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Abstract
We address a fluid–structure system which consists of the incompressible
Navier–Stokes equations and a damped linear wave equation defined on two
dynamic domains. The equations are coupled through transmission boundary
conditions and additional boundary stabilization effects imposed on the free
moving interface separating the two domains. Given sufficiently small initial
data, we prove the global-in-time existence of solutions by establishing a key
energy inequality which in addition provides exponential decay of solutions.

Keywords: Navier–Stokes equations, fluid–structure interaction, long time
behaviour, global solutions, damped wave equation
Mathematics Subject Classification: 35R35, 35Q30, 76D05

1. Introduction

In this paper, we consider a coupled system of PDEs modelling the interaction of an
incompressible viscous fluid with an elastic structure on a free moving interface when subjected
to additional boundary stabilization effects. Well-posedness of the free boundary model was
first established in [CS1], while other local-in-time existence of solutions results, with and
without damping, have been addressed in several more recent works [IKLT, KT1, KT2]. In
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this paper, we establish global-in-time existence and exponential decay of the solutions to the
system given sufficiently small initial data, subject to boundary stabilization terms.

The model in consideration is formulated in Lagrangian coordinates on the initial domain
and consists of the Navier–Stokes equations and a damped wave equation, with additional
boundary stabilization terms incorporated in the transmission boundary conditions at the free
moving interface. (The methods can be easily adapted to the case of equations of linear
elasticity with damping as in [KTZ3] for instance.) Standard energy estimates on time
derivatives, usually sufficient to obtain local-in-time results, are insufficient by themselves for
controlling the wave potential energy due to the coupling dynamics and the quasilinear nature
of the variable coefficients Stokes system. For this reason, a combination of equipartition and
flux multipliers techniques developed especially to address energy decay and stabilization of
waves is used to control the growth of potential energy in the elastic component. The higher
regularity requirement stemming from the presence of the variable coefficients requires several
levels of these estimates to obtain the key energy inequality (5.15) from which global existence
and exponential decay can be inferred.

One of the main obstacles for obtaining the decay is that the resulting a priori estimates
allow norms to grow exponentially in time. However, the terms with exponential increase
appear as super-quadratic on the right side and are thus controlled by the nonnegative terms on
the left which are only quadratic. We note that the exponential decay of the norms is essential
for obtaining that the Lagrangian coefficients are close to the identity for all time. As shown
in [ZZ], the uniform decay of solutions cannot be expected even in the case of coupling of the
linear heat equation with the linear undamped wave equation. In such a case one obtains the
so-called strong stability, which can be quantified by at most rational decay rates, obtained
for smoother initial data taken from the domain of the generator. The above negative result
was also known in the case of linear coupled system consisting of the Stokes and the wave
equation. In fact, the presence of the pressure in the equation changes the picture substantially.
It is shown in [AT1] that even strong stability fails for the linear Stokes-undamped wave system
unless the domain �e satisfies special geometric condition (guaranteed by partial flatness of
the domain). For instance, the case of spherical domains �e provides a known counterexample
to strong stability [AT1]. In view of the above, we do not expect exponential decay without
(i) the static damping term βw in the wave equation (without the effect of this term, the elastic
body is expected to shift and rotate) and (ii) without either velocity internal damping α > 0
or boundary stabilizing term γ > 0. On a positive side, strong stability was shown in [AT1]
for the Stokes-undamped wave model defined on the domain �e that is partially flat and with
the initial data satisfying an additional compatibility condition whose aim is to eliminate zero
eigenvalue from the spectrum of the generator (a phenomenon specific to the presence of the
pressure and therefore not present in the treatment of heat and wave equation alone). As for
uniform or exponential decay rates, these hold for the Stokes-wave system with both static
β > 0 and dynamic α > 0 damping active, as shown in [AT2]. The above results motivate the
framework for our study of global existence of free boundary interaction with damped wave
equation.

In our analysis, we have considerably benefited from the wealth of tools used to study
stabilization and control of damped hyperbolic dynamics [LT, LTr1, LTr2], and more recent
works on coupled systems where equipartition of energy tools were employed successfully
[LL1,LL2]. We note that the incorporation of the stabilization term with γ � 0 in the velocity
matching condition can serve as a regularization of the physical model, and provide a possible
tool for establishing existence of solutions to the internally damped wave equation in the
limiting physical case γ = 0 . However, establishing the exponential decay result for the
limiting case requires new estimates and possibly further assumptions, and we hope to address

468



Nonlinearity 27 (2014) 467 M Ignatova et al

it in a future work. The corresponding results in the linear case and the static interface case
have been already obtained in [AT2, LL2].

The paper is organized as follows. In section 2, we formulate the mathematical model and
the assumptions and then state the main theorem. In section 3, we provide certain preliminary
properties on the Lagrangian fluid flow map and the variable coefficients in the Navier–Stokes
equation, as well as standard elliptic and Stokes estimates utilized in later sections. In section 4,
we derive the energy and equipartition estimates at several levels, and in section 5, we collect
these estimates to obtain the key energy inequality (5.15) and show that it leads to the desired
global existence and exponential decay. In section 6, we construct solutions of the fluid–
structure model by an iteration method. As shown in [KT1, KT2] (see also [CS1]), it is
sufficient to construct local solutions for a linear problem, i.e. the problem with the coefficients
a(x, t) given and smooth, satisfying the postulated compatibility conditions. The construction
of solutions for the linear problem is obtained as follows. First, we address the problem where
a is smooth and independent of t . The solution to this problem is obtained by a Galerkin
procedure. The main difficulty in using a Galerkin procedure in this situation is that it is not
known whether there exists a basis consisting of functions with matching regularity on the
common boundary. To overcome this difficulty, we take advantage of the Neumann boundary
conditions in order to find a Galerkin formulation which does not necessitate such matching
basis. Then we prove that the system is indeed equivalent to the original set of equations.
After establishing the local existence of solutions for the time-independent coefficients, we
then obtain the existence of solutions with coefficients a = a(x, t) depending on x and t by a
perturbation (fixed point) technique.

2. The main results

We consider the free boundary fluid–structure system which models the motion
of an elastic body moving and interacting with an incompressible viscous fluid
(see [CS1, CS2, KT1, KT2, B, BG1]). This parabolic–hyperbolic system couples the Navier–
Stokes equation

∂tu − �u + (u · ∇)u + ∇p = 0 in �f (t) (2.1)

∇ · u = 0 in �f (t) (2.2)

and a damped wave equation

wtt − �w + αwt + βw = 0 in �e (2.3)

for α, β > 0. The Navier–Stokes equation is posed in the Eulerian framework and in a dynamic
domain �f (t), with �f (0) = �f , while the wave equation is posed in the domain �e. The
geometry is such that ∂�e = �c is the common boundary of the domains, and ∂�f = �c ∪�f .
Both domains �f and �e are assumed bounded and smooth (see [CS1, KT1, KT2] for more
details). The interaction is captured by natural velocity and stress matching conditions on the
free moving interface between the fluid and the elastic body.

It is more convenient to consider the system formulated in the Lagrangian coordinates
(see [CS1, KT2]). With η: �f → �f (t) the position function, the incompressible Navier–
Stokes equation may be written as

vi
t − ∂j (a

j

l a
k
l ∂kv

i) + ∂k(a
k
i q) = 0 in �f × (0, T ), i = 1, 2, 3 (2.4)

ak
i ∂kv

i = 0 in �f × (0, T ), (2.5)

where v(x, t) and q(x, t) denote the Lagrangian velocity and the pressure of the fluid over the
initial domain �f , i.e. v(x, t) = ηt (x, t) = u(η(x, t), t) and q(x, t) = p(η(x, t), t) in �f .
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The matrix a with ij entry ai
j is defined by a(x, t) = (∇η(x, t))−1 in �f , i.e. ∂mηia

m
j = δij

for all i, j = 1, 2, 3. The elastic equation for the displacement function w(x, t) = η(x, t) − x

is formulated in the Lagrangian framework as

wi
tt − �wi + αwi

t + βwi = 0 in �e × (0, T ), i = 1, 2, 3 (2.6)

over the initial domain �e. We thus seek a solution (v, w, q, a, η) to the system (2.4)–(2.6),
where the coefficients ai

j for i, j = 1, 2, 3 and η are determined from

at = −a : ∇v : a in �f × (0, T ) (2.7)

ηt = v in �f × (0, T ) (2.8)

with the initial conditions a(x, 0) = I and η(x, 0) = x in �f ; here, the symbol : denotes matrix
multiplication. On the interface �c between �f and �e, we assume transmission boundary
condition

wi
t = vi − γ ∂jw

iNj on �c × (0, T ), (2.9)

where γ > 0, and the matching of stresses

∂jw
iNj = a

j

l a
k
l ∂kv

iNj − ak
i qNk on �c × (0, T ), (2.10)

while on the outside fluid boundary �f , we assume the non-slip boundary condition

vi = 0 on �f × (0, T ) (2.11)

for i = 1, 2, 3, where N = (N1, N2, N3) is the unit outward normal with respect to �e. Note
that we are working with the (Eulerian) stress ∇u; the modifications for the more physical stress
1
2 (∇u+∇uT ) are notationally more challenging and follow [KTZ3]. We supplement the system
(2.4)–(2.6) with the initial conditions v(x, 0) = v0(x) and (w(x, 0), wt (x, 0)) = (0, w1(x))

on �f and �e, respectively. We also use the classical spaces H = {v ∈ L2(�f ) : div v = 0,
v · N |�f

= 0} and V = {v ∈ H 1(�f ) : div v = 0, v|�f
= 0}. Based on v0, we determine the

initial pressure by solving the problem

�q0 = −∂iv
k
0∂kv

i
0 in �f

∇q0 · N = �v0 · N on �f

−q0 = −∂jv
i
0NjNi + ∂jw

i
0NjNi on �c. (2.12)

Our main result provides global-in-time existence for fluid–structure system with damping,
given small data. Namely, the following assertion holds.

Theorem 2.1. Let α, β, γ > 0. Assume that v0 ∈ V ∩ H 4(�f ), w0 ∈ H 3(�e) and
w1 ∈ H 2(�e) are sufficiently small and that they satisfy the compatibility conditions

w1 = v0 − γ∇w0 · N,

�w0 − αw1 − βw0 + γ∇w1 · N = �v0 − ∇q0,

�w1 − αwtt (0) − βw1 + γ∇wtt (0) · N = �vt(0) − ∇qt (0) (2.13)

on �c,

∂w0

∂N
· τ = ∂v0

∂N
· τ,

∂w1

∂N
· τ = ∂

∂N

(
�v0 − ∇q0

) · τ,

∂wtt (0)

∂N
· τ = ∂

∂N
(�vt(0) − ∇qt (0)) · τ (2.14)
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also on �c, for tangential vectors τ , and

v0 = 0,

�v0 − ∇q0 = 0,

−∂ta
j

k (0)∂jkv
i
0 − ∂j (∂ta

k
j (0)∂kv

i(0)) − �∂tv
i(0) + ∂ta

k
i (0)∂kq(0) + ∂itq(0) = 0 (2.15)

on �f . Then there exists a unique global smooth solution (v, w, q, a, η) which satisfies

v ∈ L∞([0, ∞); H 3(�f )) (2.16)

vt ∈ L∞([0, ∞); H 2(�f )) (2.17)

vtt ∈ L∞([0, ∞); L2(�f )) (2.18)

∇vtt ∈ L2([0, ∞); L2(�f )) (2.19)

∂
j
t w ∈ C([0, ∞); H 3−j (�e)), j = 0, 1, 2, 3 (2.20)

with q ∈ L∞([0, ∞); H 2(�f )), qt ∈ L∞([0, ∞); H 1(�f )), a, at ∈ L∞([0, ∞); H 2(�f )),
att ∈ L∞([0, ∞); H 1(�f )), attt ∈ L2([0, ∞); L2(�f )) and η|�f

∈ C([0, ∞); H 3(�f )).
When α = 0 the result remains valid provided the star-shaped condition

(x − x0) · N(x) > 0, x ∈ �c (2.21)

for some x0 ∈ �e is imposed.

In section 4, we present a priori estimates for the system. In section 5, we gather all
the a priori estimates and show how they lead to global existence of solutions. In section 6,
we carry out a complete construction of solutions based on a priori estimates in the earlier
sections.

Remark 2.2. Note that we need to derive qt (0), wttt (0) and vtt (0) from the system (2.4)–
(2.11). Indeed, we have

wtt (0) = �w0 − αw1(0) − βw0

wttt (0) = �w1 − αwtt (0) − βw1

vtt (0) = �vt(0) − at (0)�v0 − ∇qt (0)

and qt (0) is determined as a solver of the elliptic problem

�qt(0) = div(�vt (0) + at (0)�v0) in �f

∇qt (0) · N = �vt(0) · N + at (0)�v0 · N on �f

−qt (0) = ∂w1

∂N
− ∂vt (0)

∂N
on �c,

with vt (0) = �v0 − ∇q0 and at (0) = −∇v0.
Also note that the first condition in (2.14) is interpreted as

∂jw
i
0Njτi = ∂jv

i
0Njτi (2.22)

for all tangent vectors τ .

