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Abstract

We address the existence of solutions for the free-surface Euler equation with surface tension in

a bounded domain. Considering the problem in Lagrangian variables we provide a priori estimates

leading to existence of local solutions with initial data in H
3.5.
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1 Introduction

In this paper, we address the local existence of solutions to the 3D free-surface incompressible Euler

equations

∂tu+ u · ∇u+∇p = 0 in Ω(t) (1.1)

∇ · u = 0 in Ω(t) (1.2)

where the free boundary ∂Ω(t) evolves according to the fluid velocity field u(x, t), and the pressure obeys

p(x, t) = σH on ∂Ω(t). (1.3)

Here σ > 0 is the surface tension, while H represents twice the mean curvature of the boundary ∂Ω(t).

Problems related to local or global existence of solutions of free surface evolution under the Euler

flow, with or without surface tension, have attracted considerable attention in the last decades. For both

cases different approaches have been developed; however, the search is still in progress for the lowest

regularity spaces where the existence or uniqueness of solutions hold. For the history of both problems,

cf. [CoS1, KTV, ABZ2] and references therein.
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While in the zero surface tension case the problem is known to be unstable, and thus the Rayleigh-

Taylor stability condition has to be imposed, this is not necessary when the surface tension is nonzero

since the surface tension provides a stabilizing effect close to the boundary.

We may divide the existing results of the rotational case, i.e., when the vorticity is nontrivial, into

the Eulerian approach and the Lagrangian one. In the Eulerian approach, Schweitzer has obtained in

[S] a local existence result with initial velocity in H4.5 and with a smallness assumption on the height

of the interface. The primary tools in [S] are tangential and time differentiation, up to order three. In

[CoS1], Coutand and Shkoller used the Lagrangian formulation to obtain the local existence with initial

data in H4.5. The method used by Coutand and Shkoller is, as in [S], differentiation in space and time

up to three times; however, the Lagrangian approach allowed to bypass the smallness assumption on the

initial surface. We would like to stress that simple integrations by parts are not by themselves sufficient

to close the estimates; additional care, including a careful treatment of the vorticity and the pressure

equations, is necessary to close the estimates. In addition, in [S], a harmonic change of variables was used

to overcome a lack of 1/2 derivative in the estimates resulting from tangential and time differentiation.

In [SZ1] the authors employ ideas inspired by the geometrical description of Euler flows as geodesics

on the infinite dimensional group of volume preserving diffeomorphisms to obtain conditional a priori

energy estimates for the solutions when the initial velocity belongs to H3. They also provide estimates

which are uniform in surface tension, if additionally a Raleigh-Taylor condition is satisfied. Recently, in

[DE1, DE2], using a different method, the authors established the local existence when the initial velocity

belongs to H3.5+ǫ for every ǫ > 0.

Our goal is to revisit the Lagrangian approach to the free-surface rotational Euler equations and

provide a priori estimates leading to local existence in H3.5, lowering the regularity requirements from

[CoS1] and [S]. While the basic framework still involves time and tangential differentiation used in

[CoS1, S], we introduce two improvements which allow us to lower the required regularity. The first

improvement is the use of Cauchy invariance [Ca, C1, C2, FV, Lic, SZ2] recently used in the zero surface

tension case in [KTV, KTVW]. The second improvement is a simple and direct treatment of the pressure,

employing the Laplace problem with Neumann boundary conditions.

Before discussing the organization of the paper, we briefly recall the history of free surface Euler

equation problems. Early works on the free surface Euler equations involve results on small analytic

data [N, Y1, Cr]. The important work [B] considered the viscous case, employing a Lagrangian set-

up, subsequently used in many works on the inviscid problem. In [W1, W2] Wu obtained existence of

solutions of the free surface Euler equations in 2D and 3D cases respectively, both addressing irrotational,

no surface-tension cases. Positive surface tension was considered by Ambrose and Masmoudi in [AM1,

AM2], who also studied the zero surface tension limit. The works [S, CoS1, SZ1] then constructed local

solutions for the nonzero-surface tension Euler equations; cf. also works [KPW, PSW, PSZ, T, XZ] for

the positive surface-tension Navier-Stokes system. For other works on the zero-surface tension case,

see [ABZ2, AD, BHL, CCFGG, CLa, CoS2, CL, E, I, KT1, KT2, L, Li1, Li2, N, Sh, Y2, ZZ], for

other works on non-zero surface tension, cf. [ABZ1, OT] while for for global existence of solutions, see

[GMS, HIT, IT, IP, W3].

The paper is organized as follows. In Section 2, we introduce the Lagrangian setting of the problem
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and state the main result, Theorem 2.1. Section 3 contains a preliminary lemma containing a priori

estimates on the Lagrangian map η and the cofactor matrix a. Section 4 contains the proof of the main

statement. It is subdivided into four subsections containing the vttt, vtt, vt estimates, and the div-curl

estimate. In the final section, we collect all the available inequalities and apply the Gronwall lemma.

2 The main result

We consider the 3D Euler equation in the Lagrangian framework over a fixed domain Ω. Let η(·, t) : Ω →

Ω(t) be the flow map under which the initial domain configuration Ω evolves with time, such that

Ω(t) = η(Ω, t). For simplicity, we assume that the initial domain Ω is flat, i.e.,

Ω =
{
x = (x1, x2, x3) : (x1, x2) ∈ R

2, 0 < x3 < 1
}

(2.1)

with periodic boundary conditions with period 1 in the lateral directions. We denote the top of Ω

(corresponding to the free-surface) by

Γ1 = T
2 × {x3 = 1} (2.2)

and the stationary bottom by

Γ0 = T
2 × {x3 = 0}. (2.3)

Then the incompressible Euler equation has the form

vit + ∂k(a
k
i q) = 0 in Ω× (0, T ), i = 1, 2, 3 (2.4)

aki ∂kv
i = 0 in Ω× (0, T ), (2.5)

where v(x, t) = ηt(x, t) = u(η(x, t), t) and q(x, t) = p(η(x, t), t) denote the Lagrangian velocity and

the pressure of the fluid over the initial domain Ω. The dynamics of the Lagrangian matrix a(x, t) =

[∇η(x, t)]−1 and the flow map η(x, t) are described by the ODEs

at = −a : ∇v : a in Ω× (0, T ) (2.6)

ηt = v in Ω× (0, T ) (2.7)

where the symbol : denotes the matrix multiplication, with the initial conditions

a(x, 0) = I (2.8)

η(x, 0) = x (2.9)

in Ω. The condition (2.6) can be written in coordinates as

∂ta
i
k = −akl ∂jv

laji , i, k = 1, 2, 3. (2.10)

We assume v ·N = 0 on Γ0 × (0, T ) and

aki qNk = −∆2η
i on Γ1 × (0, T ) (2.11)

for i = 1, 2, 3, where N = (N1, N2, N3) is the unit outward normal with respect to Ω and ∆2 = ∂2
1 + ∂2

2 .

Note that we have set the surface tension to be 1, for simplicity.

