for the pointwise terms on the right, we write

- [ wiut |, < Sl + Ll (417)

2

" buw do(z)

and

- / Vi — ) |, < elln( ) — 2|2 + Collo(®) 25, (4.18)

11



respectively. Since n —x = 0 on I'y, we may apply the Poincaré inequality in order to absorb the first
term on the right side of (4.18) with the left side of (4.16). Therefore, the lemma is established. O

Multiplying (4.5) with a small parameter and adding the resulting inequality to (4.3) give

t - taw
E(t)+/OE(s)ds+ey/Fc /0 6—Nds

where € > 0 is a small parameter independent of . Here we utilized the Poincaré inequality for the fluid
velocity v; namely, that ||v(t)||z < C||Vu(t)||rz. The last term on the right side of (4.19) is treated in

Lemma 4.13 below.

do(z) < CE(0) + C /0 (R(s),n(z,s) — x)ds, (4.19)

4.2 Second level estimates

For simplicity, we assume from here on that § = 1. We introduce the second level energy

ED(t) = (Il + [lwe(8) 72 + lwee (0)1F2 + [V (t)]Z2) (4.20)

of the system with the corresponding dissipation

1 ow 2
D) = HIVeols + el +] 5

() (4.21)

L*(T) .

In order to obtain the integral inequality for E™(t), we differentiate the full system (2.1)-(2.3) in time.
We obtain

vl — ataj(a{afﬁkvi) + 9;0k(alq) =0 in Qr x(0,7) (4.22)
af vl + 9pakOpv =0 in Qp x (0,7) (4.23)
and
why — Awi 4+ awl, +wi =0 in Q. x (0,T) (4.24)
fori=1,2,3.

We start by recalling the next statement from [IKLT2].

Lemma 4.3. [IKLT2] The energy inequality
t t
EO@) + / DM (s)ds < BD(0) + / (R (s), vi(s)) ds (4.25)
0 0

holds for all t € [0,T], where
t t _ o t '
/ (R(l), v)ds = —/ at(a{af)ﬁkvlﬁjvz dx ds + / atafqakvi dx ds
0 0o Jay 0o Jay

t
— / 3taf<9tq8kvi dx ds. (4.26)
0 Q‘f

12



For the proof of Lemma 4.3 see [IKLT2, Lemma 4.5].

We now derive estimates on the time integrals of ||w(t)]/z2 and |Vw.(t)]| 2.

Lemma 4.4. We have

1
[ 19wtz + [l + S0l + SIve1z + 3 [

LZ(FC)

< CEW(0) + Clluwe(8)|22 + Cllog(t) 22 + / lweel 2 + / A

, (4.27)
L2(T,)

+/ (BD(s), 0(s)) ds + C[Vo(0)][32 + 7 HSJ“V’@)

0

for all t € [0,T), where

t t ) . t .
/ (RM)(s),v(s)) ds = _%/ /at(a{af)akvzajvl +/ /Btafqﬁkvz (4.28)
0 0 0

and where the constant C depends on .

Proof of Lemma 4.4. We take the L?-inner product of (4.24) with w{, sum for i = 1,2,3, and integrate

in time in order to obtain

/ [ v+ / Jruwi+ 5 [,
t
_ §/|w1|2+/0 Jwat? = [wicwi |, + [ wiwl ’t:°+/o /F djwiwiN, do(z)ds.  (4.29)

Next, we take the L?-inner product of (4.22) with v* and sum for i = 1,2, 3,

/Uitvi - /aji?t(a{afﬁkvi)vi —&-/Zﬁ@t(afq)vi =0 (4.30)

which after differentiating by parts in time leads to

vivt — /vtvt /8,5 alal 8;41 0;v —/8t akq) oo’

+ /FC O (al ay Opv*)v'N; do(z) — / O (afq)v' Ny do(z) = 0. (4.31)

c

Now, we observe that
/(%(a{afakvi)ﬁjvi = %/8t(a{af8kviajvi) + %/at(a{af)akviajvi (4.32)
and
/at(aﬁq)akvi = /@afq@kvi (4.33)
since a¥0xv’ = 0. Therefore,

o 1 : | , o .
%/vzvl —/v;vz—k 5/8t(a{af8kv18jvl) + 5/6t(a§af)6kvz8jv’ —/@afqﬁkv’

+/ 8t(a{af8kvi)vi]\7j do(x)—/ O (afq)v' Ny, do(z) = 0. (4.34)
Ie

c

13



We integrate (4.34) in time and add the resulting equality to (4.29). Using partial cancellation of boundary

terms

// djwiwiN; do(x ds—/ / A alalﬁkv)dea( )ds
//(%aq V' Ny, do(x) ds
//8wtvN do(x)ds —~ //awtaNN do(x ds—//at alalakv)decr()d
//ataq V' Ny do(z) ds
2—7/0 /FcajwzaNdea(x)ds

:_;/FC (Sﬁ) do(z) +g/ (;;‘;g) do(x)

and we thus obtain

t t 2
/0 /|th|2—|—/0 /|wt‘2+%/\wt|2 |t +%/a{af@kvi6jui |t —|—% /FC (g}:;) do(z) t
o 2 ! 2 i i i i ! 2
:§/|w1| +/0 /‘wtt| */wttwt |t+/wttwt |t:0 +/Utv |t */Utv |t:0 +/0 /|Ut|

1 ; S 1 [t 4 o t ,

+ i/a{afé)kv’ajvl ‘t:O —5/0 /8t(a{af)6kvzﬁjvz+/o /8tafq8kvz

2

+3 [ (5) de)

For the two pointwise terms on the right side of (4.36) we utilize analogous estimates to (4.17) and (4.18);

(4.35)

0

(4.36)
0

namely,
= [ whowl |2 Sl + S w2 (437
and
[eiv' = Ve + Colu®: (4.38)
respectively, where € > 0 is sufficiently small. This concludes the proof of the lemma. (]

Multiplying (4.27) by a small parameter and adding it to (4.25) gives

2
EW(t) /E1> ds+mH
L2(T.)
2
< CEMW(0) + C||Vu(0)]|2> + &y HaN(O)
L2(T.)
t t
+ / (RM(5),v,(s)) ds + C / (RW(s),v(s)) ds (4.39)
0 0
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where € is a small constant independent of y. The last two terms on the right side of (4.39) are estimated

further below.

4.3 Third level estimates

We introduce the next level of energy

1
E? () = S (leu®)Ze + lwn®)Ze + lwm @) 7 + | Vwu b))

with the corresponding dissipation

2
8wtt

ON

1
DE1) = Vo0l + allura 0l + 7 | G )

L2(Te)
Differentiating the full system (2.1)—(2.3) twice in time, we obtain

vl — 041 0j (al aj kvt N+ &gtak(afq) =0 in Qf x (0,7)
ak o), + 20,k 0v] + Opak i’ =0 in Qp x (0,7)
wittt — Awtit + awitt + wit =0 in Q. x(0,7)

fori=1,2,3.
We recall the next statement from [IKLT2].

Lemma 4.5. [IKLT2] The inequality

E?(t) /D@) (s)ds < B®(0) + /t(R(2)(3)7vtt(s))dS
0

holds for all t € [0,T], where

¢ t
/ (RP(s),v4(s)) ds = 2 / Or(alay)Opvidjvl, dx ds
0 o Joy

t t
+ / Ot (a] af ) o' ojvy, da ds — / Ot (aFq)opvl, dx ds.
0 Joy 0

Qy
The proof of Lemma 4.5 is given in [IKLT2, Lemma 4.8].

Lemma 4.6. The estimate

ow
/ Vw22 + / el + S (@3 + IV + 1 H '

L2<rc)
< CE(0) + Cllwie(t)]|72 + C||vtt(t)|\2m +/ (R (s), vi(s)) ds

ow
+ OV (0)]122 + H at

holds for all t € [0,T], where

t 3 st ‘ ' '
| E @ =3 [ [oedaowio

¢ _ o t _
7/ /@t(afaf)akvlajvqu/ /&t(afq)akvz.
0 0
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Proof of Lemma 4.6 (sketch). We take the L2-inner product of (4.44) with w?,, sum for i = 1,2, 3, and

integrate in time to arrive at

t t «a
/ /|tht|2+/ /|wtt|2+7/|wn|2 P
0 0 2
o b . . . . t . .
=5 [l g+ [ [l = [ty |+ [wiete g+ [ ] oyt dota) as

(4.49)
We take the L2?-inner product of (4.42) with v}, sum for i = 1,2, 3, and differentiate in time
%/vztvz — /vztvzt +/8tt(afaf8kvz)8jvz - /att(afq)ﬁkvz
+/ 8tt(a{afakvi)v§]\7j do(x) 7/ Ot (afq)vi Ny do(z) = 0. (4.50)
r. r.

Now, we use
' ok ivg.ai L Goka ig i L 2
; O (a] ay Opv")0jv; = 5 | wa O 050 — EHVW(O)HLZ

3 [t . ) . t ) ) )
—1—5/0 /8t(a{aé‘)8kv§8jvz+/o /&gt(a{af)@kvl@jvz. (4.51)

Integrating (4.50) in time, using (4.51), and adding the resulting equality to (4.49), we arrive at (4.47). O

As in (4.25), we conclude,

/E ds—|—67H

H 8wt

2
< CE®(0) + C|| Ve (0)] 7
Lz(Fc)

t (2)8 U S S tN(Q)S V(S S .
+/0<R (), vee(s)) d +c/O<R (), ve(s)) ds, (4.52)

where € > 0 is a small parameter.

4.4 First order tangential energy estimates

We derive estimates on the first order derivative 9, for a fixed m = 1,2. Note that the boundary
conditions are not affected by the action of tangential derivatives. Similarly as in the previous subsections

we introduce the notation
1
En(t) = 5(H3mv(t)||%z + |Omw()[|72 + [|Omwe (0|72 + ([ VOmw(t)||7-) (4.53)

for the energy and

2

O(Opw)
ON

(1) (4.54)

1
Dn(®) = S I0m00IE: + o)+

L2(r,)

for the corresponding dissipation.
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Lemma 4.7. The energy inequality
t t
E,.(t) +/ D,,(s)ds < E,,(0) +/ (R (8), Omu(s)) ds (4.55)
0 0
holds for all t € [0,T], where
t t _ _ _ t '
/ (R (8),0mv(s)) ds = —/ /&n(afaf — 0j1)0k0° 000" —/ /&n(aéC — 0ik ) OmqOv"
0 0 0
t
+ / / O (aF — i) 0RO 0" (4.56)
0

Sketch of proof. The proof is obtained by applying the operator 9,, to the system (2.1)—(2.3) and mul-
tiplying the i-th fluid equation by 9,,v" and the i-th wave equation by ,,w}, respectively. Then we use
similar arguments as in [IKLT2, Lemma 4.1]. O

We now provide an estimate on the time integral of ||V, w| 2.

Lemma 4.8. We have

i 2 i 2 o 2 1 2 Y t@(amw) ?
190l + [ Wt + 1omw O + GVt )~ )i+ 5 [ [T | o)
t t
< CE,(0) + / 10umr]|22 + Cllomwn (D)2 + Cllomv(®)]22 + / 10002

0 0

t
4 [ Fon(s), Ot 5) — ) s (4.57)

0

fort € [0,T], where
t
/O (Rin(8), Om(n(z, s) — x)) ds
! i . . . 1 t ) - . . '
- _/0 /6m(aga§c - jk)akvlajam(nl - 331) + 5/0 /6t(agaé€)8kam(772 - xl)ajaﬂ(nl - xl)

t t
+ / / O (aF — 6:1)qOk O (' — ) + / / a0 qOkOm (0t — ). (4.58)
0 0

The proof is similar to the one of Lemma 4.1 and will be omitted.

