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Abstract

We address the existence of solutions for the free-surface Euler equation with surface tension in
a bounded domain. Considering the problem in Lagrangian variables we provide a priori estimates
leading to existence of local solutions with initial data in H>°.
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1 Introduction

In this paper, we address the local existence of solutions to the 3D free-surface incompressible Euler

equations

u+u-Vu+Vp=0 in Q(t) (1.1)
V-u=0 in Q(t) (1.2)

where the free boundary 9€2(t) evolves according to the fluid velocity field u(z,t), and the pressure obeys
p(x,t) = oH on 90(1). (1.3)

Here o > 0 is the surface tension, while H represents twice the mean curvature of the boundary 9€(¢).

Problems related to local or global existence of solutions of free surface evolution under the Euler
flow, with or without surface tension, have attracted considerable attention in the last decades. For both
cases different approaches have been developed; however, the search is still in progress for the lowest
regularity spaces where the existence or uniqueness of solutions hold. For the history of both problems,
cf. [CoS1, KTV, ABZ2] and references therein.



While in the zero surface tension case the problem is known to be unstable, and thus the Rayleigh-
Taylor stability condition has to be imposed, this is not necessary when the surface tension is nonzero
since the surface tension provides a stabilizing effect close to the boundary.

We may divide the existing results of the rotational case, i.e., when the vorticity is nontrivial, into
the Eulerian approach and the Lagrangian one. In the Eulerian approach, Schweitzer has obtained in
[S] a local existence result with initial velocity in H*° and with a smallness assumption on the height
of the interface. The primary tools in [S] are tangential and time differentiation, up to order three. In
[CoS1], Coutand and Shkoller used the Lagrangian formulation to obtain the local existence with initial
data in H*5. The method used by Coutand and Shkoller is, as in [S], differentiation in space and time
up to three times; however, the Lagrangian approach allowed to bypass the smallness assumption on the
initial surface. We would like to stress that simple integrations by parts are not by themselves sufficient
to close the estimates; additional care, including a careful treatment of the vorticity and the pressure
equations, is necessary to close the estimates. In addition, in [S], a harmonic change of variables was used
to overcome a lack of 1/2 derivative in the estimates resulting from tangential and time differentiation.

In [SZ1] the authors employ ideas inspired by the geometrical description of Euler flows as geodesics
on the infinite dimensional group of volume preserving diffeomorphisms to obtain conditional a priori
energy estimates for the solutions when the initial velocity belongs to H>. They also provide estimates
which are uniform in surface tension, if additionally a Raleigh-Taylor condition is satisfied. Recently, in
[DE1, DE2], using a different method, the authors established the local existence when the initial velocity
belongs to H3->*¢ for every e > 0.

Our goal is to revisit the Lagrangian approach to the free-surface rotational Euler equations and
provide a priori estimates leading to local existence in H>?®, lowering the regularity requirements from
[CoS1] and [S]. While the basic framework still involves time and tangential differentiation used in
[CoS1, S], we introduce two improvements which allow us to lower the required regularity. The first
improvement is the use of Cauchy invariance [Ca, C1, C2, FV, Lic, SZ2] recently used in the zero surface
tension case in [KTV, KTVW]. The second improvement is a simple and direct treatment of the pressure,
employing the Laplace problem with Neumann boundary conditions.

Before discussing the organization of the paper, we briefly recall the history of free surface Euler
equation problems. Early works on the free surface Euler equations involve results on small analytic
data [N, Y1, Cr]. The important work [B] considered the viscous case, employing a Lagrangian set-
up, subsequently used in many works on the inviscid problem. In [W1, W2] Wu obtained existence of
solutions of the free surface Euler equations in 2D and 3D cases respectively, both addressing irrotational,
no surface-tension cases. Positive surface tension was considered by Ambrose and Masmoudi in [AMI,
AM2], who also studied the zero surface tension limit. The works [S, CoS1, SZ1] then constructed local
solutions for the nonzero-surface tension Euler equations; cf. also works [KPW, PSW, PSZ, T, XZ] for
the positive surface-tension Navier-Stokes system. For other works on the zero-surface tension case,
see [ABZ2, AD, BHL, CCFGG, CLa, CoS2, CL, E, I, KT1, KT2, L, Lil, Li2, N, Sh, Y2, ZZ], for
other works on non-zero surface tension, cf. [ABZ1, OT] while for for global existence of solutions, see
[GMS, HIT, IT, IP, W3].

The paper is organized as follows. In Section 2, we introduce the Lagrangian setting of the problem



and state the main result, Theorem 2.1. Section 3 contains a preliminary lemma containing a priori
estimates on the Lagrangian map 7 and the cofactor matrix a. Section 4 contains the proof of the main
statement. It is subdivided into four subsections containing the vy, vy, vy estimates, and the div-curl

estimate. In the final section, we collect all the available inequalities and apply the Gronwall lemma.

