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Abstract. We prove global existence of weak solutions to two systems of equations which
extend the dynamics of the Navier-Stokes equations for incompressible viscous flow with no-slip
boundary condition. The systems of equations we consider arise as formal limits of time discrete
pressure-Poisson schemes introduced by Johnston & Liu [J. Comput. Phys. 199, 221–259, 2004] and
by Shirokoff & Rosales [J. Comput. Phys. 230, 8619–8646, 2011] when the initial data does not satisfy
the required compatibility condition. Unlike the results of Iyer et al. [J. Math. Phys. 53, 115605,
2012], our approach proves existence of weak solutions in domains with less than C1 regularity. Our
approach also addresses uniqueness in 2D and higher regularity.
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1. Introduction

The pressure in incompressible fluids is a recurring source of difficulty in theory
and numerics alike. Formally, the pressure is a Lagrange multiplier that preserves
incompressibility, and when studying well-posedness it is usually “projected out” and
eventually recovered from the velocity field using the incompressibility constraint
(see [10]). This paper studies two systems of equations that extend the incompressible
Navier-Stokes equations by specifying an explicit equation for the pressure. Both
systems arose in a numerical context (see [9, 16]) in order to propose a time-discrete
pressure-Poisson scheme (see [7]) aiming to be both efficient and accurate in domains
with boundary.

For clarity of presentation, we focus this introduction on the system in [9], defer-
ring the discussion of the system in [16] to Section 5. The formal time-continuous limit
of the time-discrete scheme proposed in [9] turns out to be one of several “reduced”
models studied by Grubb and Solonnikov [5, 6]. Explicitly, the system of interest is

∂tu+P[(u ·∇)u]−ν∆u+ν∇ps=Pf in Ω, (1.1)

u =0 on ∂Ω, (1.2)

u
∣∣
t=0

=u0 in Ω, (1.3)
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where ps, the Stokes pressure, satisfies
{ −∆ps=0 in Ω,

n ·∇ps=(∆u−∇∇·u) ·n on ∂Ω.
(1.4)

Here ν >0 is the viscosity, P is the Leray projection, and f is the (given) external
forcing. As shown in [11], the Stokes pressure is alternatively represented by the
formulae

∇ps=(I−P)(∆u−∇∇·u)=(∆P−P∆)u. (1.5)

Thus we can recast the equation (1.1) as

∂tu+P(u ·∇u−f)=ν(P∆u+∇∇·u) in Ω. (1.1′)

Note the presence of the extra, stabilizing term, ∇∇·u, appearing on the right. (For
more details see [11].)

When the compatibility condition ∇·u0=0 is imposed on the initial data, the
above system reduces exactly to the incompressible Navier-Stokes equations. To see
this, note that ∇·u satisfies the heat equation with Neumann boundary conditions:





∂t∇·u=ν∆∇·u in Ω,

n ·∇∇·u=0 on ∂Ω,

∇·u
∣∣
t=0

=∇·u0 in Ω.

(1.6)

Here n denotes the outward-pointing unit normal on ∂Ω. The evolution equa-
tion (1.6)1 and initial condition (1.6)3 follow by taking the divergence of (1.1′) and
(1.3) respectively. The boundary condition (1.6)2 follows by taking the normal trace
of (1.1′) on ∂Ω and using (1.2).

Uniqueness for (1.6) now implies that if ∇·u0≡0 then ∇·u≡0, showing that
(1.1′) exactly reduces to the standard, incompressible Navier-Stokes equations as
claimed. On the other hand, if ∇·u0 is non-zero initially then (1.1′) extends the
dynamics of the incompressible Navier-Stokes equations in a manner that damps the
divergence exponentially in time.

This paper primarily deals with global existence of solutions to (1.1′), (1.2), (1.3).
Local well-posedness for strong solutions was proved by Grubb and Solonnikov [5, 6]
based on a theory of pseudo-differential initial-boundary value problems, and more
recently in [11] using a novel commutator estimate. The techniques used in [11] were
extended in [8] to also prove some (conditional) global existence results. The results
available so far, however, all assumed a regular (C3) domain and only concerned
strong solutions.

The difficulty in proving the existence of weak solutions to (1.1′) arises, surpris-
ingly, from the linear terms. To elaborate on this, observe that when we multiply (1.1′)
by u and integrate, the linear terms give

−
∫

Ω

u ·
(
P∆u+∇∇·u

)
=−

∫

Ω

Pu ·∆Pu+‖∇·u‖2L2

=‖∇Pu‖2L2 +‖∇·u‖2L2 +

∫

∂Ω

(Pu) · ∂Pu

∂n
. (1.7)

For the standard incompressible Navier-Stokes equations, the no-slip boundary condi-
tion and the incompressibility constraint together guarantee Pu=0 on ∂Ω, ensuring
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that the boundary integral on the right of (1.7) vanishes. In our situation, however, the
boundary integral above provides a high-order contribution without consistent sign.
Thus, while −(P∆+∇∇·) is a positive coercive operator on the space of divergence-
free H1

0 functions, it is neither positive nor coercive with respect to the standard inner
product on H1

0 (see [8, Proposition 2.1]).

The key idea in [8] is to use a commutator estimate to construct a nonstandard
H1-equivalent inner product that makes −(P∆+∇∇·) coercive on the whole space
H1

0 , and use this to prove conditional global existence results. Unfortunately, under
these inner products, the nonlinearity is harder to control; consequently, the results
in [8] are unable to effectively exploit the depletion of the nonlinearity that is available
under the standard L2 inner product. For the standard Navier-Stokes equations the
L2 depletion of the nonlinearity is responsible for the energy inequality, which is
central to almost every global existence result available.

This paper uses a different approach to study well-posedness of (1.1′). The central
idea is to consider the H1

0 (not L2!) orthogonal decomposition of the solution u into
a divergence free part and a remainder. Namely, we write

u=v+z, where ∇·v=0,

∫

Ω

∇v ·∇z=0,

and v,z∈H1
0 . The key observation in our proof is that z is completely determined

by ∇·u, a quantity that is globally determined only from ∇·u0 via (1.6) and is
independent of v. Now the evolution of v is essentially a perturbed Navier-Stokes
equation, which can be analyzed using well-established techniques. In domains with
Lipschitz boundaries, however, one has to tread cautiously.

The advantage of the method used in this paper is that it proves the existence
of global weak solutions of (1.1′), (1.2), (1.3) even in irregular (Lipschitz) domains.
The methods in [8, 11] prove the existence of strong solutions, and require H1

0 initial
data and a C3-domain. In this paper, we prove existence of weak solutions with L2

initial data and either H2 initial divergence and a Lipschitz domain or L2 initial
divergence and a C2 domain. The interest in studying weak solutions and lowering
the regularity requirements of the domain is that numerical simulations are often
performed in piecewise smooth (often polygonal) domains. Such domains cannot be
handled using the techniques in [8, 11] but can be handled using our approach.