We now state the main result of this paper.
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Theorem 2.1. Assume that v(·, t) = v0 ∈ H3.5(Ω) is divergence-free. Then there exists a local-in-time

solution (v, q, a, η) to (2.4)–(2.11) which satisfies

v ∈ L∞([0, T ];H3.5(Ω))

vt ∈ L∞([0, T ];H2.5(Ω))

vtt ∈ L∞([0, T ];H1.5(Ω))

vttt ∈ L∞([0, T ];L2(Ω))

with q ∈ L∞([0, T ];H3.5(Ω)), qt ∈ L∞([0, T ];H2.5(Ω)), qtt ∈ L∞([0, T ];H1(Ω)), a ∈ L∞([0, T ];H2.5(Ω)),

and η ∈ C([0, T ];H3.5(Ω)).

3 Preliminary results

In this section, we give formal a priori estimates on time derivatives of the unknown functions needed in

the proof of Theorem 2.1. We begin with an auxiliary result providing bounds on the flow map η and

the matrix a.

Lemma 3.1. Assume that ‖v‖L∞([0,T ];H3.5) ≤ M . Let p ∈ [1,∞] and i, j = 1, 2, 3. With T ∈ [0, 1/CM ],

where C is a sufficiently large constant, the following statements hold:

(i) ‖η‖H3.5 ≤ C for t ∈ [0, T ];

(ii) ‖a‖H2.5 ≤ C for t ∈ [0, T ];

(iii) ‖at‖Lp ≤ C‖∇v‖Lp for t ∈ [0, T ];

(iv) ‖∂iat‖Lp ≤ C‖∇v‖Lp1 ‖∂ia‖Lp2 + C‖∇∂iv‖Lp for i = 1, 2, 3 and t ∈ [0, T ] where 1 ≤ p, p1, p2 ≤ ∞

are such that 1/p = 1/p1 + 1/p2;

(v) ‖at‖Hr ≤ ‖∇v‖Hr , for r ∈ [0, 2.5] and t ∈ [0, T ];

(vi) ‖att‖Hσ ≤ C‖∇v‖Hσ‖∇v‖L∞+C‖∇vt‖Hσ for σ ∈ [0, 1.5] and t ∈ [0, T ] and ‖att‖H1(Ω) ≤ C‖∇v‖2
H5/4+

C‖∇vt‖H1 ;

(vii) ‖attt‖Lp ≤ C‖∇v‖Lp‖∇v‖2L∞ + C‖∇vt‖Lp‖∇v‖L∞ + C‖∇vtt‖Lp for t ∈ [0, T ];

(viii) for every ǫ ∈ (0, 1/2] and all t ≤ T ∗ = min{ǫ/CM2, T}, we have

‖δjk − ajl a
k
l ‖

2
H2.5 ≤ ǫ, j, k = 1, 2, 3 (3.1)

and

‖δjk − ajk‖
2
H2.5 ≤ ǫ, j, k = 1, 2, 3. (3.2)

In particular, the form ajl a
k
l ξ

i
jξ

i
k satisfies the ellipticity estimate

ajl a
k
l ξ

i
jξ

i
k ≥

1

C
|ξ|2, ξ ∈ R

n2

(3.3)

for all t ∈ [0, T ∗] and x ∈ Ω, provided ǫ ≤ 1/C with C sufficiently large.

Above and in the sequel, if the domain of the norm is not specified, it is understood to be Ω.
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Proof of Lemma 3.1. The assertion (i) follows immediately from (2.7), while for (ii), we have by (2.6)

‖a(t)‖H2.5 ≤ C +

∫ t

0

‖a(s)‖2H2.5‖∇v(s)‖H2.5 ds (3.4)

and (ii) is obtained by using the Gronwall lemma, provided T ≤ 1/CM . Next, (2.6) implies

‖at‖Lp ≤ C‖a‖L∞C‖∇v‖LpC‖a‖L∞ ≤ C‖∇v‖Lp (3.5)

using (ii) in the last inequality. The inequality (v) is proved analogously, using the Sobolev multiplicative

inequality instead of (3.5). The estimates (iv), (vi) are proven similarly. For (viii), we write

δjk − ajl a
k
l = −

∫ t

0

∂t(a
j
l a

k
l ) ds. (3.6)

where j, k ∈ {1, 2, 3}. Therefore,

‖δjk − ajl a
k
l ‖H2.5 ≤

∫ t

0

‖∂t(a
j
l a

k
l )‖H2.5 ds

≤ C

∫ t

0

‖ajl ‖H2.5‖∂ta
k
l ‖H2.5 ds ≤ C

∫ t

0

‖at‖H2.5 ds ≤ CMt. (3.7)

The estimate (3.1) then follows if CM2T 2 ≤ ǫ. The other assertions in (viii) are obtained analogously. �

In order to estimate the second derivative of the pressure, we need the following regularity lemma for

an elliptic equation with Neumann boundary condition in a smooth (bounded) domain Ω. Assume that

bij satisfies ‖b‖L∞ ≤ M and that bij(x)ξiξj ≥ M−1|ξ|2 for all x ∈ Ω and ξ ∈ R
n, where n ∈ {2, 3, . . .}.

Lemma 3.2. [C3] Let q be an H1 solution of the

∂i(bij∂jq) = div π in Ω (3.8)

bmk∂kqN
m = g on ∂Ω (3.9)

where π, div π ∈ L2(Ω) and g ∈ H−1/2(∂Ω) with the compatibility condition

∫

∂Ω

(π ·N − g) = 0. (3.10)

If

‖b− I‖L∞ ≤ ǫ0 (3.11)

where ǫ0 > 0 is a sufficiently small constant depending on M , then we have

‖q − q̄‖H1 ≤ C‖π‖L2 + C‖g − π ·N‖H−1/2(∂Ω) (3.12)

where q̄ = (1/|Ω|)
∫
q dx.

The existence of solutions of this problem under the given conditions has been established in [AGG].

However, we believe that the inequality (3.12), which does not contain the L2-norm of div π, is new.
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Proof of Lemma 3.2. First, using (3.8)–(3.9), we have

∫

Ω

bmk∂kq∂mφ = −

∫

Ω

φ div π +

∫

∂Ω

gφ, φ ∈ H1(Ω) (3.13)

and thus ∫

Ω

bmk∂kq∂mφ =

∫

Ω

π · ∇φ+

∫

∂Ω

(g − π ·N)φ, φ ∈ H1(Ω). (3.14)

Using the Cauchy-Schwarz inequality, we obtain
∣∣∣∣
∫

Ω

bmk∂kq∂mφ

∣∣∣∣ ≤ C
(
‖π‖L2 + ‖g − π ·N‖H−1/2(∂Ω)

)
‖φ‖H1 , φ ∈ H1(Ω). (3.15)

Since also
∫
Ω
|φ||q| ≤ ‖φ‖L2‖q‖L2 for all φ ∈ L2(Ω), we get

‖q‖H1 ≤ C
(
‖π‖L2 + ‖g − π ·N‖H−1/2(∂Ω) + ‖q‖L2

)
. (3.16)

Next, we aim to improve this inequality by estimating the L2-norm of q. For this purpose, for every

f ∈ L2(Ω) such that
∫
Ω
f = 0, solve

∆φ̃f = f in Ω

∂φ̃f

∂N
= 0 on ∂Ω

∫

Ω

φ̃f = 0. (3.17)