2 The main result

We consider the 3D Euler equation in the Lagrangian framework over a fixed domain Q. Let n(-,¢): Q —
Q(t) be the flow map under which the initial domain configuration € evolves with time, such that

Q(t) = n(2,t). For simplicity, we assume that the initial domain Q is flat, i.e.,
Q= {z=(21,22,23) : (z1,22) ER* 0 <23 <1} (2.1)

with periodic boundary conditions with period 1 in the lateral directions. We denote the top of

(corresponding to the free-surface) by
[y =T x {z3 =1} (2.2)
and the stationary bottom by
Iy =T? x {z3 = 0}. (2.3)
Then the incompressible Euler equation has the form
vi +0k(abg) =0 mn Qx (0,7), i=1,2,3 (2.4)
afopv' =0 in Q x (0,7), (2.5)

where v(z,t) = ne(x,t) = u(n(x,t),t) and q(z,t) = p(n(z,t),t) denote the Lagrangian velocity and
the pressure of the fluid over the initial domain €. The dynamics of the Lagrangian matrix a(x,t) =
[Vn(z,t)]~! and the flow map n(x,t) are described by the ODEs

ar=—a:Vv:a inQx(0,T) (2.6)
ne=v in Qx(0,7) (2.7)

where the symbol : denotes the matrix multiplication, with the initial conditions

in . The condition (2.6) can be written in coordinates as
dal, = —akdjvlal, i k=1,2,3. (2.10)
We assume v- N =0 on Iy x (0,7) and
afqNy, = —Ayn' on Ty x (0,7) (2.11)

for i = 1,2,3, where N = (N7, No, N3) is the unit outward normal with respect to Q and Ay = 97 + 93.
Note that we have set the surface tension to be 1, for simplicity.

We now state the main result of this paper.



Theorem 2.1. Assume that v(-,t) = vg € H>5(Q) is divergence-free. Then there exists a local-in-time
solution (v,q,a,n) to (2.4)—(2.11) which satisfies

ve L2([0,T]; H35(Q))
vy € L>=([0,T]; H**(Q))
vy € L2([0,T]; H(Q))
v € L2°([0,T); L2(Q))

with ¢ € L>=([0,T); H3>(Q)), ¢ € L>=([0,T]; H*>(Q)), ¢t € L>([0,T); HY(Q)), a € L>=([0,T]; H*5(%)),
and n € C([0,T]; H>>(Q)).

3 Preliminary results

In this section, we give formal a priori estimates on time derivatives of the unknown functions needed in
the proof of Theorem 2.1. We begin with an auxiliary result providing bounds on the flow map 7 and

the matrix a.

Lemma 3.1. Assume that ||v|| e (jo,r);m35) < M. Let p € [1,00] and i,j = 1,2,3. With T € [0,1/CM],
where C' is a sufficiently large constant, the following statements hold:

(i) Inllss < C for t € [0.7);

(i) ||a||g2s < C fort € [0,T);

(#ii) ||at|| e < C||Vo||Le fort €]0,T);

() |0iat|lLe < C|IVo||Lei||0sallLr: + C||VOv||Le for i =1,2,3 and t € [0,T] where 1 < p,p1,p2 < o0
are such that 1/p = 1/p1 + 1/pa;

() llael|gr < ||Vv|lar, for r €[0,2.5] and t € [0,T];

(vi) lase|| zro < C| V|| o [[ V]| Lo +C||Ve|| 5o foro € [0,1.5] andt € [0,T] and [|ag || g1 (o) < ClIVo[3s,.+
ClIVoill g

(vii) lawellLr < ClIVV| L2 [Vl + ClIVOl| 2 [Vl + ClIVvrel| e for ¢ € [0,T1;

(viii) for every € € (0,1/2] and all t < T* = min{e/CM?,T}, we have

655 — ajaf|Fpzs <€, G k=1,2,3 (3.1)

and
16jn — alllFzs < e, Gk =1,2,3. (3.2)

In particular, the form a{affggl’; satisfies the ellipticity estimate
j Qi 1 n?
adlaiig > GlE% EER (3:3)
for allt € [0, T*] and x € Q, provided ¢ < 1/C with C sufficiently large.

Above and in the sequel, if the domain of the norm is not specified, it is understood to be .



Proof of Lemma 8.1. The assertion (i) follows immediately from (2.7), while for (ii), we have by (2.6)

t
la(t)|| 725 < C +/ lla(s)||%2.5 | Vo (s)]| 25 ds (3.4)
0
and (ii) is obtained by using the Gronwall lemma, provided T' < 1/CM. Next, (2.6) implies
lacllzr < CllallLeCl[Vo||r Cllal L < Cl[Vvl|Le (3.5)

using (ii) in the last inequality. The inequality (v) is proved analogously, using the Sobolev multiplicative

inequality instead of (3.5). The estimates (iv), (vi) are proven similarly. For (viii), we write

t
Sk —ajal = —/ Oi(ajay) ds. (3.6)
0
where j,k € {1,2,3}. Therefore,
1650 alal o < [ outaiaf) oo ds
0

t t
< c/ la? 25 | 0pal s dis < c/ lasllgro ds < M. (3.7)

0 0
The estimate (3.1) then follows if CM?T? < e. The other assertions in (viii) are obtained analogously. [J

In order to estimate the second derivative of the pressure, we need the following regularity lemma for
an elliptic equation with Neumann boundary condition in a smooth (bounded) domain 2. Assume that
bi; satisfies ||b]| = < M and that b;;(2)&:&; > M~1E[? for all € Q and € € R™, where n € {2,3,...}.

