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We address a fluid-structure interaction model describing the motion of an elastic
body immersed in an incompressible fluid. We establish a priori estimates for the local
existence of solutions for a class of initial data which also guarantees uniqueness.
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I. INTRODUCTION

In this paper, we derive a priori estimates needed for establishing the local in time well-posedness
for a fluid-structure model. The model consists of the Navier-Stokes equations

∂t u − �u + (u · ∇)u + ∇ p = 0, (1.1)

∇ · u = 0, (1.2)

and a wave equation

wt t − �w = 0 (1.3)

with natural velocity and stress matching conditions imposed on the common free moving boundary.
The existence of solutions was first established in Ref. 9 by Coutand and Shkoller with initial

fluid velocity u0 belonging to H5 and initial data for the wave equation (w0, w1) belonging to H3

× H2. However, due to the divergence-free condition, the uniqueness for the model required higher
regularity data, and it was proved for (u0, w0, w1) ∈ H 7 × H 5 × H 4. In Ref. 17, the second and
the fourth author of the present paper established a priori estimates for the existence with the data
(u0, w0, w1) in H3 × H5/2 + r × H3/2 + r, where r > 0. The uniqueness was obtained only under
the additional condition ∇vt t ∈ L2

x,t for the Lagrangian velocity v.
The main result of the present paper provides a priori estimates for the local existence of

solutions with initial data (u0, w0, w1) in H4 × H3 × H2 which satisfy ∇vt t ∈ L2
x,t . This, together

with Ref. 17, leads to a priori estimates needed for the well-posedness of the system in the space H4

× H3 × H2. The main difficulty in the proof is the low regularity for w0 and w1 which results in a
substantial loss of regularity for the Lagrangian velocity—from H4 initially to H3 for positive time.
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We note that the presented a priori estimates do not require the optimal (hidden) trace regularity of
solutions and thus the proof is much simpler than the ones from Refs. 16 and 17.

In our treatment of the local existence, we benefit from the coupling of the Navier-Stokes
equation with a hyperbolic system even in the case where the time evolution of the domains is
neglected. It is interesting to note that global solvability was proven in the case of static interface
without any damping added to the wave motion (c.f. Refs. 6 and 7). However, in contrast with
the present work, there are no decay rates valid for this latter model. This is due to the fact that the
undamped wave motion gives rise, in a linear case, to spectrum that approaches asymptotically the
imaginary axis.2 Since the model accounting for the evolution of the domain leads to a quasilinear
system, global existence of solutions should not be expected in the absence of uniform decay rates
of the energy for linearized equations. We refer the reader to a large body of work that has developed
in the last decade on the interaction between parabolic and hyperbolic dynamics.1, 2, 6, 7, 11, 19–22, 26

Of independent interest are also, the free moving boundary problem involving the coupling of the
compressible Navier-Stokes with the linear elasticity system.4, 5, 18 For applications of fluid-structure
interaction systems c.f. Refs. 13 and 14. For more results on hidden regularity, c.f. Refs. 23–26 and
28, and c.f. Refs. 8, 27, and 29 for applications in control theory.

The paper is organized as follows. In Sec. II, we introduce the model posed in Lagrangian
coordinates and state the main result. Section III contains the main lemma for the Lagrangian
coefficients a, the elliptic regularity (Stokes and Laplace) statements and the a priori estimate
leading to the local in time well-posedness. The proof of Theorem 2.1 is presented in Sec. IV.

II. THE MAIN RESULTS

We consider the free boundary fluid-structure system which models the motion of an elastic
body moving and interacting with an incompressible viscous fluid (c.f. Refs. 3, 4, 9, 10, 16, and 17).
This parabolic-hyperbolic system couples the Navier-Stokes equation

∂t u − �u + (u · ∇)u + ∇ p = 0, (2.1)

∇ · u = 0, (2.2)

and a wave equation

wt t − �w = 0, (2.3)

posed in the Eulerian and the Lagrangian framework, respectively. The interaction is captured by
natural velocity and stress matching conditions on the free moving interface between the fluid and
the elastic body.

It is more convenient to consider the system formulated in the Lagrangian coordinates (cf.
Refs. 9 and 17). With η: �f → �f(t) the position function, the incompressible Navier-Stokes
equation may be written as

vi
t − ∂ j (a

j
l ak

l ∂kv
i ) + ∂k(ak

i q) = 0 in � f × (0, T ), i = 1, 2, 3, (2.4)

ak
i ∂kv

i = 0 in � f × (0, T ), (2.5)

where v(x, t) and q(x, t) denote the Lagrangian velocity vector field and the pressure of the fluid
over the initial domain �f, i.e., v(x, t) = ηt (x, t) = u(η(x, t), t) and q(x, t) = p(η(x, t), t) in �f. The
matrix a with ij entry ai

j is defined by a(x, t) = (∇η(x, t))− 1 in �f, i.e., ∂mηi am
j = δi j for all i, j = 1,

2, 3. The elastic equation for the displacement function w(x, t) = η(x, t) − x is formulated in the
Lagrangian framework as

wi
t t − �wi = 0 in �e × (0, T ), i = 1, 2, 3 (2.6)

over the initial domain �e. We thus seek a solution (v,w, q, a, η) to the system (2.4)–(2.6), where
the coefficients ai

j for i, j = 1, 2, 3 and η are determined from

at = −a : ∇v : a in � f × (0, T ), (2.7)