The proof of theorem 2.1 shows that the assumption v0 ∈ V ∩ H 4(�f ) may be replaced
with v(0) ∈ V ∩ H 3(�f ), vt (0) ∈ V and vtt (0) ∈ H .

The proof of theorem 2.1 is given in sections 5 and 6.
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3. Preliminary results

In this section, we provide formal a priori estimates on the time derivatives of the unknown
functions needed in the proof of theorem 2.1. We begin with an auxiliary result providing
bounds on the coefficients of the matrix a. In the whole paper, the symbol C denotes a
sufficiently large constant depending on the domains �e and �f as well as on the parameters
α, β and γ .

Lemma 3.1 ([IKLT]). Assume that ‖∇v‖L∞([0,T ];H 2(�f )) � M . Let p ∈ [1, ∞] and
i, j = 1, 2, 3. With T ∈ [0, 1/CM], where C is a sufficiently large constant, the following
statements hold:

(i) ‖∇η‖H 2(�f ) � C for t ∈ [0, T ];
(ii) ‖a‖H 2(�f ) � C for t ∈ [0, T ];

(iii) ‖at‖Lp(�f ) � C‖∇v‖Lp(�f ) for t ∈ [0, T ];
(iv) ‖∂iat‖Lp(�f ) � C‖∇v‖Lp1 (�f )‖∂ia‖Lp2 (�f ) +C‖∇∂iv‖Lp(�f ) for i = 1, 2, 3 and t ∈ [0, T ]

where 1 � p, p1, p2 � ∞ are such that 1/p = 1/p1 + 1/p2;
(v) ‖∂ij at‖L2(�f ) � C‖∇v‖1/2

H 1(�f )
‖∇v‖1/2

H 2(�f )
+ C‖∇v‖H 2(�f ) for i, j = 1, 2, 3 and t ∈

[0, T ];
(vi) ‖att‖L2(�f ) � C‖∇v‖L2(�f )‖∇v‖L∞(�f ) +C‖∇vt‖L2(�f ) and ‖att‖L3(�f ) � C‖v‖2

H 2(�f )
+

C‖∇vt‖L3(�f ) for t ∈ [0, T ];

(vii) ‖attt‖L2(�f ) � C‖∇v‖3
H 1(�f )

+ C‖∇vt‖L2(�f )‖∇v‖L∞(�f ) + C‖∇vtt‖L2(�f ) for t ∈ [0, T ];

(viii) for every ε ∈ (0, 1/2] and all t � T ∗ = min{ε/CM2, T }, we have

‖δjk − a
j

l a
k
l ‖2

H 2(�f ) � ε, j, k = 1, 2, 3 (3.1)

and

‖δjk − a
j

k ‖2
H 2(�f ) � ε, j, k = 1, 2, 3. (3.2)

In particular, the form a
j

l a
k
l ξ

i
j ξ

i
k satisfies the ellipticity estimate

a
j

l a
k
l ξ

i
j ξ

i
k � 1

C
|ξ |2, ξ ∈ R

3 × R
3 (3.3)

for all t ∈ [0, T ∗] and x ∈ �f , provided ε � 1/C with C sufficiently large.

This lemma was established in [IKLT, lemma 3.1].
From [IKLT], we also recall a priori estimates for the variable coefficient Stokes system.

Lemma 3.2 ( [IKLT]). Assume that v and q are solutions to the system

vi
t − ∂j (a

j

l a
k
l ∂kv

i) + ∂k(a
k
i q) = 0 in �f (3.4)

ak
i ∂kv

i = 0 in �f (3.5)

v = 0 on �f (3.6)

a
j

l a
k
l ∂kv

iNj − ak
i qNk = ∂jw

iNj on �c (3.7)

for given coefficients ai
j ∈ L∞(�f ) with i, j = 1, 2, 3 satisfying lemma 3.1 with a sufficiently

small constant ε = 1/C. Then the estimate

‖v‖Hs+2(�f ) + ‖q‖Hs+1(�f ) � C‖vt‖Hs(�f ) + C

∥∥∥∥ ∂w

∂N

∥∥∥∥
Hs+1/2(�c)

(3.8)
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holds for s = 0, 1 and for all t ∈ (0, T ). Moreover, the time derivatives vt and qt satisfy

‖vt‖H 2(�f ) + ‖qt‖H 1(�f )

� C‖vtt‖L2(�f ) + C

∥∥∥∥∂wt

∂N

∥∥∥∥
H 1/2(�c)

+ C‖v‖1/2
H 2(�f )

‖v‖1/2
H 3(�f )

(‖v‖H 2(�f ) + ‖q‖H 1(�f )

)
(3.9)

for all t ∈ (0, T ), where T � 1/CM for a sufficiently large constant C.

From here on, for simplicity, we omit specifying the domains �f and �e in the norms
involving the velocity v and the displacement w. Thus, for example, we write ‖v0‖H 3 and
‖w0‖H 3 for ‖v0‖H 3(�f ) and ‖w0‖H 3(�e). However, we continue specifying the boundary
domains �c and �f .

Now, let w be a solution to the wave equation (2.6) satisfying the condition (2.9) on the
common boundary �c. Then, we may write

∂w

∂N
= 1

γ
(v − wt). (3.10)

Hence, we obtain the elliptic estimate from �w = wtt +αwt +βw with Neumann boundary data

‖w‖H 3 � C‖wtt‖H 1 + Cα‖wt‖H 1 + Cβ‖w‖H 1 + Cγ −1‖(v − wt)‖H 3/2(�c)

� C‖wtt‖H 1 + Cα‖wt‖H 1 + Cβ‖w‖H 1 + Cγ −1‖v‖H 2 + Cγ −1‖wt‖H 2 (3.11)

for all t ∈ (0, T ). Differentiating (2.6) and (2.9) in time, we also have by the ellipticity of
�wt = wttt + αwtt + βwt with ∂wt/∂N = γ −1(vt − wtt )

‖wt‖H 2 � C‖wttt‖L2 + Cα‖wtt‖L2 + Cβ‖wt‖L2 + Cγ −1‖vt‖H 1 + Cγ −1‖wtt‖H 1 (3.12)

for all t ∈ (0, T ).
From (3.8) with s = 1, (3.10) and (3.12), we conclude that the Stokes type estimate

‖v‖H 3 + ‖q‖H 2 � C‖vt‖H 1 + C

∥∥∥∥ ∂w

∂N

∥∥∥∥
H 3/2(�c)

� C‖vt‖H 1 + Cγ −1‖v‖H 2 + Cγ −1‖wt‖H 2

� C‖vt‖H 1 + Cγ −1‖v‖H 2

+Cγ −1
(‖wttt‖L2 + α‖wtt‖L2 + β‖wt‖L2

+γ −1‖vt‖H 1 + γ −1‖wtt‖H 1

)
(3.13)

holds for all t ∈ (0, T ), where T � 1/CM .
Using (3.8) with s = 0 and (3.10), we also have

‖v‖H 2 + ‖q‖H 1 � C‖vt‖L2 + Cγ −1‖v‖H 1 + Cγ −1‖wt‖H 1 . (3.14)

By (3.9), (3.12) and (3.14), we also obtain

‖vt‖H 2 + ‖qt‖H 1

� C‖vtt‖L2 + C‖wt‖H 2 + C‖v‖1/2
H 2 ‖v‖1/2

H 3

(‖v‖H 2 + ‖q‖H 1

)
� C‖vtt‖L2 + C‖wttt‖L2 + Cα‖wtt‖L2 + Cβ‖wt‖L2 + Cγ −1‖vt‖H 1 + Cγ −1‖wtt‖H 1

+C‖v‖1/2
H 3

(
‖vt‖L2 + γ −1‖v‖H 1 + γ −1‖wt‖H 1

)3/2

(3.15)

for all t ∈ (0, T ), where T � 1/CM .
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4. Global in time solutions

In this section, we establish a priori estimates for the global in time existence of the unique
smooth solution to the damped fluid–structure system (2.4)–(2.6) provided the initial data are
sufficiently small.

Assume that

‖v0‖2
H 3 , ‖vt (0)‖2

H 1 , ‖vtt (0)‖2
L2 , ‖w0‖2

H 3 , ‖w1‖2
H 2 � ε, (4.1)

where ε > 0 is a small parameter.
We need several auxiliary estimates involving different levels of energy.

4.1. First level estimates

First, denote by

E(t) = 1
2

(‖v(t)‖2
L2 + β‖w(t)‖2

L2 + ‖wt(t)‖2
L2 + ‖∇w(t)‖2

L2

)
(4.2)

the energy of the system.

Lemma 4.1. The energy inequality

E(t) +
∫ t

0
D(s) ds � E(0) (4.3)

holds for all t ∈ [0, T ], where

D(t) = 1

C
‖∇v(t)‖2

L2 + α‖wt(t)‖2
L2 + γ

∥∥∥∥ ∂w

∂N
(t)

∥∥∥∥
2

L2(�c)

(4.4)

denotes the dissipative term.

Proof of lemma 4.1 (sketch). In order to obtain (4.3), we take the L2-inner product of (2.4)
with vi and (2.6) with wi

t , respectively, and sum in i. Adding the resulting equalities and
using the divergence-free condition (2.5) and boundary conditions (2.9)–(2.11) with (3.3) in
lemma 3.1 then gives the result. �

The next useful lemma asserts the equipartition of the energy for the wave equation.

Lemma 4.2. We have

α

2
‖w(t)‖2

L2 +
∫ t

0
‖∇w‖2

L2 ds + β

∫ t

0
‖w‖2

L2 ds

�
∫ t

0
‖wt‖2

L2 ds + CE(t) + CE(0) +
∫ t

0

∫
�c

w · ∂w

∂N
dσ ds (4.5)

for all t ∈ [0, T ].

Proof of lemma 4.2. Multiplying the wave equation (2.6) with w and integrating in the space
variable leads to

d

dt

∫
�e

wt · w −
∫

�e

|wt |2 +
∫

�e

∂jw · ∂jw −
∫

�c

∂jw · wNj +
α

2

d

dt

∫
�e

|w|2 + β

∫
�e

|w|2 = 0.

(4.6)
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Integrating also in the time variable then yields

α

2
‖w(t)‖2

L2 +
∫ t

0
‖∇w‖2

L2 ds + β

∫ t

0
‖w‖2

L2 ds

=
∫ t

0
‖wt‖2

L2 ds −
∫

�e

wt · w
∣∣t
0 +

α

2
‖w(0)‖2

L2 +
∫ t

0

∫
�c

∂jw · wNj dσ ds (4.7)

and the lemma follows. �

Lemma 4.3. For any α, β, γ > 0, there exists C > 0 such that

E(t) +
∫ t

0
E(s) ds � CE(0) (4.8)

where C = Cα,β,γ . If �e is star-shaped, then the above inequality is valid for all α � 0. In
particular, E(t) � CE(0).

Proof of lemma 4.3. First we start with a general �e. From lemma 4.2 and using the inequality∫
�c

w · ∂w

∂N
dσ(x) � ε‖w‖2

L2(�c)
+ Cε

∥∥∥∥ ∂w

∂N

∥∥∥∥
2

L2(�c)

(4.9)

with ε = min{1/C, β/C}, where C is sufficiently large, it follows that

α

2
‖w(t)‖2

L2 +
1

2

∫ t

0
‖∇w‖2

L2 ds +
β

2

∫ t

0
‖w‖2

L2 ds

�
∫ t

0
‖wt‖2

L2 ds + CE(t) + CE(0) + C

∫ t

0

∫
�c

∣∣∣∣ ∂w

∂N

∣∣∣∣
2

dσ ds

� CE(t) + CE(0) + C

(
1

α
+

1

γ

) ∫ t

0
D(s) ds. (4.10)

Multiplying (4.10) with a small constant and adding to the energy equation (4.3) leads to

E(t) +
∫ t

0
E(s) ds � CE(0) (4.11)

for all t ∈ [0, T ] with a constant C which does not depend on T , but depends on α, β and γ .
(Note that the constant blows up as α → 0.)

Now, we consider the case when �e is star-shaped. In this case we use a flux multiplier,
which is used in boundary stabilization-controllability of waves. At this point, we could have
taken α = 0; however, since the approach works also for a sufficiently small positive α and
since we believe that the result is of independent interest, we assume that α � 0. (Note that
combined with the first part of the proof, in the case of the star-shaped domain, the inequality
(4.8) holds for all α � 0.) The constants C0 and C0(ε) used in this derivation only depend on
the domains but not on parameters α, β and γ .