For the last pressure term in (4.58) we use the divergence condition in order to write

t t s
/ /af@mqakam(ni —2h) = / ds/@mq/ (3ta§0k8m(ni —a2) — 8maf8kvi) dzx dr. (4.59)
0 0 0

‘We conclude

2

/Ot 9Omw) ds| do(x)

t
E,,(t +/Emsds+€/
0+ [ Basas v [ | [T

< CE,(0)+ /O (R (), Omo(s)) ds + C /O (B (5), O (0 — ) ds, (4.60)

where € > 0 is a small parameter.
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4.5 Second order tangential energy estimates

We next derive estimates on the derivative O, for fixed m = 1,2. Similarly as in the previous subsections

we introduce the notation

1
EmM(t) = §(Hammv(t)”%2 + Hammw@)HQL? + ||ammwt(t)”%2 + ||V6mmw(t)”%2) (4-61)

for the energy and
I(Ommw)

1
Do (t) = 6||V8,nmv(t)|\2L2 + | Ommws (B |32 + H N (t) ) (4.62)
for the corresponding dissipation.
Lemma 4.9. The energy inequality
t t
B (£) + / Dy (5)d5 < By (0) + / (R (5), B 0(s)) ds (4.63)
0 0
holds for all t € [0,T], where
t
/ (Rimm (8), Ommv(s)) ds = —2/ /3 alal — 0,) Ok Omv" 0 Oy 0"
/ /amm alal - ]k:)akv a ammv +/ /amm - 'Lk: qakammv
+2/ /am(ajc - 62k)8mqaka7rszZ +/ /a?anzmq&kamnlvi- (464)
0 0
Observe that for the last pressure term we may write
/af@mmqakammvi = —/8mma§8mmq8kvi — Q/Gmafammqakﬁmvi (4.65)
by using the divergence condition.
Lemma 4.10. We have
‘ ‘ a 1 5 L0 D) | |
S 150wl + [ 10l + Gl @l + GIVOman @l + 5 [ | [ H e as) aote)
t t
< CBnl0)+ [ 10mmtils + Clommt(®l3s + Clommo Ol + [ Iommoll
0 0
t
+/ (Rim(8), Omm (n(z,8) — x)) ds (4.66)
0

fort €10,T], where
[ ). 00 (0t.) — 27 s
/ /amm alal — 8;1)00°0;0mm (n' — ¥) 2/Ot/am(a{a;€5jk)akamvfajamm(nizi)
E / / 0103 4O D (1} — )0, B (1 — ) + / t / D (0 = 6300k Orm (1 — 77)
+2 / / O (0¥ — 5it )OO Oy (1 — / / DGO (1 — 7). (4.67)
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For the last pressure term in (4.67) we use the divergence condition in order to write

t
0

t s
= / ds/@mmq/ (8taf8k8mm(ni — ') — 3mmafakvi — 26ma58k8mvi) dx dr.
0 0
‘We conclude

2

' 7a(ammw) S o\x
/0 ds| do(x)

¢
Em (t Evm d €
()—i—/o (s) s—i—e'y/rc AN

< CEypp(0) + /0 (R (5), Dm0 (5)) ds + C /O (B (), Oy (7 — ) dis,

where € > 0 is small.

4.6 Mixed time tangential energy estimates

(4.68)

(4.69)

Finally, we derive estimates on the time tangential derivative 9;0,, for a fixed m = 1,2. We denote by

B (t) = 5 (10:0mv()| 12 + 10:0mw(t)[|72 + [0:0mwi(D)|Z2 + V0 0mw(t)|[72)

DN | =

the energy and

8(8mwt)

1
Dim(t) = GlIVO:0mv(t)[[12 + ol 00mwn ()72 + Hé’N(t

L2 (Te)

the corresponding dissipation.

Lemma 4.11. The energy inequality
t t
B (t) +/ Dy (8)ds < Epy, (0) —|—/ (Rem(8), 0:0mv(s)) ds
0 0
holds for all t € [0,T], where
t t . ) )
/ (Rim (8), 0:0mv(s)) ds = —/ /8t(a{af)3m6kv’8t8m8jvz
0 0
— / / Om(alay — 8;)040kv 0,0 050" — / / 040m (a] af )0y v" 0,0,,0;"
0 0
t t
+ / / D1Omak q0,0,,00,0" + / / 01a¥0,,q0,0,, 010"
0 0
¢ ‘ t ‘
+ / / Om (ay — 6ir)01q010m Ok’ + / / a5 0,0 G0y O g0
0 0
For the last pressure term on the right side of (4.73) we use

af@tamakvi + 3t8ma58kvi + Btafamﬁkvi + 8ma§8t3kvi =0

which follows from the divergence condition.
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Lemma 4.12. We have

2

0(Omw) ;

o "

t t a 1
[ ivonuls + [ 100wt + Glomu ol + GVl + ] |
0 0

L2(Te)

1 t t
< CEun(0) + 20w + Clowu @) + [ 1omwialts + [ 1omuil:
0 0

2

+/0 (Rim (s), Omv(s)) ds + C||Vnv(0)[22 + % Ha(gn]sz) (0)

7 (4.75)
L2(r.)

fort € [0,T], where
t ~ t . . . t . . .
/ (R (5), Omv(s)) ds = —/ /3t8m(a{af)8kvlam8jvl —/ /&n(afaf — 8,1) 0Ok v" Dy, 050"
0 0 0

. ‘ ‘ ) t .
— %/0 /@(a{afﬂ)amakvl@majvl + /0 /8t8ma§q5m3kvl
t t t
—I—/ /8taf8mq6m8mi+/ /3m(a§C _6ik)atq8makvi+/ /@fﬁmatqamak“i' (4.76)
0 0 ’

We also utilize
/ ¥ 0 01qOm O’ = — / Omak 0,,0:qOK0"° (4.77)

which follows by the divergence condition. We conclude

Eum(t) + /0 t Eym(s) ds+€7Ha(g;’sz) (t) i

2

< CEm(0) + C[|[VOnv(0)|7
L2(T.)

3(Opw)
N 0

+ &y H + /Ot(Rtm(s),&g@mv(s)) ds + c/ot(iétm(s),atam(n —z))ds, (4.78)

L2 ()

where € > 0 is a small constant.

4.7 Superlinear estimates

Lemma 4.13. With R defined in Lemma 4.1, we have
(R, — )] < Clloll g2 1ol g2 190 = )32 + Cllallm / ol ol 19 (= )| 22, (4.79)
for all t € [0,T], while for the second energy level perturbation terms we have
(RO, v)| < Clloll e ol lvel s (lollzz + llallz) + Cllolg ol e gl m (4.80)
and
(RD, )] < Clloll32 o3 + Clol3 Ivlls gl e (4.81)

for all t € [0,T], respectively.
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Proof. The estimate (4.80) was provided in [IKLT2, Lemma 4.10], while (4.79) and (4.81) can be obtained
similarly by using Holder’s and the Gagliardo-Nirenberg inequalities. Indeed, for (4.79), we have

(R — )| < 5 ||8t(azal)||L°°||8k(77 — ") L2[10;(n" — 2)|| 2

Hlalle [ Nonabllolouto’ - 2)lse (4.52)

0
where we utilized (4.6). Then we rely on Lemma 3.1 and the inequalities ||d;(a]af)||~ < C|[Vv||pe <
CHU||1/2||U||;{32 and [|0yak||ps < C||v||1/2||v||11q/22 in order to arrive at (4.79). O

We next recall an estimate from [IKLT2].

Lemma 4.14. [IKLT2] For ¢y € (0,1/C], we have

5/2 3/2
[ R as < co [Vl ds s o [ ol + ) (IERISE + ol ) o

+ 0 [ I 0l
+eolla:(0)l[F + eollv ()32 + eollv ()l + Ceollv(®) g [l (B) 2
+ OO BN @1 +€ [ (Il + el 21l32) el ol s
+C / (oW + el 1ol o35 ) Nl o3 o35 s
+ Cllo(0)ll%s + Cllve(0) 3 + Cllae (0) 31 (4.83)
for allt € 10,T7.
For the second perturbation term on the right side of (4.52), we use the following lemma.

Lemma 4.15. The estimate

4 3/4
/0 (R, v)ds < C / (ollzrs + llallzz=) (U303 + ol ) el ds

+C / gellzz2 0l ol o el 21 ds + Cllge ()L [0 @) 1 5 1o ()37
+ Cllge (0 L2 llw(0) 32 1w(0) 1
+C / laellen (Iol3z + el llenll 373 ) ol ds (4.84)
is valid for all t € [0,T].
We may bound the pointwise term on the right side of (4.84) as follows
Cllge @)l lo @) 172 1) s < eollae (@)1 + eollv(®)l2s + Ceollo(@) 17> (4.85)

for all ¢t € [0,T7.
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Lemma 4.16. For m = 1,2, we have

[(Runs O0)| < Cllafal — ]l m [0l 33 10l s + Cllaf — Sl llall e ol loll s (4.86)
and
Ry O (1 — )| < Cllafaf — 8u |l [0l 34 11011 14 11V i () — )| 2
+ Cl M N0 1V 0m (n — )12
+Clla¥ = Sl |l 22| V0o (7 — )| 2
t
+Cllg] / (IV8m(n — )|l 2 + llak — Siell ) ol 12 0|3 (4.87)

Also, for the second order tangential perturbation terms we have the next statement.

Lemma 4.17. For m = 1,2, we have

4 4
(B )| < Cllafaf = 8yl s2 (I V00l 12 190l IV 0ol 22 + [l ol VDo 22

1/2 1/2 1/2 1/2
+ Clla¥ = il (lallyf? a2 1 Ommoll = + = o] 72 10113 ) (4.88)

and

N , N
(R O (1 — )| < Cllafaf — 8l [0l 2 10135 IV O (0 — )| 2
+ Ol 0V B (7 — 2) 122 + Cllal — Skl zz2 gl 1pr gl 102 |V Bur (7 — ) | 2

t
+ Cllall 2 / (Bl 13 1 B (= @)l 22 + N0t = Sie = llall 2 10m N Ol 7 ) (4.89)

for allt €10,T7.

Finally, for the mixed time tangential energy level perturbation terms we have the next statement.

Lemma 4.18. For m = 1,2, we have

1/2 3/2

HUtH

1/4 3/4
|(Rims 0:0m0)| < Cllol i 0l3a (1ol = + gl ) vell 2 + Cllad af — 855 a2 |vel| s
Hol3 (4.90)

1/2 1/2 1/4
+ Cllaf = Sl llaell e (loel 17 Noell g + oelli) + Cllaellan o]l a2 ol

and

1/4 3/4
(Rim, 8m0)| < Cllollipit lol35 110132 + Cllajal — 8jull 2 |[vell g2 0] s

1/2 1/2
+ Clgll g lall 2 10132 + Cllaf = Sinll e llgell s o] ars (4.91)

for allt € 10,T7.
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5 A priori estimates on decay

We denote
2 2
X(t)=E®t)+EY®) + ED@) + Z En()+ ) Enm(t) + Y Einl(t)
m=1 m=1
+el|Vot)|z: + & Vot )IIL:» + e[ Vnu(t)|7.
ow | dwe || A Omw) ,|I*
+éy||l==(t) +€’y’ —(t) +€7H(t) (5.1)
ON L2(T.) ON L2(T,) ON L2(T,)
where €, € > 0 are small parameters. The fluid-velocity terms in the norm are controlled by the dissipation
terms
IVo)lz: < [Vo(0)]Za +C/ (s) + DW(s)) ds, (5.2)
t
IVve ()72 < [IVve(0)][72 + C/ (DM (s) +DP(s)) ds, (5.3)
0
and
t
||V3mv(t)||2L2 < ||V3mv(0)||%2 + C/ (D (s) + Dim(s)) ds. (5.4)
0

Also, observe that the dissipation terms control the last three boundary terms in (5.1) by using analogous
estimates to (5.2)—(5.4).