Downloaded 17 Sep 2013 to 171.67.216.22. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



115624-3 Ignatova et al. J. Math. Phys. 53, 115624 (2012)

ηt = v(x, t) in � f × (0, T ), (2.8)

with the initial conditions a(x, 0) = I and η(x, 0) = x in �f. On the interface �c between �f and �e,
we assume matching of velocities and stresses

vi = wi
t on �c × (0, T ), (2.9)

a j
l ak

l ∂kv
i N j − ak

i q Nk = ∂ jw
i N j on �c × (0, T ), (2.10)

while on the outside fluid boundary �f we assume the non-slip condition

vi = 0 on � f × (0, T ) (2.11)

for i = 1, 2, 3, where N = (N1, N2, N3) is the unit outward normal with respect to �e. We
supplement the system (2.4)–(2.6) with the initial conditions v(x, 0) = v0(x) and (w(x, 0), wt (x, 0))
= (0, w1(x)) on �f and �e, respectively. We also use the classical spaces H = {v ∈ L2(� f ) :
divv = 0, v · N |� f = 0} and V = {v ∈ H 1(� f ) : divv = 0, v|� f = 0}. Based on v0, we determine
the initial pressure by solving the problem

�q0 = −∂iv
k
0∂kv

i
0 in � f ,

∇q0 · N = �v0 · N on � f ,

− q0 = −∂ jv
i
0 N j Ni + ∂ jw

i N j Ni on �c. (2.12)

The following statement is our main result.

Theorem 2.1: Assume that v0 ∈ V ∩ H 4(� f ), w0 ∈ H 3(�e), and w1 ∈ H 2(�e) with the ap-
propriate compatibility conditions

w1 = v0, �w0 = �v0 − ∇q0 on �c, (2.13)

∂w0

∂ N
· τ = ∂v0

∂ N
· τ,

∂w1

∂ N
· τ = ∂

∂ N
[�v0 − ∇q0] · τ on �c, (2.14)

v0 = 0, �v0 − ∇q0 = 0 on �f . (2.15)

Assume that (v,w, q, a, η) is a smooth solution to the system (2.4)–(2.6) with the boundary conditions
(2.9)–(2.11). Then the norm

X (t) = ‖vt t (t)‖2
L2(� f ) + ‖wt t t (t)‖2

L2(�e) + ‖∇wt t (t)‖2
L2(�e) +

∫ t

0
‖∇vt t (s)‖2

L2(� f ) ds + 1 (2.16)

remains bounded for t ∈ [0, T], where the time T > 0 depends on the initial data. In particular, the
solution (v,w, q, a, η) satisfies

v ∈ L∞([0, T ]; H 3(� f )), (2.17)

vt ∈ L∞([0, T ]; H 2(� f )), (2.18)

∇vt t ∈ L2([0, T ]; L2(� f )), (2.19)

∂
j

t w ∈ C([0, T ]; H 3− j (�e)), j = 0, 1, 2, 3 (2.20)

with q ∈ L∞([0, T]; H2(�f)), qt ∈ L∞([0, T]; H1(�f)), a, at ∈ L∞([0, T]; H2(�f)), att ∈ L∞([0, T];
H1(�f)), attt ∈ L2([0, T]; L2(�f)), and η|� f ∈ C([0, T ]; H 3(� f )) and the corresponding norms and
1/T are bounded by a polynomial function of ‖v0‖H 4(� f )∩V .
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Remark 2.2: The result of Theorem 2.1 depends on the existence of sufficiently smooth solutions
in line with the topologies listed in (2.17)–(2.20). Existence of smooth local solutions with the initial
data in H5 × H3 × H2 has been shown in Ref. 9. Thus, our result shows that for the solutions
established in Ref. 9 there is no finite in time blow up of H4 × H3 × H2 norms. However, a full
resolution of the existence problem requires construction of local solutions respecting the finiteness
of X(t) for the initial data in H4 × H3 × H2. This construction can be carried out by taking
advantage of compatibility conditions assumed in (2.13)–(2.15). These conditions are apparent
when one solves coupled wave and fluid system after elimination of the pressure as in (2.12). This
method is inspired by Grubb and Solonnikov12 where solutions to Navier-Stokes equations with
Neumann type of boundary conditions are shown to be equivalent to solutions of pseudo-parabolic
problem with tangential boundary conditions and nonlocal pseudo-differential operators representing
the pressure. The details of this procedure will be carried out in a subsequent paper.

The proof of Theorem 2.1 is given in Sec. IV.

III. PRELIMINARY RESULTS

In this section, we give the formal a priori estimates on the time derivatives of the unknown
functions needed in the proof of Theorem 2.1. We begin with an auxiliary result providing bound on
the coefficients of the matrix a.