With x0 ∈ �e fixed, denote h(x) = x − x0 for x ∈ �e. Taking the L2-inner product of
(2.6) with hk∂kw

i and summing in i, we obtain the identity

−
(n

2
− 1

) ∫ t

0
‖∇w‖2

L2 ds − nβ

2

∫ t

0
‖w‖2

L2 ds +
n

2

∫ t

0
‖wt‖2

L2 ds − 1

2

∫ t

0

∫
�c

|wt |2h · N dσ ds

+
1

2

∫ t

0

∫
�c

|∇w|2h · N dσ ds −
∫ t

0

∫
�c

∂w

∂N
h · ∇w dσ ds +

β

2

∫ t

0

∫
�c

|w|2h · N dσ ds

= −(wt , h · ∇w)|t0 − α

∫ t

0
(wt , h · ∇w) ds, (4.12)
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which is valid for any solution to the wave equation (without the boundary conditions). Here
we used∫ t

0

∫
�e

wi
tthk∂kw

i dx ds

= n

2

∫ t

0
‖wt‖2

L2 ds − 1

2

∫ t

0

∫
�c

|wt |2h · N dσ(x) ds + (wt , h · ∇w)
∣∣t
0 (4.13)

with

−
∫ t

0

∫
�e

�wihk∂kw
i dx ds

= −
(n

2
− 1

) ∫ t

0
‖∇w‖2

L2 ds +
1

2

∫ t

0

∫
�c

|∇w|2h · N dσ(x) ds −
∫ t

0

(
∂w

∂N
, h · ∇w

)
�c

ds,

(4.14)

and

β

∫ t

0

∫
�e

wihk∂kw
i = −nβ

2

∫ t

0
‖w‖2

L2 ds +
β

2

∫ t

0

∫
�c

|w|2h · N dσ(x) ds. (4.15)

From (4.12), we obtain

n

2

∫ t

0

(‖wt‖2
L2 − ‖∇w‖2

L2 − β‖w‖2
L2

)
ds +

∫ t

0
‖∇w‖2

L2 ds

−1

2

∫ t

0

∫
�c

|wt |2h · N dσ(x) ds +
1

2

∫ t

0

∫
�c

(|∇w|2 + β|w|2)h · N dσ(x) ds

� ε

∫ t

0

∫
�c

|h · ∇w|2 dσ(x) ds + Cε

∫ t

0

∫
�c

∣∣∣∣ ∂w

∂N

∣∣∣∣
2

dσ(x) ds

+CE(t) + CE(0) + εα

∫ t

0
‖h · ∇w‖2

L2 ds + C0(ε)α

∫ t

0
‖wt‖2

L2 ds, (4.16)

where ε > 0 is a small parameter. By the star-shaped condition, we have h · N � γ0 for some
γ0 > 0. Taking ε small, this leads to

n

2

∫ t

0

(
‖wt‖2

L2 − ‖∇w‖2
L2 − β‖w‖2

L2

)
ds +

1

2

∫ t

0
‖∇w‖2

L2 ds

+
γ0

4

∫ t

0

∫
�c

(|∇w|2 + β|w|2) dσ(x) ds

� 1

2

∫ t

0

∫
�c

|wt |2h · N dσ(x) ds + C

∫ t

0

∫
�c

∣∣∣∣ ∂w

∂N

∣∣∣∣
2

dσ(x) ds

+C0α

∫ t

0
‖wt‖2

L2 ds + CE(t) + CE(0). (4.17)

Now, multiplying (4.5) with n/2 − ε, where ε ∈ (0, 1) is a small parameter, and omitting the
first term on the left-hand side, gives(n

2
− ε

) ∫ t

0
‖∇w‖2

L2 ds + β
(n

2
− ε

) ∫ t

0
‖w‖2

L2 ds

�
(n

2
− ε

) ∫ t

0
‖wt‖2

L2 ds +
γ0

8
β

∫ t

0

∫
�c

|w|2 dσ(x) ds + C

∫ t

0

∫
�c

∣∣∣∣ ∂w

∂N

∣∣∣∣
2

dσ ds

+CE(t) + CE(0). (4.18)
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By adding the last two inequalities, we obtain(
1

2
− ε

) ∫ t

0
‖∇w‖2

L2 ds + ε

∫ t

0
‖wt‖2

L2 ds +
γ0

8

∫ t

0

∫
�c

(|∇w|2 + β|w|2) dσ(x) ds

� βε

∫ t

0
‖w‖2

L2 ds + C

∫ t

0

∫
�c

|wt |2 dσ(x) ds + C

∫ t

0

∫
�c

∣∣∣∣ ∂w

∂N

∣∣∣∣
2

dσ(x) ds

+C0α

∫ t

0
‖wt‖2

L2 ds + CE(t) + CE(0). (4.19)

Choosing ε > 0 sufficiently small, using the Poincaré inequality

‖w‖2
L2 � C‖∇w‖2

L2 + C

∫
�c

|w|2 dσ(x), (4.20)

and assuming that α � ε/C0 with a sufficiently large C0 so that the fourth term on the right-hand
side of (4.19) may be absorbed in the second term on the left-hand side, we obtain∫ t

0

(‖∇w‖2
L2 + β‖w‖2

L2 + ‖wt‖2
L2

)
ds

� C

∫ t

0

∫
�c

(
|wt |2 +

∣∣∣∣ ∂w

∂N

∣∣∣∣
2
)

dσ(x) ds + CE(t) + CE(0). (4.21)

Now, we use the condition (2.9) and obtain∫ t

0

(‖∇w‖2
L2 + β‖w‖2

L2 + ‖wt‖2
L2

)
ds

� C

∫ t

0

∫
�c

(
|v|2 + (γ 2 + 1)

∣∣∣∣ ∂w

∂N

∣∣∣∣
2
)

dσ(x) ds + CE(t) + CE(0). (4.22)

Multiplying (4.22) by a small constant and adding the resulting inequality to (4.3) with t = T ,
we obtain

E(t) +
∫ t

0
E(s) ds � CE(0) (4.23)

and the proof is complete. �

Remark 4.4. If the solution exists for all time, and if a stays sufficiently close to the identity
matrix so that a is uniformly elliptic, then lemma 4.3 implies the exponential decay rate for
the energy E(t), which is in the case of a star-shaped domain �e independent of α � 0 but
depends on β > 0 and γ > 0. Indeed, any nonnegative measurable function E satisfying

E(t2) +
∫ t2

t1

E(s) ds � CE(t1) (4.24)

decays exponentially with the rate depending on the constant on the right-hand side of (4.24).
When α > 0 then the first part of the proof of lemma 4.3 proves the desired conclusion. When
α = 0 the second part of the proof asserts the same conclusion under a geometric star-shaped
assumption. We have retained the parameter α � 0 through the proof of the second part as this
allows for further generalizations to variable coefficients α(x) � 0 without a uniform bound
from below qualifying for the arguments in the first part of the proof. �
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4.2. Second level estimates

It is clear from the previous subsection that the value of the constant β > 0 does not play a
role in the global existence, it only influences the size of the constant. Thus, for simplicity of
notation, we set

β = 1 (4.25)

from here on.
We next introduce the second level energy

E1(t) = 1

2

(‖vt (t)‖2
L2 + ‖wt(t)‖2

L2 + ‖wtt (t)‖2
L2 + ‖∇wt(t)‖2

L2

)
(4.26)

of the system with the corresponding dissipation

D1(t) = 1

C
‖∇vt (t)‖2

L2 + α‖wtt (t)‖2
L2 + γ

∥∥∥∥∂wt

∂N
(t)

∥∥∥∥
2

L2(�c)

. (4.27)

In order to obtain the integral inequality for E1(t), we differentiate the full system in time. We
obtain

vi
tt − ∂t∂j (a

j

l a
k
l ∂kv

i) + ∂t∂k(a
k
i q) = 0 in �f × (0, T ), i = 1, 2, 3 (4.28)

ak
i ∂kv

i
t + ∂ta

k
i ∂kv

i = 0 in �f × (0, T ) (4.29)

and

wi
ttt − �wi

t + αwi
tt + wi

t = 0 in �e × (0, T ), i = 1, 2, 3 (4.30)

since β was set to 1.

Lemma 4.5. The energy inequality

E1(t) +
∫ t

0
D1(s) ds � E1(0) +

∫ t

0
(R1(s), vt (s)) ds (4.31)

holds for all t ∈ [0, T ], where∫ t

0
(R1(s), vt (s)) ds = −

∫ t

0

∫
�f

∂t (a
j

l a
k
l )∂kv

i∂j v
i
t dx ds +

∫ t

0

∫
�f

∂ta
k
i q∂kv

i
t dx ds

−
∫ t

0

∫
�f

∂ta
k
i ∂tq∂kv

i dx ds. (4.32)

Proof of lemma 4.5. We take the L2-inner product of (4.28) with vi
t and of (4.30) with wi

tt ,
respectively. Summing in i and adding the two estimates, we obtain

1

2
‖vt (t)‖2

L2 +
1

2
‖wt(t)‖2

L2 +
1

2
‖∇wt(t)‖2

L2 +
1

2
‖wtt (t)‖2

L2

+
1

C

∫ t

0
‖∇vt‖2

L2 ds + α

∫ t

0
‖wtt‖2

L2 ds + γ

∫ t

0

∫
�c

∣∣∣∣∂wt

∂N

∣∣∣∣
2

dσ(x) ds

� 1

2
‖vt (0)‖2

L2 +
1

2
‖wt(0)‖2

L2 +
1

2
‖∇wt(0)‖2

L2 +
1

2
‖wtt (0)‖2

L2

−
∫ t

0

∫
�f

∂t (a
j

l a
k
l )∂kv

i∂j v
i
t dx ds +

∫ t

0

∫
�f

∂t (a
k
i q)∂kv

i
t dx ds, (4.33)
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where we utilized the boundary conditions

vi
t − γ ∂jw

i
t Nj = wi

tt on �c × (0, T ) (4.34)

∂t (a
j

l a
k
l ∂kv

i)Nj − ∂t (a
k
i q)Nk = ∂jw

i
t Nj on �c × (0, T ) (4.35)

vi
t = 0 on �f × (0, T ) (4.36)

for i = 1, 2, 3. In order to make the last term on the right-hand side of (4.33) superquadratic,
we rewrite it as∫ t

0

∫
�f

∂t (a
k
i q)∂kv

i
t dx ds =

∫ t

0

∫
�f

∂ta
k
i q∂kv

i
t dx ds +

∫ t

0

∫
�f

ak
i ∂tq∂kv

i
t dx ds

=
∫ t

0

∫
�f

∂ta
k
i q∂kv

i
t dx ds −

∫ t

0

∫
�f

∂ta
k
i ∂tq∂kv

i dx ds (4.37)

where we used (4.29) in the last step. The lemma is thus established. �

Note that, by lemma 4.5, we have

E1(t) +
∫ t

s

D1(τ )dτ � E1(s) +
∫ t

s

(R1(τ ), vt (τ )) dτ (4.38)

for any 0 � s � t .
Proceeding in the same manner as for the lower level energy, we obtain the counterparts

of lemmas 4.2 and 4.3. The following statement asserts the equipartition of the second level
energy.

Lemma 4.6. We have

α

2
‖wt(t)‖2

L2 +
∫ t

0
‖∇wt(s)‖2

L2 ds +
∫ t

0
‖wt(s)‖2

L2 ds

�
∫ t

0
‖wtt‖2

L2 ds + CE1(t) + CE1(0) + C

∫ t

0

∫
�c

wt · ∂wt

∂N
dσ(x) ds (4.39)

for all t ∈ [0, T ].

From lemmas 4.5 and 4.6, we conclude that

E1(t) +
∫ t

0
E1(s) ds � CE1(0) + C

∫ t

0
(R1(s), vt (s)) ds (4.40)

for all t ∈ [0, T ], where the constant C denotes a generic constant which depends on the
domains.

When 0 � α � 1/C, the flux multiplier argument applied to the differentiated wave
equation (4.30) gives∫ t

0

(‖∇wt‖2
L2 + ‖wt‖2

L2 + ‖wtt‖2
L2

)
ds

� C

∫ t

0

∫
�c

(
|wtt |2 +

∣∣∣∣∂wt

∂N

∣∣∣∣
2
)

dσ(x) ds + CE1(t) + CE1(0) (4.41)

as the analogue of (4.21). Using the boundary condition (4.34), we write

‖wtt‖2
L2(�c)

� C‖vt‖2
L2(�c)

+ Cγ 2

∥∥∥∥∂wt

∂N

∥∥∥∥
2

L2(�c)

� CD1(t). (4.42)
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We now substitute (4.42) in (4.41), multiply the resulting inequality with a small constant and
add it to (4.31). We obtain

E1(t) +
∫ t

0
E1(s) ds � CE1(t) + CE1(0) + C

∫ t

0
D1(s) ds

� CE1(0) + C

(
E1(0) +

∫ t

0
(R1(s), vt (s)) ds

)
(4.43)

when 0 � α � 1/C and the domain is star-shaped.
We summarize the estimates in the following statement.

Lemma 4.7. For any α, γ > 0, we have

E1(t) +
∫ t

0
E1(s) ds � C

(
E1(0) +

∫ t

0
(R1(s), vt (s)) ds

)
(4.44)

where C = Cα,γ . If �e is star-shaped, then the above inequality holds for all α � 0.