Note that, by the energy inequality, ∫

Ω

|∇φ̃f |
2 ≤ C‖f‖2L2 . (3.18)

Since ∂φ̃f/∂N = 0 on ∂Ω, we have
∫
Ω
q∆φ̃f +

∫
Ω
∇q · ∇φ̃f = 0 and thus

∣∣∣∣
∫

Ω

qf

∣∣∣∣ =
∣∣∣∣
∫

Ω

∇q · ∇φ̃f

∣∣∣∣ . (3.19)

In order to estimate
∫
Ω
∇q · ∇φ̃f , we write

∫

Ω

∂iq∂iφ̃f =

∫

Ω

bmk∂kq∂mφ̃f +

∫

Ω

(δmk − bmk)∂kq∂mφ̃f . (3.20)

Using (3.15) on the first term, we get

∣∣∣∣
∫

Ω

qf

∣∣∣∣ ≤ C
(
‖π‖L2 + ‖g − π ·N‖H−1/2(∂Ω)

)
‖∇φ̃f‖L2 + Cǫ0‖∇q‖L2‖∇φ̃f‖L2 (3.21)

whence
∣∣∣∣
∫

Ω

qf

∣∣∣∣ ≤ C
(
‖π‖L2 + ‖g − π ·N‖H−1/2(∂Ω) + ǫ0‖∇q‖L2

)
‖f‖L2 . (3.22)

Since this inequality holds for all f ∈ L2(Ω) such that
∫
Ω
f = 0, we obtain

‖q − q̄‖L2 ≤ C
(
‖π‖L2 + ‖g − π ·N‖H−1/2(∂Ω) + ǫ0‖∇q‖L2

)
. (3.23)
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On the other hand, by (3.16), we also have

‖∇(q − q̄)‖L2 ≤ C
(
‖π‖L2 + ‖g − π ·N‖H−1/2(∂Ω) + ‖q − q̄‖L2 + ‖q̄‖L2

)
. (3.24)

Combining (3.23) and (3.24) and then choosing ǫ0 sufficiently small then leads to (3.12). �

Now, let Ω be as in (2.1), and let q be as in Lemma 3.2. In order to bound |q̄|, let H be a solution of

the Dirichlet/Neumann problem

∆H = 1 in Ω (3.25)

H = 0 on Γ1 (3.26)

∂H

∂N
= 0 on Γ0. (3.27)

Using ∫

Ω

q∆H +

∫

Ω

∇q · ∇H =

∫

∂Ω

∂H

∂N
q (3.28)

we obtain ∣∣∣∣
∫

Ω

q dx

∣∣∣∣ ≤ C‖∇(q − q̄)‖L2 + C‖q‖L2(Γ1) (3.29)

which combined with (3.12) leads to

‖q‖H1 ≤ C‖π‖L2 + C‖g − π ·N‖H−1/2(∂Ω) + C‖q‖L2(Γ1) (3.30)

for solutions of the problem (3.8)–(3.9) under given boundedness and ellipticity conditions.

The bounds on the pressure and its derivatives are obtained by solving a linear elliptic equation with

Neumann boundary conditions.

Lemma 3.3. Assume that (v, q, a, η) solves the system (2.4)–(2.11) for a given coefficient matrix a ∈

H2.5(Ω) satisfying (i)–(viii) from Lemma 3.1, with a sufficiently small constant ǫ = 1/C. Then the

estimate

‖q‖H3.5 ≤ C‖∇v‖H2.5‖v‖H2.5 + C‖vt‖H2(Γ1) + C (3.31)

holds for all t ∈ (0, T ). Moreover, the time derivatives qt and qtt satisfy

‖qt‖H2.5 ≤ C‖∇v‖H1.5+ǫ(‖q‖H2.5 + ‖vt‖H1.5)

+ C(‖∇v‖H1.5‖∇v‖L∞ + ‖∇vt‖H1.5)‖v‖H1.5+ǫ

+ C‖vtt‖H1(Γ1) + C‖v‖H2.5 + C‖vt‖H2.5 (3.32)

and

‖qtt‖H1 ≤ C(‖v‖H1.5‖∇v‖L∞ + ‖vt‖H1.5)(‖q‖H2 + ‖vt‖H1)

+ C‖∇v‖L∞(‖qt‖H1 + ‖vtt‖L2)

+ C
(
‖v‖H1.5‖∇v‖2L∞ + ‖vt‖H1.5‖∇v‖L∞ + ‖vtt‖H1.5

)
‖v‖H1 + C‖vttt‖L2

+ C‖v‖
3/2
H2 ‖v‖

1/2
H3 + C‖∇v‖L∞‖v‖H2.5 + C‖vt‖H2.5 (3.33)

for all t ∈ (0, T ), where T ≤ 1/CM for a sufficiently large constant C.
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Proof. Applying the Lagrangian divergence to the evolution equation (2.4) leads to

∆q = ∂m
(
(δkm − ami aki )∂kq

)
+ ∂ta

m
i ∂mvi. (3.34)

In order to obtain the boundary condition for q, we multiply the equation (2.4) with ami Nm and sum.

We get
∂q

∂N
= (δkm − ami aki )∂kqNm − ami ∂tv

iNm (3.35)

which holds on Γ0 ∪ Γ1. As in [CoS1, Lemma 12.1, p. 866], we have a regularity estimate for

∆q = f in Ω

∇q ·N = g on ∂Ω (3.36)

which reads

‖q‖Hs ≤ C‖f‖Hs−2 + C‖g‖Hs−1.5(∂Ω) + C‖q‖L2 (3.37)

and is valid for s ≥ 2, with the constant C depending on s. Using (3.29), we then get

‖q‖Hs ≤ C‖f‖Hs−2 + C‖g‖Hs−1.5(∂Ω) + C‖q‖L2(Γ1) (3.38)

for any s ≥ 2. We use this estimate with

f = ∂m((δkm − ami aki )∂kq) + ∂m(∂ta
m
i vi) (3.39)

and

g = (δkm − ami aki )∂kqNm − ami ∂tv
iNm on Γ0 ∪ Γ1. (3.40)

In order to obtain (3.31), we apply the estimate (3.38) with s = 3.5. We thus have

‖f‖H1.5 ≤ ‖(I − aT a)∇q‖H2.5 + ‖atv‖H2.5

≤ ‖I − aTa‖H2.5‖q‖H3.5 + ‖at‖H2.5‖v‖H2.5

≤ ǫ‖q‖H3.5 + C‖∇v‖H2.5‖v‖H2.5 (3.41)

and, similarly,

‖g‖H2(Γ1) ≤ ‖I − aT a‖H2.5‖q‖H3.5 + ‖avt‖H2(Γ1)

≤ ǫ‖q‖H3.5 + C‖vt‖H2(Γ1) (3.42)

by using (3.1), (3.2) and part (v) from Lemma 3.1. Also,

‖q‖L2(Γ1) ≤ C‖η‖H2(Γ1) ≤ C‖η‖H2.5 ≤ C. (3.43)

Next, for qt we apply (3.38) for the time differentiated problem (3.36) with s = 2.5. We get

‖ft‖H0.5 ≤ ‖(I − aT a)t∇q‖H1.5 + ‖(I − aT a)∇qt‖H1.5 + ‖attv‖H1.5 + ‖atvt‖H1.5

≤ C‖at‖H1.5+ǫ‖q‖H2.5 + ‖I − aT a‖H1.5+ǫ‖qt‖H2.5 + ‖att‖H1.5‖v‖H1.5+ǫ + ‖at‖H1.5+ǫ‖vt‖H1.5

≤ C‖∇v‖H1.5+ǫ‖q‖H2.5 + ǫ‖qt‖H2.5

+ C(‖∇v‖H1.5‖∇v‖L∞ + ‖∇vt‖H1.5)‖v‖H1.5+ǫ + ‖∇v‖H1.5+ǫ‖vt‖H1.5 , (3.44)
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where we utilized the multiplicative Sobolev inequality and the parts (ii), (vi), and (viii) from Lemma 3.1.