We remark, however, that our method does not appear to help in the analysis of
stability and convergence of the time-discrete schemes in [9, 16]. In contrast, both [8]
and [11] (see also [12]) prove a stability result for an associated time-discrete scheme.

Plan of this paper. We begin in Section 2 with the development of our two
main tools, an orthogonal decomposition of vector fields in H1

0 and a lifting from
a given divergence to a vector field in H1

0 . In Section 3 we establish the existence
and, in 2D, uniqueness of weak solutions to the extended Navier-Stokes equations
of (1.1′), giving the higher regularity theory in Section 4. In Section 5 we analyze
another system of equations introduced by Johnston and Liu in [9] and studied by
Shirokoff and Rosales in [16]. This system also extends the Navier-Stokes equations,
though in a manner different from the extended equations in (1.1′). We show how
they can nonetheless be treated using the same key tools of Section 2. In the appendix
we summarize the key facts we use regarding the regularity of solutions to the heat
equations in Lipschitz domains.
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2. An H1
0 orthogonal decomposition and divergence lifting

As mentioned earlier, our main tool to obtain a priori estimates for (1.1′) is to
split u into a divergence-free field v∈H1

0 , and its H1
0 -orthogonal remainder. In this

section we describe this decomposition and a few well-known properties of it.

The H1
0 -orthogonal decomposition. Let Ω be a bounded, connected domain

in Rd, d>2, whose boundary has at least Lipschitz regularity, and let n be the
outward-pointing unit vector normal to the boundary. Let H and V denote the usual
functions spaces (see for instance [2]),

H=
{
v∈L2(Ω): ∇·u=0 and u ·n=0 on ∂Ω

}
, (2.1)

V =
{
v∈H1

0 (Ω): ∇·u=0
}
. (2.2)

Leray’s well known orthogonal projection, P : L2→H, can be explicitly com-
puted by solving Poisson problems. Perhaps less familiar is the orthogonal projection
of H1

0 (Ω) into V , which can be explicitly obtained by solving a stationary Stokes
equation. For this purpose, we use the following lemma.

Lemma 2.1. Let Ω⊂Rd, d=2,3, be a bounded, connected Lipschitz domain, f ∈
H−1(Ω), g∈L2(Ω), and h∈H1/2(∂Ω). Assume that the compatibility condition

∫

Ω

g=

∫

∂Ω

h ·n

holds. Then there exists a solution (z,q) in (H1(Ω),L2(Ω)) to




−∆z+∇q=f in Ω,

∇·z=g in Ω,

z=h on ∂Ω.

(2.3)

The vector field z is unique and q is unique up to an additive constant. Moreover,
normalizing q to have mean zero,

‖z‖H1 +‖q‖L2 6C
(
‖f‖H−1 +‖g‖L2 +‖h‖H1/2(∂Ω)

)
.

Proof. See, for instance, ([4, Exercise IV.1.1]).

Now, given u∈H1
0 (Ω), define z to be the solution of the system





−∆z+∇q=0 in Ω,

∇·z=g in Ω,

z=0 on ∂Ω,

(2.4)

where g=∇·u, and let v=u−z. The existence of z is assured by Lemma 2.1, because
the divergence theorem shows that g satisfies the compatibility condition of that
lemma.

We claim that u=v+z gives the H1
0 -orthogonal decomposition into V and V ⊥.

Lemma 2.1 gives z∈H1
0 , so if u∈H1

0 then we must have both v,z∈H1
0 . Because (2.4)

implies ∇·v=0, we must have v∈V . Using (·, ·) to denote the usual L2-inner product,
observe that

(∇v,∇z)=−(v,∇q)=0,

showing orthogonality of v and z in H1
0 as desired.
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Divergence lifting. Equation (2.4) explicitly determines the component of u in
V ⊥ from only ∇·u. We view this as a “lifting” of the scalar field, g, to the vector
field, z. Lemma 2.1 gave the fundamental existence and regularity result for z, but we
will have need of results for both higher and lower regularity of g. When g is regular
enough (L2) and the boundary smooth enough (C2), this is classical [17, 1]. Under
lower regularity assumptions on g, a situation we encounter in the proof of our main
theorem, we use a duality argument.

Lemma 2.2. Let Ω⊂Rd, d=2,3, be a bounded, connected Lipschitz domain and
g∈L2(Ω) have mean zero. There exists a unique vector field z∈H1

0 (Ω) and a unique,
mean-zero, scalar function q∈L2(Ω) such that (z,q) solve (2.4). There exists a con-
stant c= c(Ω) such that

‖z‖H1 +‖q‖L2 6 c‖g‖L2 . (2.5)

If, further, Ω is C2, then we have

‖z‖L2 6 c‖g‖H̃−1 , (2.6)

where H̃−1(Ω) denotes the dual of H1(Ω). (Note H̃−1(Ω)(H−1(Ω).)
Moreover, if for some integer m>0, Ω is a Cm+2 domain and g∈Hm+1(Ω), then

z∈H1
0 ∩Hm+2(Ω), q∈Hm+1(Ω), and

‖z‖Hm+2 +‖q‖Hm+1 6 c‖g‖Hm+1 . (2.7)

Proof. The existence of a solution to (2.4) and the bound in (2.5) are special
cases of Lemma 2.1. The bound in (2.7) follows from Proposition I.2.3 of [17].

To prove (2.6), let v∈H1
0 , q̃∈L2 with

∫
Ω
q̃=0 solve the Stokes problem,

−∆v+∇q̃= z, ∇·v=0. (2.8)

Regularity of the Stokes operator ([17] Proposition I.2.3) gives

‖v‖H2 +‖∇q̃‖L2 6 c‖z‖L2 . (2.9)

Consequently,

‖z‖2L2 =(z,z)=(z,−∆v+∇q̃)=(∇z,∇v)−(∇·z,q̃)
=(−∇q,v)−(g,q̃)60+‖g‖H̃−1‖q̃‖H1 6 c‖g‖H̃−1‖∇q̃‖L2

6 c‖g‖H̃−1‖z‖L2 .

Observe that our application of the Poincaré inequality to q̃ above is justified because
q̃ has mean zero.

Remark 2.1. In deriving (2.6), it is in only (2.9) where we used the additional
C2-regularity assumption on ∂Ω.