Lemma 3.2. [C3] Let q be an H' solution of the

8¢(bij6jq) =divr in ) (38)
bmkOkgN™ = g on 08 (3.9)

where m,divr € L*(Q) and g € H=Y/2(99Q) with the compatibility condition
/ (m-N —g)=0. (3.10)
o0

If
b =1~ <€ (3.11)

where €9 > 0 is a sufficiently small constant depending on M, then we have
lg — qllz < Clmllzz +Cllg — 7 Nl g-1/2(50 (3.12)
where ¢ = (1/|9]) [ qdx.

The existence of solutions of this problem under the given conditions has been established in [AGG].

However, we believe that the inequality (3.12), which does not contain the L?-norm of div r, is new.



Proof of Lemma 3.2. First, using (3.8)—(3.9), we have

/ bk @O = — / bdiv + / 96, be H'(Q) (3.13)
Q Q oN

and thus
[ bmitnitno= [ 7o+ [ g-m- Mo oeH'®) (3.14)
Q Q o0

Using the Cauchy-Schwarz inequality, we obtain

/ bmkakqam¢‘ < C(Inllee + lg =7 - Nllg-1/200)) |0l a1, ¢ H(Q). (3.15)
Q
Since also [, |¢]lq] < ||[lL2lql|z> for all ¢ € L*(2), we get

gl < € (Imllzz +llg = 7 Nlla-1/2(00) + lallze) - (3.16)

Next, we aim to improve this inequality by estimating the L?-norm of ¢. For this purpose, for every
f € L?(Q) such that [, f =0, solve

Agpy=f inQ
% =0 on 09
/ é; =0. (3.17)
Q
Note that, by the energy inequality,
[ V3 < cupl (3.18)

Since &Zf/aN = 0 on 99, we have [, quf + [, Va- V(;NSf = 0 and thus

‘/qu‘ - '/Qwvaf]- (3.19)

In order to estimate fQ Vg - Vggf, we write

/&-q&ﬂf :/bmkakqam5f+/(5mk—bmk)akqamggf. (3.20)
0 0 Q

Using (3.15) on the first term, we get

‘/qu‘ <CO(Imllgz + lg = 7 Nllg-1/2000)) VS ll12 + Ceol| Val 2 | Vy I 2 (3.21)

whence

/ Qf’ < CO(lImllze + llg = 7 - Nllg-1/2(00) + €0l Valle2) [l fll 22 (3.22)
Q
Since this inequality holds for all f € L*(Q) such that [, f = 0, we obtain

lg = allz: < C(lImllez + llg — 7 Nllg-1/2(00) + €0l Vall2)- (3.23)



On the other hand, by (3.16), we also have

IV(g = @llzz < C(I7llez + llg = 7 Nllg-1200) + llg — @ll 2 + 17l 2) - (3.24)

Combining (3.23) and (3.24) and then choosing €y sufficiently small then leads to (3.12). O

Now, let 2 be as in (2.1), and let ¢ be as in Lemma 3.2. In order to bound |g|, let H be a solution of
the Dirichlet/Neumann problem

AH=1 inQ (3.25)
H=0 onI}y (3.26)
O0H
8W = O on FO. (327)
Using
O0H
qAH+/ Vq~VH:/ —q 3.28
/. ‘ oo ON (328)
we obtain
[ ads| < U9 Dl + Cllaaey (3.29)
which combined with (3.12) leads to
lgllm: < Climllze + Cllg — - Nl g-1200) + Cllallrz(ry) (3.30)

for solutions of the problem (3.8)—(3.9) under given boundedness and ellipticity conditions.
The bounds on the pressure and its derivatives are obtained by solving a linear elliptic equation with

Neumann boundary conditions.

Lemma 3.3. Assume that (v,q,a,n) solves the system (2.4)—(2.11) for a given coefficient matriz a €
H?5(Q) satisfying (i)—-(viii) from Lemma 5.1, with a sufficiently small constant ¢ = 1/C. Then the

estimate
lgllmss < ClIVollgzsllollg2s + Cllve|l g2y +C (3.31)

holds for allt € (0,T). Moreover, the time deriwatives q; and g satisfy

||qt||H2.5 < CHV’U”HL5+e( q||H2.5 + HUtHHl,s)
+ C(HVUHHlsHVUHLoo + ||VUt||H1.5)H’U||H1.5+e
+ O||UttHH1(F1) + C”U”HQ.S + CH’Ut”HZS (332)

and
lgeell e < CUloll s [VollLee + (vl s ) (gl 2 + [Joe]| 1)
+ Cl|Vol[Le([lgell 1 + [lveel|r2)
+ C(lvllarsIVollie + llvcll sl Vollzoe + [[vsellzrs) o]l g + Cllose | 22
+ Ol ol s + ClIVllL vl mr2s + Clloel gras (3.33)

for allt € (0,T), where T < 1/CM for a sufficiently large constant C'.