As in (3.43), we have

‖qt‖L2(Γ1) ≤ C‖at‖L4(∂Ω)‖η‖H2.5(∂Ω) + C‖a‖L∞‖ηt‖H2(∂Ω) ≤ C‖v‖H2.5 . (3.45)

Lastly, we consider the twice differentiated in time system (3.34). First, we rewrite it as

∂m
(
(ami aki )∂kq

)
= ∂ta

m
i ∂mvi (3.46)

while the boundary condition (3.35) is

ami aki ∂kqNm = −ami ∂tv
iNm. (3.47)

The twice differentiated system then reads

∂m
(
(ami aki )∂kqtt

)
= −∂m

(
∂tt(a

m
i aki )∂kq

)
− 2∂m

(
∂t(a

m
i aki )∂kqt

)
+ ∂m(∂tt(∂ta

m
i vi)) (3.48)

with the boundary condition

ami aki ∂kqttNm = −∂tt(a
m
i aki )∂kqNm − 2∂t(a

m
i aki )∂kqtNm − ∂tt(a

m
i ∂tv

iNm). (3.49)

Applying the inequality (3.30), we obtain

‖qtt‖H1 ≤ C
∑

m

‖∂tt(a
m
i aki )∂kq‖L2 + C

∑

m

‖∂t(a
m
i aki )∂kqt‖L2 + C

∑

m

‖∂tt(∂ta
m
i vi)‖L2

+ C‖∂tt(a
m
i ∂tv

iNm + ∂ta
m
i viNm)‖H−1/2(∂Ω) + C‖qtt‖L2(Γ1)

= I1 + I2 + I3 + I4 + I5. (3.50)

In order to estimate the last term I5 in (3.50), we use (2.11), which, when rewritten as

Niq = (δki − aki )qNk −∆2η
i (3.51)

on Γ1, leads to

q = (1− a33)q −∆2η
3 on Γ1. (3.52)

Therefore,

‖q‖L4(Γ1) ≤ C‖η‖H3 ≤ C (3.53)

by Lemma 3.1. Using (3.45) and (3.52)

‖qtt‖L2(Γ1) ≤ C‖∂tta
3
3q‖L2(Γ1) + C‖∂ta

3
3∂tq‖L2(Γ1) + C‖vt‖H2(Γ1)

≤ C‖att‖L4(Γ1)‖q‖L4(Γ1) + C‖∂ta
3
3∂tq‖L2(Γ1) + C‖vt‖H2(Γ1). (3.54)

In order to estimate the first term on the far right side, we use

‖att‖L4(Γ1) ≤ C‖att‖H1(Ω) ≤ C‖∇v‖2H5/4 + C‖∇vt‖H1 . (3.55)
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Replacing this inequality in (3.54), we get

‖qtt‖L2(Γ1) ≤ C‖∇v‖2H5/4 + C‖∇vt‖H1 + C‖at‖L∞‖v‖H2.5 + C‖vt‖H2.5

≤ C‖∇v‖2H5/4 + C‖∇vt‖H1 + C‖at‖L∞‖v‖H2.5 + C‖vt‖H2.5

≤ C‖v‖
3/2
H2 ‖v‖

1/2
H3 + C‖∇vt‖H1 + C‖at‖L∞‖v‖H2.5 + C‖vt‖H2.5 . (3.56)

In order to bound I4, we write

I4 = C‖∂ttt(a
m
i vi)Nm‖H−1/2(∂Ω) ≤ C

∑

m

‖∂ttt(a
m
i vi)‖L2(Ω) (3.57)

the last inequality following from ∂m(ami vi) = 0. Therefore,

I1 + I2 + I3 + I4

≤ C‖(aT a)tt∇q‖L2 + C‖(aT a)t∇qt‖L2 + C‖atttv‖L2 + C‖attvt‖L2 + C‖atvtt‖L2 + C‖avttt‖L2

≤ C(‖∇v‖H0.5‖∇v‖L∞ + ‖∇vt‖H0.5)‖∇q‖H1 + C‖∇v‖L∞‖∇qt‖L2

+ ‖attt‖L3‖v‖L6 + C(‖∇v‖H0.5‖∇v‖L∞ + ‖∇vt‖H0.5)‖vt‖H1 + C‖∇v‖L∞‖vtt‖L2 + C‖vttt‖L2 .
(3.58)

The third term on the far right side is then estimated as

‖attt‖L3‖v‖L6 ≤ C(‖∇v‖L3‖∇v‖2L∞ + ‖∇vt‖L3‖∇v‖L∞ + ‖∇vtt‖L3)‖v‖H1 (3.59)

and (3.33) follows. �

4 Local in time solutions

4.1 L
2 estimate on vttt

Applying ∂3
t to (2.4), multiplying the resulting equation by vttt, and integrating in space and time gives

1

2
‖vttt(t)‖

2
L2 =

1

2
‖vttt(0)‖

2
L2 −

∫ t

0

∫
(aki ∂kq)tttv

i
ttt =

1

2
‖vttt(0)‖

2
L2 −

∫ t

0

∫
∂k(a

k
i q)tttv

i
ttt (4.1)

where we utilized the Piola identity

∂ka
k
i = 0, i = 1, 2, 3. (4.2)

In order to bound the integral on the right side, we integrate by parts,

−

∫ t

0

∫
∂k(a

k
i q)tttv

i
ttt = −

∫ t

0

∫

∂Ω

(aki q)tttv
i
tttNk +

∫ t

0

∫
(aki q)ttt∂kv

i
ttt = I1 + I2. (4.3)

Since v3 = 0 on Γ0, we have ∂̄v3 = 0, where

∂̄ = (∂1, ∂2) (4.4)
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and v3ttt = 0 on Γ0. Also, ∂̄η
3 = 0 on Γ0, which implies that a31 = a32 = 0 on Γ0. As a consequence,

∫ t

0

∫

Γ0

(aki q)tttv
i
tttNk =

∫ t

0

∫

Γ0

(a3i q)tttv
i
ttt = 0. (4.5)

Thus, for the boundary term in (4.3), we obtain

I1 = −

∫ t

0

∫

Γ1

(aki qNk)tttv
i
ttt =

∫ t

0

∫

Γ1

∆2η
i
tttv

i
ttt = −

1

2
‖∂̄vtt(t)‖

2
L2(Γ1)

+
1

2
‖∂̄vtt(0)‖

2
L2(Γ1)

(4.6)

by using (2.7), (2.11), and integrating by parts in the tangential direction.