We will need to use the lifting lemma for time-dependent functions. However, the
time dependence is a secondary issue, and the time regularity of g is directly related
to that of its lifting, z. To see this it suffices to note that the map that associates to
g the z defined as the solution of (2.4) is a linear map, and thus standard arguments
will give the following lemma.
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Lemma 2.3. Let Ω⊂Rd, d=2,3, be a bounded Cm+1 domain, for m∈N. Assume
that g lies in Lp(0,T ;Hm), p in [1,∞], and that g(t) has total mass zero for almost
all t in [0,T ]. Let (z,q) be the unique solution to (2.4) given by Lemma 2.2 for almost
all times in [0,T ]. Then we have

‖z‖Lp(0,T ;Hm+1)+‖q‖Lp(0,T ;Hm)6C‖g‖Lp(0,T ;Hm).

If ∂tg lies in Lp(0,T ;Hm), and has total mass zero for almost all times in [0,T ], then

‖∂tz‖Lp(0,T ;Hm+1)+‖∂tq‖Lp(0,T ;Hm)6C‖∂tg‖Lp(0,T ;Hm).

Moreover if g∈C([0,T ];Hm) and has total mass zero for every time, then z∈
C([0,T ];Hm+1) and

‖z‖C([0,T ];Hm+1)+‖q‖Lp(0,T ;Hm)6C‖g‖Lp(0,T ;Hm).

For m=0, in order to have the results above it suffices to assume that Ω is Lipschitz.

3. Global existence of weak solutions

Identifying V with its dual V ′, one usually defines weak solutions to the standard
(incompressible) Navier-Stokes equations by only using elements of V as test func-
tions. This of course has the added advantage of completely eliminating the pressure
from the equations. For the extended dynamics, however, the velocity field u is not in-
compressible, but only an element in H1

0 . At first sight, one would expect the natural
definition of weak solutions to involve testing against arbitrary H1

0 functions. Unfor-
tunately, this poses a few problems. Suppose that u∈H1

0 ∩H2 and ϕ∈H1
0 . Using 〈·, ·〉

to denote the dual pairing between V ′ and V , one has

〈P∆u,ϕ〉= 〈∆u,Pϕ〉

as before; now, however, Pϕ 6=ϕ so Pϕ need not vanish on the boundary. This would
force us to introduce into the weak formulation an unwanted boundary integral. Thus,
it is still advantageous to use functions from V as our space of test functions. This,
of course, will only recover the incompressible dynamics. For the remainder, we use
the weak form of the heat equation for the divergence.

Definition 3.1. Let u0∈L2(Ω) be such that ∇·u∈L2(Ω) and u ·n=0 on ∂Ω. We
say that u is a weak solution of the extended Navier-Stokes equation (1.1′) with initial
data u0 if u(0)=u0,

u∈C([0,T ];V ′)∩L2(0,T ;H1
0 ), ∂tu∈L1(0,T ;V ′),

∇·u∈C([0,T ];L2)∩L2(0,T ;H1),

and

d

dt
(u,ϕ)+((u ·∇)u,ϕ)=−ν(∇u,∇ϕ)+〈f,ϕ〉, (3.1)

d

dt
(∇·u,q)=−ν(∇∇·u,∇q), (3.2)

for every test function ϕ∈V , and every test function q∈H1. The time derivatives in
(3.1) and (3.2) are weak distributional derivatives.
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Remark 3.1. By ∂tu in Definition 3.1 we mean the weak time derivative of u (see

[3], §5.9.2). Namely we require
∫ T

0
φ(t)∂tu(t)dt=−

∫ T

0
φ′(t)u(t)dt for all scalar test

functions φ∈C∞
c ((0,T )).

Remark 3.2. Equation (3.2) says that ∇·u satisfies a weak formulation of the heat
equation with Neumann boundary conditions.

Remark 3.3. The weak formulation above may be compared to one described by
Sani et al. [15] for a Stokes system with a pressure Poisson equation but with zero
divergence constraint.

Our main theorem is the existence of weak solutions to (3.1)–(3.2).

Theorem 3.2 (Global existence of weak solutions). Let Ω⊂Rd, d=2,3, be a
bounded domain, and let T >0 be arbitrary. Suppose that u0∈L2(Ω) and u0, f satisfy

∇·u0∈L2(Ω), u0 ·n=0 on ∂Ω, and f ∈L2(0,T ;V ′).

If either

∂Ω is C2

or

∂Ω is locally Lipschitz and ∇·u0∈H2(Ω),

then there exists a weak solution u to (3.1)–(3.2) with initial data u0 such that u∈
C([0,T ];V ′), ∂tu∈L4/3(0,T ;V ′), and ∇·u∈C∞(Ω×(0,T )). In two dimensions, the
exponent 4/3 can be improved to 2.

If further f ∈L1(0,T ;H−1), there exists a distribution p such that equation

∂tu+(u ·∇)u−ν∆u+∇p=f, (3.3)

is satisfied in the sense of distributions.

Remark 3.4. We reiterate that in Lipschitz domains we need an added regularity
assumption on ∇·u0. In C2 domains, however, we can dispense with this assumption
by using (2.6) (see also Remark 2.1).

The technique used to prove existence combined with relatively standard methods
quickly yields uniqueness of weak solutions in 2D.

Proposition 3.3 (Uniqueness in 2D). If Ω⊆R2 is a bounded, connected Lipschitz
domain then weak solutions to (3.1)–(3.2) are unique.

For regular enough initial data it also yields strong solutions and higher regularity,
which we discuss in Section 4. We begin by proving Theorem 3.2.

Proof. [Proof of Theorem 3.2.] Assume momentarily that u is a weak solu-
tion of the extended Navier-Stokes system as defined in Definition 3.1. Let g=∇·u,
g0=∇·u0, z be the solution to (2.4), and v=u−z. The main point of this decompo-
sition is that equation (3.2) completely determines g in terms of ∇·u0, which in turn
determines z.

From (3.2), g is the (weak) solution of




∂tg=ν∆g in Ω×(0,T ],

∇g ·n=0 on ∂Ω×(0,T ],

g(0)=g0 on Ω.

(3.4)
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By Lemma A.1, g∈C([0,T ];L2)∩L2(0,T ;H1).
We observe that by testing (3.4) with the constant function q≡1, we have

d

dt

∫

Ω

g=
d

dt
(g,q)=−ν(∇g,∇q)=0.

Because g(0)=∇·u0, we have
∫
Ω
g(0)=

∫
∂Ω

u0 ·n=0, so g(t) has mean zero for all
t≥0. This allows us to apply Lemma 2.2 to lift g to the unique vector field z that
solves (2.4).