Lemma 3.1: Assume that ‖∇v‖L∞([0,T ];H 2(� f )) ≤ M . Let p ∈ [1, ∞] and i, j = 1, 2, 3. With
T ∈ [0, 1/CM], where C is a sufficiently large constant, the following statements hold:

(i) ‖∇η‖H 2(� f ) ≤ C for t ∈ [0, T];
(ii) ‖a‖H 2(� f ) ≤ C for t ∈ [0, T];
(iii) ‖at‖L p(� f ) ≤ C‖∇v‖L p(� f ) for t ∈ [0, T];
(iv) ‖∂i at‖L p(� f ) ≤ C‖∇v‖L p1 (� f )‖∂i a‖L p2 (� f ) + C‖∇∂iv‖L p(� f ) for i = 1, 2, 3 and t ∈ [0, T]

where 1 ≤ p, p1, p2 ≤ ∞ are such that 1/p = 1/p1 + 1/p2;
(v) ‖∂i j at‖L2(� f ) ≤ C‖∇v‖1/2

H 1(� f )‖∇v‖1/2
H 2(� f ) + C‖∇v‖H 2(� f ) for i, j = 1, 2, 3 and t ∈ [0, T];

(vi) ‖att‖L2(� f ) ≤ C‖∇v‖L2(� f )‖∇v‖L∞(� f ) + C‖∇vt‖L2(� f ) and ‖att‖L3(� f ) ≤ C‖v‖2
H 2(� f )

+ C‖∇vt‖L3(� f ) for t ∈ [0, T];
(vii) ‖attt‖L2(� f ) ≤ C‖∇v‖3

H 1(� f ) + C‖∇vt‖L2(� f )‖∇v‖L∞(� f ) + C‖∇vt t‖L2(� f ) for t ∈ [0, T];

(viii) for every ε ∈ (0, 1/2] and all t ≤ T* = min {ε/CM2, T}, we have

‖δ jk − a j
l ak

l ‖2
H 2(� f ) ≤ ε, j, k = 1, 2, 3 (3.1)

and

‖δ jk − a j
k ‖2

H 2(� f ) ≤ ε, j, k = 1, 2, 3. (3.2)

In particular, the form a j
l ak

l ξ i
jξ

i
k satisfies the ellipticity estimate

a j
l ak

l ξ i
jξ

i
k ≥ 1

C
|ξ |2, ξ ∈ Rn2

(3.3)

for all t ∈ [0, T*] and x ∈ �f, provided ε ≤ 1/C with C sufficiently large.

Proof of Lemma 3.1:

(i) By (2.8), we have ∇η(x, t) = I + ∫ t
0 ∇v(x, τ ) dτ for t ∈ [0, T]. Thus, the assertion follows

from ‖∇v‖L∞([0,T ];H 2(� f )) ≤ M .
(ii) We have

‖a(t)‖H 2(� f ) =
∥∥∥a(0) + ∫ t

0 at (τ ) dτ

∥∥∥
H 2(� f )

≤ C + ∫ t
0 ‖at (τ )‖H 2(� f ) dτ, (3.4)

≤ C +
∫ t

0
‖a(τ )‖2

H 2(� f )‖∇v(τ )‖H 2(� f ) dτ ≤ C + M
∫ t

0
‖a(τ )‖2

H 2(� f ) dτ, (3.5)
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for t ∈ [0, T], where we used (2.7). Applying the Gronwall lemma, we obtain ‖a(t)‖H 2(� f )

≤ C for t ≤ 1/CM, where C is a sufficiently large constant.
(iii) By the Sobolev inequality and (ii), we have ‖a(t)‖L∞(� f ) ≤ C‖a(t)‖H 2(� f ) ≤ C for

t ∈ [0, T]. Using (2.7), we get

‖at (t)‖L p(� f ) ≤ ‖a(t)‖2
L∞(� f )‖∇v(t)‖L p(� f ) (3.6)

for t ∈ [0, T], and (iii) is established.
(iv) We differentiate (2.7) to get

∂i at = −∂i a : ∇v : a − a : ∇∂iv : a − a : ∇v : ∂i a. (3.7)

The desired estimate then follows by using Hölder’s inequality with 1/p = 1/p1 + 1/p2 and
‖a(t)‖L∞(� f ) ≤ C for t ∈ [0, T].

(v) Differentiating (3.7), we obtain

∂i j at = −∂i j a : ∇v : a − ∂i a : ∇∂ jv : a − ∂i a : ∇v : ∂ j a − ∂ j a : ∇∂iv : a − a : ∇∂i jv : a,

− a : ∇∂iv : ∂ j a − ∂ j a : ∇v : ∂i a − a : ∇∂ jv : ∂i a − a : ∇v : ∂i j a, (3.8)

leading to

‖∂i j at‖L2(� f ) ≤ C‖∇v‖L∞(� f ) + C‖∇∂iv‖L3(� f ) + C‖∇∂ jv‖L3(� f ) + C‖∇∂i jv‖L2(� f )

(3.9)

for t ∈ [0, T], where we utilized Hölder’s inequality and the part (i) of this lemma.
By the interpolation inequalities ‖∇v‖L∞(� f ) ≤ C‖∇v‖1/2

H 1(� f )‖∇v‖1/2
H 2(� f ) and ‖∇∂iv‖L3(� f )