Now, we bound the second integral

I2 =

∫ t

0

∫
aki qttt∂kv

i
ttt + 3

∫ t

0

∫
(aki )tqtt∂kv

i
ttt + 3

∫ t

0

∫
(aki )ttqt∂kv

i
ttt +

∫ t

0

∫
(aki )tttq∂kv

i
ttt

= I21 + I22 + I23 + I24. (4.7)

Using the incompressibility condition to write

aki ∂kv
i
ttt = (aki ∂kv

i)ttt − 3(aki )t∂kv
i
tt − 3(aki )tt∂kv

i
t − (aki )ttt∂kv

i

= −3(aki )t∂kv
i
tt − 3(aki )tt∂kv

i
t − (aki )ttt∂kv

i, (4.8)

we get

I21 = −

∫ t

0

∫
3(aki )tt∂kv

i
tqttt −

∫ t

0

∫
3(aki )t∂kv

i
ttqttt −

∫ t

0

∫
(aki )ttt∂kv

iqttt = I211 + I212 + I213. (4.9)

For I211 we integrate by parts in time:

I211 = −3

∫
(aki )tt∂kv

i
tqtt

∣∣t
0
+ 3

∫ t

0

∫
∂t
(
(aki )tt∂kv

i
t

)
qtt

≤ C‖att(0)‖L2‖∇vt(0)‖L3‖qtt(0)‖L6 + C‖att(t)‖L2‖∇vt(t)‖L3‖qtt(t)‖L6

+ C

∫ t

0

‖attt‖L3‖∇vt‖L6‖qtt‖L2 + C

∫ t

0

‖att‖L6‖∇vtt‖L3‖qtt‖L2

≤ P (‖v0‖H3.5) + C‖att(t)‖L2‖∇vt(t)‖L3‖qtt(t)‖L6

+

∫ t

0

P (‖qtt‖L2 , ‖vtt‖H1.5 , ‖vt‖H2 , ‖v‖H3.5). (4.10)

Integrating by parts I212 = −3
∫
(aki )t∂kv

i
ttqttt in space, we have

I212 = −3

∫ t

0

∫

∂Ω

(aki )tv
i
ttqtttNk + 3

∫ t

0

∫
(aki )tv

i
tt∂kqttt = I2121 + I2122 (4.11)

where we used (4.2). Observe that

I2121 = 3

∫ t

0

∫

Γ1

aji∂jv
lakl v

i
ttqtttNk

= −3

∫ t

0

∫

Γ1

aji∂jv
l∆2η

l
tttv

i
tt −

∫ t

0

∫

Γ1

(
3(akl )tqttNk + 3(akl )ttqtNk + (akl )tttqNk

)
aji∂jv

lvitt (4.12)
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by using (2.6) in the first and (2.11) in the second equality; also note that the integral over Γ0 vanishes.

Integrating by parts in the tangential directions, we obtain

−3

∫ t

0

∫

Γ1

aji∂jv
l∆2η

l
tttv

i
tt = 3

2∑

k=1

∫ t

0

∫
∂kη

l
ttt∂k(a

j
i∂jv

lvitt) ≤ C

∫ t

0

P (‖vtt‖H1.5 , ‖v‖H3), (4.13)

while the lower order terms are bounded as

−

∫ t

0

∫

Γ1

(3(akl )tqttNk + 3(akl )ttqtNk + (akl )tttqNk)a
j
i∂jv

lvitt

≤

∫ t

0

P (‖qtt‖H1 , ‖vtt‖H1.5 , ‖v‖H3.5 , ‖qt‖H1.5 , ‖vt‖H2 , ‖q‖H2.5). (4.14)

Next, integrating by parts in time gives

I2122 = 3

∫
(aki )tv

i
tt∂kqtt

∣∣∣
t

0
− 3

∫ t

0

∫
(aki )ttv

i
tt∂kqtt − 3

∫ t

0

∫
(aki )tv

i
ttt∂kqtt

≤ P (‖v0‖H3.5) + C‖qtt(t)‖H1‖vtt(t)‖L3‖∇v(t)‖L6

+

∫ t

0

P (‖qtt‖H1 , ‖vttt‖L2 , ‖vtt‖H1 , ‖vt‖H1.5 , ‖v‖H3). (4.15)

By (2.6) and integrating by parts in time we have

I213 =

∫ t

0

∫
aji∂jv

l
tta

k
l ∂kv

iqttt +R. (4.16)

Until the end of this paper, we denote by R the remainder terms. In (4.16), the lower order terms are of

the form
∫ t

0

∫
(att∇va+ at∇vat + at∇vta)∇vqttt, (4.17)

(written in a symbolic way, omitting all the indices) which can be bounded by

R ≤ P (‖v0‖H3.5) + P (‖v(t)‖H3 , ‖qtt(t)‖H1)‖vt(t)‖H1.5 (4.18)

+

∫ t

0

P (‖qtt‖H1 , ‖v‖H3 , ‖vt‖H1.5 , ‖vtt‖H1.5) dt

after integrating by parts in time. Integrating by parts in space, the leading term of (4.16) becomes

∫ t

0

∫
aji∂jv

l
tta

k
l ∂kv

iqttt

= −

∫ t

0

∫
ajiv

l
tta

k
l ∂jkv

iqttt −

∫ t

0

∫
ajiv

l
tta

k
l ∂kv

i∂jqttt −

∫ t

0

∫
ajiv

l
tt∂ja

k
l ∂kv

iqttt

+

∫ t

0

∫

Γ1

ajiv
l
tta

k
l ∂kv

iqtttNj

= I2131 + I2132 + I2133 + I2134, (4.19)

where we have omitted the term when the j-th derivatives fall on aji which equals to zero by (4.2). First,

observe that the boundary term I2134 can be treated exactly as I2121 above. Now, using aji∂jkv
i =

12



−∂ka
j
i∂jv

i for k = 1, 2, 3, we write

I2131 = −

∫ t

0

∫
∂ka

j
iv

l
tta

k
l ∂jv

iqttt

= −

∫
∂ka

j
iv

l
tta

k
l ∂jv

iqtt

∣∣∣
t

0
+

∫ t

0

∫
(∂ka

j
iv

l
tta

k
l ∂jv

i)tqtt

≤ P (‖v0‖H3.5) + C‖qtt(t)‖L6‖vtt(t)‖L2‖∇v(t)‖L3 ,

+

∫ t

0

P (‖qtt‖H1 , ‖vttt‖L2 , ‖vtt‖H1 , ‖vt‖H1.5 , ‖v‖H3), (4.20)

while

I2132 = −

∫
ajiv

l
tta

k
l ∂kv

i∂jqtt

∣∣∣
t

0
+

∫ t

0

∫
(ajiv

l
tta

k
l ∂kv

i)t∂jqtt

≤ P (‖v0‖H3.5) + C‖qtt(t)‖H1‖vtt(t)‖L3‖∇v(t)‖L6

+

∫ t

0

P (‖qtt‖H1 , ‖vttt‖L2 , ‖vtt‖H1 , ‖vt‖H1.5 , ‖v‖H3). (4.21)

Note that the lower order term I2133 is also bounded by the right side of (4.21). For I22 we integrate by

parts in space

I22 = 3

∫ t

0

∫

Γ1

∂ta
k
i qttv

i
tttNk − 3

∫ t

0

∫
(aki )t∂kqttv

i
ttt

= −3

∫ t

0

∫

Γ1

(aji∂jv
lakl )qttv

i
tttNk − 3

∫ t

0

∫
(aki )t∂kqttv

i
ttt

= 3

∫ t

0

∫

Γ1

(
aji∂jv

l∆2η
l
ttv

i
ttt + aji∂jv

l((akl )ttq + 2(akl )tqt)Nkv
i
ttt

)
− 3

∫ t

0

∫
(aki )t∂kqttv

i
ttt

= I221 + I222. (4.22)

We denote the first boundary term in I221 by I2211. The other two terms in I221 are easy to bound.