By Lemma A.2, z∈C([0,T ];H1
0 )∩L2(0,T ;H2). Hence, z has sufficient regularity

and all we need to prove is that there exists a v∈C([0,T ];V ′)∩L2(0,T ;V ) satisfying
the perturbed weak-form Navier-Stokes equation,

d

dt
(v,ϕ)+ν(∇v,∇ϕ)+(v ·∇v,ϕ)= 〈f̃ ,ϕ〉−(v ·∇z,ϕ)−(z ·∇v,ϕ), (3.5)

for any test function ϕ∈V , with initial data v0=u0−z(0). Here,

f̃
def

= f−z ·∇z−∂tz, (3.6)

and we took advantage of (∇z,∇ϕ)=−(∆z,ϕ)=0 by (2.4). Note that the assumption
u0 ·n=0 on ∂Ω guarantees v0∈H.

We prove the existence of a function v satisfying (3.5) following the classical
approach (e.g. [10, 2, 17]). Because the standard Galerkin scheme ([2, 17], for instance)
readily yields an approximating sequence of solutions to (3.5), we only prove an a priori
estimate. Choosing ϕ=v, equation (3.5) becomes

1

2

d

dt
‖v‖2L2 +ν‖∇v‖2L2 = 〈f̃ ,v〉−(v ·∇v,v)−(v ·∇z,v)−(z ·∇v,v). (3.7)

Two of the terms on the right-hand side of (3.7) are readily dealt with:

|〈f̃ ,v〉|6‖v‖V ‖f̃‖V ′ 6
ν

2
‖∇v‖2L2 +

C

ν
‖f̃‖2V ′

and

((v ·∇)v,v)=0.

We split the analysis of the remaining terms into two cases depending on the di-
mension. If d=2, using the Sobolev, Hölder, and Ladyzhenskaya inequalities (see for
instance [17, Lemma III.3.3]) yields

|((z ·∇)v,v)|= 1

2

∣∣∣(∇·z, |v|2)
∣∣∣6

1

2
‖∇z‖L2‖v‖2L4 6

ν

8
‖∇v‖2L2 +

C

ν
‖∇z‖2L2‖v‖2L2

The term ((v ·∇)z,v) satisfies the same bound. Consequently, equation (3.7) reduces
to the differential inequality

d

dt
‖v‖2L2 +

ν

2
‖∇v‖2L2 6

c

ν
‖f̃‖2V ′ +

C

ν
‖∇z‖2L2‖v‖2L2 ,

and Gronwall’s lemma gives

‖v(t)‖2L2 +ν

∫ t

0

‖∇v(s)‖2L2 ds
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6

(
‖v0‖2L2 +

C

ν

∫ t

0

‖f̃(s)‖2V ′ ds

)
exp

(
C

ν

∫ t

0

‖∇z(s)‖2L2 ds

)
. (3.8)

The three-dimensional case is similar, except that we use now the interpolation

inequality ‖v‖L4 6‖v‖1/4L2 ‖v‖3/4L6 :

|((z ·∇)v,v)|= 1

2

∣∣∣(∇·z, |v|2)
∣∣∣6

1

2
‖∇z‖L2‖v‖2L4 6

ν

8
‖∇v‖2L2 +

C

ν3
‖∇z‖4L2‖v‖2L2 .

Hence instead of (3.8), Gronwall’s lemma gives

‖v(t)‖2L2 +ν

∫ t

0

‖∇v(s)‖2L2 ds

6

(
‖v0‖2L2 +

C

ν

∫ t

0

‖f̃(s)‖2V ′ ds

)
exp

(
C

ν3

∫ t

0

‖∇z(s)‖4L2 ds

)
. (3.9)

To complete these bounds in 2 or 3 dimensions, we need to show that the right-
hand sides of (3.8) and (3.9) remain bounded for all t∈ [0,T ]. The existence of a
weak solution then follows by standard methods. (We elaborate somewhat on these
methods in Section 4, where we construct higher-regularity solutions.)

Because ∂tz appears in f̃ , bounding the right-hand sides of (3.8) and (3.9) will
require knowledge of the time regularity of z, something we have not so far needed.
We divide the analysis into two cases.

Case 1 (∇·u0∈L2 and ∂Ω is C2). From Lemma A.2,

z∈C([0,T ];H1
0 )∩L2(0,T ;H2) and ∂tz in L2(0,T ;L2). (3.10)

That ∂tu∈L1(0,T ;V ′) then follows, because L2⊆V ′. In both 2 and 3 dimensions,

duality and the interpolation inequality ‖g‖L4 6‖g‖1/4L2 ‖g‖3/4L6 give

‖(z ·∇)z‖V ′ 6‖∇z‖2L2 ,

and hence

‖f̃‖2V ′ 6C
(
‖∂tz‖2L2 +‖∇z‖2L2 +‖f‖2V ′

)
. (3.11)

Now (3.10) shows that the right hand sides of both (3.8) and (3.9) remain bounded.

Case 2 (∇·u0∈H2). The proof is similar to the previous case, except that
because the boundary is only Lipschitz continuous, we cannot use the bound in (A.3)
on ∂tz. Instead, observe that ∂tg satisfies the heat equation with an initial value
of ν∆∇·u0, which lies in L2(Ω). Hence both g∈C([0,T ];L2) and ∂tg∈C([0,T ];L2).
Consequently, instead of (3.10), Lemma 2.3 applied to g and ∂tg gives

z∈L∞(0,T ;H1) and ∂tz∈L∞(0,T ;H1),

and the same argument used in the previous case shows that the right hand sides of
both (3.8) and (3.9) remain bounded.

We now turn to time regularity of u. Integrating (3.1) by parts gives

d

dt
〈u,ϕ〉= 〈F,ϕ〉 for all ϕ∈V, where F

def

= f−u ·∇u+ν∆u. (3.12)
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Observe F ∈L4/3(0,T ;V ′). Indeed, f ∈L2(0,T ;V ′) by assumption. Because u∈
L2(0,T ;H1

0 ), we certainly have ∆u∈L2(0,T ;H−1). Finally, for the nonlinear term,
standard Calculus inequalities ([17, Lemma III.3.3]) give

|((u ·∇)u,φ)|6‖u‖L3‖∇u‖L2‖φ‖L6 6C‖u‖1/2L2 ‖∇u‖3/2L2 ‖φ‖H1

for any φ∈H1. Thus, by duality, ‖u ·∇u‖H−1 6C‖u‖1/2L2 ‖∇u‖3/2L2 and hence u ·∇u∈
L4/3(0,T ;H−1)⊂L4/3(0,T ;V ′). This shows F ∈L4/3(0,T ;V ′). Now (3.12) and
the fact that u,F ∈L4/3(0,T ;V ′) imply that ∂tu=F (as elements of V ′), and u∈
C(0,T ;V ′) as desired (see for instance [17, Lemma III.1.1]).

To establish (3.3), define

G(t)=u(t)−u0+

∫ t

0

(
u ·∇u−ν∆u+f

)
ds.

Then G∈L1(0,T ;H−1) and by equation (3.1) we have

〈G,ϕ〉=0 for all ϕ∈V.