4.3. Third level estimates

Here we repeat the procedure applied to the second time derivatives of the system. We introduce
the next level of energy

E2(t) = 1

2

(‖vtt (t)‖2
L2 + ‖wtt (t)‖2

L2 + ‖wttt (t)‖2
L2 + ‖∇wtt (t)‖2

L2

)
(4.45)

with the corresponding dissipation

D2(t) = 1

C
‖∇vtt (t)‖2

L2 + α‖wttt (t)‖2
L2 + γ

∥∥∥∥∂wtt

∂N
(t)

∥∥∥∥
2

L2(�c)

. (4.46)

Differentiating the full system (2.4)–(2.6) twice in time, we obtain

vi
ttt − ∂tt ∂j (a

j

l a
k
l ∂kv

i) + ∂tt ∂k(a
k
i q) = 0 in �f × (0, T ) (4.47)

ak
j ∂kv

j
tt + 2∂ta

k
j ∂kv

j
t + ∂tta

k
j ∂kv

j = 0 in �f × (0, T ) (4.48)

wi
tttt − �wi

tt + αwi
ttt + wi

tt = 0 in �e × (0, T ) (4.49)

with the boundary conditions

wi
ttt = vi

tt − γ ∂jw
i
ttNj on �c × (0, T ) (4.50)

∂jw
i
ttNj = ∂tt (a

j

l a
k
l ∂kv

i)Nj − ∂tt (a
k
i q)Nk on �c × (0, T ) (4.51)

vi
tt = 0 on �f × (0, T ) (4.52)

for i = 1, 2, 3. �

Lemma 4.8. The inequality

E2(t) +
∫ t

0
D2(s) ds � E2(0) +

∫ t

0
(R2(s), vtt (s)) ds (4.53)

holds for all t ∈ [0, T ], where∫ t

0
(R2(s), vtt (s)) ds = 2

∫ t

0

∫
�f

∂t (a
j

l a
k
l )∂kv

i
t ∂j v

i
tt dx ds

+
∫ t

0

∫
�f

∂tt (a
j

l a
k
l )∂kv

i∂j v
i
tt dx ds −

∫ t

0

∫
�f

∂tt (a
k
i q)∂kv

i
tt dx ds (4.54)

and E2(0) = (1/2)(‖vtt (0)‖2
L2 + ‖wtt (0)‖2

L2 + ‖wttt (0)‖2
L2 + ‖∇wtt (0)‖2

L2).
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Proof of lemma 4.8. Multiplying (4.47) by vi
tt , integrating over �f and summing for

i = 1, 2, 3, we get

1

2

d

dt
‖vtt‖2

L2 +
∫

�f

∂tt (a
j

l a
k
l ∂kv

i)∂j v
i
tt dx +

∫
�c

∂tt (a
j

l a
k
l ∂kv

i)vi
ttNj dσ(x)

−
∫

�f

∂tt (a
k
i q)∂kv

i
tt dx −

∫
�c

∂tt (a
k
i q)vi

ttNk dσ(x) = 0, (4.55)

after integrating by parts. Similarly, we multiply (4.49) by wi
ttt , sum for i = 1, 2, 3 and

integrate over �e to obtain

1

2

d

dt
‖wttt‖2

L2 + α‖wttt (t)‖2
L2 +

1

2

d

dt
‖wtt‖2

L2 +
1

2

d

dt
‖∇wtt‖2

L2 −
∫

�c

∂kw
i
ttw

i
tttNk dσ(x) = 0.

(4.56)

Adding (4.55) and (4.56) and applying the boundary conditions (4.50) and (4.51) leads to

1

2

d

dt

(‖vtt‖2
L2 + ‖wttt‖2

L2 + ‖∇wtt‖2
L2 + ‖wtt‖2

L2

)
+ α‖wttt (t)‖2

L2 + γ

∥∥∥∥∂wtt

∂N

∥∥∥∥
2

L2(�c)

+
∫

�f

a
j

l a
k
l ∂kv

i
tt ∂j v

i
tt dx + 2

∫
�f

∂t (a
j

l a
k
l )∂kv

i
t ∂j v

i
tt dx

+
∫

�f

∂tt (a
j

l a
k
l )∂kv

i∂j v
i
tt dx −

∫
�f

∂tt (a
k
i q)∂kv

i
tt dx = 0. (4.57)

The proof is concluded using the ellipticity of a and integrating in time. �

Lemma 4.9. For any α, γ > 0 there exists C > 0 such that∫ t

0
E2(s) ds + E2(t) � C

(
E2(0) +

∫ t

0
(R2(s), vtt (s)) ds

)
(4.58)

where C = Cα,γ . If �e is star-shaped, then the above inequality holds for all α � 0.

4.4. Superlinear estimates

The goal in this subsection is to provide estimates on the perturbation terms∫ t

0
(R1(s), vt (s)) ds (4.59)

and ∫ t

0
(R2(s), vtt (s)) ds (4.60)

from (4.32) and (4.54), respectively. The first of these two quantities is estimated in the
following way.

Lemma 4.10. We have

|(R1(t), vt )| � C‖v‖1/2
H 1 ‖v‖1/2

H 2 ‖vt‖H 1

(‖v‖H 2 + ‖q‖H 1

)
+ C‖v‖3/2

H 1 ‖v‖1/2
H 2 ‖qt‖H 1 (4.61)

for all t ∈ [0, T ].
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Proof of lemma 4.10. First, we have

|(R1, vt )| � C

∫
�f

|a||at ||∇v||∇vt | dx + C

∫
�f

|at ||q||∇vt | dx + C

∫
�f

|at ||qt ||∇v| dx

= R11 + R12 + R13. (4.62)

Using Hölder and Gagliardo–Nirenberg inequalities, we have

R11 � C‖at‖L3‖∇v‖L6‖∇vt‖L2 � C‖v‖1/2
H 1 ‖v‖3/2

H 2 ‖vt‖H 1 (4.63)

where we also used ‖at‖L3 � C‖∇v‖L3 � C‖v‖1/2
H 1 ‖v‖1/2

H 2 resulting from lemma 3.1(iii) in the
last inequality. Similarly,

R12 � C‖at‖L3‖q‖L6‖vt‖H 1 � C‖v‖1/2
H 1 ‖v‖1/2

H 2 ‖q‖H 1‖vt‖H 1 (4.64)

and

R13 � C‖at‖L3‖qt‖L6‖∇v‖L2 � C‖v‖3/2
H 1 ‖v‖1/2

H 2 ‖qt‖H 1 . (4.65)

The proof is then concluded by summing the last three inequalities. �

Lemma 4.11. For ε0 ∈ (0, 1/C], we have∫ t

0
(R2(s), vtt (s)) ds

� ε0

∫ t

0
‖∇vtt‖2

L2 ds + Cε0

∫ t

0

(‖v‖2
H 3 + ‖q‖2

H 2

) (
‖v‖5/2

H 1 ‖v‖3/2
H 3 + ‖vt‖2

H 1

)
ds

+Cε0

∫ t

0
‖v‖3/2

H 1 ‖v‖1/2
H 3 ‖qt‖2

H 1 ds + ε0‖qt (t)‖2
H 1 + ε0‖vt (t)‖2

H 2 + ε0‖v(t)‖2
H 3

+Cε0‖v(t)‖6
H 1‖v(t)‖4

H 2 + Cε0‖v(t)‖2
H 1‖v(t)‖2

H 2‖vt (t)‖2
L2

+C

∫ t

0

(
‖v‖2

H 2 + ‖vt‖1/2
H 1 ‖vt‖1/2

H 2

)
‖qt‖H 1‖vt‖H 1 ds

+C

∫ t

0

(
‖v‖3

H 2 + ‖vt‖H 1‖v‖1/4
H 1 ‖v‖3/4

H 3

)
‖qt‖H 1‖v‖3/4

H 1 ‖v‖1/4
H 3 ds

+C‖v(0)‖6
H 3 + C‖vt (0)‖4

H 1 + C‖qt (0)‖2
H 1 (4.66)

for all t ∈ [0, T ].

Proof. From (4.54), we have∫ t

0
(R2(s), vtt (s)) ds

� C

∣∣∣∣∣
∫ t

0

∫
�f

∂t (a
j

l a
k
l )∂kv

i
t ∂j v

i
tt dx ds

∣∣∣∣∣ + C

∣∣∣∣∣
∫ t

0

∫
�f

∂tt (a
j

l a
k
l )∂kv

i∂j v
i
tt dx ds

∣∣∣∣∣
+C

∣∣∣∣∣
∫ t

0

∫
�f

∂tta
k
i q∂kv

i
tt dx ds

∣∣∣∣∣ + C

∣∣∣∣∣
∫ t

0

∫
�f

∂ta
k
i qt ∂kv

i
tt dx ds

∣∣∣∣∣
+C

∣∣∣∣∣
∫ t

0

∫
�f

ak
i qtt ∂kv

i
tt dx ds

∣∣∣∣∣
= R21 + R22 + R23 + R24 + R25. (4.67)
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Using Hölder’s inequality and lemma 3.1, we obtain

R21 + R22 + R23 � C

∫ t

0
(‖∇v‖L∞ + ‖q‖L∞) (‖∇v‖L2‖∇v‖L∞ + ‖∇vt‖L2) ‖∇vtt‖L2 ds

� C

∫ t

0
(‖v‖H 3 + ‖q‖H 2) (‖∇v‖L2‖∇v‖L∞ + ‖∇vt‖L2) ‖∇vtt‖L2 ds

� C

∫ t

0
(‖v‖H 3 + ‖q‖H 2)

(
‖v‖5/4

H 1 ‖v‖3/4
H 3 + ‖vt‖H 1

)
‖∇vtt‖L2 ds (4.68)

and

R24 � C

∫ t

0
‖∇v‖L3‖qt‖L6‖∇vtt‖L2 ds � C

∫ t

0
‖v‖3/4

H 1 ‖v‖1/4
H 3 ‖qt‖H 1‖∇vtt‖L2 ds, (4.69)

where we also utilized the Sobolev and the interpolation inequalities. In order to treat the term
R25, denote I = ∫ t

0

∫
�f

ak
i qtt ∂kv

i
tt dx ds. By the time differentiated divergence-free condition

(4.48)

I = −2
∫ t

0

∫
�f

∂ta
k
i qtt ∂kv

i
t dx ds −

∫ t

0

∫
�f

∂tta
k
i qtt ∂kv

i dx ds, (4.70)

whence, integrating by parts in t in both integrals gives

I = 2
∫

�f

∂ta
k
i (t)qt (t)∂kv

i
t (t) dx +

∫
�f

∂tta
k
i (t)qt (t)∂kv

i(t) dx

− 2
∫

�f

∂ta
k
i (0)qt (0)∂kv

i
t (0) dx −

∫
�f

∂tta
k
i (0)qt (0)∂kv

i(0) dx

+ 3
∫ t

0

∫
�f

∂tta
k
i qt ∂kv

i
t dx ds + 2

∫ t

0

∫
�f

∂ta
k
i qt ∂kv

i
tt dx ds +

∫ t

0

∫
�f

∂ttt a
k
i qt ∂kv

i dx ds.

(4.71)

Applying lemma 3.1 along with Hölder’s and the Gagliardo–Nirenberg inequalities, we obtain

R25 � C‖∇v(t)‖L3‖qt (t)‖L6‖∇vt (t)‖L2 + C‖att (t)‖L2‖qt (t)‖L6‖∇v(t)‖L3

+C‖∇v(0)‖L3‖qt (0)‖L6‖∇vt (0)‖L2 + C‖att (0)‖L2‖qt (0)‖L6‖∇v(0)‖L3

+C

∫ t

0
‖att‖L3‖qt‖L6‖∇vt‖L2 ds + C

∫ t

0
‖∇v‖L3‖qt‖L6‖∇vtt‖L2 ds

+C

∫ t

0
‖attt‖L2‖qt‖L6‖∇v‖L3 ds.

