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Let M be a matroid on E, representable over a field of 
characteristic zero. We show that h-vectors of the following 
simplicial complexes are log-concave:

1. The matroid complex of independent subsets of E.
2. The broken circuit complex of M relative to an ordering 

of E.

The first implies a conjecture of Colbourn on the reliability 
polynomial of a graph, and the second implies a conjecture 
of Hoggar on the chromatic polynomial of a graph. The 
proof is based on the geometric formula for the characteristic 
polynomial of Denham, Garrousian, and Schulze.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and results

A sequence e0, e1, . . . , en of integers is said to be log-concave if for all 0 < i < n,

ei−1ei+1 ≤ e2
i ,

and is said to have no internal zeros if there do not exist i < j < k satisfying

ei �= 0, ej = 0, ek �= 0.
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Empirical evidence has suggested that many important enumerative sequences are log-
concave, but proving the log-concavity can sometimes be a non-trivial task. See [5,28,29]
for a wealth of examples arising from algebra, geometry, and combinatorics. The purpose 
of this paper is to demonstrate the use of an algebro-geometric tool to the log-concavity 
problems.

Let X be a complex algebraic variety. A subvariety of X is an irreducible closed 
algebraic subset of X. If V is a subvariety of X, then the top dimensional homology 
group H2 dim(V )(V ; Z) � Z has a canonical generator, and the closed embedding of V in 
X determines a homomorphism

H2 dim(V )(V ;Z) −→ H2 dim(V )(X;Z).

The image of the generator is called the fundamental class of V in X, denoted [V ]. 
A homology class in H∗(X; Z) is said to be representable if it is the fundamental class of 
a subvariety.

Hartshorne asks in [14, Question 1.3] which even dimensional homology classes of X
are representable by a smooth subvariety. Although the question is exceedingly difficult 
in general, it has a simple partial answer when X is the product of complex projective 
spaces Pm×P

n. Note in this case that the 2k-dimensional homology group of X is freely 
generated by the classes of subvarieties of the form Pk−i × P

i.
Representable homology classes of Pm×P

n can be characterized numerically as follows 
[16, Theorem 20].

Theorem 1. Write ξ ∈ H2k(Pm × P
n; Z) as the integral linear combination

ξ =
∑
i

ei
[
P
k−i × P

i
]
.

1. If ξ is an integer multiple of either

[
P
m × P

n
]
,
[
P
m × P

0], [P0 × P
n
]
,
[
P

0 × P
0],

then ξ is representable if and only if the integer is 1.
2. If otherwise, some positive integer multiple of ξ is representable if and only if the ei

form a nonzero log-concave sequence of nonnegative integers with no internal zeros.

In short, subvarieties of Pm × P
n correspond to log-concave sequences of nonnegative 

integers with no internal zeros. Therefore, when trying to prove the log-concavity of 
a sequence, it is reasonable to look for a subvariety of Pm × P

n which witnesses this 
property. We demonstrate this method by proving the log-concavity of h-vectors of two 
simplicial complexes associated to a matroid, when the matroid is representable over a 
field of characteristic zero. Other illustrations can be found in [16,18,19].
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In order to fix notations, we recall from [4] some basic definitions on simplicial com-
plexes associated to a matroid. We use Oxley’s book as our basic reference on matroid 
theory [27].

Let Δ be an abstract simplicial complex of dimension r. The f -vector of Δ is a 
sequence of integers f0, f1, . . . , fr+1, where

fi =
(
the number of (i− 1)-dimensional faces of Δ

)
.

For example, f0 is one, f1 is the number of vertices of Δ, and fr+1 is the number of 
facets of Δ. The h-vector of Δ is defined from the f -vector by the polynomial identity

r+1∑
i=0

fi(q − 1)r+1−i =
r+1∑
i=0

hiq
r+1−i.

Alternatively, the h-vector of Δ can be defined from the Hilbert series

HS(S/IΔ; t) = h0 + h1t + · · · + hr+1t
r+1

(1 − t)r+1 ,

where S/IΔ is the Stanley–Reisner ring of Δ over any field. See [24, Section 1.1] for 
Stanley–Reisner basics. When there is a need for clarification, we write the coefficients 
by fi(Δ) and hi(Δ) respectively.

Let M be a matroid of rank r + 1 on an ordered set E of cardinality n + 1. We are 
interested in the h-vectors of the following simplicial complexes associated to M :

1. The matroid complex IN(M), the collection of subsets of E which are independent 
in M .

2. The broken circuit complex BC(M), the collection of subsets of E which do not 
contain any broken circuit of M .

Recall that a broken circuit is a subset of E obtained from a circuit of M by deleting 
the least element relative to the ordering of E. We note that the isomorphism type of 
the broken circuit complex does depend on the ordering of E. However, the results of 
this paper will be independent of the ordering of E.