For the flow map 7 and the Lagrangian matrix a, we have

t t
IV -0l < ¢ [ Il ds < ¢ [ ol ds (5:5)
0 0
and
t t
o = 6. < t/ 19l ds < C’t/ 10l2yeen ds, ik = 1,2,3 (5.6)
0 0
with s =0, 1,2. Similarly,
) t
ladak — 6,12 < Ct/ o2 ds, ik =1,2,3. (5.7)
From (4.19), (4.79), and (5.5), we obtain
t a 2
/E ds+/D ds—&—ev/r a—Nds do(x)
<CE(0) + (C+Ct2)/ P(l|v][z2, llq|| 1) ds. (5.8)
0

For the second and third level energy estimates, we get

/E(1 ds+/ D(l) ds—i—eyH

+ / Pr(l[olla, lgllae [oellar, el ds (5.9)
L2(T.) 0

< CEW(0) + C||[Vo(0)]|22

L2(T.)

+€’}/H
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and

E®(1) /E<2> ds+/ D@ (s ds—i—evH

H awt

< CE@(0) + C||Vue (0)|25 + &y

L2 (Te)

+ 60/ IVveel|Z2 ds + eollge (Ol + eollve ()7 + eollv(®) s + Pa(l[v(®) 2, loe(t) ] 2)
0

t
+ /0 Ps(lollzs; llalle lvell m2, gell ) ds + Pa(lo(0) [ as s [[0r(0) e Nl g (0) | )- (5.10)

Here we utilized (4.39), (4.52), and the superlinear estimates (4.80)—(4.84). Similarly, for any fixed
m € {1,2}, we have

2

t
E,.(t)+ / ds—|—/ D,, ds+e’y/ A 8(27],:;0) ds| do(x)
< CBn(0)+ O+ 08) [ Pl el . (511)
0
and
t t t 2
Emm(t)—l—/ Epm(s) ds—i—/ Dy (5) ds—l—é’y/ / Mds do(z)
0 0 r. |Jo ON
t
< CEpmm(0)+ (C+ C’t2)/ Ps(||lvll g3, ||l ) ds (5.12)
0
with
AOmw)
Eo(t / B (s) ds +/ Dunn(s) ds + &y H (1) < CEum(0) + C||V0,0(0) 2
ON e,
_ |99 w ¢
v o) 0w on [ Allet el el Tl s, (5.13)
N L2(r.) 0
We use the notation Py, Ps, ..., P; to denote superlinear polynomials on all of their arguments. From
(3.14) and (3.15), we have
[v]13a + llallz < CX(2) (5.14)
and
[v]132 + gl < CX(2), (5.15)
while using also (3.16), we get
lvellzr + llaellzn < CX(t) + CX(1)% (5.16)

Therefore,

t m t k k
+/ X(s)ds < CoX(0) + Co(1+t?) Z/ X(s)™ds+Co Y X (1) +Co > X(0)%, (5.17)
0 0

Jj=1 Jj=1 Jj=1
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for Co > 1, a1,...,a,, > 1, and Bq,..., 5, > 1. By shifting the time, we get

t +/tX(8)ds

<CoX()+Col+tQZ/X ) ds 4 G0 S XM+ Y X(7) (5.18)
Jj=1 Jj=1
for0< 7 <t
The global well-posedness of (2.1)—(2.5) and the exponential decay of the solution given sufficiently

small datum now follows from the next lemma.

Lemma 5.1. Suppose that X : [0,00) — [0, 00] is continuous at all t such that X (t) is finite and assume
that it satisfies (5.18) for 0 < 7 <t where Cy > 1 with aq,...,ap, > 1, and f1,...,0r > 1. If X(0) <
€ < 1/C, where the constant C' depends on Co, m, ay,. .., and By, ..., Bn, then X(t) < Cee=t/C.

Proof of Lemma 5.1. By induction on k € Ny, we shall prove that if € > 0 is a sufficiently small constant
(independent of k), then there exist

m=0<m <o < (5.19)
such that
Tj—Tj,1§4CO, jZl,...,k (520)
with
€ .
X(Tj)§§7 j=0,1,...,k (5.21)
and
€ .
X(t)SQCOF, tG[ijl,Tj], 7=0,1,...,k (5.22)

where we set 71y = 0. The statement clearly holds for £ = 0. Let now k& € Np, and assume that

0 =0< 7 <--- <7 with the stated properties have already been constructed. First, we establish
X()<2Co2k, tE[Tk,Tk+4CO] (5.23)

if € > 0 is a sufficiently small constant (independent of k). If (5.23) does not hold, there exists T €
[Tk, Tk +4Cp] such that
X()<2Co2k, tE[Tk,TO] (524)

and
€
X(Ty) = 20027. (5.25)

Using (5.18) with 7 = 73, and t = T (disregarding the second term on the left side of (5.18)), we get
@y ~ €\ Bi € \Pi
20055 < Cogg + Co(1+ 1) 2400 (2Co5:) " +Co D" (2C0gz) "+ Co Z (5r) - (520
J=1

Since Ty < 73 + 4Cy, we have by induction Ty < 4(k 4+ 1)Cy. Therefore, (5.26) implies

m —1 n n —1

« Bi—1
22 a; oy €7 8; B €7 ePi
Cpy < Co(l + 16(/4; + 1) 00)400 E 1 2 JCO 2((17 + Cy E . 2 CO 2(/@ + Cy E m (527)
J= J= Jj=1
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where we multiplied both sides by 2¥/e. Since (k + 1)2/2(%~D* is uniformly bounded in k € Ny, the
equation can not hold if € > 0 is a sufficiently small number.
Next, we show that there exists 7,41 € [Tk, 7t + 4Cp] such that X (741) < €/28TL. Assume, contrary

to the assertion that
€

X(t)>2kﬁ7

te [Tk, Tk + 400} (528)

Using (5.18) with 7 = 7, and ¢ = 73, + 4C (disregarding the first term on the left side of (5.18)), we get

1Chgr < Cogg + Col1 +16(k + 1)*C3)4Co 3" (2Co ) +Co > (2002%)@ 6, (zik)ﬁj :

Jj= Jj= Jj=

(5.29)

After absorbing the first term on the right side and multiplying the resulting inequality with 2% /¢, we
obtain the contradiction using again the boundedness of (k + 1)2/2(®— 1k, 0

This gives the following a priori bound for the solutions.

Lemma 5.2. Assume the conditions of Theorem 2.1 imposed on the initial data, and let (v,w,q) be a
solution of (2.1)—(2.8). Then there exist constants C > 0 and € > 0 such that if X(0) <€, then

X(t) < CX(0)e V¢ (5.30)
where the constants C' and € do not depend on ~ > 0.

Proof of Theorem 2.1. Let Cy > 0 and let the sequence {7; }3?’;0 be as in the proof of Lemma 5.1. Then,
we have X (1) < ¢€/2 and X (¢t) < 2Cye for t € [1p, 1], which implies by (5.14) that

loll3s < X(t) < Ce

for t € [r9, 1], and from here

T1 T1

l0ra(s)||32 ds < C(my — To)/ |v(s)||3s ds < C(4Cp)%e

To

I = a()2s < (m1 — 7o) /

To

for t € [r9,71], where we utilized that 71 — 79 < 4Cy. By induction on j € Ny, we conclude that
[v(t)]|%s < Cee ™ and ||I — a(t)||%» < Ce for all t > 0. This concludes the proof of Theorem 2.1. [

6 Construction of solutions

In order to justify the a priori estimates provided in the previous sections, we now construct a solution
to the problem (2.1)—(2.8) for data as in the statement of Theorem 2.2 which are in addition small as
in the statement of Theorem 2.1. For simplicity of the presentation, we consider in detail only the case
v = 0. The construction for v > 0 is easier due to additional a priori estimates obtainable for normal

derivatives.
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6.1 Linear System with Non-homogeneous Divergence Conditions

We start with a theorem from [MZ1] on existence of the Stokes system with the Neumann boundary
condition (cf. [MZ2] for applications). In [MZ1, Theorem 1], the statement is worked out for LP spaces
where p > 3, but the same proof, with simplifications, applies also in our case where p = 2. The
corresponding result is referred to as the Mazimal parabolic regularity. Particular attention should be
paid to the treatment of inhomogeneity in the divergence condition which is required to satisfy structural
condition (6.6).

Lemma 6.1. Consider the system

vf — AR 4+ kg = f* in Qp x (0,T) (6.1)
o' =g inQpx(0,T) (6.2)

subject to the mized boundary conditions

Djo" NI —gN* =h¥ onT.x (0,7) (6.3)
v =0 onT;x(0,T) (6.4)

for k =1,2,3 and subject to the compatibility conditions
/ 9(0) dz = / vo - N do(x) (6.5)
Q r.
and the assumption

gr=divA+ B (6.6)

such that A,B € L*(Qy x [0,T]). Let vg € H'(2y). If the forcing terms obey f € L*(Q2y x [0,T]),
g € L([0,T); HY(Qy)), and h € L*([0,T]; HY/*(T'.)) N HY*([0,T); L*(T..)), then there evists a unique

solution (v,q) on [0,T] to the non-homogeneous system which satisfies

[vllz20,m3;m2(00)) + 1Vlloqo.mmr 0)) + ldllzzqo,y:m100)
Hllall o ryea o) + lvellczqoyizz )
< C(llvollzrapy + 1fllz2o,mx sy + gl z2qo,ry: 5 ) + 1Al L2 (0, 13:22 ()
+ 1Bl L2 o,m;22(925)) + 1l 2 o,rp 200y + Bl avao, )2 r,))) (6.7)

where C > 0 is a constant.

Now, we apply this statement to the system

v —Av+Vg=f in Qs x(0,7) (6.8)
divo =g in Q¢ x (0,7) (6.9)
wy — Aw = —aw; — fw in Q. x (0,7T) (6.10)
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with boundary conditions

v=w; onT,x(0,T) (6.11)
v=0 onTIyx(0,T) (6.12)
ov 3

where f, g, and h are given, while v, ¢, and w are unknown.