≤ C‖∇v‖1/2
H 1(� f )‖∇v‖1/2

H 2(� f ), we deduce the desired estimate.
(vi) Differentiating (2.7) in time gives att = 2a : ∇v : a : ∇v : a − a : ∇vt : a. The assertions

then follow from ‖a(t)‖L∞(� f ) ≤ C for t ∈ [0, T], since

‖att‖L2(� f ) ≤ C‖a‖3
L∞(� f )‖∇v‖L∞(� f )‖∇v‖L2(� f ) + C‖a‖2

L∞(� f )‖∇vt‖L2(� f ) (3.10)

and

‖att‖L3(� f ) ≤ C‖a‖3
L∞(� f )‖∇v‖2

L6(� f ) + C‖a‖2
L∞(� f )‖∇vt‖L3(� f ). (3.11)

(vii) Differentiating at = −a : ∇v : a twice in time, we obtain

attt = 6a :∇v :a :∇v :a :∇v :a+3a :∇v :a :∇vt :a+3a :∇vt :a :∇v :a−a :∇vt t :a, (3.12)

whence

‖attt‖L2(� f ) ≤ C‖∇v‖3
L6(� f ) + C‖∇vt‖L2(� f )‖∇v‖L∞(� f ) + C‖∇vt t‖L2(� f ) (3.13)

using ‖a(t)‖L∞(� f ) ≤ C for t ∈ [0, T].

(viii) The first inequality follows from δ jk − a j
l ak

l = − ∫ t
0 ∂t (a

j
l ak

l )(s) ds and the multiplicative

Sobolev inequalities, while the second one follows from δ jk − a j
k = − ∫ t

0 ∂t a
j
k (s) ds. �

Lemma 3.2: Assume that v and q are solutions to the system

vi
t − ∂ j (a

j
l ak

l ∂kv
i ) + ∂k(ak

i q) = 0 in � f , (3.14)

ak
i ∂kv

i = 0 in � f , (3.15)

v = 0 on � f , (3.16)

a j
l ak

l ∂kv
i N j − ak

i q Nk = ∂ jw
i N j on �c, (3.17)
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for given coefficients ai
j ∈ L∞(� f ) with i, j = 1, 2, 3 satisfying Lemma 3.1 with a sufficiently small

constant ε = 1/C. Then the estimate

‖v‖H s+2(� f ) + ‖q‖H s+1(� f ) ≤ C‖vt‖H s (� f ) + C

∥∥∥∥ ∂w

∂ N

∥∥∥∥
H s+1/2(�c)

(3.18)

holds for s = 0, 1 and for all t ∈ (0, T). Moreover, the time derivatives vt and qt satisfy

‖vt‖H 2(� f ) + ‖qt‖H 1(� f )

≤ C‖vt t‖L2(� f ) + C

∥∥∥∥∂wt

∂ N

∥∥∥∥
H 1/2(�c)

+ C‖v‖1/2
H 2(� f )‖v‖1/2

H 3(� f )

(‖v‖H 2(� f ) + ‖q‖H 1(� f )
)

(3.19)

for all t ∈ (0, T), where T ≤ 1/CM for a sufficiently large constant C.

Proof of Lemma 3.2: Let φ be a solution to the elliptic equation

�φ = −(δ jk − ak
j )∂kv

j in � f (3.20)

with the Dirichlet boundary condition φ = 0 on �c∪�f. Then the function u = v + ∇φ satisfies the
stationary Stokes problem

− �ui + ∂i q = −�∂iφ − ∂ j ((δ jk − a j
l ak

l )∂kv
i ) + ∂k((δik − ak

i )q) − vi
t in � f (3.21)

∂ j u
j = 0 in � f

u = ∇φ on � f

∂ j u
i N j − q Ni = ∂ jw

i N j + ∂i jφN j + (δ jk − a j
l ak

l )∂kv
i N j − (δik − ak

i )q Nk on �c.

Thus, we have (c.f. Ref. 29 and 32, for instance)

‖u‖H s+2(� f ) + ‖q‖H s+1(� f ) (3.22)

≤ C‖�∇φ‖H s (� f ) + C‖∂ j ((δ jk − a j
l ak

l )∂kv)‖H s (� f ) + C
∑

i

‖∂k((δik − ak
i )q)‖H s (� f )

+ C‖vt‖H s (� f ) + C

∥∥∥∥ ∂w

∂ N

∥∥∥∥
H s+1/2(�c)

+ C

∥∥∥∥∂(∇φ)

∂ N

∥∥∥∥
H s+1/2(�c)

+ C‖(δ jk−a j
l ak

l )∂kvN j‖H s+1/2(�c)+C
∑

i

‖(δik − ak
i )q Nk‖H s+1/2(�c)+C‖∇φ‖H s+3/2(� f ).

Using the trace theorem and ‖∇�φ‖H s (� f ) ≤ C‖(δ jk − ak
j )∂kv

j‖H s+1(� f ) for the sixth and the ninth
term on the right side, we obtain

‖v‖H s+2(� f ) + ‖q‖H s+1(� f ) (3.23)

≤ C‖(δ jk − ak
j )∂kv

j‖H s+1(� f ) + C
∑

j

‖(δ jk − a j
l ak

l )∂kv‖H s+1(� f )

+ C
∑
i,k

‖(δik − ak
i )q‖H s+1(� f ) + C‖vt‖H s (� f ) + C

∥∥∥∥ ∂w

∂ N

∥∥∥∥
H s+1/2(�c)