Integrating by parts in the tangential directions, we get

I2211 = −3

∫ t

0

∫

Γ1

aji∂jv
l∂̄vlt∂̄v

i
ttt − 3

∫ t

0

∫

Γ1

∂̄(aji∂jv
l)∂̄vltv

i
ttt (4.23)

which after an additional integration by parts in time leads to

I2211 = −3

∫

Γ1

(
aji∂jv

l∂̄vlt∂̄v
i
tt + ∂̄(aji∂jv

l)∂̄vltv
i
tt

) ∣∣∣
t

0
+ 3

∫ t

0

∫

Γ1

(aji∂jv
l∂̄vlt)t∂̄v

i
tt + (∂̄(aji∂jv

l)∂̄vlt)tv
i
tt.

(4.24)

Thus,

I2211 ≤ P (‖v(0)‖H3.5) + C‖vtt(t)‖H1.5‖vt(t)‖H2‖v(t)‖H2.5 +

∫ t

0

P (‖vtt‖H1.5 , ‖vt‖H2.5 , ‖v‖H3). (4.25)

Next, for I23 we proceed as in I22 by first integrating by parts in space

I23 = −3

∫ t

0

∫

Γ1

(aji∂jv
lakl )tqtv

i
tttNk − 3

∫ t

0

∫
(aki )tt∂kqtv

i
ttt

= 3

∫ t

0

∫

Γ1

aji∂jv
l
t∆2η

l
tv

i
ttt +R− 3

∫ t

0

∫
(aki )tt∂kqtv

i
ttt, (4.26)
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where the remainder term

R = −3

∫ t

0

∫

Γ1

(aji )t∂jv
lakl qtv

i
tttNk − 3

∫ t

0

∫

Γ1

aji∂jv
l(akl )tqtv

i
tttNk + 3

∫ t

0

∫

Γ1

aji∂jv
l
t(a

k
l )tqv

i
tttNk (4.27)

is bounded by

R ≤ P (‖v(0)‖H3.5) + C‖qt(t)‖H2.5‖vtt(t)‖H1.5‖v(t)‖2H2.5

+ C‖q(t)‖H1.5‖vtt(t)‖H1.5‖vt(t)‖H1.5‖v(t)‖H2.5

+

∫ t

0

P (‖qtt‖H1 , ‖qt‖H1.5 , ‖q‖H2.5 , ‖vtt‖H1.5 , ‖vt‖H2.5 , ‖v‖H3). (4.28)

The first boundary term on the far right sides in (4.26) can be bounded similarly as I2211 above, by

integrating by parts in time. We omit further details.

Lastly, we consider I24. We use that (aki )ttt = (aji∂jv
lakl )tt = aji∂jv

l
tta

k
l + l.o.t., where the lower order

terms are of the form att∇va, at∇vta, at∇vat (and the resulting integrals are clearly easy to bound).

Thus, we estimate only the leading term in I24. We have

I24 =

∫ t

0

∫
aji∂jv

l
tta

k
l ∂kv

i
tttq +R (4.29)

and observe that

∂t

(
aji∂jv

l
tta

k
l ∂kv

i
tt

)
= aji∂jv

l
tta

k
l ∂kv

i
ttt + aji∂jv

l
ttta

k
l ∂kv

i
tt + (aji )t∂jv

l
tta

k
l ∂kv

i
tt + aji∂jv

l
tt(a

k
l )t∂kv

i
tt

= 2aji∂jv
l
tta

k
l ∂kv

i
ttt + 2(aji )t∂jv

l
tta

k
l ∂kv

i
tt. (4.30)

Hence,

I24 =
1

2

∫
aji∂jv

l
tta

k
l ∂kv

i
ttq

∣∣∣
t

0
−

1

2

∫ t

0

∫
aji∂jv

l
tta

k
l ∂kv

i
ttqt −

∫ t

0

∫
(aji )t∂jv

l
tta

k
l ∂kv

i
ttq + l.o.t.

≤ P (‖v0‖H3.5) + C‖vtt(t)‖H1.5‖vtt(t)‖H1‖q(t)‖H1

+

∫ t

0

P (‖vtt‖H1 , ‖vt‖H2 , ‖v‖H3 , ‖qt‖H2 , ‖q‖H2). (4.31)

Therefore, we conclude

‖vttt(t)‖
2
L2 + ‖∂̄vtt(t)‖

2
L2(Γ1)

≤ P (‖v(0)‖H3.5) + ǫ(‖vtt(t)‖
2
H1.5 + ‖qtt(t)‖

2
H1)

+

∫ t

0

P (‖vttt‖L2 , ‖vtt‖H1.5 , ‖vt‖H2.5 , ‖v‖H3 , ‖qtt‖H1 , ‖qt‖H2 , ‖q‖H2). (4.32)

4.2 Tangential H1 estimate on vtt

Applying ∂m∂2
t to the equation (2.4), multiplying by ∂mvtt, summing for m = 1, 2, and integrating in

space and time, we get

1

2
‖∂̄vtt(t)‖

2
L2 =

1

2
‖∂̄vtt(0)‖

2
L2 −

∫ t

0

∫
∂m(aki ∂kq)tt∂mvitt

=
1

2
‖∂̄vtt(0)‖

2
L2 −

∫ t

0

∫
aki ∂kmqtt∂mvitt +R. (4.33)
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Here and in the next section, for simplicity of notation, we modify the summation convention for repeated

indices in m with m = 1, 2 (while other indices are still summed for 1, 2, 3). Note that the remainder

term R on the right of (4.33) is bounded by

R = −

∫ t

0

∫ (
∂m(aki )tt∂kq + (aki )tt∂kmq + 2∂m(aki )t∂kqt + 2(aki )t∂kmqt + ∂maki ∂kqtt

)
∂mvitt

≤

∫ t

0

P (‖vtt‖H1 , ‖vt‖H2.5 , ‖v‖H3 , ‖qtt‖H1 , ‖qt‖H2 , ‖q‖H2.5). (4.34)

Now, we integrate by parts in the higher order term

−

∫ t

0

∫
aki ∂kmqtt∂mvitt = −

∫ t

0

∫

∂Ω

aki ∂mqtt∂mvittNk +

∫ t

0

∫
aki ∂mqtt∂kmvitt = I1 + I2. (4.35)

For I1, the integral over Γ0 vanishes, while on Γ1 we use

aki ∂mqttNk = ∂m∂tt(a
k
i qNk)− ∂m((aki )ttqNk)− 2∂m((aki )tqtNk)− ∂maki qttNk (4.36)