Remark 2. A pure r-dimensional simplicial complex is said to be shellable if there is 
an ordering of its facets such that each facet intersects the complex generated by its 
predecessors in a pure (r − 1)-dimensional complex. IN(M) and BC(M) are pure of 
dimension r, and are shellable. As a consequence, the h-vectors of both complexes consist 
of nonnegative integers [4]. This nonnegativity is recovered in Theorem 3 below.

Dawson conjectured that the h-vector of a matroid complex is a log-concave sequence 
[11, Conjecture 2.5]. Colbourn repeated this conjecture for graphical matroids in the 
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context of network reliability [10]. Our main result verifies Dawson’s conjecture for ma-
troids representable over a field of characteristic zero.

Theorem 3. Let M be a matroid representable over a field of characteristic zero.

1. The h-vector of the matroid complex of M is a log-concave sequence of nonnegative 
integers with no internal zeros.

2. The h-vector of the broken circuit complex of M is a log-concave sequence of non-
negative integers with no internal zeros.

Indeed, as we explain in the following section, there is a subvariety of a product 
of projective spaces which witnesses the validity of Theorem 3. I do not know if the 
log-concavity conjecture for the h-vector of the broken circuit complex of a matroid has 
ever appeared in the literature, but it is a natural one, since matroid complexes are (up 
to coning) special cases of broken circuit complexes (Section 2.2).

Lenz shows in [20, Section 4.1] that the log-concavity of the h-vector implies the strict 
log-concavity of the f -vector:

fi−1fi+1 < f2
i , i = 1, 2, . . . , r.

Therefore Theorem 3 implies that the two f -vectors associated to M are strictly log-
concave. The strict log-concavity of f -vectors of matroid complexes and broken circuit 
complexes was conjectured by Mason [23] and Hoggar [15] (for graphical matroids) re-
spectively.

Corollary 4. Let M be a matroid representable over a field of characteristic zero.

1. The f -vector of the matroid complex of M is a strictly log-concave sequence of non-
negative integers with no internal zeros.

2. The f -vector of the broken circuit complex of M is a strictly log-concave sequence of 
nonnegative integers with no internal zeros.

The main special cases of Theorem 3 and Corollary 4 are treated in the following 
subsections.

Remark 5. A pure simplicial complex is a matroid complex if and only if every ordering 
of the vertices induces a shelling [4, Theorem 7.3.4]. In view of this characterization of 
matroids, one should contrast Theorem 3 with examples of other ‘nice’ shellable simplicial 
complexes whose f -vector and h-vector fail to be log-concave. In fact, the unimodality 
of the f -vector already fails for simplicial polytopes in dimension ≥ 20 [2,3].

These shellable simplicial complexes led to suspect that various log-concavity conjec-
tures on matroids might not be true in general [29,31]. Theorem 3 shows that there is a 
qualitative difference between the h-vectors of
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1. matroid complexes and other shellable simplicial complexes, and/or
2. matroids representable over a field and matroids in general.

The method of the present paper to prove the log-concavity crucially depends on the as-
sumption that the matroid is representable over a field, and the log-concavity conjectures 
for general matroids remain wide open.

1.1. The reliability polynomial of a graph

The reliability of a connected graph G is the probability that the graph remains 
connected when each edge is independently removed with the same probability 1 − p. If 
the graph has e edges and v vertices, then the reliability of G is the polynomial

RelG(p) =
e−v+1∑
i=0

fi p
e−i(1 − p)i,

where fi is the number of cardinality i sets of edges whose removal does not disconnect G. 
For example, f0 is one, f1 is the number of edges of G that are not isthmuses, and fe−v+1
is the number of spanning trees of G. The h-sequence of the reliability polynomial is the 
sequence hi defined by the expression

RelG(p) = pv−1

(
e−v+1∑
i=0

hi(1 − p)i
)
.

In other words, the h-sequence is the h-vector of the matroid complex of the cocycle 
matroid of G. Since the cocycle matroid of a graph is representable over every field, 
Theorem 3 confirms a conjecture of Colbourn that the h-sequence of the reliability poly-
nomial of a graph is log-concave [10].

Corollary 6. The h-sequence of the reliability polynomial of a connected graph is a log-
concave sequence of nonnegative integers with no internal zeros.

It has been suggested that Corollary 6 has practical applications in combinatorial 
reliability theory [6].