Proof. Applying the Lagrangian divergence to the evolution equation (2.4) leads to
Aq = 0y, ((Okm — al"al)Okq) + Oral Opv". (3.34)

In order to obtain the boundary condition for ¢, we multiply the equation (2.4) with a*N,, and sum.
We get

% = (6pm — a"a¥)OkgN,, — a0 N, (3.35)
which holds on T'g UT';. As in [CoS1, Lemma 12.1, p. 866], we have a regularity estimate for
Ag=f inQ
Vg-N =g on 09 (3.36)
which reads
lgllzs < Clfllzs—2 + Cllgllgs—1500) + Cllall L2 (3.37)

and is valid for s > 2, with the constant C' depending on s. Using (3.29), we then get
lallzs < Cllfllas—2 + Cllgllze-1500) + Cllall2r,) (3.38)
for any s > 2. We use this estimate with
f = 0m((Skm — a]"af)rq) + O (Bpaf"v") (3.39)
and
g = (Opm — a"aF)OkqN,, — a 00" N,, on ToUT]. (3.40)
In order to obtain (3.31), we apply the estimate (3.38) with s = 3.5. We thus have

I £llzzs < (1 = a" @)Vl 25 + llagv] g2
< |1 = a"allgzsllallmes + lacl gzs vl s

< 6||q||H3,5 +C||V’U||H2A5||UHH2,5 (341)
and, similarly,

gl 2y < 1 —a”allgs gl ges + lavell g2y

< ellgllzss + Cllvellmry) (3.42)
by using (3.1), (3.2) and part (v) from Lemma 3.1. Also,
lallzzryy < Clinllaze,) < Clnllgs < C. (3.43)
Next, for ¢; we apply (3.38) for the time differentiated problem (3.36) with s = 2.5. We get

| fellzos < [I(1 = aa)eVal s + (I = a”a)Vaell s + llaeev]| s + lagve] s

< C||atHH1.5+e qHHz.s + ||I — aTa||H1.5+E thHz,s + ||att||H1,5||vHH1.5+e + ||atHH1,5+e UtHHl,S
< CIVllars+ellallmzs + €ll gl s
+ IV s [Vl + [ V0ellrs) [0l grose + (V0] gpose o]l oo, (3.44)



where we utilized the multiplicative Sobolev inequality and the parts (ii), (vi), and (viii) from Lemma 3.1.

As in (3.43), we have
lgellz2r,) < CllatlLaoa) 0l a2 00) + CllallLe [nel| 52 00) < Cllv|| 2.
Lastly, we consider the twice differentiated in time system (3.34). First, we rewrite it as
8m((a;”af)8kq) = 0sa O’
while the boundary condition (3.35) is
a;"af(?qum = —a?@tviNm.
The twice differentiated system then reads
8m((a;"af)8kqtt) = -0, (8tt(a?1af)8kq) — 20, (8t(a;”af)3kqt) + O (04 (8™ 0"))
with the boundary condition
a;"afakqttNm = —Btt(a?‘af)aqum — 28t(a;-”af)6kqtNm - 3tt(a;"8tviNm).
Applying the inequality (3.30), we obtain
lgell e < O 10w(afaf)Orallcz + C Y 10:(ai"af)Ohall > + C D 10 (Dsaiv")]| 2

+ C|84t (a7 00" Ny + 0ra7" 0" Now) | zr-1/2 (002 + Cllgee | 2(ry)
=L+ L+ I3+ 14+ I5.

In order to estimate the last term I5 in (3.50), we use (2.11), which, when rewritten as
Nig = (8f — aj)gN — Ao’

on I'y, leads to

q=(1-a3)qg—Ay® onT;.

Therefore,
lgllzaryy < Cllnllas < C

by Lemma 3.1. Using (3.45) and (3.52)

lgeell L2ry) < CllOwasql 2y + CllOra3diqllL2ryy + Cllvell ey
< Cllagll sy llallzary) + CllOwa3dgl 2,y + Cllvel g2 r,)-

In order to estimate the first term on the far right side, we use

lasl Lary)y < Cllagll i@y < CIHVl3s/a + ClIVUel oo

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)



Replacing this inequality in (3.54), we get

gzt 20y < CIVOlZ 570 + ClIVOel 1 + Clagllpo 0]l 25 + Clogl 25
< C|Voll%sss + ClI Vil + Clagl oo 0]l 25 + Cloel res
< Clll3Z 10l + ClIVvdllar + Cllal| = [[vll 25 + Cllve | gr=-s. (3.56)

In order to bound I4, we write

I = Cll 0 (a7 0 )Nl sr-1/2(00) < C Y 00 (a0") || 120y (3.57)

the last inequality following from 9,,(a"v?) = 0. Therefore,

Lh+1I+ 13+ 14
< Cll(a"a)u V4l L2 + Cll (" a):Vail| 2 + Cllawsv| Lz + Cllageve|| Lz + Cllagvu| Lz + Cllave|| 2
< C([[Vullmos Vo[l + Vel gos) [Vl + Cl[VU| L [Vl L2
+ llawel e l[vline + CUIV V[ o5 [VUl Lo 4+ [[Voel[gos)|[vell e + CI VOl Loe[[vee][ 2 + Cllveee| 2

(3.58)

The third term on the far right side is then estimated as
laseellzsl[vll e < CUIVOlLs[VollZe + Vel el Vol e + [[Vogel| o) o] (3.59)
and (3.33) follows. O