Lemma 6.2. Consider the system (6.8)—(6.10) with the boundary conditions (6.11)—(6.13). Suppose that
the initial data satisfy (vo,wo,w1) € (V N H®/2(Qp)) x HY/4=9(Q,) x H/4=9(Q,) for some & € (0,1/4),
and

Av(0) — Vq(0) + £(0) € H () (6.14)

with q(0) determined from the elliptic system (6.22). In addition the quantities f, g, and h satisfy

fe L*([0,T]; H'(2y))
fe e L*([0,T]; L*(2y))
g € L*([0,T}; H*(y)
g¢ € L*([0,T]; H'(2y))
h e L*([0,T); H*/*(T.))
hy € HY4([0,T}; L*(T)) N L*([0, T); H'/2(T.))
A, B € L*([0,T]; L*(22)) (6.15)

)
)

and
g =divA+ B (6.16)

for some time T > 0. Assume that the compatibility conditions

wy =vg on [, (6.17)
%~T:%-T+h(0)-7 on T, (6.18)
Awy — awy — Pwy = Avg — Vqo + f(0) on T, (6.19)
and
v =0, onTy (6.20)
Avg—Vqo + f(0) =0 onTy (6.21)

hold where qg solves the problem

Ago = —g:(0) + Ag(0) +div f(0) in Qf (6.22)
with the boundary conditions
9q0
8—N:AUO~N+f(O)-N onTy
8’1}0 8w0
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Then there exists a solution (v,q,w) on (0,T) which belongs to Y where

Y = {(v,q,w) cv € L2([0,T]; H3(Qy)),ve € L2([0, T]; H*(Q4)), v € L2([0,T]; L*(Q)),
q € L*([0,T); H*(Qy)), qr € L*([0, T); H' (), qu|r, € H/*([0,T); L*(T'.)),
dlw e L®([0,T]); HV4=5=1(Q,)), j = 0,1, 2} (6.24)

and the corresponding estimates (6.39) and (6.44) below hold.

We note that as the system (6.8)—(6.10) is linear and that there is no loss of regularity in the fluid
and wave variables. The time of existence, which is independent of the size of the data, can be extended

up to any time T > 0 (by repeating the estimates below in time steps).

Remark 6.3. The main idea behind the proof below is the following. By using the maximal parabolic
regularity applied to the time derivatives of the equation, we obtain sufficient regularity of the bound-
ary data v; which is then propagated via interface on the wave component. By resorting to standard
regularity-trace estimates known for the wave dynamics, one is bound to start loosing derivatives. This
results in a well-recognized mismatch between the parabolic and the hyperbolic regularity. What saves
the present situation is the fact that the transfer of regularity involves only the boundary traces of the
solution of the wave equation. It is now well-known (cf. [S]) that the wave solutions have better behaving
traces than implied by the interior regularity and the trace theory. In fact, we shall show that there
is no loss of regularity in propagating parabolic solution via the interface. This phenomenon is due to
the sharp regularity of the Dirichlet-Neumann map established in [LLT] and [T]. This amounts to the

following diagram of transfer:

0 :
N a—NU—qN—hﬁﬂuldeq:>U|pc.

D—N map Max—Regularity

We would also like to point out that the above gain of regularity is due to the particular way of constructing
the fixed point, where Dirichlet traces of the fluid are fed into the solid as Dirichlet data, so the normal

stresses exiting the solid enter as the Neumann data into the fluid (see the diagram above).

Proof. Using Lemma 6.1 on the time differentiated system, we get

lvell 2o, 135m200)) + Ivelleqomrr @) + el 2o, r o))

+ lgell /a2y + Vel L2 o200
< C(Ilvt(O)Hl(Qf) + I fell2o,m1x0p) + [l9ell 220,701 (2

+ | All L2 o.11:225)) + 1Bl L2 0, 17:L2(25)) + el L2 o, 7911721y

o+ oy o

+ 12ell 1740, m;2(r (6.25)

H/4([0,T];L2(T) L2([O,T];H1/2(Fc))>

Next, we estimate the normal derivative of w; using the sharp trace regularity result for the wave equation
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from [LLT, LT,

ow
ON

|
2(o.rie-109) 1 ON lre-1(o.11:22(00.))
< Cllwoll s (o) + llwillza-10.) + lwllz2 0,525 (09.)) + lwll 725 (j0,17;22(902.)) ) (6.26)

given the boundary data wy = v on I'.. We also note that similar estimate is valid when v > 0, because
in this case Lopatinski condition is satisfied and provides H?® regularity of normal stresses with H?®
regularity of Dirichlet absorbing boundary data. Applying the estimate (6.26) to the time differentiated

wave equation with s = 3/2 we have

b o

L2([0,T:H/2(T.)) H/4([0,T];L2(Te))

< Clwillmsrza,) + w0, ) g2,y + 10l L2 o,rms2@ayy + 10l as20,mL2(r0))- (6.27)
We next appeal to the estimates
Vil 2o,y m8r2(r,) < €llvllzzqo.rimece,) + Cellvllzqorsma,y, € €(0,1] (6.28)

and

o[l ga/2(po,mp522(0.)) < €llvllmzo.rrn2 ) + CellvllLz oz, €€ (0,1] (6.29)

which follow from the trace, interpolation, and Young’s inequalities. Using (6.28) and (6.29) in (6.27),
we get

H 3wt

o

L2([0,T;;HY/2(T.)) H/4([0,T];L2(T.))
< C([lwillgsrza.y + lwee (0, ) 51720y + €llvll L2 o, rm304))
+ €l|vllazo,m2(0,)) + Cellvll L2 o,y m2(0,))) (6.30)

and thus, substituting this inequality in (6.25),

lvell 2o,y m2(0,0)) + lvelleqo,mrr @,y + aell 2o,y 9,))

+ llgell zr/a o, ey + Vel 2o, 1y;22(04))
< (IOl + 1illi2goasen) + oo myin o)
+ Al L2 jo,77;L2(2,)) + [1BllL2(j0,1);22(25)) + ||ht||L2 [0,T);H/2(T,))
+ el o,z ey + lwillgsrz o,y + 1w (0, ) g1z, + €llvllzo,rms ;)
+ellvllazo.mic2 ) + Ce||v|L?([O,T];Hmf)))- (6.31)
In order to obtain the full regularity, we also use the elliptic Stokes estimate
vz (0,325 )) + llall 2o, 1112 025))
< C<|f||L2([0,T];H1(Qf)) + lvell 2 jo,m; 81 (25))

ow

oy, + Wllomyan o + |53 (6:32

LQ([O’T];HWQ(FC)))
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We again estimate the normal derivative of w using the sharp trace regularity estimates of the wave
equation

[ < Ollwlsragsy + [wolsraen) + lnllsaa,)  (6:33)

L2([0,T);H3/2(T,)) H HH3/2(Z )
where

2, =T, x [0,7]. (6.34)

Now, we estimate the first term on the far right side of (6.33) as

lwllers/zcs,) = In =2l 2o, 152000y + 1WllEsz om0,

t
/vds
0

< CT1/2||vHL2([0,T];H3(Qf)) + vl g3 /2 jo,13;02 (1))

S ’

+ wll gs/2(p0,13;22(r.))
L2([0,T);H5/2(T.))

< CTY2||v| oo,y o0, )) + €0l 2o, 13:02(0,)
+ CellvllL2(jo,71: 12 (2,))
< CTY ||| 2o,y m3(05)) + €llvll 20,77 L2005
+ CTY vl L2 o, (90, (6.35)

where we used (6.29) in the third step.
Replacing (6.33) and (6.35) in (6.32), we get

[oll 2o, 113 02,)) + gl 2o,y 12(02)))
< C(||f|L2<[mT1;H1<ﬂf>> + lloll 22 o,z )
+ lgllz2 o, m2000)) + 1Bl 20,17 53/2(0.)) T woll 52,y + [lwillza2.)
+ T2 |0 20,73, m2(0,)) + vl a2 (0,722 (95
O Pl oy ) (6.36)

Combining this inequality with (6.31) leads to

V]l 20,303 04)) + lall 2o, m3 52 (0)) + 0l 22 (10,7312 (24
+ lvtllco.maryy) + gl 2o ar )y + Nl mrrao 2oy + lveell L2 o.my:L2 5 ))
< (CTY2 + O)o(0) | 112y + CllF L2010 2p)) + CllfellL2qo,mx )
+ Cligllezo,msm2(02,0)) + CllgellLz o, mr s + ClAl L2052 20)) + ClIBl L2 (0, 73522(025)
+ Cllhll L2 o,y msr2rny) + Cllhell L2 o,y 2 ()
+ Cllwoll grsr2(a,y + C||w1||H3/2 a.) T Cllw (0, )||H1/2(Q )
+ CT2 0] 2o, rysmrac,) + CeTY 2 |vrl| 2oz )

y + Cllell gr/ao,ryser.))

+ Cellv|| L2 jo,13; 53 (25)) + Cellvll m2([0,17:22(2)) 5 (6.37)
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where we used the inequality
[0l 220,17 12(0,0) < CTY?||voll 205y + CTY 2|0t 220,17 152(0) - (6.38)

Choosing € > 0 sufficiently small and assuming 7" is a sufficiently small constant, the last four terms on
the right side of (6.37) can be absorbed into the left side from where

vl 2o, r3: 5325 )) + gl 20, 11: 52 25)) + Vel 2o, 712 (92,4))
+ velleqo,map)) + laellzqo, a1 @)y + Mgl o, rye oy + lveell2 o, 110202,
< (CTY? + O o)1 ey + CllF I 2o.m3:m 2,)) + CllFell2o.17%9,)
+Cllgllzzo,1y:m2000) + Cllgell 2o, mp:m1.@4)) + CllAN L2 (0,722 (2)) + ClIBllz2 0, 11:22(04)
+ Cl\All L2 o,y m372(00)) + Cllbell L2 o,rps 200y + CllRel 5174 0,772 (00

+ Cllwoll gs/2(q,y + Cllwill ms/zia,y + Cllwe (0, )| g2, )- (6.39)

Next, using the interior regularity of the wave equation yields

1wt ll oo 0,173 374-5 (0. )) + 1wttt oo (0,175 5-1/4-5 (00))
< Cllvllgsra-s s,y + lwe(0) | gsra—s(q,) + lwee ()| z-1/1-5 ()
< Cllvllr2o,my205)) + Cllvellmsra—s o, 102 vy + 1wee(0) || msra-s .y + lweee (0 gr-1/4-5 ()

< Cllvellzz o, 11302 (025)) + Cllvell zr o,ms295)) + lwee (0) | grssa-s o,y + |weet (0) || r-1/a-5 (2,  (6.40)

where we used T < 1, which we may assume without loss of generality, and an interpolation trace
inequality

3/4 1/4
||vt||H3/4([O,T];L2(FC)) < C”vth/l([O,T];Lz(Qf)) HUt”L/z([O,T];H?(Qf))' (641)
By the elliptic regularity, we get (using 7' < 1 in particular)

1wl oo jo,73; 111745 (00, )

< Cllwie ()| oo (10,77 13745 (02,)) T Callwi ()| oo (0,11, m3/4-5 (00.)) + C’

t
/ vds
0 Loo([0,T];H/4=9(T..))
< Cllwee(®)| Los o,y 3745 (20)) + Callwe(@) || oo o, 13313745 20)) + Cllvll 20,111 74-5(0,y)  (6.42)

and

lwe ()l oo (o, m7/4-5 (2. )) < Cllweee ()| oo jo,17;1-174-5(00)) + Callwee ()| oo (0,771 -174-5 (2.))

t
/ vy ds
0

< Cllwiee () || oo jo,17: - 1725 (0, )) + Callwee ()| oo (0,770 -174-5 (0.))