Consequently, the de Rham Lemma ([17, Proposition I.1.1 and Remark I.1.9]) guaran-
tees the existence of P ∈L1(0,T ;L2) such that G=∇P . Setting p=−∂tP and taking
the distributional time derivative of the equation G=∇P immediately gives (3.3).

We conclude this section by proving uniqueness in 2D.

Proof. [Proof of Proposition 3.3.] Suppose u1=v1+z1 and u2=v2+z2 are two
solutions. Then ∇·u1=∇·u2 because they each solve the heat equation with the
same initial data. By Lemma 2.2 it follows that z1= z2. Rewriting the equations
for v1, v2 as (3.5) and subtracting gives

d

dt
(v,ϕ)+(v1 ·∇v+v ·∇v2+v ·∇z+z ·∇v,ϕ)=−ν(∇v,∇ϕ),

where v=v1−v2 and z= z1= z2. Taking ϕ=v and using Ladyzhenskaya’s inequality
gives

1

2

d

dt
‖v‖2L2 +ν‖∇v‖2L2

=−((v ·∇)v2,v)−((v ·∇)z,v)−((z ·∇)v,v)

6c
(
‖∇v2‖L2‖v‖L2‖∇v‖L2 +‖∇z‖L2‖v‖L2‖∇v‖L2+‖∇·z‖L2‖v‖L2‖∇v‖L2

)

6
ν

2
‖∇v‖2L2 +

c

ν

(
‖∇v2‖2L2 +‖∇z‖2L2 +‖∇·u‖2L2

)
‖v‖2L2 .

Integrating in time yields

‖v(t)‖2L2 +ν

∫ t

0

‖∇v(s)‖2L2 ds6

∫ t

0

µ(s)‖v(s)‖2L2 ds,

where µ(s)
def

= c
ν (‖∇v2‖2L2 +‖∇z‖2L2 +‖∇·u‖2L2). The energy estimate for the heat

equation and (3.8) show that
∫ t

0
µ(s)ds<∞. Thus Gronwall’s lemma applies and

shows that v≡0, yielding uniqueness.
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4. Higher regularity in 2D
In Theorem 4.1, we obtain strong solutions by assuming more regularity on the

initial data. Here we provide the details of the Galerkin approximation that were
suppressed in the proof of Theorem 3.2.

Theorem 4.1. Let Ω⊂R2 be a bounded C2 domain, and suppose u0,f satisfy

u0∈H1
0 ∩H2, ∇·u0∈H2, ∇(∇·u0) ·n=0, ∇∆(∇·u0) ·n=0,

f ∈L2(0,T ;V ′), ∂tf ∈L2(0,T ;V ′), f(0)∈L2.

If u is the (unique) solution to (1.1′) with initial data u0, then

∂tu∈L∞(0,T ;L2)∩L2(0,T ;H1
0 ).

If further f ∈L∞(0,T ;L2), then u∈L∞(0,T ;H2).

Proof. As before, let g=∇·u, let z be the solution of (2.4), and let v=u−z.
Lemma A.4 and Remark A.1 guarantee that z∈L∞(0,T ;H3) with ∂tz∈

L∞(0,T ;H1)∩L2(0,T ;H2). Thus in order to show that ∂tu∈L∞(0,T ;L2)∩
L2(0,T ;H1

0 ) we only need to show that ∂tv∈L∞(0,T ;H)∩L2(0,T ;V ). Furthermore
we will show that when f ∈L∞(0,T ;L2) we have v∈L∞(0,T ;H2).

Let wk=wk(x) for k=1,2, . . . be the L2-orthonormal eigenfunctions of the Stokes

operator, A
def

=−P∆, with the eigenvalues λ1,λ2, . . . , respectively. For u,v,w∈H1
0 (Ω),

define the trilinear form b(u,v,w)=(u ·∇v,w), where (·, ·) denotes the usual inner-
product on L2(Ω). For each k∈N∗ define the approximate solution vk by

vk
def

=
k∑

j=1

gjk(t)wj ,

where the coefficients gjk(t) are chosen so that vk solves

(∂tvk,wj)+ν(Avk,wj)+b(vk,vk,wj)= 〈f̃ ,wj〉−b(vk,z,wj)−b(z,vk,wj) (4.1)

with initial data vk(0)=v0k
def

=
∑k

1 gjk(0)wj , gjk(0)=(u0,wj), and f̃
def

= f−z ·∇z−∂tz.
This reduces to the nonlinear system of k ODEs,

g′jk(t)+νλjgjk+
k∑

r=1

k∑

s=1

b(wr,ws,wj)grkgsk

= 〈f̃ ,wj〉−
k∑

r=1

b(wr,z,wj)grk−
k∑

r=1

b(z,wr,wj)grk, (4.2)

with initial data gjk(0)=(vk(0),wj) for j=1, . . . ,k. Standard ODE theory shows
that (4.2) has a unique absolutely continuous solution, gij(t), for i,j∈{1, . . .k}.

Multiplying (4.2) by gjk and summing for j=1, . . . ,k gives

1

2

d

dt
‖vk‖2L2 +ν‖∇vk‖2L2 = 〈f̃ ,vk〉−b(vk,z,vk)−b(z,vk,vk),

where we used b(vj ,vk,vk)=0 and (Avk,vk)=(∇vk,∇vk).
Multiplying (4.1) by g′jk and summing for j=1, · · · ,k, we have

‖v′k‖
2
L2 +ν(∆vk,v

′
k)+b(vk,vk,v

′
k)= 〈f̃ ,v′k〉−b(vk,z,v

′
k)−b(z,vk,v

′
k).
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Thus, at time t=0, we have

‖v′k(0)‖L2 6ν‖∆vk(0)‖L2 +‖B(vk(0),vk(0))‖L2

+‖f̃(0)‖L2 +‖B(vk(0),z(0))‖L2 +‖B(z(0),vk(0))‖L2 ,

where we used the Cauchy-Schwarz inequality and the standard notation B(a,b)
def

=
P(a ·∇b). Observe that the terms on the right side are bounded because v0∈H2∩V
with f(0)∈L2, and because z, as given by Lemma A.4 and Remark A.1, is sufficiently
regular.

We now differentiate (4.1) in time, multiply by g′jk, and sum for j=1, · · · ,k to
obtain

1

2

d

dt
‖v′k‖2L2 +ν‖∇v′k‖2L2 +b(v′k,vk,v

′
k)+b(vk,v

′
k,v

′
k)

=〈∂tf̃ ,v′k〉−b(v′k,z,v
′
k)−b(vk,∂tz,v

′
k)−b(∂tz,vk,v

′
k)−b(z,v′k,v

′
k).

