
Volume polynomials

June Huh

Abstract. Volume polynomials form a distinguished class of log-concave poly-
nomials with remarkable analytic and combinatorial properties. I will survey

realization problems related to them, review fundamental inequalities they sat-
isfy, and discuss applications to the combinatorics of algebraic matroids. These

notes are based on lectures given at the 2025 Summer Research Institute in

Algebraic Geometry at Colorado State University.

1. Realization problems for projection volumes and homology classes

1.1. Let πij be the coordinate projection of R4 onto the plane orthogonal to
the standard basis vectors ei and ej . For a convex body A in R4, we consider its
vector of projection areas (p12, p13, p14, p23, p24, p34), where

pij =
(
the area of the projection πij(A)

)
.

Which tuples of six nonnegative real numbers can arise in this way? This question is
the simplest nontrivial instance of the various realization problems for volume poly-
nomials (Sections 2 and 3). The following answer was given in [HHM+, Theorem
1.4].

Theorem 1.1. The following conditions are equivalent for any vector of non-
negative real numbers (p12, p13, p14, p23, p24, p34).

(1) There is a convex body A ⊆ R4 that satisfies

pij =
(
the area of the projection πij(A)

)
for all i < j.

(2) There is a Euclidean triangle with side lengths
√
p12p34,

√
p13p24,

√
p14p23.

In other words, (p12, p13, p14, p23, p24, p34) is realizable as the vector of projec-
tion areas of a convex body in R4 if and only if it satisfies the triangle inequalities

√
p12p34 ≤ √

p13p24 +
√
p14p23 and

√
p13p24 ≤ √

p12p34 +
√
p14p23 and

√
p14p23 ≤ √

p12p34 +
√
p13p24.

A triangle is said to be nondegenerate when all the triangle inequalities are strict.

Theorem 1.2. The following conditions are equivalent for any vector of non-
negative real numbers (p12, p13, p14, p23, p24, p34).
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(1) There is a smooth convex body A ⊆ R4 that satisfies

pij =
(
the area of the projection πij(A)

)
for all i < j.

(2) There is a nondegenerate triangle with side lengths
√
p12p34,

√
p13p24,

√
p14p23.

The realization space of (p12, p13, p14, p23, p24, p34) is the set of all convex bodies
in R4 with the given projection areas. Theorem 1.1 characterizes the vectors with
nonempty realization spaces. One can show that, in a precise sense, the realization
space of a given vector only depends on the associated triangle with side lengths√
p12p34,

√
p13p24,

√
p14p23.

Example 1.3. The vector (π, π, π, π, π, π) is realizable as the vector of projec-
tion areas of a convex body in R4. For example, one may take the unit ball, the
hypercube with side lengths

√
π, or more generally any convex body preserved by

the S4-symmetry of R4, scaled appropriately.

Example 1.4. According to Theorem 1.1, the vector (2, 1, 1, 1, 1, 2) is realizable
as the vector of projection areas of a convex body A ⊆ R4 because there is a triangle
with side lengths 2, 1, 1. By Theorem 1.2, such a convex body cannot be smooth.
As a realization, one may take

A =
√
2
(
the convex hull of e1, e2, e3, e4, e1 + e2, e3 + e4 in R4

)
.

The projections π12(A) and π34(A) are squares with side lengths
√
2, and the re-

maining projections of A are triangles with side lengths 2,
√
2,
√
2.

Example 1.5. According to Theorem 1.1, the vector (3, 2, 1, 1, 2, 3) is realizable
as the vector of projection areas of a convex body A ⊆ R4 because there is a triangle
with side lengths 3, 2, 1. For example, one may take the 4× 16 matrices

L :=


0 −1 0 −1 −1 0 0 0 1 1 1 0 0 −1 1 0
0 −1 0 1 1 0 0 0 1 1 −1 0 0 −1 −1 0
1 0 −1 0 0 −1 −1 1 0 0 0 1 −1 0 0 1
1 0 −1 0 0 1 1 1 0 0 0 −1 −1 0 0 −1

 ,

M :=


0 0 0 0 1 0 −1 −1 −1 0 0 1 1 1 −1 0

−2 0 0 −2 −1 0 −1 −1 −1 −2 0 −1 −1 −1 −1 −2
0 0 0 0 −1 0 1 −1 −1 0 0 −1 1 1 1 0

−2 0 0 0 −1 −2 −1 −1 −1 −2 −2 −1 −1 −1 −1 0

 ,

and let A be the convex hull in R4 of the 16 columns of L+ 1√
2
M . With patience,

one can check that A has the projections with given areas. For example,

π24(A) =
(
the convex hull of e1,−e1, e3,−e3 in R2

)
.

Can you think of a simpler convex body in R4 that has the same six projection
areas? See [HHM+, Section 4] for a discussion of this particular case.

The condition characterizing the realizability of (p12, p13, p14, p23, p24, p34) in
Theorem 1.1 is precisely the validity of the Plücker relation

p12p34 − p13p24 + p14p23 = 0 for the Grassmannian Gr(2, 4),

interpreted over the triangular hyperfield T2 on the set of nonnegative real numbers
[BHKLa]. As noted in [HHM+, Proposition 3.1], the condition is also equivalent
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to the statement that the nonnegative symmetric matrix
0 p12 p13 p14
p12 0 p23 p24
p13 p23 0 p34
p14 p24 p34 0

 has at most one positive eigenvalue.

Theorem 1.1 is related to the fact that the set of quadratic volume polynomials
V2

n(R, k) is equal to the set of Lorentzian polynomials (Section 3).

1.2. One quickly encounters interesting questions when trying to formulate
similar realization problems in higher dimensions. The asymmetry in the follow-
ing pair of conjectures points to the distinction between volume polynomials and
covolume polynomials (Section 4).

Let πij be the coordinate projection of R5 onto the coordinate subspace or-
thogonal to the standard basis vectors ei and ej .

Conjecture 1.6. The following conditions are equivalent for any vector of
nonnegative real numbers (pij)1≤i<j≤5:

(1) There is a convex body A ⊆ R5 that satisfies

pij =
(
the volume of the projection πij(A)

)
for all i < j.

(2) The nonnegative symmetric matrix
0 p12 p13 p14 p15
p12 0 p23 p24 p25
p13 p23 0 p34 p35
p14 p24 p34 0 p45
p15 p25 p35 p45 0

 has at most one positive eigenvalue.

Let φij be the coordinate projection of R5 onto the coordinate subspace spanned
by the standard basis vectors ei and ej .

Conjecture 1.7. The following conditions are equivalent for any vector of
nonnegative real numbers (qij)1≤i<j≤5:

(1) There is a convex body A ⊆ R5 that satisfies

qij =
(
the area of the projection φij(A)

)
for all i < j.

(2) Every 4× 4 principal submatrix of the nonnegative symmetric matrix
0 q12 q13 q14 q15
q12 0 q23 q24 q25
q13 q23 0 q34 q35
q14 q24 q34 0 q45
q15 q25 q35 q45 0

 has at most one positive eigenvalue.