≤ Cε‖v‖H s+2(� f ) + Cε‖q‖H s+1(� f ) + C‖vt‖H s (� f ) + C

∥∥∥∥ ∂w

∂ N

∥∥∥∥
H s+1/2(�c)

,

where we also utilized the multiplicative Sobolev inequalities (namely, ‖uv‖H s ≤ ‖u‖H s ‖v‖H 2 for
0 ≤ s ≤ 2 and ‖uv‖H s ≤ ‖u‖H s ‖v‖H s for s ≥ 2) and the part (vi i i) of Lemma 3.1. The inequality
(3.18) now follows by choosing ε sufficiently small so that the first and the second term on the far
right side are absorbed by the terms on the left side.
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In order to prove the second part of the lemma, we differentiate the stationary Stokes problem
(3.21) in time. By a similar argument as above, we have

‖vt‖H 2(� f ) + ‖qt‖H 1(� f ) (3.24)

≤ C‖vt t‖L2(� f ) + C‖∂ j (∂t (a
j
l ak

l )∂kv)‖L2(� f ) + C
∑

i

‖∂k(∂t a
k
i q)‖L2(� f )

+ C

∥∥∥∥∂wt

∂ N

∥∥∥∥
H 1/2(�c)

+ C‖∂t a
k
i ∂kv

i‖H 1(� f ).

Using Lemma 3.1, we bound the terms on the right side of (3.24) involving the entries of a. By the
Poincaré inequality, we then obtain

‖∂ j (∂t (a
j
l ak

l )∂kv
i )‖L2(� f ) ≤ C

(‖at‖L6(� f )‖∇a‖L6(� f ) + ‖∇at‖L3(� f )‖a‖L∞(� f )
) ‖∇v‖L6 (3.25)

+ C‖at‖L∞(� f )‖a‖L∞(� f )‖v‖H 2(� f )

≤ C‖v‖1/2
H 2(� f )‖v‖1/2

H 3(� f )‖v‖H 2(� f )

and ∑
i

‖∂k(∂t a
k
i q)‖L2(� f ) ≤ C‖∇at‖L3(� f )‖q‖L6(� f ) + ‖at‖L∞(� f )‖∇q‖L2(� f ) (3.26)

≤ C‖v‖1/2
H 2(� f )‖v‖1/2

H 3(� f )‖q‖H 1(� f ),

since v = 0 on �f. Similarly, we may estimate ‖∂t ak
i ∂kv

i‖H 1 by the same right side as in (3.25), and
the proof of (3.19) is established. �

Now, let w be a solution to the wave equation (2.6) satisfying the velocity matching condition
(2.9) on the common boundary �c. Note that we have w(t) = w0 + ∫ t

0 v(s) ds on �c. Hence, we
obtain the elliptic estimate

‖w‖H 3(�e) ≤ C‖wt t‖H 1(�e) + C
∫ t

0
‖v(s)‖H 3(� f ) ds + C‖w0‖H 3(�e) (3.27)

for all t ∈ (0, T). Differentiating (2.6) in time, we also have by the ellipticity

‖wt‖H 2(�e) ≤ C‖wt t t‖L2(�e) + C‖v‖H 2(� f ) (3.28)

for all t ∈ (0, T).
From (3.18) with s = 1 and (3.27), we conclude that the Stokes type estimate

‖v‖H 3 + ‖q‖H 2 ≤ C‖vt‖H 1 + C‖wt t‖H 1 + C
∫ t

0
‖v‖H 3 ds + C‖w0‖H 3 (3.29)

holds for all t ∈ (0, T), where T ≤ 1/CM. Now, using the Gronwall inequality, we obtain

‖v‖H 3 + ‖q‖H 2 ≤ C‖vt‖H 1 + C‖wt t‖H 1 + C‖w0‖H 3

+ CeCt
∫ t

0

(
‖vt‖H 1 + ‖wt t‖H 1 + ‖w0‖H 3

)
ds. (3.30)

Analogous derivation shows that

‖v‖H 2 + ‖q‖H 1 ≤ C‖vt‖L2 + C‖wt t‖L2 + C‖w0‖H 2

+ CeCt
∫ t

0

(
‖vt‖L2 + ‖wt t‖L2 + ‖w0‖H 2

)
ds. (3.31)
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By (3.19), (3.28), and (3.31) with s = 0, we also get

‖vt‖H 2 + ‖qt‖H 1 (3.32)

≤ C‖vt t‖L2 + C‖wt‖H 2 + C‖v‖1/2
H 2 ‖v‖1/2

H 3

(‖v‖H 2 + ‖q‖H 1

)
≤ C‖vt t‖L2 + C‖wt t t‖L2 + C‖v‖H 2

+ C‖v‖1/2
H 3

(
‖vt‖L2 + ‖wt t‖L2 + ‖w0‖H 2

+ eCt
∫ t

0

(
‖vt‖L2 + ‖wt t‖L2 + ‖w0‖H 2

)
ds

)3/2

for all t ∈ (0, T), where T ≤ 1/CM.