The sum of the first two terms on the right-hand side is bounded by

C‖v‖1/2
H 1 ‖v‖1/2

H 2 ‖qt‖H 1‖vt‖1/2
L2 ‖vt‖1/2

H 2 +
(‖∇v‖L2‖∇v‖L∞ + ‖∇vt‖L2

)‖qt‖H 1‖v‖1/2
H 1 ‖v‖1/2

H 2

� C‖v‖1/2
H 1 ‖v‖1/2

H 2 ‖qt‖H 1‖vt‖1/2
L2 ‖vt‖1/2

H 2 + C‖v‖3/2
H 1 ‖v‖H 2‖v‖1/2

H 3 ‖qt‖H 1

+C‖vt‖1/2
L2 ‖vt‖1/2

H 2 ‖qt‖H 1‖v‖1/2
H 1 ‖v‖1/2

H 2

� ε0‖qt‖2
H 1 + ε0‖vt‖2

H 2 + ε0‖v‖2
H 3 + Cε0‖v‖2

H 1‖v‖2
H 2‖vt‖2

L2 + Cε0‖v‖6
H 1‖v‖4

H 2 (4.72)

using parts (vi) and (vii) of lemma 3.1. Therefore, using in particular Agmon’s inequality
‖u‖L∞ � C‖u‖1/2

H 1 ‖u‖1/2
H 2 , we obtain

R25 � ε0‖qt (t)‖2
H 1 + ε0‖vt‖2

H 2 + ε0‖v‖2
H 3 + Cε0‖v‖2

H 1‖v‖2
H 2‖vt‖2

L2 + Cε0‖v‖6
H 1‖v‖4

H 2

+C‖v(0)‖6
H 3 + C‖vt (0)‖4

H 1 + C‖qt (0)‖2
H 1
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+C

∫ t

0

(
‖v‖2

H 2 + ‖∇vt‖1/2
L2 ‖∇vt‖1/2

H 1

)
‖qt‖H 1‖∇vt‖L2 ds

+C

∫ t

0
‖∇v‖3/4

L2 ‖∇v‖1/4
H 2 ‖qt‖H 1‖∇vtt‖L2 ds

+C

∫ t

0

(‖v‖3
H 2 + ‖∇vt‖L2‖∇v‖L∞ + ‖∇vtt‖L2

)‖qt‖H 1‖∇v‖L3 ds.

Thus the proof of the lemma is complete. �

5. Proof of theorem 2.1

We introduce the norm

X(t) = E(t) + E1(t) + E2(t) + ε1‖∇v(t)‖2
L2 + ε1‖∇vt (t)‖2

L2 (5.1)

where ε1 > 0 is a small parameter which is to be determined. In order to control the terms
‖∇v(t)‖L2 and ‖∇vt (t)‖L2 , we use the estimates

‖∇v(t)‖2
L2 − ‖∇v(0)‖2

L2 =
∫ t

0

d

ds
‖∇v(s)‖2

L2 ds � 2
∫ t

0
‖∇v‖L2‖∇vt‖L2 ds, (5.2)

whence

‖∇v(t)‖2
L2 � ‖∇v(0)‖2

L2 + C

∫ t

0

(
D(s) + D1(s)

)
ds, (5.3)

and

‖∇vt (t)‖2
L2 − ‖∇vt (0)‖2

L2 =
∫ t

0

d

ds
‖∇vt (s)‖2

L2 ds � 2
∫ t

0
‖∇vt‖L2‖∇vtt‖L2 ds, (5.4)

which implies

‖∇vt (t)‖2
L2 � ‖∇vt (0)‖2

L2 + C

∫ t

0

(
D1(s) + D2(s)

)
ds. (5.5)

From section 4.1, we have

E(t) +
∫ t

0
E(s) ds +

∫ t

0
D(s) ds � CE(0). (5.6)

Section 4.2, combined with lemma 4.10, gives

E1(t) +
∫ t

0
E1(s) ds +

∫ t

0
D1(s) ds � CE1(0) +

∫ t

0
P1(‖v‖H 2 , ‖q‖H 1 , ‖vt‖H 1 , ‖qt‖H 1) ds,

(5.7)

while from section 4.3, combined with lemma 4.11,

E2(t) +
∫ t

0
E2(s) ds +

∫ t

0
D2(s) ds

� CE2(0) + ε0‖v(t)‖2
H 3 + ε0‖vt (t)‖2

H 2 + ε0‖qt (t)‖2
H 1 + ε0

∫ t

0
‖∇vtt‖2

L2 ds

+P2(‖v‖H 2 , ‖vt‖L2) +
∫ t

0
P3(‖v‖H 3 , ‖q‖H 2 , ‖vt‖H 2 , ‖qt‖H 1) ds

+P4(‖v(0)‖H 3 , ‖vt (0)‖H 1 , ‖qt (0)‖H 1). (5.8)

In (5.7), (5.8) and below, the symbols P1, P2, P3 and P4 denote the superlinear polynomials
of their arguments, which are allowed to depend on ε0 from lemma 4.11. Now, multiply (5.3)
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and (5.5) with ε1 and add the resulting inequalities to the sum of (5.6), (5.7) and (5.8) while
choosing (and fixing) ε1 sufficiently small. We obtain

X(t) +
∫ t

0
X(s) ds � CX(0) + ε0‖v(t)‖2

H 3 + ε0‖vt (t)‖2
H 2 + ε0‖qt (t)‖2

H 1

+P1(‖v‖H 2 , ‖vt‖L2) +
∫ t

0
P2(‖v‖H 3 , ‖q‖H 2 , ‖vt‖H 2 , ‖qt‖H 1) ds

+P3(‖v(0)‖H 3 , ‖vt (0)‖H 1 , ‖qt (0)‖H 1) (5.9)

where P1, P2 and P3 are superlinear polynomials different from above.
Now, from (3.14), we obtain

‖v‖2
H 2 + ‖q‖2

H 1 � CX(t) (5.10)

and then, using (3.13) and (5.10),

‖v‖2
H 3 + ‖q‖2

H 2 � CX(t). (5.11)

From (3.15) and (5.11), we obtain

‖vt‖2
H 2 + ‖qt‖2

H 1 � CX(t) + C‖v‖1/2
H 3 X(t)3/2 � CX(t) + CX(t)2. (5.12)

Using (5.11) and (5.12) and choosing ε0 > 0 sufficiently small, we obtain from (5.9)

X(t) +
∫ t

0
X(s) ds � CX(0) + P(X(t)) +

∫ t

0
P(X(s)) ds + P(X(0)), (5.13)

where P is a superlinear polynomial. We may rewrite this as

X(t) +
∫ t

0
X(s) ds � C0X(0) + C0

m∑
j=1

∫ t

0
X(s)αj ds + C0

n∑
k=1

X(t)βk + C0

n∑
k=1

X(0)βk ,

(5.14)

for C0 � 1, α1, . . . , αm > 1 and β1, . . . , βn > 1.
The proof of theorem 2.1 follows from the following auxiliary assertion.

Lemma 5.1. Suppose that X: [0, ∞) → [0, ∞] is continuous for all t such that X(t) is finite
and assume that it satisfies

X(t) +
∫ t

τ

X(s) ds � C0

m∑
j=1

∫ t

τ

X(s)αj ds + C0

n∑
k=1

X(t)βk + C0

n∑
k=1

X(τ)βk + C0X(τ),

(5.15)

where α1, . . . , αm > 1 and β1, . . . , βn > 1. Also, assume that X(0) � ε. If ε � 1/C, where
the constant C depends on C0, m, α1, . . . , αm, β1, . . . , βn, we have X(t) � Cεe−t/C .

Remark 5.2. The global existence is based on the term
∫ t

τ
X(s) ds on the left-hand side

of (5.15) which provides a strong dissipative mechanism which controls the potentially
exponential increase in the first two terms on the right-hand side of (5.15) (note the superlinear
character of terms in the sums due to the assumptions α1, . . . , αm > 1 and β1, . . . , βn > 1)
when observed on a long enough, but constant size, interval [0, 8C0]. In the first part of
the proof, we show that if ε > 0 is sufficiently small, there exists a time t1 ∈ [4C0, 8C0]
such that X(t1) � ε/2. Then one may repeat the argument with initial time t1 and obtain a
time t2 ∈ [t1 + 4C0, t1 + 8C0] such that X(t2) � ε/4, etc. On each interval [tj , tj+1], where
j = 1, 2, . . ., the function X can only grow by a constant factor since the size of the interval
is bounded by 8C0, and thus the exponential decay over [0, ∞) is obtained.
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Proof of lemma 5.1. First we show that the time of existence can be made arbitrarily large if
ε > 0 is sufficiently small. Let X(0) � ε for ε ∈ (0, 1/2]. Also, let T be the time such that
X(t) < 2C0ε for t ∈ [0, T ) and X(T ) = 2C0ε. Then, by (5.15), we obtain

X(t) � C0

m∑
j=1

∫ t

0
X(s)αj ds + C0

n∑
k=1

X(t)βk + C0

n∑
k=1

εβk + C0ε, t ∈ [0, T ], (5.16)

which at time t = T gives

C0ε � C0

m∑
j=1

(2C0ε)
αj T + C0

n∑
k=1

(2C0ε)
βk + C0

n∑
k=1

εβk . (5.17)

Using α1, . . . , αm > 1 and β1, . . . , βn > 1, we obtain

T � 1

Cεk
(5.18)

with positive constants C and k depending on C0, m, α1, . . . , αm, and β1, . . . , βn. Thus, if
ε → 0, we have T → ∞.

Next, we show that if ε > 0 is sufficiently small, X(t) eventually equals ε/2 and we
also estimate from above the time t when this happens. First, let T = 8C0; we claim that
there exists t ∈ [T/2, T ] such that X(t) � ε/2 provided ε > 0 is sufficiently small (specified
below). For the sake of obtaining a contradiction, assume that

X(t) > ε/2, t ∈
[
T

2
, T

]
, (5.19)

where T = 8C0. By the first part of this proof, we may choose ε > 0 so small that

X(t) � 2C0ε, t ∈ [0, T ]. (5.20)

Then the inequality (5.15) used with t = T and τ = 0 combined with (5.19) and (5.20) gives

T

2

ε

2
� C0T

m∑
j=1

(2C0ε)
αj + C0

n∑
k=1

(2C0ε)
βk + C0

n∑
k=1

εβk + C0ε (5.21)

which, dividing the equation by ε and using T = 8C0, may be rewritten as

C0 � 8C2
0

m∑
j=1

(2C0)
αj εαj −1 + C0

n∑
k=1

(2C0)
βk εβk−1 + C0

n∑
k=1

εβk−1. (5.22)

This leads to a contradiction if ε > 0 is sufficiently small. Clearly, the upper bound for ε > 0
when this happens can be easily obtained. This contradiction shows that X(t1) � ε/2 for some
t1 ∈ [4C0, 8C0]. Repeating this argument, we obtain the existence of t2 ∈ [t1 + 4C0, t1 + 8C0]
such that X(t2) � ε/4. Continuing the procedure by mathematical induction yields finiteness
and an exponential decay for X(t). �

Proof of theorem 2.1. We fix T = 8C0 as in the proof of lemma 5.1. Then X(t) � 2C0ε for
all t ∈ [0, T ] and by lemma 5.1 there exists t1 ∈ [T/2, T ] such that X(t1) � ε/2. By (3.13),
we have

‖v(t)‖2
H 3 � CX(t) � Cε (5.23)

for all t ∈ [0, T ]. In particular, the two assertions in part (viii) of lemma 3.1 hold for all
t ∈ [0, T ]. Indeed, for the first estimate in part (viii), we obtain

‖δjk − a
j

k (t)‖2
H 2 � T

∫ T

0
‖∂ta

j

k (s)‖2
H 2 ds � CT

∫ T

0
‖v(s)‖2

H 3 ds � Cε (5.24)
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for all t ∈ [0, T ]. Thus, we may establish the validity of (5.15) and by the inductive
argument from the end of the proof of lemma 5.1, we conclude that ‖v(t)‖2

H 3 � Cεe−t/C

and ‖δjk − a
j

k (t)‖2
H 2 � Cε for all t > 0. �

6. Construction of solutions

We first construct solutions in lemma 6.1 to the linear problem for given matrix a with
coefficients ai

j = δij for i, j = 1, 2, 3, and for given nonzero forcing f , nonzero divergence
condition g and nonzero difference of stresses h on the common boundary �c. Then, in the
general case of given smooth elliptic matrix a(x, t), we apply a fixed point technique to the
perturbed linear system (6.4)–(6.6) where

f i = −∂j

(
(δjk − a

j

l a
k
l )∂kv

i
)

+ ∂k

(
(δik − ak

i )q
)
, (6.1)

g = (δjk − ak
j )∂kv

j , (6.2)

hi = (δjk − a
j

l a
k
l )∂kv

iNj + (δik − ak
i )qNk (6.3)

for i = 1, 2, 3.