+c|

+ C||w1 ||H5/4"5(1—‘c)
Leo([0,T);H5/4=5(T,))

+ Cllvel 2o, m2(05)) + Cllwilg7/a-5(a,)- (6.43)
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Summarizing the estimates (6.40), (6.42), and (6.43) for the wave equation, we get

1w ()| oo jo,77: 11174502, )y + 1w (O] Lo (0,173 H774-5 (20))
+ [wie || oo (jo,77; 3745 (02, )) + Wt || oo (0,771 -174-5 ()
< Clloll 2o,y 1745 9,)) + Cllvell L2 o, rym2(a,)) + Cllvellao,my204))

+ Cllwi || grra-s () + lwee(0) | ga/a=sq,) + Wit (0)[| gr-1/4-5 (02, (6.44)

and the proof is completed. ]

Recall the space Y introduced in Lemma 6.2 (cf. (6.24)), and denote
Y (0) = { (vo, wo, wr) € (V-0 HY2(Qp)) x HYA7(Q,) x HTA75(Q,),
Av(0) — Vq(0) + £(0) € H'(%y) with compatibility conditions (6.17) — (6.21)}, (6.45)
where ¢(0) is determined from the elliptic system (6.22).

Remark 6.4. It is important that the space of regularity imposed on the initial data (vg,wq,w;) is
invariant under the dynamics. Indeed, by the intermediate value theorem, we obtain that for (v, w,w;) €
Y we have v € C(0,T; H*?(Q)) and v; € C(0,T; H'(Qy)). This allows us to continue the solution for
all times 7' > 0.

The concluding estimate proven in Lemma 6.2 above can be summarized as follows: For any initial
data yo = (vo, wo,w;1) € Y(0), for any T > 0, and for the forcing data d = (f, g, h), there exists a unique
solution y(t) = (v(t), ¢(t), w(t), w:(t)) such that

lylly < Crllyolly ) + Crlldlp (6.46)

where D denotes the space of regularity listed in (6.15).

The estimate (6.46) is the basis for constructing solutions to the non-autonomous problem with given
coefficients a(z,t).

In the next statement, we establish the global existence of solutions to the system (2.1)-(2.3) with

given coefficients a(z,t) sufficiently close to the identity matrix.

Lemma 6.5. Consider the linear system

vl — 9j(a]af ') + Ok (afq) = F' in Qp x (0,T), i=1,2,3 (6.47)
afopvt =G in Qp x (0,T), (6.48)
why, — Aw' + awl + fw' =0 in Qf x (0,T), i=1,2,3, (6.49)

with the boundary conditions

vt =w! onT.x(0,T), i=1,2,3 (6.50)
alaf o' N — afqNy = 9w Ny + H' on T, x (0,T) (6.51)
v' =0 onT,x(0,T), i=1,2,3, (6.52)
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where the coefficient matriz a = a(x,t) is given so that it obeys
a(0) =1, Opal =0, k,j=1,23, (6.53)
in addition to the conditions

lla = Iz o,73: 20,0 la” = @ = Il Lo, 13: 1200, 19: (@™ = @)l L 0,732 (0

Hata||L°°([O,T];Hz(fzf))a ||8ttaHL°C([O,T];Hl(ﬂf)) <e€ (6.54)
for some sufficiently small €, where € < eg € (0,1), and T > 0. Assume that the initial data (vo,wo,w1)
satisfies the assumptions and compatibility conditions in Lemma 6.2. Also, we assume that the non-
homogeneous terms F, G, and H have the regularity given by (6.15). Then, there exists a unique solution
(v, q,w,wy) to the system (6.47)—(6.49) on (0,T) which belongs to the space Y (cf. (6.24)).

More precisely: For any T > 0 and any € < 1/2Cr (where Cr is determined by (6.46) ), and any data
Yo = (vo, wo,w1) € Y(0) and d = (F,G, H), the solution y € Y satisfies the estimate

lylly < 2C(llyolly ) + Il p) (6.55)
where the topology on D is determined by the reqularity of the forcing terms in (6.15).

Proof. The proof is based on a fixed point argument for the system

vu—Av+Vg=f inQyx(0,T)
dive=g¢ in Qy x (0,7)
wy — Aw + aw, + fw =0 in Q. x (0,7

with the boundary conditions

wy =u on I'.x (0,7T)

v=0 onIyx(0,T)
ov

ow
W_qN_W+h OHFCX(O,T>

where f, g, and h are known and given by

F1=0;((05% — alaf)dpu’) + (O — af)Op + F*
g = (0kj — af)akuj +G
hi = (6jk — a{af)@kui]\fj + (5]“ — af)ka + Hz

with (u,p,v) € Y. From now on, we proceed by showing that f, g, and h satisfy (6.15), so that we
can apply Lemma 6.2. Due to the condition a(0) = I, the initial data satisfy Av(0) — Vq(0) + f(0) =
Av(0) — Vq(0) + F(0) € H' (), as required by Lemma 6.2. Note that as the matrix a is given and
close to the identity matrix (cf. (6.54)), the corresponding norms of f, g, and h are expected to be small,
of order e. Hence, one may infer that the map between the successive iterates is a contraction mapping
from Y to itself.
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For simplicity, we may assume that F', G and H equal zero.
We have f € L([0,7]; H'(Q4)) by writing

11122 o715 02
< Cllaa — Il o,r1x0p) 1ull L2 (o, 7:m3(0,)) + CllaT a = Il oo o,73 52 () el 22 0,313 (50
+Clla =1z qo,ryxap P2 qo,m820)) + Clla = Lz o, my:m2@) Pl L2 (10,7752 (9))

< CellullL2 0,113 25)) + Cellpll 20,112 (25))- (6.56)

For f;, we obtain

| fell 2 (o, 1% )
< Clla"a = I||poo o,y 11 5+ ) 1t | L2 0,732 (02, )
+C||0x(a”a - Dl e 0,035+ ) lull L2 (0,152 (02 )
+ Clla — Il g (o, m1-5+<0 (2, ) 1Pt L2 (0,771 (25 ))
+ C|0s(a = I)|| Lo jo,17; 115+ (2 ) 1P| L2 ([0, 7957 (02
< Cellugll 20,1312 (02,)) + Cellull2(o,m1352(02,)) + Cellpell 20,1350 (2)
+ Cellpll 2o, m;m1 (2))) (6.57)

where €y € (0,1/2). Next, we estimate g and g¢; as follows. First,
91120111202 < Clla = Lo o112 20)) Vel 20,1731 (2)
< ellull 2o, ;13 (25 )) (6.58)
and then
||9t||L2([o,T];H1(Qf))
< Clla = I o (o, rysm15+0 ) el 2 0,772 (29)

+ Clloeal| o< o, 13525 () lull L2 0,113 (2)) + CllOVall Lo o,z 1l L2 (0,77, 12 550 ()

< elluell 2o, 2 (0,)) + Cellull 20,1753 (2, ))- (6.59)
Next we write

g1t = O ((On; — a¥)Oku?) = 0y (Ok ((Okj — af)u?)) = Ok (O (O — al)u?)) = div A (6.60)
by setting Ax = O (((5@- - af)uj) for k=1,2,3 and B = 0. We then have

ANl L2 (0,77 22(2))
<C|

Ouall L2 o,r1x ) ull L= (o,11x ;) + CllOwall Lo (o,r1x 2, luell L2 (o,71x02/)
+ Clla — I Lo o,myx ) luetl| 22 (0,11 x 2

< Cellul[ Lo (jo,1;52(05)) + Céllutl| 20, m1x0,) + C€llusel 220, 77%0,)

showing that A € L?([0,T]; L*(£2y)).
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Next, we estimate h and h;. Note that

i 3 k 7 3
1P| 2o,y 202 (0 ) < C|(d3% — aiay)Opu ||L2([0,T];H2(Qf)) +Cl|(d3; — a )pHL2([O,T];H2(Qf))

for i = 1,2,3. Thus we may proceed as in (6.56) and obtain

1Pl 2o,y m372(r0y) < €llullzo,r;ms@,)) + €llpllzqo,rm2 Q)

Similarly, following (6.57),

ell 22 o, 1y;01 /20,y < Celluellpzo,rysm20,)) + CellullLzo, 2 (05)) + Cellpell 2o, m (24))

+ CellpllLzo, ;8 (2)) -

Also, we have

el er1va o7y 02(r0))

< Clla™ s a— Il o.rxon IVuell g o 2oy
+Clla” : a = Illw/aa o) poe (0, I Vel Lo o,y (0o
+ Clloc(a” : @)l Lo fo,17x 00 |Vl 23 o, 1221, )
+C0(a” - a)||H1/4([O,T];L4(Fc))HVUHL‘X’([O,T];L“(FC))
+ Clla — Il o, myxa ) 1Pl 174 0,17;2 (02))
+ Clla — Illw/aago,r);0 2, ) 1Pl 220,77 L2 (1))
+ Cllowall Lo (o, r1x ) 1Pl z1/2 (0,732 (1))
+ Cll0sall grago,rya oy 1Pl Lo (0,172 (r0)) -

We use the space-time interpolation inequalities for v (and similar inequalities for q)

Vel gri/ago, 2 rny) < eolluellmro,ryezpy) + Ceolluell 2o miaz,y), €0 € (0, 1]
and
VUl o,z vy < €olluellmro.rizz @) + Ceolltellzo,rimz)), €0 € (0,1],
as well as
IVl Lo o,r1;24(r0)) < €olluellLeo,rm200,)) + Ceollull 2o, m;m2 )y, €0 € (0,1]

in order to obtain

WAl prra o,y 0200y
< Cellug|| o, 11;22(05)) + Céllutl| L2 jo,17:52(0))
+ Cellull g (o,13;22(02,)) + Cellull 20,1152 (02,

+ O€||ptHH1/4([0,T];L2(FC)) + C€||p||L2([0,T];H1(Qf)) =+ Oenpt‘|L2([07T];H1(Qf))~

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

The bounds (6.56)—(6.67) show that h, f, g and their time derivatives satisfy the conditions of Lemma 6.2.
As e € (0,1] is small, the estimates (6.39) and (6.44) lead to the existence and uniqueness of the solution

to the linear system (2.1)—(2.3) with given coefficients.
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Remark 6.6. As in the case of Lemma 6.2, due to invariance under the dynamics of regularity of initial
data, the obtained solutions can be continued indefinitely. In fact, the following quantitative estimate is
obtained using the proof of the lemma: If the iterate § = (u,p, ) in the fixed point argument belongs to
a ball in the space Y with radius M, i.e., § € By(Y), and if yo € B,, (Y (0)) and d = (F,G, H) € B,,(D)
with 7 = r1 + ro, then

lylly < Crr+ Cre||lglly < Crr + CreM. (6.68)

The self-mapping property requires that r 4+ eM < C’;lM , in particular, € < C’;l.

Remark 6.7. Note that the introduced space Y provides enough regularity to accommodate topological
restrictions imposed in (6.54) on the coefficient a(z,t). In addition, the a priori estimates in Theorem 2.1
described by the functional X (¢) allow us to control the regularity of a(x,t). However, the topology of
the space Y is not sufficient in order to apply the a priori estimates of Theorem 2.1. It is for this reason

that we need to construct solutions with higher regularity. This is done in the next section.

6.2 Data with higher regularity

The next lemma provides the global existence of the solution to the linear system (6.47)—(6.49) with more
regular initial data. Here we apply Lemma 6.5 to the solution of the system as well as to its time and

tangential derivatives.