In both cases, the forward implication follows from the Alexandrov–Fenchel
inequality on mixed volumes. Similar conjectures can be made more generally for
projections πij : Rd → Rd−2 and φij : Rd → R2.

Example 1.8. To compare Conjectures 1.6 and 1.7, we consider the case of
(4, 1, 1, 1, 1, 1, 1, 1, 1, 1). Since the corresponding symmetric matrix has eigenvalues

3 +
√
7, 3−

√
7, −1, −1, −4,
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there is no convex body A in R5 such that the projection π12(A) has volume 4
while all the other projections πij(A) have volume 1. On the other hand, every
4× 4 principal submatrix of the same matrix has at most one positive eigenvalue,
suggesting that there is a convex body A in R5 such that the projection φ12(A) has
area 4 while all the other projections φij(A) have area 1. Indeed, there is

A =
(
the convex hull of 2e1, 2e2, 2e1 + 2e2, e3, e4, e5, e3 + e4, e3 + e5, e4 + e5

)
,

which is consistent with Conjectures 1.6 and 1.7.

1.3. We may pose analogous realization problems in the setting of projective
geometry. Fix an algebraically closed field k, and consider the projective line P1

over k. If S is an irreducible surface in (P1)4, we can uniquely express its homology
class as a nonnegative integral linear combination

[S] = p12[P1 × P1 × P0 × P0] + · · ·+ p34[P0 × P0 × P1 × P1] ∈ CH((P1)4).

Which vectors of nonnegative integers (p12, p13, p14, p23, p24, p34) can arise in this
way? We call such homology classes realizable.1 While the answer to this question
is not known, the following partial result was given in [HHM+, Theorem 1.6].

Theorem 1.9. The following conditions are equivalent for any vector of non-
negative rational numbers (p12, p13, p14, p23, p24, p34).

(1) There is an irreducible surface S ⊆ (P1)4 and a nonnegative λ ∈ Q such that

λ[S] = p12[P1 × P1 × P0 × P0] + · · ·+ p34[P0 × P0 × P1 × P1].

(2) There is a Euclidean triangle with side lengths
√
p12p34,

√
p13p24,

√
p14p23.

The algebraic realization problem here has additional obstructions not present
in the convex realization problem in Section 1.1. For example, the homology class
corresponding to (1, 1, 1, 1, 1, 3) is not realizable by an irreducible surface in (P1)4,

although there is a Euclidean triangle with side lengths
√
3, 1, 1. To see this, note

that the hypothetical surface S should satisfy

[π3(S)] = [π4(S)] = [P1 × P1 × P0] + [P1 × P0 × P1] + [P0 × P1 × P1],

where πi is the projection (P1)4 → (P1)3 that forgets the i-th coordinate of (P1)4.
Thus, the defining equations of the hypersurfaces π−1

3 π3(S) and π−1
4 π4(S) in an

affine chart of (P1)4 are of the form

∗1 + ∗x1 + ∗x2 + ∗x4 + ∗x1x2 + ∗x1x4 + ∗x2x4 + ∗x1x2x4 = 0,

∗1 + ∗x1 + ∗x2 + ∗x3 + ∗x1x2 + ∗x1x3 + ∗x2x3 + ∗x1x2x3 = 0,

where the ∗’s are placeholders for the coefficients in k. For generic values of x3 and
x4, the displayed system of equations reduces to

∗1 + ∗x1 + ∗x2 + ∗x1x2 = 0,

∗1 + ∗x1 + ∗x2 + ∗x1x2 = 0,

which has at most 2 solutions. This contradicts the assumption that p34 = 3.
The proof of Theorem 1.9 in [HHM+] shows that, in fact, the homology class
corresponding to (2, 2, 2, 2, 2, 6) is realizable by an irreducible surface in (P1)4.

1Such questions are algebraic analogues of the Steenrod problem in topology [Eil49, Problem
25], which asks whether every homology class in any simplicial complex X is the image of the

fundamental class of a closed oriented manifold by a map into the simplicial complex.
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Modulo this subtlety involving integral coefficients, one can formulate state-
ments in algebraic geometry parallel to Conjectures 1.6 and 1.7 in convex geometry,
the first of which is a special case of [HHM+, Theorem 1.8].

Theorem 1.10. The following conditions are equivalent for any vector of non-
negative integers (pij)1≤i<j≤5:

(1) There is an irreducible surface S ⊆ (P1)5 and a nonnegative λ ∈ Q such that

λ[S] = p12[P1 × P1 × P0 × P0 × P0] + · · ·+ p45[P0 × P0 × P0 × P1 × P1].

(2) The nonnegative symmetric matrix
0 p12 p13 p14 p15
p12 0 p23 p24 p25
p13 p23 0 p34 p35
p14 p24 p34 0 p45
p15 p25 p35 p45 0

 has at most one positive eigenvalue.

The following conjecture suggests the possibility that, in Conjecture 1.7, the
convex body A can be chosen to be a rational convex polytope whenever all pijk
are rational.

Conjecture 1.11. The following conditions are equivalent for any vector of
nonnegative integers (qij)1≤i<j≤5:

(1) There is an irreducible threefold S ⊆ (P1)5 and a nonnegative λ ∈ Q such that

λ[S] = q12[P0 × P0 × P1 × P1 × P1] + · · ·+ q45[P1 × P1 × P1 × P0 × P0].

(2) Every 4× 4 principal submatrix of the nonnegative symmetric matrix
0 q12 q13 q14 q15
q12 0 q23 q24 q25
q13 q23 0 q34 q35
q14 q24 q34 0 q45
q15 q25 q35 q45 0

 has at most one positive eigenvalue.

In both cases, the Hodge index theorem for projective surfaces can be used to
show the forward implication.

2. Volume polynomials in convex geometry

2.1. In [Min03], Minkowski made a foundational observation that has since
become a cornerstone of convex geometry:

The volume of the Minkowski sum of convex bodies varies poly-
nomially under scaling.

More precisely, for positive integers n and d, and any collection of n convex bodies
C = (C1, . . . , Cn) in the d-dimensional Euclidean space Rd, the function

fC : Rn
≥0 −→ R≥0, (x1, . . . , xn) 7−→

1

d!
vol(x1C1 + · · ·+ xnCn)

is a degree d homogeneous polynomial in x = (x1, . . . , xn). This polynomial, called
the volume polynomial of C, is then used to define the mixed volume of convex
bodies in C as its normalized coefficients

MV(Ci1 , . . . , Cid) :=
∂

∂xi1

· · · ∂

∂xid

fC(x1, . . . , xn).
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The mixed volume is symmetric in its arguments, and it is multilinear with respect
to the Minkowski sum and nonnegative scaling: For any convex bodies B1 and B2

in Rd and nonnegative real numbers λ1 and λ2, we have

MV(λ1B1 + λ2B2, C2, . . . , Cd) = λ1MV(B1, C2, . . . , Cd) + λ2MV(B2, C2, . . . , Cd).