Lemma 6.1. Let α � 0, β > 0 and γ > 0. Consider the linear coupled Stokes-wave system

vt − �v + ∇q = f in �f × (0, T ) (6.4)

∇ · v = g in �f × (0, T ) (6.5)

wtt − �w + αwt + βw = 0 in �e × (0, T ) (6.6)

with the boundary conditions

∇w · N = γ −1(v − wt) on �c × (0, T ) (6.7)

v = 0 on �f × (0, T ) (6.8)

∇v · N − qN = ∇w · N + h on �c × (0, T ). (6.9)

Assume that (v0, w0, w1) ∈ (V ∩H 4(�f ))×H 3(�e)×H 2(�e) is subject to the compatibility
conditions

w1 = v0 − γ∇w0 · N on �c (6.10)
∂w0

∂N
· τ = ∂v0

∂N
· τ − h(0) · τ on �c (6.11)

v0 = 0 on �f , (6.12)

with

wtt (0) = vt (0) − γ∇w1 · N on �c (6.13)
∂w1

∂N
· τ = ∂vt (0)

∂N
· τ − ht (0) · τ on �c (6.14)

vt (0) = 0 on �f , (6.15)

and

wttt (0) = vtt (0) − γ∇wtt (0) · N on �c (6.16)
∂wtt (0)

∂N
· τ = ∂vtt (0)

∂N
· τ − htt (0) · τ on �c (6.17)

vtt (0) = 0 on �f , (6.18)
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and f ∈ L∞([0, T ]; H 1(�f )), ft ∈ L∞([0, T ]; L2(�f )), ftt ∈ L2([0, T ]; H−1(�f )),
g ∈ C([0, T ]; H 2(�f )), gt ∈ L∞([0, T ]; H 1(�f )), gtt ∈ L2([0, T ]; L2(�f )) ∩
L∞([0, T ]; H−1(�f )), h ∈ L∞([0, T ]; H 3/2(�c)), ht ∈ L∞([0, T ]; H 1/2(�c)), htt ∈
L2([0, T ]; H−1/2(�c)) for some time T > 0 with g(0) = 0. Then there exists a unique
solution (v, w, q) satisfying

v ∈ L∞([0, T ]; H 3(�f )), vt ∈ L∞([0, T ]; H 2(�f )),

vtt ∈ L∞([0, T ]; L2(�f )), ∇vtt ∈ L2([0, T ]; L2(�f ))

∂
j
t w ∈ C([0, T ]; H 3−j (�e)), j = 0, 1, 2, 3

q ∈ L∞([0, T ]; H 2(�f )), qt ∈ L∞([0, T ]; H 1(�f )).

Note that the pressure q0 solves the elliptic problem

�q0 = −∂iv
k
0∂kv

i
0 + divf (0) in �f

∇q0 · N = �v0 · N + f (0) · N on �f

q0 = ∂jv
i
0NjNi − ∂jw

i
0NjNi − hi(0)Ni on �c.

Proof of lemma 6.1. We change variables u = v − z, where z = z1 + z2 + z3. Let
E: Hs(�f ) → Hs(R3) be the extension operator which is continuous for s = −1, 0, 1, 2
and satisfies Eg = g in �f . We define the variable z1 on the whole space R

3 as the unique
solution to the stationary Stokes problem with nonzero divergence

− �z1 + ∇q1 = 0 in R
3 × (0, T ) (6.19)

∇ · z1 = Eg in R
3 × (0, T ). (6.20)

The existence and uniqueness of the solution (z1, q1) to (6.19) and (6.20) is classical. Also,
the estimate

‖z1‖L∞([0,T ];H 3(�f )) + ‖q1‖L∞([0,T ];H 2(�f )) � C‖Eg‖L∞([0,T ];H 2(R3)) (6.21)

is valid for Eg ∈ L∞([0, T ]; H 2(R3)). Differentiating the system (6.19) and (6.20) in time,
we have

‖(z1)t‖L∞([0,T ];H 2(�f )) + ‖(q1)t‖L∞([0,T ];H 1(�f )) � C‖Egt‖L∞([0,T ];H 1(R3)). (6.22)

Also, by differentiating twice in time,

‖(z1)tt‖L2([0,T ];H 1(�f )) + ‖(q1)tt‖L2([0,T ];L2(�f )) � C‖Egtt‖L2([0,T ];L2(R3)) (6.23)

and

‖(z1)tt‖L∞([0,T ];L2(�f )) � C‖Egtt‖L∞([0,T ];H−1(R3)). (6.24)

Using the continuity of E, we have

‖Eg‖H 2(R3) � C‖g‖H 2(�f ), ‖Egt‖H 1(R3) � C‖gt‖H 1(�f ),

‖Egtt‖L2(R3) � C‖gtt‖L2(�f ), ‖Egtt‖H−1(R3) � C‖gtt‖H−1(�f ).

Thus we conclude that z1 ∈ L∞([0, T ]; H 3(�f )), (z1)t ∈ L∞([0, T ]; H 2(�f )), (z1)tt ∈
L2([0, T ]; H 1(�f )) ∩ L∞([0, T ]; L2(�f )). In particular, the normal trace of (z1)tt is well
defined and

(z1)tt · N ∈ L2([0, T ]; H 1/2(�f ∪ �c)). (6.25)

We define z2 as the solution of the Stokes problem with Dirichlet boundary data

− �z2 + ∇q2 = 0 in �f × (0, T ) (6.26)

∇ · z2 = 0 in �f × (0, T ) (6.27)

z2 = −z1 + λψ on �c × (0, T ), (6.28)

z2 = −z1 on �f × (0, T ), (6.29)
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where ψ is a smooth compactly supported function on �c such that ψ � 0 with
∫
�c

ψ ·N dσ = 1
and λ(t) = ∫

�c
z1(·, t) · N dσ − ∫

�f
z1(·, t) · N dσ for t ∈ (0, T ). Observe that z1 + z2 solves

the problem

− �(z1 + z2) + ∇(q1 + q2) = 0 in �f × (0, T ) (6.30)

∇ · (z1 + z2) = g in �f × (0, T ) (6.31)

z1 + z2 = λψ on �c × (0, T ), (6.32)

z1 + z2 = 0 on �f × (0, T ), (6.33)

with the smooth boundary data λψ on �c × (0, T ). The variable z3 is defined as the solution
of the Stokes system with zero divergence

(z3)t − �z3 + ∇q3 = −(z1)t − (z2)t in �f × (0, T ) (6.34)

∇ · z3 = 0 in �f × (0, T ) (6.35)

z3 = 0 on �c ∪ �f × (0, T ) (6.36)

with the initial data z3(·, 0) = 0.
The existence and uniqueness of the solution to (6.30)–(6.33) is well-known

(see [Te, theorem I.2.4]). Thus, we may conclude z1 +z2 ∈ L∞([0, T ]; H 3(�f )), (z1 +z2)t ∈
L∞([0, T ]; H 2(�f )), (z1 + z2)tt ∈ L2([0, T ]; H 1(�f )).

Next, denote by A = −P� the Stokes operator, where P is the Leray projection on the
space of divergence-free functions. Then, we may rewrite the system (6.34) and (6.35) for z3

in the equivalent form

(z3)t + Az3 = −P((z1)t + (z2)t ). (6.37)

Note that

etA: D(Aθ) → L2((0, T ); D(Aθ+1/2)) ∩ C([0, T ], D(Aθ))

for θ ∈ [0, 1]. The solution of (6.37) is given by

z3(t) = −
∫ t

0
e(s−t)AP ((z1)t (s) + (z2)t (s)) ds + e−tAz3(0) (6.38)

= −
∫ t

0
e(s−t)AP ((z1)t (s) + (z2)t (s)) ds, (6.39)

as z3(0) = 0. Similarly, by differentiating (6.34) in time and using that the Stokes operator
commutes with time derivatives, we obtain

(z3)t (t) = −
∫ t

0
e(s−t)AP ((z1)tt (s) + (z2)tt (s)) ds + e−tA(z3)t (0) (6.40)

and

(z3)tt (t) = −
∫ t

0
e(s−t)AP ((z1)ttt (s) + (z2)ttt (s)) ds + e−tA(z3)tt (0). (6.41)

We note that (z3)t (0) ∈ D(A). Indeed, from (6.34) and z3(0) = 0 we obtain
(z3)t (0) + ∇q3(0) = −(z1 + z2)t (0) ∈ H 2(�f ) supplemented by ∇ · (z3)t (0) = 0 in �f and
(z3)t (0) = 0 on �f ∪ �c. Now, we observe that q3(0) solves �q3(0) = −∇ · (z1 + z2)t (0) ∈
H 1(�f ) with Neumann data of ∇q3(0) ·N = −(z1 +z2)t (0) ·N ∈ H 3/2(�f ∪�c). By standard
elliptic regularity, we also have q3(0) ∈ H 3(�f ). Thus, we conclude (z3)t (0) ∈ D(A).

By the maximal regularity of the Stokes semigroup, we have that the singular integral on the
right side of (6.40) is a mapping from the space L2([0, T ]; D(A1/2)) to L2([0, T ]; D(A3/2))∩
C([0, T ]; D(A)). Thus, by the embeddings of D(A3/2) in H 3 and D(A) in H 2, it
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follows that (z3)t ∈ L2([0, T ]; H 3(�f )) ∩ C([0, T ]; H 2(�f )). In particular, we have
z3 ∈ L∞([0, T ]; H 3(�f )) since z3 ∈ H 1([0, T ]; H 3(�f )). Now, integrating (6.41) by parts
in time, we obtain

−
∫ t

0
e(s−t)AP ((z1)ttt (s) + (z2)ttt ) ds (6.42)

= −
∫ t

0
Ae(s−t)AP ((z1)tt (s) + (z2)tt (s)) ds − P((z1)tt (t) + (z2)tt (t))

+e−tAP ((z1)tt (0) + (z2)tt (0)),

whence

(z3)tt (t) = −
∫ t

0
Ae(s−t)AP ((z1)tt (s) + (z2)tt (s)) ds − P((z1)tt (t) + (z2)tt (t)) + e−tA(ztt (0))

(6.43)

and, by the maximal regularity of the Stokes semigroup, (z3)tt ∈ L2([0, T ]; H 1(�f )).
Here we utilized ztt (0) ∈ H . We note that from (6.40) it follows (z3)tt (0) + A(z3)t (0) =

−(z1 + z2)tt (0). Since we already have that (z3)t (0) ∈ D(A), we may conclude (z3)tt (0) +
(z1 + z2)tt (0) ∈ H which is equivalent to ztt (0) ∈ H .

Observe that (z, q̄) satisfies the Stokes system

zt − �z + ∇q̄ = 0 in �f × (0, T ) (6.44)

∇ · z = g in �f × (0, T ) (6.45)

z = λψ on �c × (0, T ) (6.46)

z = 0 on �f × (0, T ) (6.47)

with z(·, 0) = 0, and we have

z ∈ L∞([0, T ]; H 3(�f )), zt ∈ L∞([0, T ]; H 2(�f )), ztt ∈ L2([0, T ]; H 1(�f )),

(6.48)

since z = z1 + z2 + z3 and q̄ = q1 + q2 + q3.
In terms of the new variable u we obtain the divergence-free linear Stokes-wave system

ut − �u + ∇q = f̃ in �f × (0, T ) (6.49)

∇ · u = 0 in �f × (0, T ) (6.50)

wtt − �w + αwt + βw = 0 in �e × (0, T ) (6.51)

with boundary conditions

∇w · N = γ −1(u + z − wt) on �c × (0, T ) (6.52)

u = 0 on �f × (0, T ) (6.53)

∇u · N − qN = ∇w · N + h̃ on �c × (0, T ), (6.54)

where f̃ = f + ∇q̄ and h̃ = h − ∇z · N .
Now, we employ Galerkin’s method to a suitable variational form. Namely, we assume

that φs = φs(x) and ψs = ψs(x) are smooth functions such that {φs}∞s=1 is an orthogonal basis
of V and {ψ}∞s=1 is an orthogonal basis of H 1(�e), respectively. For any n = 1, 2, . . ., we
define the approximate solutions

un(t) =
n∑

s=1

gsn(t)φs (6.55)

490



Nonlinearity 27 (2014) 467 M Ignatova et al

and

wn(t) =
n∑

s=1

dsn(t)ψs, (6.56)

where the coefficients gsn(t) and dsn(t) for s = 1, . . . , n and t ∈ [0, T ] can be determined
uniquely (by the standard ODE theory) such that

(u′
n(t), φs) + (∇un(t), ∇φs) + γ −1(un(t) − w′

n(t), φs)�c

= (f̃n(t), φs) − (h̃n(t), φs)�c
− γ −1(zn(t), φs)�c

(6.57)

and

(w′′
n(t), ψs) + (∇wn(t), ∇ψs) + α(w′

n(t), ψs) + β(wn(t), ψs) − γ −1(un(t) − w′
n(t), ψs)�c

= γ −1(zn(t), ψs)�c
(6.58)

for t ∈ (0, T ), and gsn(0) = (u0, φs), dsn(0) = (w0, ψs), and d ′
sn(0) = (w1, ψs) for all

s = 1, . . . , n.
Multiply equation (6.57) by gsn(t) and sum for s = 1, . . . , n. Similarly, multiply

equation (6.58) by d ′
sn(t) and sum for s = 1, . . . , n. Adding the resulting equations and

integrating in time gives the first level energy estimate

1

2

(‖un(t)‖2
L2 + β‖wn(t)‖2

L2 + ‖w′
n(t)‖2

L2 + ‖∇wn(t)‖2
L2

)
+

∫ t

0

(
‖∇un‖2

L2 + α‖w′
n‖2

L2 + γ −1‖un − w′
n‖2

L2(�c)

)
ds

�
∫ t

0
(f̃n(s), un(s)) ds −

∫ t

0
(h̃n(s), un(s))�c

ds − γ −1
∫ t

0
(zn(s), un(s) − w′

n(s))�c
ds + E(0).