Lemma 6.8. Let the coefficient matriz a(z,t) be given such that (6.53) and (6.54) hold with ¢ < 1/C
for a sufficiently large constant C. Also, assume |al|z2(o,1;m3(0,) < o0 and ||awl|L2(o,1);22(0,)) <
oo. Consider the linear system (6.47)—(6.49) with the boundary conditions (6.50)—(6.52), where F, G,
and H equal zero. Assume that the initial data satisfy vg € V N H7/2(Qf), Oy € VN H5/2(Qf),
A (0) — Vg (0) € V, wg € HY/*5(Q,), wy € H'Y*9(Q,) for some § € (0,1/4), with compatibility
conditions (6.17)—(6.21). In addition, assume that

Aw; — awy (0) — Bwy(0) = Av(0) — Vg (0) + f(0) in T, (6.69)
% ST = %(Avo —Vaqo+ f(0)) -7 onT. (6.70)

and
—Av(0) + Vg (0) = f(0) inTy, (6.71)

where f, g, and h are defined in (6.74) below. Then the unique solution (v,q,w) € Y from Lemma 6.5
obeys (v, qr,wy) €Y and (00, Omq, Omw) €Y for m = 1,2. The obtained solution can be extended to
arbitrary T > 0 with the estimate given at the end of the proof.

Proof. Consider the system
¢; — 0;(alafOxe’) + afOpx = f' in Qp x (0,T)
afore' =g in Qp x (0,7)
Uy — AY = —ayy — B in Q. x (0,T) (6.72)
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with boundary conditions

d=1; onT,x(0,T)
¢»=0 onTy x(0,T)
alafO,¢'N; — alx Ny = 8;90°N; + h' on T, x (0,7T) (6.73)

with

[ =0;(0(a af)0v") — Draforg
g= —atafakvi

ht = dy(a] af)dv' N; — dpak Ny (6.74)

for i = 1,2,3, where (v,q,w) € Y is the unique solution to the system (6.47)-(6.49) constructed in
Lemma 6.5.

Taking the initial data ¢o = v,(0) € V.0 H2(Qf) ¢r0 = v1(0) € V, ¥y = w,(0) € HY/479(Q,), and
¥:(0) = wy (0) € H/479(9,), one can easily verify that f, g, and h satisfy the conditions of Lemma 6.5.
Hence, we obtain ¢ € L2([0,T]; H3(Qy)) and ¢, € L2([0,T); H*(Qy)) while x € L2([0,77]; H*(£y))
and x; € L?([0,T]; H'(Q)). Similarly, we have (¢,1;) € L>®([0,T]; H'/47%(Q,) x H/47%(Qy)). By
uniqueness, it follows that ¢ = vy, x = q¢, and ¥ = wy. Therefore, (vy, ¢, w;) €Y.

For the tangential regularity, we repeat the same procedure but now with forcing terms given by
fi= 3j(8,,L(a{af)3kvi) — Opmal kg
g= —8mafak11i
h' = O (a]af)Opv' Nj — d,nalqNy, (6.75)
for m = 1,2, instead of (6.74), and initial data ¢o = 9,,0(0) € VNH2(Q;) with (A¢o—Vxo) € V while
Yo = Opmw(0) € HY/4-9(Q,), and ;(0) = 9w, (0) € H/*79(9,). Using Lemma 6.5 and uniqueness of
solutions, we conclude (9p,v, O q, Omw) € Y for m =1,2.

As a consequence, we also obtain higher regularity of w € L>([0,T]; H'*/479(Q.)) from the elliptic

estimate
Hw||H15/4*5(Qe) < CHU/tt||H7/475(Qe) + C||wt||H7/4—6(Qe) + CHU)HH7/4—5(Q€) + C”D/w”Hll/‘l*‘s(Qe) (6.76)

for all t € (0,7), where D’ denotes the tangential derivative. Similarly, we may also conclude that
v e L*([0,T); H*(Qy)) and ¢ € L*([0,T); H3(Qy)) by using elliptic estimates for the stationary Stokes

operator. O
We denote by Y the solution space, obtained in Lemma 6.8, for the system (6.47)—(6.49) with the
higher regularity data; namely,

Y = {(v,q,w) tv e L2([0, T H () N HY([0, T); H(Qy)), v € H([0,T]; H(2y)),
Uy € Hl([()’T];LQ(Qf))’q € LQ([O’T];H?’(QG)) N Hl([ovT};H2(Qf))>
ar € HY([0,T); H' (), w € L¥(0, T H'*/=07(2,)),j = 0,1,2,3}. (6.77)
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Remark 6.9. Using the 1D Agmon inequality in time, we have YCX , where X consists of the norms
in (2.13) from Theorem 2.1. Moreover, as in the case of the previous lemma, there is no loss of regularity

with respect to the initial data. Thus solutions can be contracted for an arbitrary long time interval.

Remark 6.10. Here we state the quantitative estimate on the norm in Y of the solution. In analogy to
Y (0), define the space of initial data Y (0) as

Y(0) = { (vo, wo, wr) € (VN HY2(Qp)) x HP470(,) x BA73(Q),
dyvo € VN HY2(Qy), Avg(0) — Vi (0) € H(Qy),
with the compatibility conditions (6.17)—(6.21) and (6.69)7(6.71)}. (6.78)

Then, for any T" > 0, there exists € > 0 sufficiently small so that we have

ly(®lly < Cllyollg oy + C(Ila(t)IILsz + a2z + Cllase ()l L2 + CHattt(t)HL?L?) ly()llx (6.79)

for ¢t € [0, 7], which is obtained from the respective estimates for the terms f, g, h in (6.74). It is important

that the space Y (0) is invariant under the dynamics.

Now, consider the norm X (¢) defined in (5.1) with v = 0. Assume that the coefficient matrix a is
given and satisfies (6.53) and (6.54) for all T' > 0. Then we have a Gronwall-type inequality

X(t) + / " X(s)ds < CoX(r) + Coelt — 7)? / " X(s)ds (6.80)

for all 0 < 7 < t. We omit the detailed derivation of this inequality as it is similar to the one given in
Section 5, with the only difference being that we use the smallness of the coefficients a instead of the
superlinear estimates from Subsection 4.7. Next, we prove that, similarly to (5.18), this inequality also

implies the exponential decay of X ().

Lemma 6.11. Suppose that X : [0,00) — [0, 00] is continuous at all t such that X (t) is finite and assume
that it satisfies (6.80) for 0 < 7 < t where Cy > 1. There exists ¢ > 0 depending on Cy such that if
X (0) < M, where M > 0, then X (t) < CMet/C,

Proof of Lemma 6.11. Choose € > 0 such that

Coe(8Cp)? < % (6.81)
This implies Cpe(t — 7)% < 1/2 provided t — 7 < 8Cy. Therefore, we have
X(t)+/tX(S)dS<QC()X(T), 0<7<t <74 8C)h. (6.82)
We shall prove by induction in k& € Ny, that there exist
T=0<T < - <Tp (6.83)
such that
7; — Tj—1 < 8Cy, ji=1,...k (6.84)
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with

M .
X(Tj)gyv j:(),].,...,k (685)
and
M .
X(t) SQCOTJ‘*I’ te [Tj_l,Tj], j=0,1,...,k (686)

where we set 7_1 = 0. The statement clearly holds for £ = 0. Let k£ € Ny, and assume that 79 = 0 <
71 < -+ < T, with the stated properties have been constructed. First, by (6.82), we have

M
X(t) =2Cog, 1€ (7, i+ 8C0). (6.87)

It remains to be shown that there exists 7411 € |1k, 7% + 8Cp] such that X (741) < M/2k+1. If this is

not true, then we have
M

X(t)>2kﬁ7

te [Tk,Tk -‘1-800} (688)
Using (6.82) with 7 = 73, and t = 73, + 8CY, disregarding the first term on the left side, we get

M M

<20

8Cogrr < 2Co5;

(6.89)

which is a contradiction. O

6.3 A construction for the nonlinear problem

We now proceed with the proof of Theorem 2.2 by constructing a solution as a limit of the sequence
of iterates; the main idea is to show the contractive property in a lower regularity topology than where

solutions belong, however still strong enough to control the cofactor matrix a.

Proof of Theorem 2.2. We assume that the initial data yo = (vg, wp,w1) belongs to 17(0) for some 6 €
(0,1/4), [lyollx (o) <€, and that it satisfies the compatibility conditions (6.17)-(6.21) and (6.69)—(6.71).
Here [ - || x(0) denotes the norm corresponding to (2.12).

We start the iteration with (u(9), p(®) 4(0)) given by the unique solution (cf. Lemma 6.5) to the linear
homogeneous system corresponding to (6.47)—(6.52) with coefficients a(®) = a(9(x,t), forcing terms F,
G and H equal to zero, and initial data (vg,wp,w1). Here we assume that the coefficient matrix a®
satisfying (9 (z,0) = I, 8,09 (z,0) = —Vu(® (x,0), (6.53), and it is close to the identity matrix, i.e., it
obeys (6.54).

Now, given the iterates y\/) = (u(j),p(j), w(j)) for j =0,1,...,n — 1, we construct a{™ by solving

a™ = —a™ . v o), (6.90)
Given a(™, we then solve the linear system for the new iterate

Y™ = (M pn) ). (6.91)
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denoting (v, ¢, w) = (u(™,p™ (™) the system reads

vi = 9;((@™)] (a™)Fopv’) + 9 ((a™)rq) =0 in Qf x (0,7),  i=1,2,3 (6.92)
(™Yot =0 in Q x (0,7), (6.93)
why, — Aw' + awl + fw' =0 in Qf x (0,T), i=1,2,3, (6.94)

with the boundary conditions

vl =w! onT.x(0,T), i=1,23 (6.95)
(a™)7 (a™) k' N; — (a'™)EqNy = d;w'N; + H on T, x (0,T) (6.96)
v' =0 on T, x (0,T), i=1,2,3. (6.97)

Note that Lemma 6.11 with [|yo || x 0y < €, where ||-|| x (o) denotes the norm as in (2.12), applies inductively

to the iterates. Therefore, if € > 0 is sufficiently small, then
ly™|lx < Cee ™, t>0 (6.98)

where || - [[x denotes the norm corresponding to (5.1). Based on the definition of the norm | - ||x, we
obtain easily that all a = a(™) satisfy (6.53) and (6.54) for all T > 0. Here we check the first inequality

in (6.53), omitting the details for other inequalities since the proofs are similar. First, by (2.4), we have
Ola—I)=—(a—I):Vu:(a—I)—Vu:(a—I)—(a—1I):Vu—Vu (6.99)
where we abbreviate a = (™ and v = u(™. Therefore,
t t
(a—1I)(t) :—/ (a—]):Vu:(a—I)ds—/ Vu:(a—1I)ds
0 0
t t
—/(a—]):Vuds—/ Vuds (6.100)
0 0

and thus, using (6.98),

(@ = D)(®)[g2 < CE/O (Ita = 1)(s) 13 + 1)e™*/ ds (6.101)

and ||(a — I)(t)|| gz < € for all t > 0 follows from the Gronwall lemma.
Using the estimate (6.79), the iterates are defined for all ¢ > 0 and satisfy

ly™lg < Cllyollg (o) + Cella™ [l 2rrs(ay) + Cellas™ 2220y + Cellaf? | ram () + Cellaliy | ror2cay)
(6.102)

on [0,T], where C' depends on T. Reducing e > 0 if necessary, we obtain
1 _
Iy lls < Cliyolly o) + 3yl (6.103)

Thus all the iterates belong to the ball By, in Y on the interval [0, Tp], where Tj is a fixed constant; for

instance, we may take T = 1. Clearly, M is a constant multiple of ||y0|\1~/(0).
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We first construct the solution on the interval [0, 7y] and then outline the details for continuing the
construction for ¢ > Tj. The argument is based on a generalized fixed point technique, where the iterates
are bounded uniformly in the space Y while we have a contraction in a lower order norm.