When all the arguments coincide, the mixed volume reduces to the usual volume:
For any convex body A in Rd, we have

MV(A, . . . , A︸ ︷︷ ︸
d

) = vol(A).

More generally, if Ij is the unit interval joining the origin and ej in Rd, we have(
d

k

)
MV(I1, . . . , Ik, A, . . . , A︸ ︷︷ ︸

d−k

) =
1

k!
vol(π1···kA),

where π1···k is the projection onto the coordinate subspace orthogonal to e1, . . . , ek.
For a comprehensive introduction to mixed volumes, see [Sch14, Chapter 5].

Mixed volumes of convex bodies satisfy a rich collection of fundamental in-
equalities, the most basic being nonnegativity :

0 ≤ MV(C1, . . . , Cd) for any convex bodies C1, . . . , Cd in Rd.

More generally, mixed volumes are monotone in each argument: If Bi ⊆ Ci are
convex bodies in Rd, we have

MV(B1, . . . , Bd) ≤ MV(C1, . . . , Cd).

Apart from the nonnegativity, the most important inequality involving mixed vol-
umes is the Alexandrov–Fenchel inequality, which generalizes classical inequalities
such as the isoperimetric and Brunn–Minkowski inequalities. It states that, for any
convex bodies C1, . . . , Cd in Rd, we have

MV(C1, C1, C3 . . . , Cd)MV(C2, C2, C3, . . . , Cd) ≤ MV(C1, C2, C3 . . . , Cd)
2.

This inequality is a cornerstone of modern convex geometry and underlies many
structural and analytic results.

2.2. The realization problem for volume polynomials of convex bodies is to de-
termine which homogeneous polynomials of degree d in n variables with nonnegative
coefficients can be realized as the volume polynomials of n convex bodies in Rd.
The problem of finding the full set of inequalities for mixed volumes is sometimes
referred to as Alexandrov’s problem.

For a degree d homogeneous polynomial f in n variables x = (x1, . . . , xn), we
write

f(x) =
∑

α∈∆d
n

pαx
[α], x[α] :=

xα

α!
=

xα1
1

α1!
· · · x

αn
n

αn!
,

where pα are the normalized coefficients of f and ∆d
n is the discrete simplex con-

sisting of all the nonnegative vectors in Zn whose coordinates sum to d. Here are
the first two necessary conditions for f to be a volume polynomial.

(1) (Nonnegative change of coordinates) If f(x) is a volume polynomial of n convex
bodies, then f(Ay) is a volume polynomial of m convex bodies, for any n×m
nonnegative matrix A and variables y = (y1, . . . , ym).
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(2) (Alexandrov–Fenchel inequality) If f(x) is a volume polynomial of convex bod-
ies, then its normalized coefficients satisfy

pα+ei−ejpα−ei+ej ≤ p2α for any α ∈ ∆d
n and any 1 ≤ i < j ≤ n.

The first condition is a formal consequence of the observation that the Minkowski
sum of convex bodies is a convex body. The combination of the two properties leads
to the conclusion that any volume polynomial must be a Lorentzian polynomial in
the sense of [BH20]. Here we give an equivalent definition, following [BL, Section
2]. We set{

Lorentzian polynomials of degree ≤ 1
}
={

homogeneous polynomials of degree ≤ 1 with nonnegative coefficients
}
.

For a nonnegative vector u = (u1, . . . , un), we write ∂u for the corresponding direc-
tional derivative

∑n
i=1 ui∂i.

Definition 2.1. A homogeneous polynomial f of degree d ≥ 2 in n variables
with nonnegative coefficients is Lorentzian if, for all v1, . . . , vd ∈ Rn

≥0, we have(
∂v1∂v1∂v3 · · · ∂vdf

)(
∂v2∂v2∂v3 · · · ∂vdf

)
≤

(
∂v1

∂v2∂v3 · · · ∂vdf
)2
.

Applying the Alexandrov–Fenchel inequality after a nonnegative linear change
of coordinates, we see that{

volume polynomials of convex bodies
}
⊆

{
Lorentzian polynomials

}
.

Thus, Alexandrov’s problem is to find inequalities between mixed volumes that
identify the volume polynomials of convex bodies among Lorentzian polynomials.

Example 2.2 (n = 2). According to [BH20, Example 2.26], a bivariate poly-
nomial with nonnegative coefficients

f =

d∑
a=0

pa
xa
1

a!

xd−a
2

(d− a)!

is Lorentzian if and only if the sequence p0, . . . , pd has no internal zeros and

pa−1pa+1 ≤ p2a for all positive integers a < d.

In [She60], Shephard showed that any such polynomial is the volume polynomial of
two convex bodies in Rd. This characterizes volume polynomials of convex bodies
in two variables:

A homogeneous polynomial in two variables is the volume poly-
nomial of two convex bodies if and only if it is Lorentzian.

When every pi is rational, Shephard’s construction gives two rational convex poly-
topes. This is used in [Huh12, Theorem 21] to characterize realizable homology
classes in Pd×Pd up to a multiple: Some nonnegative rational multiple of the class

d∑
a=0

pa [Pa × Pd−a] ∈ CH(Pd × Pd)

is the class of an irreducible subvariety if and only if p0, . . . , pd is a log-concave
sequence of nonnegative rational numbers with no internal zeros.2

2As observed in [Huh, Section 5], there is no irreducible subvariety of P5×P5 whose homology
class corresponds to the log-concave sequence (1, 2, 3, 4, 2, 1).
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Example 2.3 (d = 1). By definition, a linear form is Lorentzian if and only if
all its coefficients are nonnegative. Any such linear form is a volume polynomial of
convex bodies in R1:

vol(x1C1 + · · ·+ xnCn) = x1 vol(C1) + · · ·+ xn vol(Cn), C1, . . . , Cn ⊆ R1.

Example 2.4 (d = 2). A quadratic form is Lorentzian if and only if all its
coefficients are nonnegative and its Hessian has at most one positive eigenvalue
[BH20, Section 2]. In [Hei38], Heine showed that, when there are at most three
variables, any such quadratic form is the volume polynomial of three convex bodies
in R2. This characterizes quadratic volume polynomials of convex bodies in three
variables:

A ternary quadratic form is the volume polynomial of three con-
vex bodies if and only if it is Lorentzian.

The analogous statement fails when n = 4. For example, as observed in [She60,
Theorem 5], there are no convex bodies C1, C2, C3, C4 in R2 satisfying

vol(x1C1 + x2C2 + x3C3 + x4C4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

even though the right-hand side is a Lorentzian polynomial. In fact, using the com-
pactness theorem of Shephard for the affine equivalence classes of convex bodies
[She60, Theorem 1], one can show that the displayed elementary symmetric poly-
nomial is not even the limit of volume polynomials of convex bodies in the plane.
This contrasts with the fact that there is an irreducible surface in (P1)4 with class
(1, 1, 1, 1, 1, 1) in the Chow group. For example, one may take the closure of a
general two-dimensional linear subspace of an affine chart of (P1)4.