4 Local in time solutions
4.1 L? estimate on vy

Applying 93 to (2.4), multiplying the resulting equation by vy, and integrating in space and time gives

o) = e O) s //amMManmtumi//mammm (4.1)

where we utilized the Piola identity
dpal =0, i=1,2,3. (4.2)

In order to bound the integral on the right side, we integrate by parts,

t t t
—/ /5k(a?Q)tttviLtt = —/ / (af q)ereviy Nie + / /(an)tttakvitt =5L+ L. (4.3)
0 0 1219} 0

Since v3 = 0 on 'y, we have Ov® = 0, where

9 = (01,0s) (4.4)

10



and v}, = 0 on I'y. Also, 9n® = 0 on 'y, which implies that a$ = a3 = 0 on T'y. As a consequence,

t t
/ / (aF qQ)eeeviy Nie = / / (a?q)sevyy = 0.
0 JTIg 0 JTo

Thus, for the boundary term in (4.3), we obtain

1, = 1. -
= [ [ oV = [ [ Sontavi = =000y + 31000 e,
1 1

by using (2.7), (2.11), and integrating by parts in the tangential direction.

Now, we bound the second integral
t ‘ t _ t _ t _
I :/ /ai‘CQtttakvztt +3/ /(af)tqttak%tt Jr3/ /(af)ttqtakﬁtt +/ /(af)tttqak%tt
0 0 0 0
= Ip1 + Izp + Iog + Ioy.

Using the incompressibility condition to write

(a O’ )ttt - 3( ) akvtt 3(a§)tt3kvf - (a?)tttakvi
= —3(a})10kv}y — 3(af) Ok} — (a) 1Ok’

ko i
a; Ok vy

we get

t
Iy = / / )et Ok V) Qe — / / )t OVl Qe — / /(a?)tttakvlqnt = Io11 + I212 + I213.
0

For I51; we integrate by parts in time:
Is11 = *3/( )ttakthtt|0 +3/ /5't )0k} are
< Cllag(0)]| 22 [[Vv: (0)[ s | g (0) || s + Cllaee (8) | 2| Ve (t)] 23 llgee (E) || o
t t
€ [Nl 19ellso s +C [l 95l
0 0
< P(llvollzss) + Cllag ()| 22 | Ve (t) [ sl qee (8) || o

t
+/ Pllaeellz llosellzrs, [Joll a2, [0l ms)-
0

Integrating by parts Io12 = —3 f 8kvttqm in space, we have

Iz = —3/ / a¥) vk qree Ny, + 3/ / )Vt Ok i = Io121 + Io122

where we used (4.2). Observe that

t
_ J 1 Kk, i
Is121 = 3/ / a; 0jv' a; vy Qe Ny
o Jr,

t t
= *3/ / aiajvlﬁznittvit - / / (3(a§€)tQttNk +3(af) e qe Nk, + (aéc)ttthk>agaleUzt
Fl 0 l—‘1

11

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)



by using (2.6) in the first and (2.11) in the second equality; also note that the integral over I'y vanishes.

Integrating by parts in the tangential directions, we obtain

t 2 t t
3 [ ot sarlyri =33 [ [outuanalontiy <€ [ Pllealms ollw),  (113)
0 Iy k=1 0 0
while the lower order terms are bounded as
t ) )
- / / (3(ay )eqre Nk + 3(af ) et Ni + (af )1eqNi)a] 050",
o Jr,

t
S/ Pllgeell s lveell s [0l mss, lgell s, loel a2, gl m2-5)- (4.14)
0

Next, integrating by parts in time gives

) t t ) t )
Iz120 = 3/(a?)tv§takqtt 0 - 3/ /(a?)ttvét&cqn - 3/ /(af)tvzttakqn
0 0
< P(llvollmrz5) + Cllgee (0) |z lvee (8) [ 22 [ Vo (2) || Lo

t
+/ P(llgsell e [lesell 2, loeell e [[oallzoess o]l zs)- (4.15)
0
By (2.6) and integrating by parts in time we have
t . .
Io13 :/ /a‘gajvit(zf@kv’qttt + R. (4.16)
0

Until the end of this paper, we denote by R the remainder terms. In (4.16), the lower order terms are of

the form

t
/ /(attha + a:Vvas + a:Vuia) Vg, (4.17)
0
(written in a symbolic way, omitting all the indices) which can be bounded by

R < P(llvollzss) + Pllo(@)l a3, [lgee (Ol m)l[oe () s (4.18)

t
+/ Pllgeell ey vl s [[vell s s |oeel| 15 ) dt
0

after integrating by parts in time. Integrating by parts in space, the leading term of (4.16) becomes

¢
J Ik i
/ /aiﬁjvttal OV Qest

0

t t t

i1k ‘ i L ke i i1 kg i
= f/ /afvttal iV’ G 7/ /agvttal Ok 0 quus 7/ /agvttajal Orv' Qret
0 0 0

t
gl k i
—|—/ / a; vy, a7 OV qeee N
0o Jr,

= In131 + Io132 + I2133 + I2134, (4.19)

where we have omitted the term when the j-th derivatives fall on a{ which equals to zero by (4.2). First,

observe that the boundary term Is134 can be treated exactly as Ip191 above. Now, using agﬁjkvi =