(6.59)

Thus, we obtain that the sequence {un} remains in a bounded set of L∞(0, T ; H)∩L2(0, T ; V ),
the sequence {wn} remains in a bounded set of L∞(0, T ; H 1(�e)), and the sequence {w′

n}
remains in a bounded set of L∞(0, T ; L2(�e)) ∩ L2(0, T ; L2(�e)). In particular, (6.59)
implies an upper bound on

∫ t

0 ‖w′
n‖2

L2(�c)
ds. Passing to the limit in the variational form (6.57),

(6.58), we may conclude

(ut (t), φ) + (∇u(t), ∇φ) + γ −1(u(t) − wt(t), φ)�c

= (f̃ (t), φ) − (h̃(t), φ)�c
− γ −1(z(t), φ)�c

(6.60)

(wtt (t), ψ) + (∇w(t), ∇ψ) + α(wt(t), ψ) + β(w(t), ψ) − γ −1(u(t) − wt(t), ψ)�c

= γ −1(z(t), ψ)�c
(6.61)

for all φ ∈ V and ψ ∈ H 1(�e).
Next, we obtain the regularity on the time derivatives ut (0) and wtt (0). We integrate by

parts in (6.60) and (6.61) and take the limit as t → 0+ to obtain

(ut (0), φ) − (�u0, φ) − (∇u0 · N, φ)�c
+ γ −1(u0 − w1, φ)�c

= (f̃ (0), φ) − (h̃(0), φ)�c

(6.62)

(wtt (0), ψ)−(�w0, ψ)+(∇w0 · N, ψ)�c
+ α(w1, ψ) + β(w0, ψ) − γ −1(u0 − w1, ψ)�c

= 0.

(6.63)

Using the compatibility conditions (6.10) and (6.11), all the terms on the common interface
�c vanish. Indeed, by (6.10) and (6.11), we have (∇w0 · N, φ)�c

= γ −1(u0 − w1, φ)�c
and

(∇w0 · N − ∇u0 · N + h̃(0), φ)�c
= 0 for all φ ∈ V , from where (∇u0 · N, φ)�c

= (γ −1(u0 −
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w1) + h̃(0), φ)�c
. Here we utilized that g(0) = 0, so that z0 = 0, u0 = v0, h̃(0) = h(0) and

f̃ (0) = f (0). Similarly, by (6.10), we have (∇w0 · N, ψ)�c
= γ −1(u0 − w1, ψ)�c

for all
ψ ∈ H 1(�e). From (6.62) and (6.63), we deduce

(ut (0), φ) = (�u0, φ) + (f̃ (0), φ)

(wtt (0), ψ) = (�w0, ψ) − α(w1, ψ) − β(w0, ψ)

for all φ ∈ V and ψ ∈ H 1(�e). By density of V in H , this leads to

‖ut (0)‖L2(�f ) � C‖u0‖H 2(�f ) + C‖f̃ (0)‖L2(�f )

‖wtt (0)‖L2(�e) � C‖w0‖H 2(�e) + C‖w1‖L2(�e).

Therefore, we conclude ut (0) ∈ H and wtt (0) ∈ L2(�e).
Our next step is to reconstruct the system (6.49)–(6.51). Taking test functions φ ∈ V and

ψ ∈ H 1(�e) vanishing on the common boundary �c, we obtain

(ut , φ) − (�u, φ) = (f̃ , φ) (6.64)

(wtt , ψ) − (�w, ψ) + α(wt , ψ) + β(w, ψ) = 0. (6.65)

By (6.64), we obtain

ut = �u + f̃ in H⊥(�f ), (6.66)

where we denoted H⊥(�f ) = {u ∈ L2(�f ) : u = ∇q, q ∈ H 1(�f ), q|�c
= const}. This

leads to

ut = �u − ∇q + f̃ (6.67)

for some q ∈ H 1(�f ). From (6.65), we have

wtt = �w − αwt − βw. (6.68)

Now, in order to recover the boundary conditions, we integrate by parts in (6.60) and use
relation (6.67) to obtain

(−∇u · N + qN + γ −1(u + z − wt) + h̃, g)�c
= 0 (6.69)

for all g = φ|�c
with φ ∈ V . Similarly, we obtain

(∇w · N − γ −1(u + z − wt), h)�c
= 0 (6.70)

for all h = ψ|�c
with ψ ∈ H 1(�e). Using the last two equalities we can reconstruct the

boundary conditions

∇w · N = γ −1(u + z − wt) (6.71)

∇u · N − qN = ∇w · N + h̃ (6.72)

on �c × (0, T ).
Next, we show that the limit solutions (u, w, q) belong to the functional spaces stated in

lemma 6.1. Indeed, from the first level energy estimate (6.59), we have

u ∈ L∞([0, T ]; L2(�f )) ∩ L2([0, T ]; H 1(�f )),

w ∈ L∞([0, T ]; H 1(�e)),

wt ∈ L∞([0, T ]; L2(�e)).

Using the same arguments on the time differentiated linear systems together with the
compatibility conditions (6.13)–(6.15) and (6.16)–(6.18), we obtain the higher level energy
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estimates for the approximate solutions un(t) and wn(t) in line with (4.38) and (4.53). Thus,
we may conclude

ut ∈ L∞([0, T ]; L2(�f )) ∩ L2([0, T ]; H 1(�f )),

wt ∈ L∞([0, T ]; H 1(�e)),

wtt ∈ L∞([0, T ]; L2(�e))

and

utt ∈ L∞([0, T ]; L2(�f )) ∩ L2([0, T ]; H 1(�f )),

wtt ∈ L∞([0, T ]; H 1(�e)),

wttt ∈ L∞([0, T ]; L2(�e)).

We also use the pointwise Stokes estimates

‖u‖Hs+2(�f ) + ‖q‖Hs+1(�f ) � C‖ut‖Hs(�f ) + C‖f̃ ‖Hs(�f ) + C

∥∥∥∥ ∂w

∂N

∥∥∥∥
Hs+1/2(�c)

+ C‖h̃‖Hs+1/2(�c)

(6.73)

for s = 0, 1 and

‖ut‖H 2(�f ) + ‖qt‖H 1(�f ) � C‖utt‖L2(�f ) + C‖f̃t‖L2(�f ) + C

∥∥∥∥∂wt

∂N

∥∥∥∥
H 1/2(�c)

+ C‖h̃t‖H 1/2(�c),

(6.74)

which are obtained as in lemma 3.2. Observe that f̃ ∈ L∞([0, T ]; H 1(�f )), h̃ ∈
L∞([0, T ]; H 3/2(�c)), f̃t ∈ L∞([0, T ]; L2(�f )), h̃t ∈ L∞([0, T ]; H 1/2(�c)), which follows
by the assumptions on f and h and the regularity of the Stokes problem (6.44)–(6.46) for the
variable z. Thus, we obtain

u ∈ L∞([0, T ]; H 3(�f )), ut ∈ L∞([0, T ]; H 2(�f ))

q ∈ L∞([0, T ]; H 2(�f )), qt ∈ L∞([0, T ]; H 1(�f )).

Finally, the elliptic estimates for the wave equation are given by (3.11) and (3.12), leading to

w ∈ L∞([0, T ]; H 3(�e)), wt ∈ L∞([0, T ]; H 2(�e)).

Therefore, the limit solution (u, w, q) is regular and lies in the space given in the statement of
lemma 6.1.

We would like to point out that, by the construction of the solution (v, w, q), the fluid
velocity v = u + z belongs to the functional spaces

v ∈ L∞([0, T ]; H 3(�f )), vt ∈ L∞([0, T ]; H 2(�f )), ∇vtt ∈ L2([0, T ]; L2(�f )).

In addition, we obtain vtt ∈ L∞([0, T ]; L2(�f )) from the third level a priori energy estimate
(4.53). Therefore, the proof of the lemma is established. �

Now, we consider the case of given time-dependent matrix a(x, t) with smooth coefficients
ak

i (x, t) ∈ C∞(�f × [0, T ]). We assume that a(x, t) is a small perturbation of the identity
matrix satisfying

‖δjk − ak
j ‖2

H 2 � ε, ‖∂t (δjk − ak
j )‖2

H 2 � ε, ‖∂tt (δjk − ak
j )‖2

L3 � ε,

‖∂ttt (δjk − ak
j )‖2

L2 � ε (6.75)

and

‖δjk − a
j

l a
k
l ‖2

H 2 � ε, ‖∂t (δjk − a
j

l a
k
l )‖2

H 2 � ε, ‖∂tt (δjk − a
j

l a
k
l )‖2

L3 � ε,

‖∂ttt (δjk − a
j

l a
k
l )‖2

L2 � ε
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for all t ∈ [0, T ] with T sufficiently small. In particular, the ellipticity condition a
j

l a
k
l ξ

i
j ξ

i
k �

(1/C)|ξ |2 holds for ξ ∈ R
3 × R

3 and t ∈ [0, T ].
We use a fixed point argument for the perturbed system

v
(n+1)
t − �v(n+1) + ∇q(n+1) = f (n) in �f × (0, T ) (6.76)

∇ · v(n+1) = g(n) in �f × (0, T ) (6.77)

w
(n+1)
tt − �w(n+1) + αw

(n+1)
t + βw(n+1) = 0 in �e × (0, T ) (6.78)

with the boundary conditions

∂w(n+1)

∂N
= γ −1(v(n+1) − w

(n+1)
t ) on �c × (0, T ) (6.79)

v(n+1) = 0 on �f × (0, T ) (6.80)

∂v(n+1)

∂N
− q(n+1) · N = ∂w(n+1)

∂N
+ h(n) on �c × (0, T ), (6.81)

where

f i(n) = −∂j

(
(δjk − a

j

l a
k
l )∂kv

i(n)
)

+ ∂k

(
(δik − ak

i )q
(n)

)
, (6.82)

g(n) = (δjk − ak
j )∂kv

j (n), (6.83)

hi(n) = (δjk − a
j

l a
k
l )∂kv

i(n)Nj + (δik − ak
i )q

(n)Nk (6.84)

for i = 1, 2, 3. As in the proof of lemma 6.1, we change variables u(n+1) = v(n+1) − z(n+1),
where (z(n+1), q̄(n+1)) satisfies the Stokes system

z
(n+1)
t − �z(n+1) + ∇q̄(n+1) = 0 in �f × (0, T ) (6.85)

∇ · z(n+1) = g(n) in �f × (0, T ) (6.86)

z(n+1) = λ(n)ψ(n) on �c × (0, T ), (6.87)

z(n+1) = 0 on �f × (0, T ), (6.88)

with the initial data z(n+1)(·, 0) = 0, where z(n+1) = z
(n+1)
1 + z

(n+1)
2 + z

(n+1)
3 , λ(n) and ψ(n) are

defined as in the proof of lemma 6.1. Then u(n+1) satisfies the divergence-free Stokes-wave
system

u
(n+1)
t − �u(n+1) + ∇q(n+1) = f (n) + ∇q̄(n+1) in �f × (0, T ), i = 1, 2, 3 (6.89)

∇ · u(n+1) = 0 in �f × (0, T ) (6.90)

w
(n+1)
tt − �w(n+1) + αw

(n+1)
t + βw(n+1) = 0 in �e × (0, T ) (6.91)

with the boundary conditions

∂w(n+1)

∂N
= γ −1(u(n+1) + z(n+1) − w

(n+1)
t ) on �c × (0, T ) (6.92)

u(n+1) = 0 on �f × (0, T ) (6.93)

∂u(n+1)

∂N
− q(n+1) · N = ∂w(n+1)

∂N
+ h(n) + ∇z(n+1) · N on �c × (0, T ), (6.94)

where

f i(n) = −∂j

(
(δjk − a

j

l a
k
l )∂kv

i(n)
)

+ ∂k

(
(δik − ak

i )q
(n)

)
, (6.95)

hi(n) = (δjk − a
j

l a
k
l )∂kv

i(n)Nj + (δik − ak
i )q

(n)Nk (6.96)

for i = 1, 2, 3.
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Recall that the proof of lemma 6.1 gives the existence and uniqueness of z(n+1) satisfying
(6.85)–(6.88) with z(n+1)(0) = 0 and such that

z(n+1) ∈ L∞([0, T ]; H 3(�f )),

z
(n+1)
t ∈ L∞([0, T ]; H 2(�f )),

z
(n+1)
tt ∈ L2([0, T ]; H 1(�f )).

We conclude the construction of solutions by the following auxiliary assertion.