Lemma 3.3: For ε0 ∈ (0, 1/C], we have

‖vt t (t)‖2
L2 + ‖wt t t (t)‖2

L2 + ‖∇wt t (t)‖2
L2 +

∫ t

0
‖∇vt t (s)‖2

L2 ds (3.33)

≤ C E(0)3 + ε0

∫ t

0
‖∇vt t‖2

L2 ds + Cε0

∫ t

0
‖qt‖2

H 1‖v‖3/2
H 1 ‖v‖1/2

H 3 ds

+ Cε0

∫ t

0

(‖v‖2
H 3 + ‖q‖2

H 2

) (
‖v‖5/2

H 1 ‖v‖3/2
H 3 + ‖vt‖2

H 1

)
ds + ε0‖qt (t)‖2

H 1 + ε0‖vt (t)‖2
H 2

+ ε0‖v(t)‖2
H 3 + Cε0

(
‖v(0)‖2

H 1 + t
∫ t

0
‖vt (s)‖2

H 1 ds

)3 (
‖v(0)‖H 2 + t

∫ t

0
‖vt (s)‖2

H 2 ds

)2

+ Cε0

(
‖vt (0)‖2

L2 + t
∫ t

0
‖vt t (s)‖2

L2 ds

)2 (
‖v(0)‖2

H 1 + t
∫ t

0
‖vt (s)‖2

H 1 ds

)3

+ C
∫ t

0
‖qt‖H 1

(
‖v‖2

H 2 + ‖vt‖1/2
H 1 ‖vt‖1/2

H 2

)
‖vt‖H 1 ds

+ C
∫ t

0
‖qt‖H 1

(
‖v‖3

H 2 + ‖vt‖H 1‖v‖1/4
H 1 ‖v‖3/4

H 3

)
‖v‖3/4

H 1 ‖v‖1/4
H 3 ds

for all t ∈ [0, T], where E(0) = ‖v0‖2
H 3(� f ) + ‖vt (0)‖2

H 1(� f ) + ‖vt t (0)‖2
L2(� f ) + ‖w0‖2

H 3(�e)

+ ‖w1‖2
H 2(�e) + 1.

Proof of Lemma 3.3: We first differentiate the system (2.4)–(2.6) twice in time. We obtain

vi
t t t − ∂t t∂ j (a

j
l ak

l ∂kv
i ) + ∂t t∂k(ak

i q) = 0 in � f × (0, T ), (3.34)

ak
j ∂kv

j
t t + 2∂t a

k
j ∂kv

j
t + ∂t t a

k
j ∂kv

j = 0 in � f × (0, T ), (3.35)

wi
t t t t − �wi

t t = 0 in �e × (0, T ), (3.36)

with the boundary conditions

vi
t t = wi

t t t on �c × (0, T ), (3.37)

∂t t (a
j
l ak

l ∂kv
i )N j − ∂t t (a

k
i q)Nk = ∂ jw

i
t t N j on �c × (0, T ), (3.38)

and

vi
t t = 0 on � f × (0, T ), (3.39)
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for i = 1, 2, 3. Multiplying (3.34) by vi
t t , integrating over �f, and summing for i = 1, 2, 3, we have

1

2

d

dt
‖vt t‖2

L2 +
∫

� f

∂t t (a
j
l ak

l ∂kv
i )∂ jv

i
t t dx +

∫
�c

∂t t (a
j
l ak

l ∂kv
i )vi

t t N j dσ (x) (3.40)

−
∫

� f

∂t t (a
k
i q)∂kv

i
t t dx −

∫
�c

∂t t (a
k
i q)vi

t t Nk dσ (x) = 0,

after integrating by parts. Similarly, we multiply (3.36) by wi
t t t , sum for i = 1, 2, 3, and integrate

over �e to obtain

1

2

d

dt
‖wt t t‖2

L2 + 1

2

d

dt
‖∇wt t‖2

L2 −
∫

�c

∂kw
i
t tw

i
t t t Nk dσ (x) = 0. (3.41)

Adding (3.40) and (3.41) and applying the boundary conditions (3.37) and (3.38) leads to

1

2

d

dt

(‖vt t‖2
L2 + ‖wt t t‖2

L2 + ‖∇wt t‖2
L2

) +
∫

� f

a j
l ak

l ∂kv
i
t t∂ jv

i
t t dx (3.42)

+ 2
∫

� f

∂t (a
j
l ak

l )∂kv
i
t ∂ jv

i
t t dx +

∫
� f

∂t t (a
j
l ak

l )∂kv
i∂ jv

i
t t dx−

∫
� f

∂t t (a
k
i q)∂kv

i
t t dx = 0.

Using the ellipticity of the form a j
l ak

l ξ jξk and integrating in time, we get

‖vt t (t)‖2
L2 + ‖wt t t (t)‖2

L2 + ‖∇wt t (t)‖2
L2 + 1

C

∫ t

0
‖∇vt t (s)‖2

L2 ds (3.43)

≤ C

∣∣∣∣∣
∫ t

0

∫
� f

∂t (a
j
l ak

l )∂kv
i
t ∂ jv

i
t t dx ds

∣∣∣∣∣ + C

∣∣∣∣∣
∫ t

0

∫
� f

∂t t (a
j
l ak

l )∂kv
i∂ jv

i
t t dx ds

∣∣∣∣∣

+ C

∣∣∣∣∣
∫ t

0

∫
� f

q∂t t a
k
i ∂kv

i
t t dx ds

∣∣∣∣∣ + C

∣∣∣∣∣
∫ t

0

∫
� f

qt∂t a
k
i ∂kv

i
t t dx ds

∣∣∣∣∣

+ C

∣∣∣∣∣
∫ t

0

∫
� f

qtt a
k
i ∂kv

i
t t dx ds

∣∣∣∣∣ + C‖vt t (0)‖2
L2 + C‖wt t t (0)‖2

L2 + C‖∇wt t (0)‖2
L2

≤ A1 + A2 + A3 + A4 + A5 + C E(0).