(to check this, write ∂m(aki qttNk) = aki ∂mqttNk + ∂maki qttNk and rewrite the second term) and get

I1 =

∫ t

0

∫

Γ1

∆2∂mηtt∂mvitt +

∫ t

0

∫

Γ1

(
∂m((aki )ttq) + 2∂m((aki )tqt) + ∂maki qtt

)
∂mvittNk

= −
1

2
‖∂̄2vt(t)‖

2
L2(Γ1)

+
1

2
‖∂̄2vt(0)‖

2
L2(Γ1)

+

+

∫ t

0

∫

Γ1

(
∂m((aki )ttq) + 2∂m((aki )tqt) + ∂maki qtt

)
∂mvittNk, (4.37)

and the last term on the right side can be bounded by

∫ t

0

P (‖vtt‖H1.5 , ‖qtt‖H1 , ‖qt‖H1.5 , ‖vt‖H2.5 , ‖q‖H2.5 , ‖v‖H3.5). (4.38)

For I2, we use the divergence free condition to write

aki ∂kmvitt = −∂maki ∂kv
i
tt − ∂m(2(aki )t∂kv

i
t + (aki )tt∂kv

i). (4.39)

Thus, we obtain

I2 = −

∫ t

0

∫ (
∂maki ∂kv

i
tt + ∂m

(
2(aki )t∂kv

i
t + (aki )tt∂kv

i
))

∂mqtt

≤

∫ t

0

P (‖qtt‖H1 , ‖vtt‖H1.5 , ‖vt‖H2 , ‖v‖H3). (4.40)

We conclude

‖∂̄vtt(t)‖
2
L2 + ‖∂̄2vt(t)‖

2
L2(Γ1)

≤ ‖∂̄2vt(0)‖
2
L2(Γ1)

+

∫ t

0

P (‖vtt‖H1.5 , ‖qtt‖H1 , ‖qt‖H2 , ‖vt‖H2.5 , ‖q‖H2.5 , ‖v‖H3.5). (4.41)
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4.3 Tangential H2 estimate on vt

Applying ∂lm∂t to (2.4), multiplying by ∂lmvt, summing for l,m = 1, 2, and integrating in space and

time, we get

1

2
‖∂̄2vt(t)‖

2
L2 =

1

2
‖∂̄2vt(0)‖

2
L2 −

∫ t

0

∫
∂lm(aki ∂kq)t∂lmvit

=
1

2
‖∂̄2vt(0)‖

2
L2 −

∫ t

0

∫
aki ∂klmqt∂lmvit − l.o.t., (4.42)

where the lower order terms on the right are bounded by
∫ t

0
P (‖vt‖H2 , ‖q‖H3 , ‖v‖H3.5 , ‖qt‖H2.5). Next,

integrating by parts, we get similarly as in the previous section

−

∫ t

0

∫
aki ∂klmqt∂lmvit = −

∫ t

0

∫

∂Ω

aki ∂lmqt∂lmvitNk +

∫ t

0

∫
aki ∂lmqt∂klmvit = I1 + I2, (4.43)

where

I1 =

∫ t

0

∫

∂Ω

∆2∂lmηt∂lmvit − l.o.t.

= −
1

2
‖∂̄3v(t)‖2L2(Γ1)

+
1

2
‖∂̄3v(0)‖2L2(Γ1)

− l.o.t. (4.44)

and, by using the divergence free condition,

I2 ≤

∫ t

0

P (‖qt‖H2 , ‖vt‖H2 , ‖v‖H3). (4.45)

Therefore, we conclude

‖∂̄2vt(t)‖
2
L2 + ‖∂̄3v(t)‖2L2(Γ1)

≤ ‖∂̄3v(0)‖2L2(Γ1)
+

∫ t

0

P (‖vt‖H2 , ‖q‖H3 , ‖v‖H3.5 , ‖qt‖H2.5). (4.46)

4.4 Div-curl estimates

We use the elliptic estimate (cf. [CoS1, CS])

‖f‖Hs ≤ C‖f‖L2 + C‖ curl f‖Hs−1 + C‖div f‖Hs−1 + C‖f ·N‖Hs−0.5(∂Ω) (4.47)

for s ≥ 1.

We recall that ∂̄vtt ∈ L2(Γ1), so in particular v3tt ∈ H1(Γ1). By (4.47) with s = 1.5, we have

‖vtt‖H1.5 ≤ C‖vtt‖L2 + C‖ curl vtt‖H0.5 + C‖div vtt‖H0.5 + C‖v3tt‖H1(Γ1), (4.48)

where we also used v3tt = 0 on Γ0. Similarly, applying (4.47) with s = 2.5 and s = 3.5 respectively, we

have

‖vt‖H2.5 ≤ C‖vt‖L2 + C‖ curl vt‖H1.5 + C‖div vt‖H1.5 + C‖v3t ‖H2(Γ1) (4.49)
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and

‖v‖H3.5 ≤ C‖v‖L2 + C‖ curl v‖H2.5 + C‖div v‖H2.5 + C‖v3‖H3(Γ1). (4.50)

The first term on the right side of (4.48) (same for (4.49) and (4.50)) is of lower order and can be written

as

‖vtt(t)‖L2 = ‖vtt(0)‖L2 + t1/2
∫ t

0

‖vttt‖L2 . (4.51)

By the multiplicative Sobolev inequality, for div v we have

‖div v‖H2.5 = ‖(δik − aki )∂kv
i‖H2.5 ≤ ǫ‖v‖H3.5 , (4.52)

as well as

‖div vt‖H1.5 = ‖(δik − aki )∂kv
i
t − (aki )t∂kv

i‖H1.5 ≤ ǫ‖vt‖H2.5 + C‖at‖H1.5+δ‖v‖H2.5 (4.53)

and

‖div vtt‖H0.5 = ‖(δik − aki )∂kv
i
tt − 2(aki )t∂kv

i
t − (aki )tt∂kv

i‖H0.5

≤ ǫ‖vtt‖H1.5 + C‖at‖H1.5+δ‖vt‖H1.5 + C‖att‖H0.5‖v‖H2.5+δ . (4.54)

Recall the Cauchy invariance (cf. [KTV] for instance)

ǫijk∂jv
l∂kη

l = curl vi0, i = 1, 2, 3, (4.55)

for t ≥ 0, where ǫijk is the antisymmetric tensor defined by ǫ123 = 1 with ǫijk = −ǫjik and ǫijk = ǫjki.