2.3. The main result of [BH20] provides a finite description of the set of
Lorentzian polynomials that generalizes Example 2.2. The central notion is that
of a generalized permutohedron. Let E be a finite set with n elements, and let
{ei}i∈E be the standard basis of RE .

Definition 2.5. A generalized permutohedron is a polytope in RE all of whose
edges are in the direction ei − ej for some i and j in E.

A generalized permutohedron is integral if all its vertices belong to ZE ⊆ RE .
For example, the standard permutohedron in Rn, which is the convex hull of all
permutations of (1, 2, . . . , n), and the k-th hypersimplex in Rn, which is the convex
hull of all permutations of (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

), are integral generalized permutohedra.

The above pictures show the standard permutohedron and the second hypersimplex
in R4. Generalized permutohedra are precisely the polytopes obtained from the
standard permutohedron by moving the vertices so that all the edge directions are
preserved [Pos09].
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Definition 2.6. A subset J ⊆ ZE
≥0 is M-convex if it is the set of all lattice

points of an integral generalized permutohedron. A matroid on E is an M-convex
subset of ZE

≥0 consisting of zero-one vectors. The vectors in a matroid J are called
bases of J .

The notion of M-convex sets originates in discrete convex analysis [Mur03].
In [Mur03, Chapter 4], one can find several other equivalent characterizations of
M-convex sets. For example, a subset J ⊆ ZE

≥0 is M-convex exactly when it satisfies
the symmetric basis exchange property :

For any α, β ∈ J and i ∈ E with αi > βi, there is j ∈ E with

αj < βj and α− ei + ej ∈ J and β − ej + ei ∈ J.

For background specific to matroids, see [Oxl11].

Definition 2.7. A function h : 2E → Z≥0 is a polymatroid rank function if it
satisfies the following properties:

(1) Normalization: h(∅) = 0.

(2) Monotonicity: h(A) ≤ h(B) for all A ⊆ B ⊆ E.

(3) Submodularity: h(A ∪B) + h(A ∩B) ≤ h(A) + h(B) for all A,B ⊆ E.

A polymatroid rank function h is a matroid rank function if h(A) ≤ |A| for all
A ⊆ E.

We recall the standard bijection between polymatroid rank functions on E and
nonempty M-convex subsets of ZE

≥0 from [Mur03, Chapter 4]. For A ⊆ E and

α ∈ ZE
≥0, we set αA :=

∑
i∈A αi.

(1) A polymatroid rank function h defines

Jh :=
{
α ∈ ZE

≥0

∣∣ αE = h(E) and αA ≤ h(A) for all A ⊆ E
}
,

which is an M-convex subset of ZE
≥0.

(2) An M-convex subset J of ZE
≥0 defines

hJ : 2E −→ Z≥0, hJ(A) := max
{
βA | β ≤ α for some α ∈ J

}
,

which is a polymatroid rank function on E.

The constructions Jh and hJ are mutually inverse, providing a polymatroid
generalization of the classical cryptomorphism between the matroid rank function
axioms and the symmetric basis exchange property. A polymatroid P is a pair
(h = hJ , J = Jh), where h is the rank function of P and J is the set of bases of P.
A polymatroid P is a matroid if h is a matroid rank function, or equivalently if J
consists of zero-one vectors. Throughout this text, we restrict attention to integral
polymatroids and do not consider nonintegral ones. Accordingly, we use the terms
polymatroid and M-convex set interchangeably.

Example 2.8 (Graphic matroids). For any finite connected graph G with the
edge set E, consider the set of indicator vectors

J(G) := {eB | B is a spanning tree of G} ⊆ ZE
≥0.

The subset J(G) is M-convex for any such G. Such matroids are said to be graphic.
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Example 2.9 (Linear matroids). For any function φ : E → W from a finite
set E to a vector space W over a field k, consider the set of indicator vectors

J(φ) := {eB | φ(B) is a basis of W} ⊆ ZE
≥0.

The subset J(φ) is M-convex for any φ : E → W . Such matroids are said to be
linear over k, and the function φ is called a linear realization over k. One typically
requires without loss of generality that the image of φ spans W . A graphic matroid
is linearly realizable over every field [Oxl11, Section 5.1]. In general, a matroid
may or may not have a linear realization over k:

Among the four matroids pictured above, where the bases are given by all triples
of points not on a line, the first is linear over k if and only if the characteristic of
k is 2, the second is linear over k if and only if the characteristic of k is not 2, the
third is linear over k if and only if the cardinality of k is not 2, 3, or 5, and the
fourth is not linear over any field [Oxl11, Appendix].

Example 2.10 (Algebraic matroids). For any function φ : E → ℓ from a finite
set E to a field extension ℓ of k, consider the set of indicator vectors

J(φ) := {eB | φ(B) is a transcendence basis of ℓ over k} ⊆ ZE
≥0.

The subset J(φ) is M-convex for any φ : E → ℓ. Such matroids are said to
be algebraic over k, and the function φ is called an algebraic realization over k.
One typically requires without loss of generality that the image of φ contains a
transcendence basis of ℓ over k. A linear matroid over k is algebraic over k [Oxl11,
Section 6.7]. In general, a matroid may or may not have an algebraic realization
over k:

Among the four matroids pictured above, where the bases are given by all triples
of points not on a line, the first is algebraic over k if and only if the characteristic
of k is 2, the second and the third are algebraic over any field, and the fourth is
algebraic over k if and only if k has nonzero characteristic [Oxl11, Appendix].

Let Hd
n be the vector space of all homogeneous polynomials of degree d in n

variables with real coefficients, and set

L1
n = {linear forms in n variables with nonnegative coefficients}.

Let L2
n ⊆ H2

n be the closed subset of quadratic forms with nonnegative coefficients
whose Hessians have at most one positive eigenvalue. For d larger than 2, we define
Ld
n ⊆ Hd

n by setting

Ld
n =

{
f ∈ Md

n | ∂if ∈ Ld−1
n for all i = 1, . . . , n

}
,
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where Md
n ⊆ Hd

n is the set of polynomials with nonnegative coefficients whose
supports are M-convex.3 The following characterization in [BH20, Theorem 2.25]
is central to the theory of Lorentzian polynomials.

Theorem 2.11. Ld
n is the set of Lorentzian polynomials in Hd

n.

Theorem 2.11 makes it possible to decide whether a given polynomial is Lorentzian
or not. For example, the following polynomials are not Lorentzian because their
supports are not M-convex:

x3
1 + x3

2, x2
1x3 + x3

2.

Note that, in each case, all the partial derivatives ∂if are Lorentzian.
One can also use Theorem 2.11 to show that a given polynomial is Lorentzian.