We now estimate the terms on the far right side of (3.43). Using Hölder’s inequality and Lemma 3.1,
we have

A1 + A2 + A3 ≤ C
∫ t

0
(‖∇v‖L∞ + ‖q‖L∞ ) (‖∇v‖L2‖∇v‖L∞ + ‖∇vt‖L2 ) ‖∇vt t‖L2 ds (3.44)

≤ C
∫ t

0
(‖v‖H 3 + ‖q‖H 2 )

(
‖v‖5/4

H 1 ‖v‖3/4
H 3 + ‖vt‖H 1

)
‖∇vt t‖L2 ds

and

A4 ≤ C
∫ t

0
‖qt‖L6‖∇v‖L3‖∇vt t‖L2 ds ≤ C

∫ t

0
‖qt‖H 1‖v‖3/4

H 1 ‖v‖1/4
H 3 ‖∇vt t‖L2 ds, (3.45)
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where we also utilized the Sobolev and the interpolation inequalities. Regarding the term A5, using
(3.35) and integrating by parts in time, we obtain

A5 =
∣∣∣∣∣2

∫ t

0

∫
� f

qtt∂t a
k
i ∂kv

i
t dx ds +

∫ t

0

∫
� f

qtt∂t t a
k
i ∂kv

i dx ds

∣∣∣∣∣ (3.46)

≤ C

∣∣∣∣∣
∫

� f

qt (t)∂t a
k
i (t)∂kv

i
t (t) dx

∣∣∣∣∣ + C

∣∣∣∣∣
∫

� f

qt (t)∂t t a
k
i (t)∂kv

i (t) dx

∣∣∣∣∣

+ C

∣∣∣∣∣
∫

� f

qt (0)∂t a
k
i (0)∂kv

i
t (0) dx

∣∣∣∣∣ + C

∣∣∣∣∣
∫

� f

qt (0)∂t t a
k
i (0)∂kv

i (0) dx

∣∣∣∣∣

+ C

∣∣∣∣∣
∫ t

0

∫
� f

qt∂t t a
k
i ∂kv

i
t dx ds

∣∣∣∣∣ + C

∣∣∣∣∣
∫ t

0

∫
� f

qt∂t a
k
i ∂kv

i
t t dx ds

∣∣∣∣∣

+ C

∣∣∣∣∣
∫ t

0

∫
� f

qt∂t t t a
k
i ∂kv

i dx ds

∣∣∣∣∣
≤ C‖qt (t)‖L6‖∇v(t)‖L3‖∇vt (t)‖L2 + C‖qt (t)‖L6‖att (t)‖L2‖∇v(t)‖L3

+ C‖qt (0)‖L6‖∇v(0)‖L3‖∇vt (0)‖L2 + C‖qt (0)‖L6‖att (0)‖L2‖∇v(0)‖L3

+ C
∫ t

0
‖qt‖L6‖att‖L3‖∇vt‖L2 ds + C

∫ t

0
‖qt‖L6‖∇v‖L3‖∇vt t‖L2 ds

+ C
∫ t

0
‖qt‖L6‖attt‖L2‖∇v‖L3 ds,

which by Lemma 3.1 leads to

A5 ≤ ε0‖qt (t)‖2
H 1 + Cε0

(‖∇v(t)‖2
L2‖∇v(t)‖2

L∞ + ‖∇vt (t)‖2
L2

) ‖∇v(t)‖2
L3 (3.47)

+ C‖v(0)‖6
H 3 + C‖vt (0)‖4

H 1 + C‖qt (0)‖2
H 1

+ C
∫ t

0
‖qt‖H 1

(
‖v‖2

H 2 + ‖∇vt‖1/2
L2 ‖∇vt‖1/2

H 1

)
‖∇vt‖L2 ds

+ C
∫ t

0
‖qt‖H 1‖∇v‖3/4

L2 ‖∇v‖1/4
H 2 ‖∇vt t‖L2 ds

+ C
∫ t

0
‖qt‖H 1

(‖v‖3
H 2 + ‖∇vt‖L2‖∇v‖L∞

) ‖∇v‖L3 ds.