12



—akagajvi for k =1,2,3, we write

¢
Io131 = —/ /akafvitafajvl(htt
0
) ot t ) )
= —/8ka§vitaf8jvlqtt‘o+/o /(8kagvitaf6jvz)tqtt
< P(lJvollgss) + Cllgee(t) || s [[vee (0] 22 [ Vo t) [ 3,
t
+/ P(llgetll v, l|veeell 2 veel 205 [[vel s (vl ) (4.20)
0
while
. ) t t . .
I —/afvitafﬁkvlatht‘o —|—/ /(afvitafﬁkvl)tatht
0
< P(l[vollgss) + Cllgu () v (8) | 2 Vo (t)[| o
t
+/ P(llgetll v, l|veeell 2 veel s [[vel zvss ([l ) (4.21)
0

Note that the lower order term I5133 is also bounded by the right side of (4.21). For Is» we integrate by

parts in space

t
Iso = 3/ ata QttvtttNk / / 8kq1£tvttt
Iy
= —3/ / 78 wlal) gl Ny — / / )¢ Okl
'

t
= 3/ / afajvlﬁwitviu + agajvl((af)ttq + Z(Qf)tQt)Nkvztt) - 3/ /(af)tak%t@ztt

I, 0
= 1221 + .[222. (422)

We denote the first boundary term in I321 by Is211. The other two terms in 3o are easy to bound.

Integrating by parts in the tangential directions, we get

t t
Iy = —3/ / al0jutovtovt,, — 3/ d(al9;v")ovivly, (4.23)
I o Jr,
which after an additional integration by parts in time leads to

t t ) _ _ o _ )
Too1y = 73/ ( 190 vlovl, + 0(al ;0" dvtvl, ‘0 +3/ / (al 90 00l)dvl, + (9(aldjut)Ovl) vl
Fl l—‘1
(4.24)
Thus,

t
Ipony < P([[0(0)|[13:5) + Cllvee (&)l zrv-s loe ()] mr2 [0 (E) | 125 +/ P(llvellzzrs, [loell s, [0l gs). (4.25)
0

Next, for I3 we proceed as in Iy by first integrating by parts in space

¢ t
I3 = —3/ / (al 00" a) )eqrvfy Ny — 3/ /(af)ttakqwitt
o Jr, 0
t ) ) t )
= 3/ / agﬁjviAgnintt + R — 3/ /(af)ttﬁkqtvztt, (4.26)
0o Jry 0

13



where the remainder term

t t t
R:—3/ / (ag)tajvlafqtvzttNk—Zi/ / agﬁjvl(af)tqtvzttNk—FS/ / agﬁjvi(af)tquttNk (4.27)
0 Fl 0 Fl 0 F1
is bounded by
R < P([v(0)[|35) + Cllar(®) |25 l[oee () || s 1o () [ 72-5
+ Cllg@®) | mrs [vee @)l s [lve () | gs |0 (@) || 25
t
+/ P(llgeellms lgel s 1l 25, [[veel| mos, [[oel m2es, ([v] 7r2).- (4.28)
0

The first boundary term on the far right sides in (4.26) can be bounded similarly as Is211 above, by
integrating by parts in time. We omit further details.

Lastly, we consider I4. We use that (a¥);; = (azajvlaf)tt = agajvitaf + Lo.t., where the lower order
terms are of the form a;Vva, a;Vora, a;Vva; (and the resulting integrals are clearly easy to bound).

Thus, we estimate only the leading term in I54. We have
Iyy = /t/agajvitafakvittq +R (4.29)
0
and observe that
O (afajvita?akvit) = aﬁajvitafakvitt + agajvittafakvét + (af)tﬁjvitaf(?kvit + afajvit(af)takvit
= 2@?@'%#?&%” + 2(af)t3jvita§“3kv§t- (4.30)

Hence,

by =5 [ oyhatowial 5 | [ wtotaforia - / [@pbatonia ot
< P(llvollz5) + Cllvee(®) [ gro-sllvee (0) |z [|a (@) || 10
t
+/0 P(llveell s Nlvell gz, [0l ms, el m2, (gl #2)- (4.31)
Therefore, we conclude

et (DN|72 + 100 ()72,
< P([0(0)|[ms5) + e(llvee ()| 725 + llaee (0] F0)

t
+/ Pllveell 2 [lveell s, [vell 2o ([0l s, | geell aes gell a2, Mgl 22)- (4.32)
0

4.2 Tangential H' estimate on vy

Applying 0,,0? to the equation (2.4), multiplying by 9,,vs, summing for m = 1,2, and integrating in

space and time, we get

1= 1, = t .
10Ol = 5100 I3~ [ [ on(aorauon

1 = ¢ )
= 51001 = [ [ atOuanoni,+ R (133)
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Here and in the next section, for simplicity of notation, we modify the summation convention for repeated
indices in m with m = 1,2 (while other indices are still summed for 1,2,3). Note that the remainder
term R on the right of (4.33) is bounded by