For example, the elementary symmetric polynomial of degree d in n variables is
Lorentzian because its support is M-convex and all its quadratic partial derivatives
have the Hessian 

0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

 ,

which have exactly one positive eigenvalue n − d + 1. When n = 2, Theorem 2.11
specializes to the explicit description of bivariate Lorentzian polynomials given in
Example 2.2.

3. Volume polynomials in projective geometry

3.1. The analogous volume polynomial in algebraic geometry is defined as fol-
lows: LetD = (D1, . . . , Dn) be a collection of semiample divisors on a d-dimensional
projective variety Y over a field k.4 The volume polynomial of D is

fD(x) :=
1

d!

∫
Y

( n∑
i=1

xiDi

)d

,

which is a homogeneous polynomial of degree d in x = (x1, . . . , xn). When the base
is the field of complex numbers and each Di is ample, the restriction of fD to the
nonnegative orthant measures the volume of Y with respect to the Kähler class
determined by x.

Definition 3.1. Let k be a field.

(1) A homogeneous polynomial f is a realizable volume polynomial over k if f =
λfD for some λ ∈ Q≥0 and a collection of semiample divisors D on a projective
variety Y over k.

(2) A homogeneous polynomial f is a volume polynomial over k if it is a limit of
realizable volume polynomials over k.

3By definition, the support of a polynomial f is the set of all monomials appearing in f with

nonzero coefficients.
4Throughout this paper, a variety over k is by definition a reduced and irreducible scheme of

finite type over k. A Cartier divisor on a complete variety is semiample if some positive multiple
moves in a basepoint-free linear system. For background and any undefined terms concerning

divisors on varieties, we refer to [Laz04].
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We write Vd
n(Q, k) for the set of realizable volume polynomials over k of degree d

in n variables, and Vd
n(R, k) for the set of all volume polynomials over k of degree

d in n variables.

Recall that a quadratic form is Lorentzian if and only if all its coefficients are
nonnegative and its Hessian has at most one positive eigenvalue. It is easy to see
that, for any n and any k, we have

V1
n(Q, k) =

{
linear forms in n variables with nonnegative rational coefficients

}
,

V1
n(R, k) =

{
linear forms in n variables with nonnegative coefficients

}
.

By [HHM+, Theorem 1.8], for any n and any k, we have

V2
n(Q, k) =

{
Lorentzian quadratic forms in n variables with rational coefficients

}
,

V2
n(R, k) =

{
Lorentzian quadratic forms in n variables

}
.

Also, by [Huh12, Theorem 21], for any d and any k, we have

Vd
2(Q, k) =

{
Lorentzian bivariate forms of degree d with rational coefficients

}
,

Vd
2(R, k) =

{
Lorentzian bivariate forms of degree d

}
.

In general, Vd
n(R, k) is preserved under a nonnegative linear change of coordinates,

and the normalized coefficients pα of its members satisfy the Khovanskii–Teissier
inequality :

pα+ei−ejpα−ei+ej ≤ p2α for any α ∈ ∆d
n and any 1 ≤ i < j ≤ n.

As observed in [BH20, Section 4.2], it follows that{
volume polynomials over k

}
⊆

{
Lorentzian polynomials

}
for any k.

The realization problem for volume polynomials over k is to identify the volume
polynomials over k among Lorentzian polynomials. The distinction between the
notions of realizable volume polynomials and volume polynomials will be relevant
in applications to algebraic matroids in Section 5.

Example 3.2. A standard construction in toric geometry shows that any vol-
ume polynomial of rational convex polytopes arises as the volume polynomial of
semiample divisors on projective varieties [Ful93, Section 5.4]. Thus, we have{

volume polynomials of n rational polytopes in Rd
}
⊆ Vd

n(Q, k) for any k.

Since any convex body is a limit of a sequence of rational convex polytopes [Sch14,
Section 1.8], we have{

volume polynomials of n convex bodies in Rd
}
⊆ Vd

n(R, k) for any k.

As noted in Example 2.4, the elementary symmetric polynomial x1x2 + x1x3 +
x1x4 + x2x3 + x2x4 + x3x4 is not in the left-hand side. On the other hand, any
Lorentzian quadratic form is a volume polynomial over k for any k, so the inclusion
is strict.

Example 3.3. Let P = (P1, . . . , Pn) be a collection of d×d positive semidefinite
Hermitian matrices. The volume polynomial of P is

fP (x) := det(x1P1 + · · ·+ xnPn),



VOLUME POLYNOMIALS 13

which is a homogeneous polynomial of degree d in x = (x1, . . . , xn). Using the
abelian variety Cd/(Zd + Zd

√
−1), one can show that{

volume polynomials of n positive semidefinite d× d matrices
}
⊆ Vd

n(R,C).
Since volume polynomials of positive semidefinite Hermitian matrices are stable
[Wag11, Proposition 2.1], the bivariate Lorentzian polynomial x3

1+6x2
1x2+6x1x

2
2+

2x3
2 is not in the left-hand side. On the other hand, any Lorentzian bivariate form

is a volume polynomial over k for any k, so the inclusion is strict. For a detailed
discussion of volume polynomials of positive semidefinite Hermitian matrices, see
[HMWX].

Example 3.4. The Fano matroid F7 is the rank 3 matroid on 7 elements whose
bases are all the triples that are not colinear in the following configuration:

Its basis generating polynomial is the cubic polynomial in seven variables

bF7(x1, x2, x3, x4, x5, x6, x7) =
∑

ijk∈F7

xixjxk,

where the sum is over all the 28 bases of the Fano matroid. According to [GHM+,
Example 5.5], we have

bF7
∈ V3

7(Q, k) if and only if char(k) = 2.

Is bF7 a volume polynomial over k when the characteristic of k is not 2?

Example 3.5. If a matroid J of rank d on n elements is linear over k, then
its basis generating polynomial fJ is a homogeneous polynomial of degree d in n
variables. The arrangement Schubert variety of any linear realization of J over k
witnesses the fact that fJ is a realizable volume polynomial over k [BHM+, Section
1.3].

Example 3.6. The Schur module V(λ) of a Young diagram λ is the irreducible
representation of the general linear group GLn(C) with highest weight λ. It has
the weight space decomposition

V(λ) =
⊕
µ

V(λ)µ with dimV(λ)µ = Kλµ,

where Kλµ is the Kostka number counting semistandard Young tableaux of given
shape λ and weight µ [Ful97, Section 8.3]. The normalized Schur polynomial is
the generating polynomial

fλ(x1, . . . , xn) :=
∑
µ

Kλµx
[µ], where x[µ] :=

xµ

µ!
=

xµ1

1

µ1!
· · · x

µn
n

µn!
,

For example, for the Young diagram λ = , we have

fλ(x1, x2, x3) =
1

2
x2
1x2 +

1

2
x2
1x3 +

1

2
x1x

2
2 +

1

2
x2
2x3 +

1

2
x1x

2
3 +

1

2
x2x

2
3 + 2x1x2x3.