Consider the map A: Y — Y between the successive iterates, i.e., A(ul), pt) p()) = (uH+D) pl+1) o)+,

In order to avoid superscripts, we denote

(u,p,¥0) = (w1, p=h) pn=h)) (6.104)
and
(v,q,w) = (u™,p™ ™) (6.105)
and thus assume that
(v, q,w) = Alu, p,¥) (6.106)
is the solution to the system
vy —Av+Vg=f in Qf x (0,7) (6.107)
divo=g¢ in Q; x (0,7) (6.108)
wy — Aw = —aw; — fw in Q. x (0,7T) (6.109)
with the boundary conditions
wg=u on 'y x (0,T) (6.110)
v=0 onTyx(0,T) (6.111)
v ow
8—N—qN—8W+h onTI'. x (0,7) (6.112)

where
F1 = 0B = b)) + (s — )
9= (0r; — aj) v’
h' = (6% — a]af)Okv' Ny + (8k; — af )qNy (6113

for i = 1,2,3. The matrix a is the coefficient matrix corresponding to u, and is obtained by solving the

System

a;=—a:Vu:a in Qp x (0,7T)
a(z,0) =1 in Qy.

We next show that A is a contraction on the lower topological space

Yo = {(v,q,w) :v € L*([0,T); H*(Q)), v € L*([0,T); L*(Q)), q € L*([0, T); H' (),
g€ HY*([0,T; L*(T.)),w € L=([0,T); H'(Qy)), we € L>([0,T]; L*(2)) } (6.114)

with 7' = T, with the norm
(v, ¢, w)llve = IvllLzo,m;m2(0,)) + Vel 20, 73522(0,)) + lall 2o, 73500 (24

+ lall gr/a¢o,m;22(r.0)) + €ollwll Lo (0, 11:11 (24)) + €ollwe || oo jo,73:22 (024 )) (6.115)
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where €y is a sufficiently small constant which is determined below. Let (u,p,v) and (u,D, {b') be two
elements in the ball By, in Y. We estimate the difference between two solutions (v, ¢, w) and (v, q, w)
arising from (u,p,v) and (u,p, QZ) respectively in the topology of Yy. Denote the differences of the old

variables

U=u—u, P=p—p,  T=¢p—19 (6.116)
and the differences of the new variables

V=v-u, Q=q—q, W =w — w, (6.117)

respectively. They obey the two coupled equations

Vi— AV +VQ=F inQf x (0,7) (6.118)
divV =G in Q x (0,7) (6.119)
6V — QN = 87W +H onl.x(0,7) (6.120)
V =0 onTy x (O,T) (6.121)
and
th — AW + OéWt + 5W =0 in Qe X (O,T) (6122)
Wy=V onT,.x(0,T), (6.123)
where
F'=0;((8;% — @l ay)0xt') — 9;((56 — afaf)Okv') + (Oki — @F )OkG — (ki — af)Orq
G = (0j — @5) 0kt — (bk; — af) v’ = @c((% — @) — (Oj — af)vj)
H' = (85 — @af)O0' Ny — (85 — a]af)Opv' Nj + (O — aF)GNy, — (0pi — al)qNy, (6.124)
fori=1,2,3, and
Gy=divA+ B (6.125)
with B = 0 and
A =8, ((% — @ — (0 — a;?)vj), k=1,2,3. (6.126)

Here we denoted by a and a the coefficients associated with the flow maps induced by u and u respectively.
We then appeal to Lemma 6.1 associated with the linear system (6.118)—(6.121) satisfied by the difference
of solutions (V, Q, W) with zero initial data, and obtain

IVIIz2 (0, 11:52(025)) + IVell2 o, 7102 05)) + 1@ L2 (o, 7151 ) + QI /40,7722 (1))
< C<||F|L2<[0,T};L2(nf)) 1G] 2o msmany + 1Alz2go iz

HIBllz2qo,riz2(25)) + H | 22 o,y m1/2(r00) + H o, my;2r,)
H ow

Tllav

L2([0,T);H/2(T))

(6.127)

‘Hl/‘l([O,T];L?(Fc))) .
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We next estimate the norms on the right side of (6.127), starting with F, which we write as
F* = 0;((ajay — ;1)00V") — 0;((aja} —ajap)op’) + (af — 6k:)0kQ — (af — af)Org.

i =

Using the triangle inequality, we have

IF |22 o, psL200,0) < C 3@ ar — 6;1)06V 2o o)) + (alaf — @ af) 0w’ || 2o, 0
i
+ 1@ = 1)@l 220,152 (02, + (af = @) ka2 (o112
Applying Holder and Sobolev inequalities we have
[ E ()] 2()) < C(Wﬁf — Skl s @pllVIimzo,) + lalaf — & af || o IVl L (o))

+af = dillmsee@p QN m ) + llaf — afllm(smIIVqllLs(Qf>>- (6.128)

Here we use that the coefficient matrices a and @ obey (6.53) and (6.54). Also, in order to estimate a —a,

we write

t t
Ja =l <€ [ la= @l [Vl lollne ds +C [ @l | VUl ds
0 0

+C/Ot all 2 IVl g2 lla — all g ds (6.129)
whence using Gronwall’s inequality and assuming that € > 0 is sufficiently small, we get
ol < [ 0l s (6.130)
Similarly,
oot~ afatls < [ 10 s 6131

Therefore, we get

IE 2o,y 02(05)) < CelUll2(0,13;02(02,4)) + CelPllLz(o,): 01 (04
+ Cel|V 2o, 11,52(05)) + Cell Q20,7111 (24)) (6.132)

where we used T' < Ty. For G, by Hélder’s inequality we have
1Gll e (ey) < @} = 0kjll L@ IVV [ @) + laf = @5l @) V0l L o))
We appeal to the properties of the coefficients a and @, (6.54) and (6.130), to get
Gl L2 o) < CelUllzzqo.mimz@p) + CellVllL2 (o rimz@,))- (6.133)

An estimate for the boundary term H in L?([0,7]; H*/%(T'.)) is similar to that for F in L2([0, 7] x ),

hence

IH | 220, 13:0172(r,)) < CellU 2o, m3:m2(05)) + CelPllrz o,y 04))
+ Cel|V 20, 11,52(05)) + Cell@llL2(0,11:11 (92)) - (6.134)

44



Next, we estimate || H || g1/4(o,);22(r.)), Where we write
H' = (@af — 6;1)0kV N, — (a]af — @ af)0pv' Nj + (@ — 04i) QN — (aF — @) g Ny (6.135)
Using Kato-Ponce type estimates as in (6.63), we have
| H | 174 0,15 02(10))
<Olla” :a—1I||z=or1xapn IV Vg oy
+Clla" :a = Ilwarsaqoryne= @ IVVIliLaqoc2 o)
+Clla™ s a—a" :all Lo om0 IV /e 0,77 L2 (00
+Clla™ s a—a" :all grsaqo,rye VOl L (011x9,))
+ Clla = I o, x ) 1QI mr1 /a0, 7721 ))
+ Clla — Illw/aago,);2 ) QN L2 0. 11:L2 (1))
+ Clla —all Lo (o,rjszs ropllall /e o m o))
+ Clla = all g1/a¢o0, 71,20y 1l oo (0,775 (1)) - (6.136)
Now we rely on the space-time interpolation inequality (6.64) for V/,
1INV gaqo e,y < €ollV oz + CaolVIiLz (o200, €0 € (0,1] (6.137)
together with
1@l 4o, my;22(r0)) < ClQI E1/4 0, 1522 (1)) (6.138)

For the differences of coefficients a’ : @ — @’ : @ and a — @ (which by (6.130) and (6.131) are bounded in
L>([0,T); HY(Qy))), we also have

la = allgaqo,ry;2rayy < ClIVUl g1/ o, L2(r.)) (6.139)
and
||aT . a—a a||H1/4([O T);L2(T < C||VU||H1/4(OT] ;L2(T,)) (6140)
for T < Ty. Therefore, we conclude
N H | 170,002 00)) < CelUllaqo,m;eza,)) + CelUllL2o,11:m2(9,5)) + Cell Pl gvago, 2.y
+ CelViiaqorzz@p)) + CelVIlLzoriaz ) + CellQl o, ryrar.))-

(6.141)
We next use the optimal trace regularity for the wave equation (6.122)-(6.123) to estimate
H L2([0,T];H/2(T,.)) H H1/4([0,T);L2(T..))
< C‘/ Vv +C||WHH3/2([O,T];L2(FC))
0 LQ([OaT];H3/2(Fc))
< CT1/2HV||L2([O,T];H2(Qf)) + CHV||H1/2([O,T];L2(FC))a (6.142)
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where we utilized W = fo s)ds on I'.. Observe that for the last term on the right side we may apply

the interpolation 1nequahty

IVl ez 0,302 (00)) < €ollVillzz o,z ;) + CeollV 20,7017 (2) - (6.143)
Thus we conclude
o S (-2 W
< C||V||L2([0,T];H2(Qf)) + ClVellz2o,ry;22(0,))- (6.144)

In order to estimate Gy = div A where A is given in (6.126), we write
A = (a — 5kj)3th (a —aj )8tvj + 3taij (6@? — 8ta§)vj. (6.145)
We have

[A®)]IL2(0;) < Clla = Il =@ IVill L2,y + Clla — @l s @) 10| L3 (q;)

+ Cllosall Lz IV Iiey) + Clloe(a = a)l 2o [[0]l Lo (oy)- (6.146)
Using (6.129) and
10¢(a — a)ll2(jo,77;22(05)) < ClIVV L2 (0,13:22(25)) (6.147)
we conclude
1Al 2o,y 22(2)) < CellVIL2 o ryimz(p) + CellVill 2o, mysL2(0,)- (6.148)
Regarding W we have
W | Lo o131 (2)) + IWell Los o.10:22 (00)) < CIW it () (6.149)
where
t
W a0 = ’ / 14 +IWlla qo.rp:22r0)
0 L2([0,T];H(T¢))
< CTY? |Vl aqorrymsraca,y + IV Iz < ClV Iz o rsm2@;)) (6.150)
for T < Ty.

From the above estimates (applied on time steps), we conclude

IVIlL2(o,r3m2000)) + Vel L2 qo,mysp2ce)) + 1@ 2o, my; 2 24)) + 1@ 140, 71:22(0,)
< Ce (IUllz2qoymz@p + Ul 2o mizac,)) + 1Pllezqorym ) + 1Pl o rizar.y) (6:151)

and

Wl Lo o, 15310 (20)) + IWell Lo o, 11522 (020)) < ClV L2 0,71:m2(29)) - (6.152)
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If e >0 and ey > 0 (in (6.115)) are sufficiently small, we get
1

Therefore, the solution map A is a contraction on the space Yy and thus there exists a unique fixed point

solution in (v, ¢, w) in Yy which belongs to Y. The solution satisfies the bound
lo()]|x < Cee VS, 0<t<Ty. (6.154)

Now, we show how to continue the argument on the intervals [kTp, (k + 1)7Tp], where k = 1,2,.... The
main difficulty is that the inequalities (6.132), (6.140), and (6.150) require Ty to be bounded. The main
idea of the proof is to use the fact that, using induction, the iterates have already been shown to converge
to the solution on [0, kTp] at an exponential rate and only the size of the interval [kTy, (k + 1)To] needs
to be taken into account. More precisely, let Yy (71, 75) denote the space (6.114) with [0, 7] replaced by
[T, T5] with the norm |[|(v, g, w)||y, (1, 1,) Where in (6.115) the interval [0, 7] is replaced by [T7,T3]. Note
that (6.153) shows that

1

1V, Q W)llvgp0,70) < 7 U, Py ®)llvs0,m) (6.155)

where we continue with using the notation (6.116)—(6.117) with (6.104)—(6.105).