Lemma 6.2. Assume the initial data (u0, w0, w1) is small, that is

‖u0‖2
H 3(�f ), ‖ut (0)‖2

H 1(�f ), ‖utt (0)‖2
L2(�f ), ‖w0‖2

H 3(�e)
, ‖w1‖2

H 2(�e)
� ε, (6.97)

where ε > 0 is a small parameter. Then, the map

� : (u(n), w(n), q(n)) → (u(n+1), w(n+1), q(n+1))

is a contraction in the norms

u ∈ L∞([0, T ]; H 3(�f )), ut ∈ L∞([0, T ]; H 2(�f )), (6.98)

utt ∈ L∞([0, T ]; L2(�f )), ∇utt ∈ L2([0, T ]; L2(�f ))

∂
j
t w ∈ C([0, T ]; H 3−j (�e)), j = 0, 1, 2, 3

q ∈ L∞([0, T ]; H 2(�f )), qt ∈ L∞([0, T ]; H 1(�f ))

for time T > 0 which depends on the given Lagrangian matrix a(x, t).

Proof of lemma 6.2. We consider the three energy level estimates for the system (6.89)–(6.94).
For the first level energy E(n+1) = (1/2)(‖u(n+1)‖2

L2 +β‖w(n+1)‖2
L2 +‖∇w(n+1)‖2

L2 +‖w(n+1)
t ‖2

L2),
we have

E(n+1)(t) +
∫ t

0
(‖∇u(n+1)‖2

L2 + α‖w(n+1)
t ‖2

L2) ds

= E(n+1)(0) +
∫ t

0
(f (n)(s) + ∇q̄(n+1), u(n+1)(s)) ds

−
∫ t

0

(∇w(n+1) · N + h(n) + ∇z(n+1) · N, u(n+1)
)
�c

ds

+
∫ t

0

(∇w(n+1) · N, u(n+1) + z(n+1) − γ∇w(n+1) · N
)
�c

ds, (6.99)

using (6.92)–(6.94), which gives

E(n+1)(t) +
∫ t

0
D(n+1)(s) ds � E(n+1)(0) + C

∑
j

∫ t

0
‖(δjk − a

j

l a
k
l (s))∂kv

(n)(s)‖2
L2 ds

+C
∑
i,k

∫ t

0
‖(δik − ak

i (s))q
(n)‖2

L2 ds + C

∫ t

0
‖(δjk − ak

j )∂kv
j (n)‖2

L2 ds

+ε0

∫ t

0
‖∇u(n+1)(s)‖2

L2 ds, (6.100)

where we denoted by D(n+1) = ‖∇u(n+1)‖2
L2 +α‖w(n+1)

t ‖2
L2 +γ ‖∇w(n+1)·N‖2

L2(�c)
the dissipation

terms. Absorbing the last term on the right, we obtain

E(n+1)(t) +
∫ t

0
D(n+1)(s) ds � E(n+1)(0) + Cε

∫ t

0

(‖∇v(n)(s)‖2
L2 + ‖q(n)(s)‖2

L2

)
ds, (6.101)
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as ‖δjk − a
j

l a
k
l ‖2

H 2 � ε. Similarly, we obtain for the second and the third energy levels

E
(n+1)
1 (t) +

∫ t

0
D

(n+1)
1 (s) ds � E

(n+1)
1 (0) + C

∑
j

∫ t

0
‖∂t

(
(δjk − a

j

l a
k
l )∂kv

(n)(s)
)

‖2
L2 ds

+C
∑
i,k

∫ t

0
‖∂t

(
(δik − ak

i (s))q
(n)

) ‖2
L2 ds + C

∫ t

0
‖∂t

(
(δjk − ak

j )∂kv
j (n)

) ‖2
L2 ds

+ε0

∫ t

0
‖∇u

(n+1)
t (s)‖2

L2 ds (6.102)

and

E
(n+1)
2 (t) +

∫ t

0
D

(n+1)
2 (s) ds

� E
(n+1)
2 (0) +

∫ t

0

∫
�f

∂tt

(
(δjk − a

j

l (s)a
k
l (s))∂kv

i(n)
)

∂ju
(n+1)
tt (s) dx ds � E

(n+1)
2 (0)

−
∫ t

0

∫
�f

∂tt

(
(δik − ak

i )q
(n)

)
∂ku

i(n+1)
tt dx ds + C

∫ t

0
‖∂tt

(
(δjk − ak

j )∂kv
j (n)

) ‖2
L2 ds

+ ε0

∫ t

0
‖∇u

(n+1)
tt (s)‖2

L2 ds, (6.103)

respectively. We treat the pressure term on the right side as we did in the proof of lemma 4.11.
Namely, when the two time derivatives fall on q, we use the divergence-free condition to
write (δik − ak

i )∂ku
i(n+1)
tt = −2∂t (δik − ak

i )∂ku
i(n+1)
t − ∂tt (δik − ak

i )∂ku
i(n+1). From (6.102) and

(6.103), we have

E
(n+1)
1 (t) +

∫ t

0
D

(n+1)
1 (s) ds

� E
(n+1)
1 (0) + Cε

∫ t

0

(
‖∇v(n)‖2

L2 + ‖∇v
(n)
t ‖2

L2 + ‖q(n)‖2
L2 + ‖q(n)

t ‖2
L2

)
ds

(6.104)

and

E
(n+1)
2 (t) +

∫ t

0
D

(n+1)
2 (s) ds

� CE
(n+1)
2 (0) + Cε‖q(n)

t (t)‖2
L6 + ε0

(
‖∇u

(n+1)
t (t)‖2

L2 + ‖∇u(n+1)(t)‖2
L2

)
+Cε

∫ t

0

(
‖∇v(n)‖2

L6 + ‖∇v
(n)
t ‖2

L2 + ‖∇v
(n)
tt ‖2

L2 + ‖q(n)‖2
L6 + ‖q(n)

t ‖2
L6

)
ds

+ε0

∫ t

0
‖∇u(n+1)‖2

L3 ds + ε0

∫ t

0

(
‖∇u

(n+1)
t ‖2

L2 + ‖∇u
(n+1)
tt ‖2

L2

)
ds,

(6.105)

respectively. The last term on the right side of (6.105) can be absorbed in the dissipation terms.
We need the two pointwise estimates

‖∇u(n+1)(t)‖2
L2 � ‖∇u(n+1)(0)‖2

L2 + C

∫ t

0

(
D(n+1)(s) + D

(n+1)
1 (s)

)
ds (6.106)

and

‖∇u
(n+1)
t (t)‖2

L2 � ‖∇u
(n+1)
t (0)‖2

L2 + C

∫ t

0

(
D

(n+1)
1 (s) + D

(n+1)
2 (s)

)
ds, (6.107)
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which are obtained as in (5.3) and (5.5). Next, using the Stokes estimates (6.73) and (6.74),
we obtain

‖u(n+1)‖Hs+2(�f ) + ‖q(n+1)‖Hs+1(�f )

� C‖u(n+1)
t ‖Hs(�f ) + C‖f (n)‖Hs(�f ) + C

∥∥∥∥∂w(n+1)

∂N

∥∥∥∥
Hs+1/2(�c)

+C‖h(n)‖Hs+1/2(�c) + C‖g(n)‖Hs+1(�f ) (6.108)

for s = 0, 1 and

‖u(n+1)
t ‖H 2(�f ) + ‖q(n+1)

t ‖H 1(�f ) � C‖u(n+1)
tt ‖L2(�f ) + C‖f (n)

t ‖L2(�f )

+ C

∥∥∥∥∥∂w
(n+1)
t

∂N

∥∥∥∥∥
H 1/2(�c)

+ C‖h(n)
t ‖H 1/2(�c) + C‖g(n)

t ‖H 1(�f ). (6.109)

We have

‖f (n)‖Hs + ‖h(n)‖Hs+1/2(�c) + ‖g(n)‖Hs+1 � ε
(‖v(n)‖Hs+2 + ‖q(n)‖Hs+1

)
(6.110)

for s = 0, 1, as ‖δjk − ak
j ‖2

H 2 � ε and ‖δjk − a
j

l a
k
l ‖2

H 2 � ε, and

‖f (n)
t ‖L2 + ‖h(n)

t ‖H 1/2(�c) + ‖g(n)
t ‖H 1 � ε

(
‖v(n)

t ‖H 2 + ‖q(n)
t ‖H 1 + ‖v(n)‖H 2 + ‖q(n)‖H 1

)
,

(6.111)

since also ‖∂t (δjk − ak
j )‖2

H 2 � ε and ‖∂t (δjk − a
j

l a
k
l )‖2

H 2 � ε. Using the boundary condition
(6.92), we may write∥∥∥∥∂w(n+1)

∂N

∥∥∥∥
Hs+1/2(�c)

� C
(
‖u(n+1)‖Hs+1 + ‖z(n+1)‖Hs+1 + ‖w(n+1)

t ‖Hs+1

)
(6.112)

for s = 0, 1. Thus, we have

‖u(n+1)‖H 3(�f ) + ‖q(n+1)‖H 2(�f ) � C‖u(n+1)
t ‖H 1(�f )

+Cε
(‖v(n)‖H 3 + ‖q(n)‖H 2

)
+ C

(
‖u(n+1)‖H 2 + ‖w(n+1)

t ‖H 2

)
, (6.113)

as well as

‖u(n+1)‖H 2(�f ) + ‖q(n+1)‖H 1(�f ) � C‖u(n+1)
t ‖L2(�f )

+Cε
(‖v(n)‖H 2 + ‖q(n)‖H 1

)
+ C

(
‖u(n+1)

t ‖H 1 + ‖w(n+1)
tt ‖H 1

)
. (6.114)

Similarly, we bound the right side of the estimate (6.109) for the time derivatives ut and qt to
obtain

‖u(n+1)
t ‖H 2(�f ) + ‖q(n+1)

t ‖H 1(�f ) � C‖u(n+1)
tt ‖L2(�f )

+Cε
(
‖v(n)

t ‖H 2 + ‖q(n)
t ‖H 1 + ‖v(n)‖H 2 + ‖q(n)‖H 1

)
+ C

∥∥∥w
(n+1)
t

∥∥∥
H 2

. (6.115)

Here we also employ the elliptic estimates (3.11) and (3.12) for the wave equation:

‖w(n+1)‖H 3 � C‖w(n+1)
tt ‖H 1 + C‖w(n+1)

t ‖H 1 + C‖w(n+1)‖H 1 + C
(
‖v(n+1)‖H 2 + ‖w(n+1)

t ‖H 2

)
(6.116)

and

‖w(n+1)
t ‖H 2 � C‖w(n+1)

tt t ‖L2 + C‖w(n+1)
tt ‖L2 + C‖w(n+1)

t ‖L2 + C
(
‖v(n+1)

t ‖H 1 + ‖w(n+1)
tt ‖H 1

)
.

(6.117)

From the above estimates one can see that the map

� : (u(n), w(n), q(n)) → (u(n+1), w(n+1), q(n+1))

is a contraction in the norms (6.98), which concludes the proof of the lemma. �
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[BGLT2] Barbu V, Grujić Z, Lasiecka I and Tuffaha A 2008 Smoothness of weak solutions to a nonlinear fluid–
structure interaction model Indiana Univ. Math. J. 57 1173–207

[BL] Bucci F and Lasiecka I 2010 Optimal boundary control with critical penalization for a PDE model of
fluid–solid interactions Calc. Var. Partial Diff. Eqns 37 217–35

[CS1] Coutand D and Shkoller S 2005 Motion of an elastic solid inside an incompressible viscous fluid Arch.
Ration. Mech. Anal. 176 25–102

[CS2] Coutand D and Shkoller S 2006 The interaction between quasilinear elastodynamics and the Navier–
Stokes equations Arch. Ration. Mech. Anal. 179 303–52

[DGHL] Du Q, Gunzburger M D, Hou L S and Lee J 2003 Analysis of a linear fluid–structure interaction problem
Discrete Contin. Dyn. Syst. 9 633–50

[GS] Grubb G and Solonnikov V A 1991 Boundary value problems for the nonstationary Navier–Stokes
equations treated by pseudo-differential methods Math. Scand. 69 217–90

[GGCC] Guidoboni G, Glowinski R, Cavallini N and Canic S 2009 Stable loosely-coupled-type algorithm for
fluid–structure interaction in blood flow J. Comput. Phys. 228 6916–37

[GGCCL] Guidoboni G, Glowinski R, Cavallini N, Canic S and Lapin S 2009 A kinematically coupled time-splitting
scheme for fluid–structure interaction in blood flow Appl. Math. Lett. 22 684–8

[HM] Hughes T J R and Marsden J E 1978 Classical elastodynamics as a linear symmetric hyperbolic system
J. Elast. 8 97–110

[IKLT] Ignatova M, Kukavica I, Lasiecka I and Tuffaha A 2012 On well-posedness for a free boundary fluid–
structure model J. Math. Phys. 53 115624-13

[KT1] Kukavica I and Tuffaha A 2012 Solutions to a fluid–structure interaction free boundary problem Discrete
Contin. Dyn. Syst. 32 1355–89

[KT2] Kukavica I and Tuffaha A 2012 Regularity of solutions to a free boundary problem of fluid structure
interaction Indiana Univ. Math. J. 61 1817–59

[KT3] Kukavica I and Tuffaha A 2012 Well-posedness for the compressible Navier–Stokes–Lamé system with
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