The proof of [HMMSD22, Theorem 3] shows that any normalized Schur polyno-
mial is a realizable volume polynomial over k for any k.
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Example 3.7. The product of two realizable volume polynomials over k is a
realizable volume polynomial over k: If f1(x) is the realizable volume polynomial
obtained from a collection of semiample divisorsD1 on Y1 and f2(x) is the realizable
volume polynomial obtained from a collection of semiample divisors D2 on Y2,
then f1(x)f2(x) is the realizable volume polynomial obtained from the collection
of semiample divisors π∗

1D1 + π∗
2D2 on Y1 × Y2, where the addition is defined

componentwise.

It is known that Vd
n(Q, k), and hence Vd

n(R, k), only depends on the character-
istic of k [GHM+, Proposition 2.10]. It is not known whether Vd

n(R, k) depends
on k when d ≥ 3 and n ≥ 3.

Conjecture 3.8. The set of volume polynomials over k is independent of the
choice of k.

3.2. As observed in [Huh23, Example 14], we have the proper inclusion

Vd
n(R, k) ⊊ Ld

n for any field k when d ≥ 3 and n ≥ 3.

Thus, the realization problem for volume polynomials over k has a nontrivial answer
in these cases. For example, consider the cubic polynomial

f = 14x3
1 + 6x2

1x2 + 24x2
1x3 + 12x1x2x3 + 6x1x

2
3 + 3x2x

2
3.

The support of f is M-convex, as it is the set of all lattice points of the following
integral generalized permutohedron:

(3, 0, 0)

(2, 0, 1)(2, 1, 0)

(1, 0, 2)

(0, 1, 2)

(1, 1, 1)

The Hessians of the partial derivatives ∂1f, ∂2f, ∂3f are84 12 48
12 0 12
48 12 12

 ,

12 0 12
0 0 0
12 0 6

 ,

48 12 12
12 0 6
12 6 0

 ,

each of which has exactly one positive eigenvalue. Then, by Theorem 2.11, f is a
Lorentzian polynomial. The fact that f is not the volume polynomial over k follows
from the reverse Khovanskii–Teissier inequality [LX17, Theorem 5.7]: For any nef
divisors D1, D2, D3 on a d-dimensional projective variety Y and any e ≤ d,(

d

e

)
(De

2 ·Dd−e
1 )Y (De

1 ·Dd−e
3 )Y ≥ (Dd

1)Y (De
2 ·Dd−e

3 )Y .

The complex analytic proof of the inequality in [LX17] relies on the Calabi–Yau
theorem [Yau78]. The algebraic proof of the inequality in [JL23] using Okounkov
bodies works over any algebraically closed field. As mentioned before,{

volume polynomials of n convex bodies in Rd
}
⊆ Vd

n(R, k) for any k.

Since Lorentzian polynomials are strongly log-concave [BH20, Theorem 2.31], the
Lorentzian cubic f provides a counterexample to Gurvits’ conjecture that a strongly
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log-concave homogeneous polynomial in three variables with nonnegative coeffi-
cients is the volume polynomial of three convex bodies [Gur09, Conjecture 4.1].

In [HMWX], the authors introduce a new family of inequalities for volume
polynomials that subsumes both the Khovanskii–Teissier and the reverse Khovanskii–
Teissier inequalities as special cases.

3.3. A basic property of volume polynomials over k is that it is preserved under
any nonnegative linear change of coordinates, as in the case of volume polynomials
of convex bodies (Section 2). More precisely, for any n×m matrix A with nonneg-
ative rational entries and sets of variables x = (x1, . . . , xn) and y = (y1, . . . , ym),
we have the implication

f(x) ∈ Vd
n(Q, k) =⇒ f(Ay) ∈ Vd

m(Q, k).

It follows that, for any n×m matrix A with nonnegative real entries, we have

f(x) ∈ Vd
n(R, k) =⇒ f(Ay) ∈ Vd

m(R, k).
Here are two additional basic operations on the set of realizable volume polynomials
over k, and hence on the set of volume polynomials over k. Let E be a finite set
indexing the variables in a polynomial ring with real coefficients.

Definition 3.9. For a nonzero degree d homogeneous polynomial f ∈ R[xi]i∈E

and an element j ∈ E, we write

f =

emax∑
e=emin

fd−e

xe
j

e!
,

where fd−e are polynomials in R[xi]i̸=j that are nonzero for e = emin, emax.

(1) The deletion of f by j is the degree d homogeneous polynomial

f \ j =
emax−1∑
e=emin

fd−e

xe
j

e!
,

(2) The contraction of f by j is the degree d− 1 homogeneous polynomial

f/j =

emax∑
e=emin+1

fd−e

xe−1
j

(e− 1)!
,

A minor of f is a polynomial obtained from f by a sequence of deletion and
contraction operations.

When applied to the spanning tree polynomials of graphs and the basis gener-
ating polynomials of matroids, Definition 3.9 recovers the corresponding notions of
contraction, deletion, and minor in the context of graph theory and matroid theory
[Oxl11, Chapter 3].5 For a discussion of minors in the more general framework of
polymatroids over tracts, see [BHK+, Section 2.2].

A special case of [GHM+, Corollary 3.3] implies that deletions and contractions
of realizable volume polynomials over k are realizable volume polynomials over k.
For a systematic study of linear operators preserving the set of realizable volume
polynomials over k, see Section 4.

5In [Oxl11, Section 1.2], a matroid is required to have at least one basis. This leads to minor
differences in the definition of f \ j and f/j when j is a loop (when j is contained in no basis of

the matroid) or a coloop (when j is contained in every basis of the matroid).
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Proposition 3.10. Any minor of a realizable volume polynomial over k is a
realizable volume polynomial over k.

It follows that any minor of a volume polynomial over k is a volume polynomial
over k. This contrasts with the fact that the set of volume polynomials of convex
bodies is not closed under minors.

Example 3.11. Let C1, C2, C3, C4 be four equiangular unit segments in R3, and
let C5 be the unit ball in R3. The volume polynomial for C = (C1, C2, C3, C4, C5)
is the cubic in five variables

fC =
4π

3
x3
5 + π

[ ∑
1≤i≤4

xi

]
x2
5 +

4
√
2

3

[ ∑
1≤i<j≤4

xixj

]
x5 +

4
√
3

9

[ ∑
1≤i<j<k≤4

xixjxk

]
.

Recall from Example 2.4 that the quadratic elementary symmetric polynomial in
x1, x2, x3, x4 is not a volume polynomial of convex bodies. However, it is a minor
of the volume polynomial fC .

To what extent do the volume polynomials arising in algebraic geometry coin-
cide with those arising in convex geometry? Proposition 3.10 shows that any minor
of a volume polynomial of convex bodies is a volume polynomial over k for any k.
The following strengthening of Conjecture 3.8 was suggested during a discussion
with Shouda Wang.

Conjecture 3.12. Every volume polynomial over k is a limit of minors of
volume polynomials of convex bodies.