/ / ttakq + (a; )ttakmq + 20 (a ) Okqr + 2(a; ) Okmqt + Omaj 8kqw)amvzt

S/ P(llveellzes lvellmzs, [0l ms, llgull s lael g2, gl m25)- (4.34)
0

Now, we integrate by parts in the higher order term

t t t
- / / aF O Qut Oy, = — / / a0 Gt Ol Ny + / / a¥ 0y Opmuvl, = I + I. (4.35)
0 0 o0 0

For I, the integral over I'y vanishes, while on I'; we use
afamQttNk = 3m3tt(aquk) - 3m((af)tthk) - 23m((af)tQtNk) - 3manttNk (4.36)
(to check this, write am(afqttNk) = af@mqttNk + 8mafqttNk and rewrite the second term) and get
t .
b= [ [ Badmadni + / [ (0nl@b)iea) + 20m((@)ear) + Onaare) Dol Mo
o Jr, I
= —*\\520t(t)l|Lz )t *||52vt(0)||Lz<r1)+
/ [ (0n(@t)u0) + 20(ah)1a) + O Dviy Mo (437)
IS
and the last term on the right side can be bounded by
t
/ P(lloell s, lgsellmrs lgellmes, ([vell s, gl 2, [[v]| s ). (4.38)
0
For I, we use the divergence free condition to write
aF Opmvly = —0pmalopvl, — 0 (2(aF);0pv! + (a¥)Opv"). (4.39)
Thus, we obtain
7/ / (amai-cakvzt + 5‘m (Q(af)té)kvz -+ (a?)ttakvl)) 3mqtt
0
t
< / P(llgeellm s loeell s, lol a2, (o] o). (4.40)
0
We conclude
100t (#)1 72 + 110%ve (81 22,

t
< ||32vt(0)”2L2(1‘1)+/ P(llvsellgrrs, llgeell s el 2, ol 25, gl s, 0]l e5).- (4.41)
0
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4.3 Tangential H? estimate on v,

Applying 05,0 to (2.4), multiplying by v, summing for I,m = 1,2, and integrating in space and

time, we get
152 2 L a0 2 ! k i
5”3 vt(t)Hm = 5”8 v (0))|72 — Orm (@3 Orq) 1 Oym vy
0
10 2 ‘ k i
= 5\\8 ve(0)||72 — ay OkimqtOmvy — L.o.t., (4.42)
0

where the lower order terms on the right are bounded by fot P(||lvell gz, gl m3s |l ms-s, [|ge]| 25 ). Next,

integrating by parts, we get similarly as in the previous section

¢ ¢ ¢
—/ /afc’)klmqt(hmv; = —/ / ¥ O @Ot Ny, +/ /a?alm(haklmvz =1 + I, (4.43)
0 o Joao 0

where
t .
I = / / Agﬁlmntﬁlmvz —lo.t.
o Joo
1, = 1, =
= —§||33U(t)\\%2(r1) + §H83U(0)||i2(r1) —lo.t. (4.44)

and, by using the divergence free condition,

i< [ Plads o o). (1.45)
Therefore, we conclude
1020 (t)][72 + 10 (B)I72r, )
< [[0%0(0)[1 22, + /Otp(vt||H2> lallgz, [0l fres, llgellm2s)- (4.46)
4.4 Div-curl estimates
We use the elliptic estimate (cf. [CoS1, CS])
[l < Clifllez + Cllcwrl f[| a1 + Ol div fl[ a1 + ClIf - Nl zz=-0500) (4.47)

for s > 1.
We recall that dvy, € L?(T'1), so in particular v}, € H(T';). By (4.47) with s = 1.5, we have

H’UttHHl.s S CH’UttHLQ + CH Cllrl Utt”HOﬁ =+ CH le Utt||H0-5 + Cllv?tHHl(Fl)? (448)

where we also used vj, = 0 on I'g. Similarly, applying (4.47) with s = 2.5 and s = 3.5 respectively, we

have

||Ut||H2-5 < C||’Ut||L2 + CH curl 'UtHHl.S + CH div UtHHl.s + CHU?”H?(Fl) (449)
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and
||’UHH3.5 S CH’U”L2 —+ OH CuI‘l’U”H2.5 =+ CH diVUHH2.5 + C||U3||H3(F1). (450)

The first term on the right side of (4.48) (same for (4.49) and (4.50)) is of lower order and can be written

as

t
lvee (8) || 2 = [[ve(0) || 2 +t1/2/ [veee][ 22 (4.51)
0

By the multiplicative Sobolev inequality, for divv we have

| divolles = [0 — a¥)Okv s < ellvll s, (4.52)
as well as
| divoel s = (G — a¥)okvi — ()00 s < ellorllzs + Cllagl msss o] s (4.53)
and
| divvgel mros = [[(Sik — af By — 2(af)s0x0f — (af)uOpv” | pro-s
< ellvellzrs + Cllacsnoss [vell s + Cllagellgos ol ga.ovs. (4.54)

Recall the Cauchy invariance (cf. [KTV] for instance)

eijkajvlaknl = curl v}, 1=1,2,3, (4.55)
for t > 0, where ¢, is the antisymmetric tensor defined by €123 = 1 with €;;, = —€ji, and €, = €.
Thus, we have