Using Ladyzhenskaya’s inequality, we have

b(v′k,vk,v
′
k)6

ν

10
‖∇v′k‖2L2 +Cν−1‖∇vk‖2L2‖v′k‖2L2 ,

and similar estimates hold for the other trilinear terms. Thus,

1

2

d

dt
‖v′k‖2L2 +

ν

2
‖∇v′k‖2L2

6〈∂tf̃ ,v′k〉+Cν−1
(
‖∇vk‖2L2 +‖z‖2H1

)
‖v′k‖

2
L2 +Cν−1‖∂tz‖2H1‖∇vk‖2L2 ,

where we used Poincaré’s inequality.
Recall that ∂tf̃ =∂tf−∂tz ·∇z−z ·∇∂tz−∂ttz. By Remark A.1 in the Appendix,

if ∇·u0∈H2, then ∂ttz∈L2(0,T ;L2). Hence,

|〈∂tf̃ ,v′k〉|6
ν

4
‖∇v′k‖2L2 +Cν−1‖ft‖2H−1 +Cν−1‖z‖2H1‖∂tz‖2H1 +Cν−1‖∂ttz‖2L2 ,

where we also used Poincaré inequality. We arrive at the a priori estimate

d

dt
‖v′k‖2L2 +ν‖∇v′k‖2L2 6Cν−1

(
‖∇vk‖2L2 +‖z‖2H1

)
‖v′k‖2L2 +Cν−1φ(t),

where φ(t)=‖∂tz‖2H1‖∇vk‖2L2 +‖∂tf‖2H−1 +‖z‖2H1‖∂tz‖2H1 +‖∂ttz‖2L2 . Therefore, by
Gronwall’s inequality,

‖v′k(t)‖2L2 +ν

∫ t

0

‖∇v′k(s)‖2L2 ds6

(
‖v′k(0)‖2L2 +Cν−1

∫ t

0

φ(s)ds

)

×exp

(
Cν−1

∫ t

0

(
‖∇vk(s)‖2L2 +‖z(s)‖2H1

)
ds

)
.

Hence, v′k ∈L∞(0,T ;H)∩L2(0,T ;V ) and the first part of the assertion is established.
Now, assume additionally that f ∈L∞(0,T ;L2). It follows from (3.5) that

ν(∇v(t),∇v̄)=(h(t), v̄) (4.3)
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for all v̄∈V , where

h(t)=−∂tv−P(v ·∇v)+P f̃−P(v ·∇z)−P(z ·∇v).

Because P v̄= v̄ and P is self-adjoint, we have

b(v(t),v(t)), v̄)6C‖v(t)‖L4‖∇v(t)‖L2‖v̄‖L4 6C‖∇v‖2L2‖v̄‖L4

6C‖v̄‖L4 .
(4.4)

Here we used v∈L∞(0,T ;V ), which follows from the fact that v,∂tv∈L2(0,T ;V ).
Following Galdi [4], let H4(Ω) be the completion in the L4-norm of the divergence

free vector fields in C∞
c (Ω) and

G4(Ω)=
{
u∈L4(Ω): u=∇p for some p∈W 1,4(Ω)

}
.

Now let w be any vector field in L4(Ω). By the Helmholtz-Leray decomposition of L4

(see [4, Equation III.1.5 and Remark III.1.1]), w= ¯̄v+∇q for some ¯̄v in H4(Ω) and
∇p in G4(Ω), with ‖¯̄v‖L4 6C‖w‖L4 . Because Ω is bounded, it follows that ¯̄v=Pw
and that ∇q lies in L2(Ω).

Then by (4.4),

b(v(t),v(t),w)= b(v(t),v(t), ¯̄v)6C‖¯̄v‖L4 6C‖w‖L4 .

What this shows is that P(v ·∇v)∈L∞(0,T ;L4/3). Similarly, we get that
P(v ·∇z) and P(z ·∇v) are in L∞(0,T ;L4/3). Also, we have P f̃−∂tv∈L∞(0,T ;L2).
Hence, h(t)∈L∞(0,T ;L4/3). Then by Proposition I.2.2 of [17] applied to the Stokes
problem (4.3) and the Sobolev embedding theorem we conclude that v∈L∞(0,T ;L∞).

Now, we can use, in place of (4.4), the bound

b(v(t),v(t), v̄)6C‖v(t)‖L∞‖∇v(t)‖L2‖v̄‖L2 ,

which implies that P(v ·∇v)∈L∞(0,T ;L2), and so h(t)∈L∞(0,T ;L2). Another ap-
plication of Proposition I.2.2 in [17] to (4.3) leads to v∈L∞(0,T ;H2), finishing the
proof.

Remark 4.1. If we assume that Ω is of class C∞ and f ∈C∞(Ω× [0,T ]), then the
solution u is in C∞(Ω×(0,T ]) provided that the data satisfies suitable compatibility
conditions. Also, one can obtain more regular solutions in the 3D case if the given
data is, in addition, sufficiently small. This can all be accomplished along the lines
laid out by Temam in Remarks III.3.7 and III.3.8 and Theorems III.3.7 and III.3.8 of
[17].

Proposition 4.2. Let u be a strong solution to the extended Navier-Stokes equations
given by Theorem 4.1 with f ∈L∞(0,T ;L2). Then u∈C([0,T ];H1

0 ) and satisfies (1.1′)
as distributions and almost everywhere on [0,T ]×Ω.

Proof. That u∈C([0,T ];H1
0 ) follows directly from u∈H1(0,T ;H1

0 ), applying, for
instance, Theorem 2 of ([3, Section 5.9.2]). To see u satisfies (1.1′) almost everywhere,
Theorem 4.1 gives u∈H2 for almost all t∈ [0,T ]. Using standard estimates this implies
(u ·∇)u∈L2, and consequently both P(u ·∇)u and P∆u are defined. Thus, setting
U =∂tu+P(u ·∇u−f)−ν(P∆u+∇∇·u), equation (3.1) forces (U,ϕ)=0 for all ϕ∈
V . Further, equation (3.2) gives (U,∇q)=0 for all q∈H1. Because U ∈L2(Ω) (by
Theorem 4.1) this implies U =0 almost everywhere, and that (1.1′) is satisfied as
distributions.
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5. Well-posedness for the Shirokoff-Rosales system

In this section we consider the pressure-Poisson system in [16, Equation (20),
(A.4), and Appendix A], which was introduced to provide a high-order, efficient time-
discrete scheme for the incompressible Navier-Stokes equations in irregular domains.
The formal limit of their time discrete scheme satisfies the equations





∂tu+(u ·∇)u−ν∆u+∇p=f in Ω,

u×n=0 on ∂Ω,

∇·u=0 on ∂Ω,

(5.1)

and
{

∆p=−∇·((u ·∇)u)+∇·f in Ω,

∇p ·n=(ν∆u−(u ·∇)u+λu+f) ·n−C on ∂Ω.
(5.2)

Here f is the external forcing, ν >0 is the viscosity, λ>0 is an artificial damping
parameter, and C=C(t) is defined by

C= 1

|∂Ω|

∫

∂Ω

(ν∆u+λu) ·n=
1

|∂Ω|

∫

Ω

(
ν∆∇·u+λ∇·u

)
, (5.3)

which is exactly the compatibility condition required to solve (5.2). A similar system
(with an additional boundary condition) appeared in [9, Section 2]. Our aim is to
study the well-posedness of these equations.