3.4. A real (1, 1)-class [ω] on a compact Kähler manifold Y is semipositive if it
contains a smooth semipositive representative, that is, if there is a smooth function
φ on Y such that

ω + i∂∂φ ≥ 0.

Definition 3.13. A degree d homogeneous polynomial f in n variables is a
realizable analytic volume polynomial if there is a d-dimensional compact Kähler
manifold Y and semipositive classes [ω1], . . . , [ωn] such that

f(x1, . . . , xn) =
1

d!

∫
Y

(x1ω1 + · · ·+ xnωn)
∧d.

A homogeneous polynomial f is an analytic volume polynomial if it is a limit of
realizable analytic volume polynomials.

By [Gro90], the (1, 1)-part of the cohomology of Y satisfies the mixed Hodge–
Riemann relations, and hence{

analytic volume polynomials
}
⊆

{
Lorentzian polynomials

}
.

It follows that the support of an analytic volume polynomial is M-convex, defining
the class of analytic polymatroids [GHM+, Section 5]. On the other hand, the
resolution of singularities for complex projective varieties implies that any realizable
volume polynomial over C is a realizable analytic volume polynomial, and hence{

volume polynomials over C
}
⊆

{
analytic volume polynomials

}
.

The answers to the following basic questions regarding analytic volume polynomials
remain unknown.
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Question 3.14. Is there an analytic volume polynomial that is not a volume
polynomial over C?

Question 3.15. Is the class of analytic volume polynomials closed under taking
minors?

4. Linear operators preserving volume polynomials

4.1. The set of volume polynomials over k is, in a precise sense, dual to the set
of covolume polynomials over k. To define covolume polynomials and state their
main properties, it will be convenient to work with the dual pair of polynomial
rings

R[∂] = R[∂i]i∈E and R[x] = R[xi]i∈E .

We write ZE
≥0 for the set of exponent vectors of the monomials in the two polynomial

rings, and set

∂α :=
∏
i∈E

∂αi
i and x[α] :=

∏
i∈E

xαi
i

αi!
for α ∈ ZE

≥0.

The polynomial ring R[∂] acts on R[x] as differential operators by the usual rule

∂α ◦ x[β] :=

{
x[β−α] if α ≤ β,

0 if otherwise,

where α ≤ β means that their components satisfy αi ≤ βi for all i ∈ E. For any
further conventions for multivariate polynomials, we refer to [BH20, Section 2].
For µ ∈ Zn

≥0, we consider

R[∂]≤µ := span(∂α)α≤µ and R[x]≤µ := span(xα)α≤µ.

Then R[x]≤µ is an R[∂]-submodule of R[x] generated by x[µ], and the linear map

R[∂]≤µ −→ R[x]≤µ, ∂α 7−→ ∂α ◦ x[µ] = x[µ−α]

is an isomorphism of finite-dimensional vector spaces.

Definition 4.1. Let g be a homogeneous polynomial in R[∂]≤µ.

(1) We say that g is a realizable covolume polynomial over k if g(∂) ◦ x[µ] is a
realizable volume polynomial over k.

(2) We say that g is a covolume polynomial over k if it is a limit of realizable
covolume polynomials over k.

As observed in [Alu24, Remark 2.2], the property of being a realizable covol-
ume polynomial over k does not depend on the choice of µ. This follows from the
translation invariance( ∑

α

cαx
[α] is a realizable volume polynomial over k

)
⇐⇒( ∑

α

cαx
[α+β] is a realizable volume polynomial over k

)
, for any β ∈ ZE

≥0.

For the cone construction that justifies this, see [GHM+, Section 2].
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Remark 4.2. According to [BHK+, Section 2.1], the dual of an M-convex set
J ⊆ ZE

≥0, defined up to translation in ZE
≥0, is the M-convex subset

µ− J := {µ− α | α ∈ J} ⊆ ZE
≥0,

where µ is any nonnegative integral vector satisfying α ≤ µ for all α ∈ J .6 Since
the support of a covolume polynomial over k is the dual of the support of a volume
polynomial over k, the support of a covolume polynomial is an M-convex set.

Remark 4.3. The class of (realizable) volume polynomials over k is closed
under nonnegative (rational) linear changes of coordinates, as well as under taking
products and minors. Similarly, the class of (realizable) covolume polynomials over
k is closed under nonnegative (rational) linear changes of coordinates [GHM+,
Theorem 2.7], as well as taking products and minors [GHM+, Theorem 1.5]. It is
interesting to note that the corresponding statements for volume polynomials and
covolume polynomials sometimes have substantially different proofs.

Example 4.4. Let fJ be the basis generating polynomial of a matroid J linear
over k. By Example 3.5, fJ is a realizable volume polynomial over k. Since the
dual of a linear matroid over k is linear over the same field [Oxl11, Corollary 2.2.9],
fJ is a realizable covolume polynomial over k as well.

Example 4.5. The proof of [HMMSD22, Theorem 6] shows that the Schubert
polynomial sw(∂) is a realizable covolume polynomial over k for any permutation
w and any k. In particular, any Schur polynomial is a realizable covolume polyno-
mial over k for any field k. By Example 3.6, any normalized Schur polynomial is
a realizable volume polynomial over k for any k. It is not known whether normal-
ized Schubert polynomials are realizable volume polynomials over k for any k. See
[HMMSD22, Conjecture 15] for a weaker statement.

Example 4.6. The convex polytope in Example 1.8 shows that, for any k,

x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5

+ x1x4x5 + x2x3x4 + x2x3x5 + x2x4x5 + 4x3x4x5

is a realizable volume polynomial over k. It follows that, for any k,

∂4∂5 + ∂3∂5 + ∂3∂4 + ∂2∂5 + ∂2∂4 + ∂2∂3 + ∂1∂5 + ∂1∂4 + ∂1∂3 + 4∂1∂2

is a realizable covolume polynomial over k. This covolume polynomial over k is not
a Lorentzian polynomial, and hence it is not a volume polynomial over k for any k.

Conjecture 1.11 suggests that a quadratic polynomial
∑

1≤i<j≤n qij∂i∂j is a
covolume polynomial over k if and only if its coefficients are nonnegative and satisfy
the Plücker relations over the triangular hyperfield T2:

√
qijqkl ≤

√
qikqjl +

√
qilqjk for any 1 ≤ i < j < k < l ≤ n.

For general discussions of Grassmannians over triangular hyperfields, see [BHKLa,
BHKLb].

6A standard choice used in [BHK+, Section 2.1] is to take µ to be the duality vector δJ =

δ+J + δ−J , where δ+J = sup J and δ−J = inf J .



VOLUME POLYNOMIALS 19

4.2. The main result of [GHM+] is the following characterization of realizable
covolume polynomials. This parallels the characterization of dually Lorentzian
polynomials in [RSW25, Theorem 1.2].

Theorem 4.7. The following conditions are equivalent for any g ∈ Q[∂].