(curlv)’ = eijkajvk = eijkajvl(élk — Okn') + curl v, (4.56)
where
t t
o — Okt = 7/ onl = 7/ v, kil=1,2,3, (4.57)
0 0
which implies
t
| curl v]| 20 < C||v||H3.5/ o]l s + || curl vo|| 2. (4.58)
0

Differentiating (4.55) in time, we have

0= (Eijkaj’l}laknl>t = €ijkajvi8k’l7l + eijkajvlakné, (4.59)
where the second term on the right vanishes because it is equal to eijkajvlakvl and €, = —¢€;x;. Thus,
we also get

€ijk0juioen’ =0 (4.60)
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from where
(curl vt)i = eijkajvf = qjkajvi((slk — 8k7)l). (4.61)
Therefore,

t
|| curlvt||H1,s < CHVUtHHl,sHI - V’I7||H1.5+5 < CH’UtHst/ ||U||H2.5+5. (462)
0

Differentiating (4.60), using (2.7), and rearranging the terms in the equality, we obtain

eijkajvitaknl = —qjkﬁjviakvl. (4.63)
Then, we may write
(curlvy)' = eijkajvft = eijkajvit((m — 8knl) — eijkajviﬁkvl, (4.64)
from where
[l curl vy || gos < Cllvge]| s /Ot lv]| g25+5 + Clloel| gos v ge.s+s. (4.65)

Now, we gather the div-curl inequalities to obtain Sobolev estimates on v, v;, and vy. Namely, we have

t
Jollss < OO + fleurloolras) + €72 [z
0

t
+Clillss [ Tollss + Cllo* s (4.66)
0
and
t
loellmes < Cllog(0)] gz + CeV/2 / lorell 2
0
t
+ Cllo e / loll a5 + Cladl gsss ollas + Cllodlaen- (4.67)
0
Finally,

t
llvetl| 715 < Clloge(0)[| 2 + i/ / lvetell Lz + Clloge || s / vl 2545 + Clloell s |v]| 2.5+
0

+ C”at”Hl.s-M ||Ut||H1-5 + CHattHHo.s ||U||H2-5+“ + O”U?t”Hl(Fﬂ' (468)

5 Closing the estimates

Squaring the estimate (4.66) and using (4.46) for the bound of [|v3|| ga(r,), we have

t t
HUH%{B,S < P(||UOHH3-5) +C||v|‘%35A HU||%I3-5 +A P(||vt||H27 HQ||H37 ||UHH3'57 ||qt||H2‘5)‘ (51)

By the pressure estimate (3.31),

t
Joliss < Cllollss + 1) (s + € [ elles ) + Cllulec,. 52
0
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This, combined with (4.41) for the bound of ||v¢||g2(r,), gives

t
lalZss < P(lvollzas) + Cllolss (mnzm o f |vt||im)
t
+/ P(llvsell grs, lgeell s gell 2 [[vell 25, gl 25, 0] frs5)- (5.3)
0
Similarly, squaring (4.67) and using (4.41),
t t
[vell325 < P(|lvollares) + C||7ft\|§12-5/ [0)|3r2.545 4+ Cl|v]| 32515 (|| vo]| 3725 +/ [vel|32.5)
0 0
t
+/ P(llveell mrs, llaeel mes el a2 (vl 25, gl z2o5, 0] s5), (5.4)
0
while combining the square of the estimate (3.32),
t
lgeBpas < CllolZesss (P<|vo||H3.s> +0 [ (s + ||qt|%{2.s>) T Clolns + Cllurlas
0
t
+ C(|[vll 32545 + llvel 325 ) (lvol 7545 +/0 0131 548 ) + Cllveel 7 ry) (5.5)
(4.32) and (5.4), we obtain

lgellzr2s < P([0(0)l|zz25) + Celllveellzrns + llgeellz + l[vllFrs.s)

t
+P(||UtHH2'5’||U||H2-5+5)/ P(l|vll s, [[ve]l =)
0

¢
+/ Pllgetll s [oseell 2y 1ol ss s [[oeelL s, [Joell 25, llge |2, Nl gl r2)- (5.6)
0
Lastly, squaring (4.68) and using (4.32),
lveellZrr s < P([v(0)m25) + Ce(llvrell s + laullzn + vlls.s)

¢ ¢
+C||vtt||i,1.5/ ||v\|§,2,5+5+C\|v||§12.5+5/ Pllvsellmrs, [[o]|25)
0 0
¢
+/ Plllgeellars lveell e, 1ol ass, lowll s, [[oill gz gl 2, gl m2), (5.7)
0
while squaring (3.33) and (4.32) give
t
lgeell 7 < P(lv(O)lla5) + CelllvrellFras + gl Fr + [10llFs5) + Cllvee s (lvoll 7 +/ lvellZ)
0
t
+P(||v||HS-5,\lvt||H2-5)/ Pllgeell s [vseell 2, gl mz, veell s [[oell 2.5, o]l o)
0

t
+/ Pllgeell ey veeellp2 1ol ss s el s, Jvell mz-s, gell 2, gl 22 )- (5.8)
0

Combining all the estimates, we obtain a Gronwall type inequality yielding the a priori estimates for the

local in time existence.
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