We begin by observing that the system (5.1)–(5.3) formally reduces to the Navier-
Stokes equations if the initial data u0 satisfies the compatibility conditions∇·u0=0 in
Ω, and u0 ·n=0 on ∂Ω. To see this, note that the evolution for u in (5.1)1 is the same
as that in the Navier-Stokes equations. Further, equation (5.1)2 gives the tangential
no-slip boundary conditions. What we are missing, however, is the incompressibility
constraint and the normal boundary condition.

First, to recover the incompressibility constraint, take the divergence of (5.1) and
use (5.2). This yields

{
∂t∇·u−ν∆∇·u=0 in Ω,

∇·u=0 on ∂Ω.
(5.4)

Thus if ∇·u0=0, then for all t>0 we must have ∇·u=0 identically in Ω, not just
on ∂Ω, recovering the incompressibility constraint.

Next, to recover the normal boundary condition, formally apply (5.1) for u ·n on
∂Ω. Combined with the boundary condition for p in (5.2), this yields

∂t(u ·n)+λu ·n=C on ∂Ω. (5.5)

Now if ∇·u0=0, then the above argument shows ∇·u=0 identically, and equa-
tion (5.3) forces C=0. Thus assuming initially u0 ·n=0 on ∂Ω, equation (5.5) will
imply u ·n=0 on ∂Ω for all t>0, which recovers the missing normal boundary con-
dition.

We begin our study of well-posedness to (5.1)–(5.3) by defining weak solutions.
Following the approach used for the extended Navier-Stokes system of Definition 3.1,
we define weak solutions to (5.1)–(5.3) by testing the divergence free part, and the
divergence separately. In addition, however, we must impose (5.5), which is an auto-
matic consequence of (5.1)–(5.3) for smooth enough solutions.
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Definition 5.1. We define a weak solution of (5.1)–(5.3) to be a function u such
that

u∈L∞(0,T ;L2)∩L2(0,T ;H1),

∇·u∈L∞(0,T ;L2)∩L2(0,T ;H1
0 )∩L1(0,T ;W 2,1),

and equations (3.1), (3.2) hold for almost all t∈ (0,T ), every test function ϕ∈V , and
every test function q∈H1

0 . Further, on ∂Ω, u satisfies the boundary condition (5.1)2
and the ODE (5.5), where C is given by (5.3).

The global existence of weak solutions to (5.1)–(5.3) can be proved in a man-
ner similar to Theorem 3.2. For C2 domains, the results and proof exactly parallel
Theorem 3.2, and we address this in Remark 5.1 below. We are not able to treat
arbitrary Lipschitz domains, however, and require an additional assumption on the
regularity of the domain; we present the details below. We also remark that one can
use the same methods to prove regularity of weak solutions to (5.1)–(5.3) analogous
to Theorem 4.1.

Theorem 5.2. For d=2,3, let Ω⊂Rd be a bounded Lipschitz domain such that
n∈H1/2(∂Ω). Assume

u0∈L2(Ω), ∇·u0∈H2(Ω), (u0 ·n)n∈H1/2(∂Ω), and f ∈L2(0,T ;V ′).

There exists a weak solution, u, to (5.1)–(5.3) with initial data u0 such that ∇·u∈
C∞(Ω×(0,T )), and this solution is unique if d=2.

Before presenting the proof, we remark that the assumption n∈H1/2(∂Ω) is not
satisfied by polygonal domains.

Proof. [Proof of Theorem 5.2.] Observe first that the divergence of a weak solution
can be directly determined from the initial data by solving the heat equation. Once
this is known, the normal component of the weak solution on ∂Ω can be determined
using (5.5) and (5.3). As before, our main idea is to combine the divergence and
normal component into a solution of a stationary Stokes problem, and treat what
remains as a perturbed Navier-Stokes equation.

To follow this plan, we let g be a solution of the heat equation

{
∂tg=ν∆g in Ω×(0,T ],

g=0 on ∂Ω×(0,T ],
(5.6)

with initial data g(x,0)=∇·u0(x). Because ∇·u0∈H2, regularity for the heat equa-
tion in Lipschitz domains gives g∈Cb(0,∞;H1) (see for instance [18, p.156]). Further,
∆g also satisfies the heat equation with initial conditions ∆∇·u0∈L2, and hence
∆g∈Cb(0,∞;L2). Thus

C̄ def

=
1

|∂Ω|

∫

Ω

(
ν∆g+λg

)

is a bounded continuous function of time. Using this, define h to be the solution to
the ODE

∂th(x)+λh(x)= C̄, with initial data h(x,0)=u0(x) ·n, (5.7)

where x∈∂Ω is only a spatial parameter.
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Our aim, naturally, will be to construct a weak solution, u, so that ∇·u=g and
u ·n=h on ∂Ω. To do this, we combine both the divergence and the inhomogeneous
boundary values of u into a function z, defined to be the solution of the (inhomoge-
neous) Stokes problem





−∆z+∇q=0 in Ω,

∇·z=g in Ω,

z=hn on ∂Ω,

(5.8)

Lemma 2.1 will guarantee the existence of z∈H1(Ω), provided g∈L2(Ω), hn∈
H1/2(∂Ω) and the solvability condition

∫

Ω

g=

∫

∂Ω

h (5.9)

is satisfied.
The requirement g∈L2(Ω) has been established above. Our assumptions that

both n and (u0 ·n)n are in H1/2 and the ODE (5.7) will show that hn∈H1/2(∂Ω).
For the solvability condition (5.9), observe that equations (5.7) and (5.6) imply

d

dt

(∫

∂Ω

h−
∫

Ω

g

)
+λ

(∫

∂Ω

h−
∫

Ω

g

)
=0.

Because by definition
∫
Ω
g0=

∫
Ω
∇·u0=

∫
∂Ω

u0 ·n=
∫
∂Ω

h0, we must have (5.9) satisfied
for all t>0.