(1) The polynomial g is a realizable covolume polynomial over k.

(2) For any realizable volume polynomial f over k, the polynomial g(∂) ◦ f(x) is a
realizable volume polynomial over k.

The corresponding characterization of covolume polynomials is obtained by
taking limits.

Corollary 4.8. The following conditions are equivalent for any g ∈ R[∂].
(1) The polynomial g is a covolume polynomial over k.

(2) For any volume polynomial f over k, the polynomial g(∂) ◦ f(x) is a volume
polynomial over k.

Example 3.11 shows that the set of volume polynomials of convex bodies does
not satisfy the analogous statement.7 For a parallel statement characterizing volume
polynomials as linear operators preserving covolume polynomials, see [GHM+,
Theorem 1.9].

Corollary 4.8 can be used to deduce new inequalities for mixed volumes of
convex bodies, or more generally, for intersection numbers of nef divisors on a
projective variety. For instance, given a Schubert polynomial sw(∂) and a volume
polynomial fC(x), any known inequality for the coefficients of a volume polynomial
can be applied to sw(∂) ◦ fC(x) to produce another inequality for the coefficients
of fC(x). For an overview of known inequalities for the coefficients of the volume
polynomial, such as the Khovanskii–Teissier inequality or the reverse Khovanskii–
Teissier inequality, see [HMWX].

Remark 4.9. One can define (realizable) analytic covolume polynomials as the
duals of (realizable) analytic volume polynomials as in Definition 4.1. Do they
satisfy the analogues of Theorem 4.7 and Corollary 4.8?

4.3. The symbol theorem for Lorentzian polynomials states that, if the sym-
bol of a linear operator T is a Lorentzian polynomial, then T sends Lorentzian
polynomials to Lorentzian polynomials [BH20, Theorem 3.2]. Theorem 4.7 can be
used to derive a volume polynomial analogue of the symbol theorem for Lorentzian
polynomials.8

Let x = (xi)i∈E and y = (yj)j∈F be two finite sets of variables. Let T be a
homogeneous linear operator9

T : R[x]≤µ −→ R[y]≤ν , where µ ∈ ZE
≥0 and ν ∈ ZF

≥0.

The symbol of T is the homogeneous polynomial in variables (x, y) given by

symT (x, y) =
∑

0≤α≤µ

T (x[α])x[µ−α].

7For example, ∂5fC is not a volume polynomial of convex bodies.
8The study of symbols of linear operators dates back to G̊arding [Gar51] and appears promi-

nently in the work of Borcea and Brändén on the Pólya–Schur program for stable polynomials

[BB09a, BB09b].
9This means that T is linear over R and deg T (xα)− deg xα ∈ Z does not depend on α ≤ µ.
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Theorem 4.10. If the symbol of T is a realizable volume polynomial over k,
then T sends realizable volume polynomials over k to realizable volume polynomials
over k.

Corollary 4.11. If the symbol of T is a volume polynomial over k, then T
sends volume polynomials over k to volume polynomials over k.

Geometrically, one may view T as a graded linear map between Chow groups

φT : CH(Pµ)⊗ R → CH(Pν)⊗ R.

If this map is induced by an irreducible correspondence Γ ⊆ Pµ × Pν so that

φT (Λ) = p2∗
(
Γ ∩ p∗1(Λ)

)
,

then, by [GHM+, Lemma 2.1], it preserves the classes of irreducible cycles up to
a rational multiple.

The symbol theorem for realizable volume polynomials shows that many famil-
iar operators from the theory of Lorentzian polynomials preserve realizable volume
polynomials over k for any k:

(1) The upper truncation operators and the lower truncation operators preserve
realizable volume polynomials over k [GHM+, Corollary 3.3].

(2) The polarization operator Π↑ preserves realizable volume polynomials over k
[GHM+, Proposition 4.1].

(3) The normalization operator N preserves realizable volume polynomials over k
[GHM+, Proposition 4.2].

(4) For any nonnegative rational number t, the interlacing operator 1 + txi∂j pre-
serves realizable volume polynomials over k [GHM+, Proposition 4.3].

(5) For any nonnegative rational number t, the symmetric exclusion process Φi,j
t

preserves realizable multiaffine volume polynomials over k [GHM+, Proposi-
tion 4.4].

The corresponding statements for volume polynomials over k follow from taking
limits.

5. Realization problems for polymatroids

Recall that the support of a polynomial f in R[xi]i∈E is the set of all exponent
vectors α ∈ ZE

≥0 such that the monomial xα appears in f with nonzero coefficient.

Question 5.1. If f is a volume polynomial over k (Definition 3.1), then the
support of f is the set of bases of a polymatroid. Which polymatroids arise in this
way?

Question 5.2. If f is a covolume polynomial over k (Definition 4.1), then the
support of f is the set of bases of a polymatroid. Which polymatroids arise in this
way?

Question 5.3. If f is an analytic volume polynomial (Definition 3.13), then
the support of f is the set of bases of a polymatroid. Which polymatroids arise in
this way?
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Question 5.4. If f is an analytic covolume polynomial (Remark 4.9), then the
support of f is the set of bases of a polymatroid. Which polymatroids arise in this
way?

At present, the author is not aware of any obstructions for any of the above
cases.

The following connection between algebraic matroids and the support of real-
izable volume polynomials is known [GHM+, Proposition 5.4]. A polymatroid on
E is algebraic over k if there are field extensions k ⊆ ℓi ⊆ ℓ for i ∈ E such that

h(A) = trdegk

(
∨i∈A ℓi

)
for all A ⊆ E,

where h is the rank function of the polymatroid.

Proposition 5.5. A polymatroid is algebraic over k if and only if it is the
support of a realizable volume polynomial over k.

Proposition 5.5 implies that every minor of an algebraic polymatroid over k
is an algebraic polymatroid over k [GHM+, Section 5].10 In the classical case of
matroids, this statement is typically deduced from a theorem of Lindström [Lin89],
who proved Piff’s conjecture that M is algebraic over k if M is algebraic over an
extension of k, see [Oxl11, Corollary 6.7.14]. Since the set of realizable volume
polynomials over k depends only on the characteristic of k [GHM+, Proposition
2.10], Proposition 5.5 gives the following version of Lindström’s theorem for poly-
matroids.

Corollary 5.6. A polymatroid is algebraic over some field of characteristic p
if and only if it is algebraic over all fields of characteristic p.

Another consequence of Proposition 5.5 is that the intersectionM1∧M2 of alge-
braic matroids over k is an algebraic matroid over k [GHM+, Theorem 5.11]. This
generalizes Piff’s theorem that the truncation of an algebraic matroid is algebraic
[Wel76, Section 11.3].11

Is the support of a realizable covolume polynomial over k an algebraic polyma-
troid over k? This question extends the following long-standing open problem in
matroid theory. For up-to-date discussions, see [BFP25, Hoc].

Question 5.7. Is the dual of an algebraic matroid over k algebraic over k?
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