Observe that for the second term on the right side of (3.47) we have

Cε0‖∇v(t)‖2
L2‖∇v(t)‖2

L∞‖∇v(t)‖2
L3 ≤ Cε0‖∇v(t)‖3

L2‖∇v(t)‖2
H 1‖∇v(t)‖H 2 (3.48)

≤ ε0‖v(t)‖2
H 3 + Cε0‖v(t)‖6

H 1‖v(t)‖4
H 2

≤ ε0‖v(t)‖2
H 3 + Cε0

(
‖v(0)‖2

H 1 + t
∫ t

0
‖vt (s)‖2

H 1 ds

)3 (
‖v(0)‖2

H 2 + t
∫ t

0
‖vt (s)‖2

H 2 ds

)2
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and

Cε0‖∇vt (t)‖2
L2‖∇v(t)‖2

L3 (3.49)

≤ Cε0‖vt (t)‖L2‖vt (t)‖H 2‖∇v(t)‖3/2
L2 ‖∇v(t)‖1/2

H 2

≤ ε0‖vt (t)‖2
H 2 + ε0‖v(t)‖2

H 3 + Cε0‖vt (t)‖4
L2‖v(t)‖6

H 1

≤ ε0‖vt (t)‖2
H 2 + ε0‖v(t)‖2

H 3

+ Cε0

(
‖vt (0)‖2

L2 + t
∫ t

0
‖vt t (s)‖2

L2 ds

)2 (
‖v(0)‖2

H 1 + t
∫ t

0
‖vt (s)‖2

H 1 ds

)3

,

where we utilized

‖v(t)‖2
H s ≤ C‖v(0)‖2

H s + Ct
∫ t

0
‖vt (s)‖2

H s ds (3.50)

for s = 1, 2 and

‖vt (t)‖2
L2 ≤ C‖vt (0)‖2

L2 + Ct
∫ t

0
‖vt t (s)‖2

L2 ds (3.51)

for all t ∈ (0, T]. By (3.43)–(3.47), we then deduce that the estimate (3.33) holds, and the proof of
Lemma 3.3 is complete. �
IV. PROOF OF THE MAIN RESULT

This section is devoted to the proof of Theorem 2.1.

Proof of Theorem 2.1: Denote

X (t) = ‖vt t (t)‖2
L2(� f ) + ‖wt t t (t)‖2

L2(�e) + ‖∇wt t (t)‖2
L2(�e) +

∫ t

0
‖∇vt t (s)‖2

L2(� f ) ds + 1. (4.1)

We assume that C is large enough so that α ≤ C and

‖v0‖H 3 , ‖vt t (0)‖L2 , ‖w0‖H 3 , ‖w1‖H 2 ≤ C. (4.2)

By the Poincaré inequality, we obtain

‖vt (t)‖2
H 1 ≤ C‖∇vt (t)‖2

L2 ≤ C‖∇vt (0)‖2
L2 + Ct

∫ t

0
‖∇vt t (s)‖2

L2 ds (4.3)

which leads to

‖vt (t)‖2
H 1 ≤ C + Ct X (t). (4.4)

We also have

‖wt t (t)‖2
L2 ≤ ‖wt t (0)‖2

L2 + Ct
∫ t

0
‖wt t t (s)‖2

L2 ds ≤ C + Ct
∫ t

0
X (s) ds. (4.5)

Using (3.30) and (4.5), we obtain

‖v(t)‖2
H 3 + ‖q(t)‖2

H 2 ≤ C(t + 1)X (t) + CeCt
∫ t

0
X (s) ds. (4.6)

In particular, we used t ≤ eCt and

‖wt t‖2
H 1 = ‖wt t‖2

L2 + ‖∇wt t‖2
L2

≤ C‖wt t (0)‖2
L2 + Ct

∫ t

0
‖wt t t‖2

L2 ds + ‖∇wt t (t)‖2
L2 ≤ C X (t) + Ct

∫ t

0
X (s) ds. (4.7)
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Similarly, we have by (3.32) and by ‖v‖2
H 2 + ‖q‖2

H 1 ≤ C + CeCt
∫ t

0 X (s) ds, which results from
(3.31),

‖vt (t)‖2
H 2 + ‖qt (t)‖2

H 1 ≤ C + C X (t)

+ CeCt
∫ t

0
X (s) ds+CeCt X (t)1/2

∫ t

0
X (s)3/2 ds+CeCt

∫ t

0
X (s)2 ds

≤ C + C X (t) + CeCt
∫ t

0
X (s)3 ds. (4.8)

Now, we consider (3.33). The sum of the fifth, sixth, seventh, eight, and ninth term on the right side
of (3.33) is estimated from above by

Cε0

(
1 + X (t) + eCt

∫ t

0
X (s)3 ds

)
(4.9)

+ Cε0

(
1 + t

∫ t

0
X (s) ds

)3 (
1 + eCt

∫ t

0
X (s)3 ds

)2

+ Cε0

(
1 + t

∫ t

0
X (s) ds

)5

.

Let C0 > 0 be a large enough constant. We collect all the estimates and choose ε0 > 0 sufficiently
small. We obtain

X (t) ≤ C0eC0t
m∑

j=1

∫ t

0
X (s)α j ds, (4.10)

where α1, . . . αm ≥ 1. We assume X(0) ≤ C0. Let T* be such that X(t) < 2C0 for all t ∈ (0, T*) and
X(T*) = 2C0. We now show that there is a lower bound on T* in terms of C0; thus, the Gronwall
lemma is applicable for the inequality (4.10). Indeed, for t ∈ (0, T*], we have

X (t) ≤ C0eC0t
m∑

j=1

t(2C0)α j + C0, (4.11)

which for t = T* implies

X (T∗) − C0 ≤ C0eC0T
m∑

j=1

T∗(2C0)α j . (4.12)

Note that the right side of the inequality (4.12) tends to 0 as T* → 0 while the left side equals C0.
Therefore, we deduce that there is a lower bound for T* and the necessary a priori estimate is thus
established. �
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