Thus, we have

(curl v)i = ǫijk∂jv
k = ǫijk∂jv

l(δlk − ∂kη
l) + curl vi0, (4.56)

where

δlk − ∂kη
l = −

∫ t

0

∂kη
l
t = −

∫ t

0

∂kv
l, k, l = 1, 2, 3, (4.57)

which implies

‖ curl v‖H2.5 ≤ C‖v‖H3.5

∫ t

0

‖v‖H3.5 + ‖ curl v0‖H2.5 . (4.58)

Differentiating (4.55) in time, we have

0 = (ǫijk∂jv
l∂kη

l)t = ǫijk∂jv
l
t∂kη

l + ǫijk∂jv
l∂kη

l
t, (4.59)

where the second term on the right vanishes because it is equal to ǫijk∂jv
l∂kv

l and ǫijk = −ǫikj . Thus,

we also get

ǫijk∂jv
l
t∂kη

l = 0 (4.60)

17



from where

(curl vt)
i = ǫijk∂jv

k
t = ǫijk∂jv

l
t(δlk − ∂kη

l). (4.61)

Therefore,

‖ curl vt‖H1.5 ≤ C‖∇vt‖H1.5‖I −∇η‖H1.5+δ ≤ C‖vt‖H2.5

∫ t

0

‖v‖H2.5+δ . (4.62)

Differentiating (4.60), using (2.7), and rearranging the terms in the equality, we obtain

ǫijk∂jv
l
tt∂kη

l = −ǫijk∂jv
l
t∂kv

l. (4.63)

Then, we may write

(curl vtt)
i = ǫijk∂jv

k
tt = ǫijk∂jv

l
tt(δlk − ∂kη

l)− ǫijk∂jv
l
t∂kv

l, (4.64)

from where

‖ curl vtt‖H0.5 ≤ C‖vtt‖H1.5

∫ t

0

‖v‖H2.5+δ + C‖vt‖H1.5‖v‖H2.5+δ . (4.65)

Now, we gather the div-curl inequalities to obtain Sobolev estimates on v, vt, and vtt. Namely, we have

‖v‖H3.5 ≤ C(‖v(0)‖L2 + ‖ curl v0‖H2.5) + t1/2
∫ t

0

‖vt‖L2

+ C‖v‖H3.5

∫ t

0

‖v‖H3.5 + C‖v3‖H3(Γ1) (4.66)

and

‖vt‖H2.5 ≤ C‖vt(0)‖L2 + Ct1/2
∫ t

0

‖vtt‖L2

+ C‖vt‖H2.5

∫ t

0

‖v‖H2.5+δ + C‖at‖H1.5+δ‖v‖H2.5 + C‖v3t ‖H2(Γ1). (4.67)

Finally,

‖vtt‖H1.5 ≤ C‖vtt(0)‖L2 + Ct1/2
∫

‖vttt‖L2 + C‖vtt‖H1.5

∫ t

0

‖v‖H2.5+δ + C‖vt‖H1.5‖v‖H2.5+δ

+ C‖at‖H1.5+δ‖vt‖H1.5 + C‖att‖H0.5‖v‖H2.5+δ + C‖v3tt‖H1(Γ1). (4.68)

5 Closing the estimates

Squaring the estimate (4.66) and using (4.46) for the bound of ‖v3‖H3(Γ1), we have

‖v‖2H3.5 ≤ P (‖v0‖H3.5) + C‖v‖2H3.5

∫ t

0

‖v‖2H3.5 +

∫ t

0

P (‖vt‖H2 , ‖q‖H3 , ‖v‖H3.5 , ‖qt‖H2.5). (5.1)

By the pressure estimate (3.31),

‖q‖H3.5 ≤ C(‖v‖H3.5 + 1)

(
‖v0‖H2.5 + C

∫ t

0

‖vt‖H2.5

)
+ C‖vt‖H2(Γ1). (5.2)
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This, combined with (4.41) for the bound of ‖vt‖H2(Γ1), gives

‖q‖2H3.5 ≤ P (‖v0‖H3.5) + C‖v‖2H3.5

(
‖v0‖

2
H2.5 + C

∫ t

0

‖vt‖
2
H2.5

)

+

∫ t

0

P (‖vtt‖H1.5 , ‖qtt‖H1 , ‖qt‖H2 , ‖vt‖H2.5 , ‖q‖H2.5 , ‖v‖H3.5). (5.3)

Similarly, squaring (4.67) and using (4.41),

‖vt‖
2
H2.5 ≤ P (‖v0‖H3.5) + C‖vt‖

2
H2.5

∫ t

0

‖v‖2H2.5+δ + C‖v‖2H2.5+δ (‖v0‖
2
H2.5 +

∫ t

0

‖vt‖
2
H2.5)

+

∫ t

0

P (‖vtt‖H1.5 , ‖qtt‖H1 , ‖qt‖H2 , ‖vt‖H2.5 , ‖q‖H2.5 , ‖v‖H3.5), (5.4)

while combining the square of the estimate (3.32),

‖qt‖
2
H2.5 ≤ C‖v‖2H2.5+δ

(
P (‖v0‖H3.5) + C

∫ t

0

(‖vtt‖
2
H1.5 + ‖qt‖

2
H2.5)

)
+ C‖v‖2H2.5 + C‖vt‖

2
H2.5

+ C(‖v‖4H2.5+δ + ‖vt‖
2
H2.5)(‖v0‖

2
H1.5+δ +

∫ t

0

‖vt‖
2
H1.5+δ) + C‖vtt‖

2
H1(Γ1)

(5.5)

(4.32) and (5.4), we obtain

‖qt‖
2
H2.5 ≤ P (‖v(0)‖H3.5) + Cǫ(‖vtt‖

2
H1.5 + ‖qtt‖

2
H1 + ‖v‖2H3.5)

+ P (‖vt‖H2.5 , ‖v‖H2.5+δ )

∫ t

0

P (‖v‖H2.5+δ , ‖vt‖H2.5)

+

∫ t

0

P (‖qtt‖H1 , ‖vttt‖L2 , ‖v‖H3.5 , ‖vtt‖H1.5 , ‖vt‖H2.5 , ‖qt‖H2 , ‖q‖H2). (5.6)

Lastly, squaring (4.68) and using (4.32),

‖vtt‖
2
H1.5 ≤ P (‖v(0)‖H3.5) + Cǫ(‖vtt‖

2
H1.5 + ‖qtt‖

2
H1 + ‖v‖2H3.5)

+ C‖vtt‖
2
H1.5

∫ t

0

‖v‖2H2.5+δ + C‖v‖2H2.5+δ

∫ t

0

P (‖vtt‖H1.5 , ‖vt‖H2.5)

+

∫ t

0

P (‖qtt‖H1 , ‖vttt‖L2 , ‖v‖H3.5 , ‖vtt‖H1.5 , ‖vt‖H2.5 , ‖qt‖H2 , ‖q‖H2), (5.7)

while squaring (3.33) and (4.32) give

‖qtt‖
2
H1 ≤ P (‖v(0)‖H3.5) + Cǫ(‖vtt‖

2
H1.5 + ‖qtt‖

2
H1 + ‖v‖2H3.5) + C‖vtt‖

2
H1.5(‖v0‖

2
H1 +

∫ t

0

‖vt‖
2
H1)

+ P (‖v‖H3.5 , ‖vt‖H2.5)

∫ t

0

P (‖qtt‖H1 , ‖vttt‖L2 , ‖qt‖H2 , ‖vtt‖H1 , ‖vt‖H2.5 , ‖v‖H3.5)

+

∫ t

0

P (‖qtt‖H1 , ‖vttt‖L2 , ‖v‖H3.5 , ‖vtt‖H1.5 , ‖vt‖H2.5 , ‖qt‖H2 , ‖q‖H2). (5.8)

Combining all the estimates, we obtain a Gronwall type inequality yielding the a priori estimates for the

local in time existence.
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