1.2. The chromatic polynomial of a graph

The chromatic polynomial of a graph G is the polynomial defined by

χG(q) = (the number of proper colorings of G using q colors).

The chromatic polynomial depends only on the cycle matroid of the graph, up to a factor 
of the form qc. More precisely, the absolute value of the i-th coefficient of the chromatic 
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polynomial is the number of cardinality i sets of edges which contain no broken cir-
cuit [32]. Since the cycle matroid of a graph is representable over every field, Corollary 4
confirms a conjecture of Hoggar that the coefficients of the chromatic polynomial of a 
graph form a strictly log-concave sequence [15].

Corollary 7. The coefficients of the chromatic polynomial of a graph form a sign-
alternating strictly log-concave sequence of integers with no internal zeros.

Corollary 7 has been previously verified for all graphs with ≤ 11 vertices [21].

2. Proof of Theorem 3

We shall assume familiarity with the Möbius function μ(x, y) of the lattice of flats LM . 
For this and more, we refer to [1,34]. An important role will be played by the charac-
teristic polynomial χM (q). For a loopless matroid M , the characteristic polynomial is 
defined from LM by the formula

χM (q) =
∑

x∈LM

μ(∅, x)qr+1−rank(x) =
r+1∑
i=0

(−1)iwiq
r+1−i.

If M has a loop, then χM (q) is defined to be the zero polynomial. The nonnegative inte-
gers wi are called the Whitney numbers of the first kind. The characteristic polynomial 
is always divisible by q − 1, defining the reduced characteristic polynomial

χM (q) = χM (q)/(q − 1).

2.1. Brylawski’s theorem I

We need to quote a few results from Brylawski’s analysis on the broken circuit com-
plex [7]. The first of these says that the Whitney number wi is the number of cardinality 
i subsets of E which contain no broken circuit relative to any fixed ordering of E
[7, Theorem 3.3]. This observation goes back to Hassler Whitney, who stated it for 
graphs [32].

Fix an ordering of E, and let 0 be the smallest element of E. We write BC(M) for 
the reduced broken circuit complex of M , the family of all subsets of E \ {0} that do 
not contain any broken circuit of M . Since the broken circuit complex is the cone over 
BC(M) with apex 0, the above quoted fact says that

χM (q) =
r∑

(−1)ifi
(
BC(M)

)
qr−i.
i=0
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In terms of the h-vector, we have

χM (q + 1) =
r∑

i=0
(−1)ihi

(
BC(M)

)
qr−i =

r∑
i=0

(−1)ihi

(
BC(M)

)
qr−i,

hr+1
(
BC(M)

)
= 0.

Therefore the second assertion of Theorem 3 is equivalent to the statement that the 
coefficients of χM (q + 1) form a sign-alternating log-concave sequence with no internal 
zeros.

2.2. Brylawski’s theorem II

We show that the first assertion of Theorem 3 is implied by the second. This follows 
from the fact that the matroid complex of M is the reduced broken circuit complex of the 
free dual extension of M [7, Theorem 4.2]. We note that not every reduced broken circuit 
complex can be realized as a matroid complex [7, Remark 4.3]. The second assertion of 
Theorem 3 is strictly stronger than the first in this sense.

Recall that the free dual extension of M is defined by taking the dual of M , placing a 
new element p in general position (taking the free extension), and again taking the dual. 
In symbols,

M × p :=
(
M∗ + p

)∗
.

If M is representable over a field, then M × p is representable over some finite extension 
of the same field. Choose an ordering of E ∪ {p} such that p is smaller than any other 
element. Then, with respect to the chosen ordering,

IN(M) = BC(M × p).

For more details on the free dual extension, see [7,8,19].

2.3. Reduction to simple matroids

A standard argument shows that it is enough to prove the assertion on χM (q + 1)
when M is simple:

1. If M has a loop, then the reduced characteristic polynomial of M is zero, so there is 
nothing to show in this case.

2. If M is loopless but has parallel elements, replace M by its simplification M as 
defined in [27, Section 1.7]. Then the reduced characteristic polynomials of M and 
M coincide because LM � LM .
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Hereafter M is assumed to be simple of rank r + 1 with n + 1 elements, representable 
over a field of characteristic zero.

2.4. Reduction to complex hyperplane arrangements

We reduce the main assertion to the case of essential arrangements of affine hy-
perplanes. We use the book of Orlik and Terao as our basic reference in hyperplane 
arrangements [25].

Note that the condition of representability for matroids of given rank and given num-
ber of elements can be expressed in a first-order sentence in the language of fields. 
Since the theory of algebraically closed fields of characteristic zero is complete [22, 
Corollary 3.2.3], a matroid representable over a field of characteristic zero is in fact 
representable over C.