Now following the proof of Theorem 3.2, we define v∈V to be a weak solution
of (3.5) with initial conditions v0=u0−z0. Global existence of v will follow from
the a priori estimate (3.8) in 2D (or (3.9) in 3D), provided the right hand side is
finite. From (3.11), we see that this will follow if we show z∈L2(0,T ;H1) and ∂tz∈
L2(0,T ;L2). By Lemma 2.1 it suffices to show

g,∂tg∈L2(0,T ;L2(Ω)) and hn,∂thn∈L2(0,T ;H1/2(∂Ω)). (5.10)

From (5.6) and the assumption ∇·u0∈H2(Ω) it immediately follows that g,∂tg∈
L2(0,T ;L2(Ω)) as desired. For the regularity of hn, observe that Duhamel’s principle
gives

h(t,x)n(x)= e−λt(u0(x) ·n(x))n(x)+
(∫ t

0

e−λ(t−s)C̄(s)ds
)
n(x). (5.11)

Because we already know that C̄ is bounded and continuous, and n∈H1/2(∂Ω) by
assumption, we must have hn∈Cb(0,∞;H1/2(∂Ω)). Because ∂th=−λh+ C̄, this also
implies (∂th)n∈Cb(0,∞;H1/2(∂Ω)). Thus hn,∂thn∈L2(0,T ;H1/2(∂Ω)) for any T <
∞. This will show the global existence of the function v.

To finish the proof, we define u=v+z. Because ∇·u=∇·z=g in Ω, and u ·n=
z ·n=h on ∂Ω, we must have C̄=C. Now (3.5) and (5.8) immediately imply that u is
the desired weak solution to (5.1)–(5.3). Uniqueness in two dimensions follows using
the same argument as in Theorem 3.2.

Remark 5.1 (Existence in C2 domains). As with Theorem 3.2, we can prove ex-
istence in C2 domains with a reduced regularity assumption on the initial divergence:
namely, we only need ∇·u0∈L2. The main difference in this case is in making sense
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of C, which appears to require ∇·u∈W 2,1. The reason we do not need ∇·u∈W 2,1 is
because in the proof of Theorem 5.2, we only use C (which is the same as C̄) to de-
termine h. Under the reduced regularity assumption ∇·u0∈L2, one can determine h
by using (5.11) because

∫ t

0

e−λ(t−s)C̄(s)ds= 1

|∂Ω|

∫

Ω

∫ t

0

e−λ(t−s)
(
ν∆g+λg

)
dsdx

=
1

|∂Ω|

∫

Ω

∫ t

0

e−λ(t−s)
(
∂sg+λg

)
dsdx

=
1

|∂Ω|

∫

Ω

[
g(x,t)−e−λt∇·u0(x)

]
dx,

which is certainly defined for ∇·u0∈L2. With this, proving existence in a C2 domain
with only L2 initial divergence is similar to Theorems 3.2 and 5.2.

Appendix A. Some estimates on the heat equation. We now consider reg-
ularity results for solutions to the heat equation with Neumann boundary conditions.
We begin with a basic fact.

Lemma A.1. Let Ω be a Lipschitz domain and let g0∈L2. There exists a unique g
in C([0,T ];L2)∩L2(0,T ;H1) with ∂tg in L2(0,T ;H̃−1) satisfying (3.4). Moreover,

‖g‖L∞(0,T ;L2)6‖g0‖L2 ,

‖∇g‖L2(0,T ;L2)6 (2ν)−1/2‖g0‖L2 ,

‖∂tg‖L2(0,T ;H̃−1)6 (ν/2)1/2‖g0‖L2 ,

(A.1)

where H̃−1(Ω) denotes the dual of H1(Ω).

Proof. The existence of g in C([0,T ];L2)∩L2(0,T ;H1) and the first two bounds
in (A.1) are classical. To prove (A.1)3, choose any ϕ in H1(Ω). Using the Neumann
boundary conditions on g we see

∫

Ω

∂tgϕdx=ν

∫

Ω

∆gϕ=−ν

∫

Ω

∇g ·∇ϕ.

Hence

‖∂tg‖H̃−1 6ν‖∇g‖L2 sup
‖ϕ‖H1=1

‖∇ϕ‖L2 6ν‖∇g‖L2 .

The estimate (A.1)3 now follows from (A.1)2.

In Lemma A.2, we use Lemma A.1 to obtain basic estimates for the lifting, z,
that we defined in Section 2.

Lemma A.2. Let Ω be a Lipschitz domain. Assume that g0 lies in L2, let g be the
unique solution to (3.4), and let (z,p) solve (2.4) (z being unique). Then z lies in
C([0,T ];H1

0 )∩L2(0,T ;H2), and
√
ν‖z‖L∞(0,T ;H1)+ν‖z‖L2(0,T ;H2)6C

√
ν‖g0‖L2 . (A.2)

If ∂Ω is C2 then ∂tz∈L2(0,T ;L2) and
√
ν‖z‖L∞(0,T ;H1)+‖∂tz‖L2(0,T ;L2)+ν‖z‖L2(0,T ;H2)6C

√
ν‖g0‖L2 . (A.3)
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Proof. We apply Lemma 2.2 to Lemma A.1, noting that we can only apply (2.6)
when ∂Ω is C2.

A key point in Lemma A.1 is that we only assume that g0∈L2. In order to obtain
more regularity for the solution of (3.4) we impose more regularity on the domain and
the initial data.

The next classical result addresses the higher regularity for the heat equation with
Neumann boundary conditions (see for instance [14]).

Lemma A.3. Let Ω be a C2 domain. We assume that g0∈H2 with ∂g0
∂n =0 on ∂Ω.

Then, for g a solution of (3.4) we have:

√
ν‖g‖L∞(0,T ;H2)+‖∂tg‖L2(0,T ;H1)+ν‖g‖L2(0,T ;H3)6C

√
ν‖g0‖H2 , (A.4)

where the constant C depends only on Ω.

Similarly as before the lemma can be used to provide regularity results on the
lifting, z.

Lemma A.4. Let Ω be a C2 domain. Assume that g0 lies in H2 with ∂g0
∂n =0, let g

be the unique solution to (3.4), and let (z,p) solve (2.4) (z being unique). Then z lies
in L∞(0,T ;H3)∩L2(0,T ;H4) with ∂tz in L2(0,T ;H2), and

√
ν‖z‖L∞(0,T ;H3)+‖∂tz‖L2(0,T ;H2)+ν‖z‖L2(0,T ;H4)6C

√
ν‖g0‖H2 . (A.5)

Remark A.1. Noting that gt=ν∆g and we have
√
ν‖g‖2L∞(0,T ;H2)6C

√
ν‖g0‖2H2 , we

can use the lifting lemma to obtain ∂tz∈L∞(0,T ;H1). Moreover, we have gtt=ν∆gt
for t>0 provided that g0∈H2 with ∇(∆g0) ·n=0. Then, using the lifting lemma and
the previous result we obtain ∂ttz∈L2(0,T ;L2).
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