Now, we show the modification of the inequality (6.155) when we work inductively on the interval
[kTy, (k + 1)Ty], where k € N.

For t € [kTo, (k + 1)Tp], the inequality (6.130) is replaced by

kTo t
la=alm <C [ Ulmds+C [ Ul ds
0 kTo
< CullUll 2o wrolsmz )y + ClIU N L2 (v, o1y 10 H2(2)) - (6.156)
We split the integral in (4.37) similarly and thus (4.27) is replaced by
I L2 (ko (k4 D) T01 L2 (25))

< CrellU|| 2o, ko) 52 (025)) + Crell PllLe (o, ko) 50 (024))

+ CellUll L2 (wer, (o vymol 2 0)) + CellPll L2 (rmy, (o 1) 7o) 11 (92))- (6.157)

Analogous replacements are obtained for the inequalities (6.141) and (6.150). Therefore, (6.153) becomes

1
”(‘/7 Qa W)||Yo(kT0,(k+1)Tg) < Ck||(U7 P, \Ij)||Yo(07kTo) + 7||(U7 P7 qj)||Y0(kT07(k+1)T0)7 (6158)
4
i.e.,

n n n n— 1 n n-
Iy =yl e ernmy < Celly™ = 3™ Vllvoomy + 718" = v Vlvower. ez (6159)

for n € N. Now, using inductively the fact that as n — oo, the first term on the right side converges
to zero exponentially fast, we get that, as n — oo, the iterates converge exponentially fast also on the
interval [kTp, (k + 1)T5]. Note that we also have

n n 1 n—1
||y( )||}7(kTo,(k+1)To) < CH?J( )(kTO)HY/(o) + §||y( )||}7(kT07(k+1)T0)' (6.160)
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where Y (T}, T») denotes the analog of Y but on the time interval [T1, T5]. This, again, implies that all the
iterates belong to a ball Bj; in Y on the interval [kTo, (k + 1)To], where M is large enough, independent
of n. The proof of the theorem is thus concluded. O

Acknowledgments

We thank Piotr Mucha for useful discussions. We also thank the two referees for their suggestions.
M.I. was supported in part by the NSF FRG grant DMS-115893, I.K. was supported in part by the NSF
grants DMS-1311943 and DMS-1615239, I.L.. was supported in part by the NSF grant DMS-0104305 and
by the Air Force grant OSR FA9550-09-1-0459.

References

[ALT] G. Avalos, 1. Lasiecka, and R. Triggiani, Higher reqularity of a coupled parabolic-hyperbolic
fluid-structure interactive system, Georgian Math. J. 15 (2008), no. 3, 403-437.

[AT1] G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. I.
Ezxplicit semigroup generator and its spectral properties, Fluids and waves, Contemp. Math.,
vol. 440, Amer. Math. Soc., Providence, RI, 2007, pp. 15-54.

[AT?2] G. Avalos and R. Triggiani, Fluid-structure interaction with and without internal dissipation
of the structure: a contrast study in stability, Evol. Equ. Control Theory 2 (2013), no. 4,
563-598.

[B] M. Boulakia, Ezistence of weak solutions for the three-dimensional motion of an elastic struc-
ture in an incompressible fluid, J. Math. Fluid Mech. 9 (2007), no. 2, 262-294.

[BG1] M. Boulakia and S. Guerrero, Regular solutions of a problem coupling a compressible fluid
and an elastic structure, J. Math. Pures Appl. (9) 94 (2010), no. 4, 341-365.

[BG2] M. Boulakia and S. Guerrero, A regqularity result for a solid-fluid system associated to the
compressible Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009),
no. 3, 777-813.

[BGLT1] V. Barbu, Z. Grujié, I. Lasiecka, and A. Tuffaha, Ezistence of the energy-level weak solutions
for a nonlinear fluid-structure interaction model, Fluids and waves, Contemp. Math., vol.
440, Amer. Math. Soc., Providence, RI, (2007), 55-82.

[BGLT2] V. Barbu, Z. Gruji¢, I. Lasiecka, and A. Tuffaha, Smoothness of weak solutions to a nonlinear
fluid-structure interaction model, Indiana Univ. Math. J. 57 (2008), no. 3, 1173-1207.

[BL] F. Bucci and 1. Lasiecka, Optimal boundary control with critical penalization for a PDE
model of fluid-solid interactions, Calc. Var. Partial Differential Equations 37 (2010), no. 1-2,
217-235.

48



[BZ1]

[BZ2]

[CS1]

[CS2]

[DEGL]

[DGHL]

[GS]

[GGCC]

[GGCCL]

[IKLT1]

[IKLT?2]

[KMT]

[KT1]

[KT2]

L. Bociu and J.-P. Zolésio, Sensitivity analysis for a free boundary fluid-elasticity interaction,
Evol. Equ. Control Theory 2 (2013), no. 1, 55-79.

L. Bociu and J.-P. Zolésio, Existence for the linearization of a steady state fluid/nonlinear
elasticity interaction, Discrete Contin. Dyn. Syst. (2011), no. Dynamical systems, differential
equations and applications. 8th AIMS Conference. Suppl. Vol. I, 184-197.

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid,
Arch. Ration. Mech. Anal. 176 (2005), no. 1, 25-102.

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the
Navier-Stokes equations, Arch. Ration. Mech. Anal. 179 (2006), no. 3, 303-352.

B. Desjardins, M.J. Esteban, C. Grandmont, and P. Le Tallec, Weak solutions for a fluid-
elastic structure interaction model, Rev. Mat. Complut. 14 (2001), no. 2, 523-538.

Q. Du, M.D. Gunzburger, L.S. Hou, and J. Lee, Analysis of a linear fluid-structure interaction
problem, Discrete Contin. Dyn. Syst. 9 (2003), no. 3, 633-650.

E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ. 3
(2003), no. 3, 419-441, Dedicated to Philippe Bénilan.

G. Grubb and V.A. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes
equations treated by pseudo-differential methods, Math. Scand. 69 (1991), no. 2, 217-290
(1992).

G. Guidoboni, R. Glowinski, N. Cavallini, and S. Canic, Stable loosely-coupled-type algorithm
for fluid-structure interaction in blood flow, J. Comput. Phys. 228 (2009), no. 18, 6916-6937.

G. Guidoboni, R. Glowinski, N. Cavallini, S. Canic, and Sergey Lapin, A kinematically cou-
pled time-splitting scheme for fluid-structure interaction in blood flow, Appl. Math. Lett. 22
(2009), no. 5, 684—688.

M. Ignatova, I. Kukavica, I. Lasiecka, and A. Tuffaha, On well-posedness for a free boundary
fluid-structure model, J. Math. Phys. 53 (2012), no. 11, 115624, 13 pp.

M. Ignatova, I. Kukavica, 1. Lasiecka, and A. Tuffaha, On well-posedness and small data
global existence for an interface damped free boundary fluid-structure model, Nonlinearity 27
(2014), no. 3, 467-499.

I. Kukavica, A.L. Mazzucato, and A. Tuffaha, Sharp trace regularity for an anisotropic elas-
ticity system, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2673-2682.

I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem,
Discrete Contin. Dyn. Syst. 32 (2012), no. 4, 1355-1389.

I. Kukavica and A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-
structure interaction, Indiana Univ. Math. J. 61 (2012), no. 5, 1817-1859.

49



[KT3]

[KTZ1]

[KTZ2]

[KTZ3]

(L]

[LL2]

[LLT]

[LTr1]

[LTr2]

[MZ1]

[MZ2]

[PS]

I. Kukavica and A. Tuffaha, Well-posedness for the compressible Navier-Stokes-Lamé system
with a free interface, Nonlinearity 25 (2012), no. 11, 3111-3137.

I. Kukavica, A. Tuffaha, and M. Ziane, Strong solutions to a nonlinear fluid structure inter-
action system, J. Differential Equations 247 (2009), no. 5, 1452-1478.

I. Kukavica, A. Tuffaha, and M. Ziane, Strong solutions for a fluid structure interaction
system, Adv. Differential Equations 15 (2010), no. 3-4, 231-254.

I. Kukavica, A. Tuffaha, and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on
a domain with a non-flat boundary, Nonlinearity 24 (2011), no. 1, 159-176.

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod,
1969.

J.-L. Lions, Hidden regularity in some nonlinear hyperbolic equations, Mat. Apl. Comput. 6
(1987), no. 1, 7-15.

I. Lasiecka and Y. Lu, Asymptotic stability of finite energy in Navier Stokes-elastic wave
interaction, Semigroup Forum 82 (2011), no. 1, 61-82.

I. Lasiecka and Y. Lu, Interface feedback control stabilization of a nonlinear fluid-structure
interaction, Nonlinear Anal. 75 (2012), no. 3, 1449-1460.

I. Lasiecka, J.-L. Lions, and R. Triggiani, Nonhomogeneous boundary value problems for
second order hyperbolic operators, J. Math. Pures Appl. (9) 65 (1986), no. 2, 149-192.

I. Lasiecka and D. Toundykov, Semigroup generation and “hidden” trace regularity of a dy-
namic plate with non-monotone boundary feedbacks, Commun. Math. Anal. 8 (2010), no. 1,
109-144.

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or
Neumann feedback control without geometrical conditions, Appl. Math. Optim. 25 (1992),
no. 2, 189-224.

I. Lasiecka and R. Triggiani, Sharp reqularity theory for elastic and thermoelastic Kirchoff
equations with free boundary conditions, Rocky Mountain J. Math. 30 (2000), no. 3, 981-1024.

P.B. Mucha and W.M. Zajaczkowski, On the existence for the Cauchy—Neumann problem for
the Stokes system in the Ly,-framework, Studia Math. 143 (2000), 75-101.

P.B. Mucha and W.M. Zajaczkowski, On local existence of solutions of free boundary prob-
lem for incompressible viscous self-gravitating fluid motion, Applicationes Mathematicae 27
(2000), no. 3, 319-333.

J. Priiss and G. Simonett, On the two-phase Navier-Stokes equations with surface tension,
Interfaces Free Bound. 12 (2010), no. 3, 311-345.

50



[RV]

[Tel]

[Te2]

J.-P. Raymond and M. Vanninathan, A fluid-structure model coupling the Navier-Stokes equa-
tions and the Lamé system, J. Math. Pures Appl. (9) 102 (2014), no. 3, 546-596.

R. Sakamoto, Hyperbolic boundary value problems, Cambridge University Press, Cambridge-
New York, 1982, Translated from the Japanese by Katsumi Miyahara.

J.A. San Martin, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two-
dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration.
Mech. Anal. 161 (2002), no. 2, 113-147.

D. Tataru, On the reqularity of boundary traces for the wave equation, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) 26 (1998), no. 1, 185-206.

R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, second ed.,

Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.

R. Temam, Navier-Stokes equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory

and numerical analysis, Reprint of the 1984 edition.

o1