Let Ã be a central arrangement of n +1 distinct hyperplanes in Cr+1 representing M . 
This means that there is a bijective correspondence between E and the set of hyperplanes 
of Ã which identifies the geometric lattice LM with the lattice of flats of Ã. Choose 
any one hyperplane from the projectivization of Ã in Pr. The decone of the central 
arrangement, denoted A, is the essential arrangement of n hyperplanes in Cr obtained 
by declaring the chosen hyperplane to be the hyperplane at infinity. If χA(q) is the 
characteristic polynomial of the decone, then

χA(q) = χM (q).

Therefore it suffices to prove that the coefficients of χA(q + 1) form a sign-alternating 
log-concave sequence of integers with no internal zeros.

2.5. The variety of critical points

Finally, the geometry comes into the scene. We are given an essential arrangement A
of n affine hyperplanes in Cr. Our goal is to find a subvariety of a product of projective 
spaces, whose fundamental class encodes the coefficients of the translated characteristic 
polynomial χA(q + 1).

The choice of the subvariety is suggested by an observation of Varchenko on the critical 
points of the master function of an affine hyperplane arrangement [30]. Let L1, . . . , Ln

be the linear functions defining the hyperplanes of A. A master function of A is a 
nonvanishing holomorphic function defined on the complement Cr \A as the product of 
powers

ϕu :=
n∏

i=1
Lui
i , u = (u1, . . . , un) ∈ Z

n.

Varchenko’s conjecture. If the exponents ui are sufficiently general, then all critical points 
of ϕu are nondegenerate, and the number of critical points is equal to (−1)rχA(1).
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Note that (−1)rχA(1) is equal to the number of bounded regions in the complement 
R

r \ A when A is defined over the real numbers, and to the signed topological Euler 
characteristic of the complement Cr \ A. The conjecture is proved by Varchenko in the 
real case [30], and by Orlik and Terao in general [25].

In order to encode all the coefficients of χA(q+1) in an algebraic variety, we consider 
the totality of critical points of all possible (multivalued) master functions of A. More 
precisely, we define the variety of critical points X(A) as the closure

X(A) = X◦(A) ⊆ P
r × P

n−1,

X◦(A) =
{

n∑
i=1

ui · dlog(Li)(x) = 0
}

⊆
(
C

r \ A
)
× P

n−1,

where Pn−1 is the projective space with the homogeneous coordinates u1, . . . , un. The 
variety of critical points first appeared implicitly in [26], and further studied in [9,13]. 
See also [17, Section 2].

The variety of critical points is irreducible because X◦(A) is a projective space bundle 
over the complement Cr \ A. The cardinality of a general fiber of the second projection

pr2 : X(A) −→ P
n−1

is equal to (−1)rχA(1), as stated in Varchenko’s conjecture. More generally, we have

[
X(A)

]
=

r∑
i=0

vi
[
P
r−i × P

n−1−r+i
]
∈ H2n−2

(
P
r × P

n−1;Z
)
,

where vi are the coefficients of the characteristic polynomial

χA(q + 1) =
r∑

i=0
(−1)ivi qr−i.

The previous statement is [17, Corollary 3.11], which is essentially the geometric formula 
for the characteristic polynomial of Denham, Garrousian and Schulze [13, Theorem 1.1], 
modulo a minor technical difference pointed out in [17, Remark 2.2]. A conceptual proof 
of the geometric formula can be summarized as follows [17, Section 3]:

1. Applying a logarithmic version of the Poincaré–Hopf theorem to a compactification 
of the complement Cr \ A, one shows that the fundamental class of the variety of 
critical points captures the characteristic class of Cr \ A.

2. The characteristic class of Cr\A agrees with the characteristic polynomial χA(q+1), 
because the two are equal at q = 0 and satisfy the same inclusion–exclusion formula.

See [13, Section 3] for a more geometric approach.
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The proof of Theorem 3 is completed by applying Theorem 1 to the fundamental class 
of the variety of critical points of A.

Simple examples show that equalities may hold throughout in the inequalities of The-
orem 3. For example, if M is the uniform matroid of rank r + 1 with r + 2 elements, 
then

hi

(
IN(M)

)
= hi

(
BC(M)

)
= 1, i = 1, . . . , r.

However, a glance at the list of h-vectors of small matroid complexes generated in [12]
suggests that there are stronger conditions on the h-vectors than those that are known 
or conjectured. The answer to the interrogative title of [33] seems to be out of reach at 
the moment.
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