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Volume polynomials

June Huh

ABSTRACT. Volume polynomials form a distinguished class of log-concave poly-
nomials with remarkable analytic and combinatorial properties. I will survey
realization problems related to them, review fundamental inequalities they sat-
isfy, and discuss applications to the combinatorics of algebraic matroids. These
notes are based on lectures given at the 2025 Summer Research Institute in
Algebraic Geometry at Colorado State University.

1. Realization problems for projection volumes and homology classes

1.1. Let m;; be the coordinate projection of R* onto the plane orthogonal to
the standard basis vectors e; and e;. For a convex body A in R%, we consider its
vector of projection areas (pi2, P13, P14, P23, P24, P34), Where

pi; = (the area of the projection m;;(A)).

Which tuples of six nonnegative real numbers can arise in this way? This question is
the simplest nontrivial instance of the various realization problems for volume poly-
nomials (Sections 2 and 3). The following answer was given in [HHM™, Theorem
1.4].

THEOREM 1.1. The following conditions are equivalent for any vector of non-
negative real numbers (p12, p13, P14, P23, P24, P34)-
(1) There is a convex body A C R* that satisfies

Pij = (the area of the projection m;; (A)) for all ¢ < j.

(2) There is a Euclidean triangle with side lengths \/p12p34, \/P13P24, \/P14P23-

In other words, (p12, P13, P14, P23, D24, P34) is realizable as the vector of projec-
tion areas of a convex body in R* if and only if it satisfies the triangle inequalities

V/P12P34 < \/P13D24 + /D14p23 and
V/P13D24 < \/P12P34 + +/D14P23 and
V/P1ap23 < \/P12P34 + /D13D24-

A triangle is said to be nondegenerate when all the triangle inequalities are strict.

THEOREM 1.2. The following conditions are equivalent for any vector of non-
negative real numbers (pi2, p13, P14, P23, P24, P34)-
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(1) There is a smooth convex body A C R* that satisfies

Pij = (the area of the projection ;; (A)) for all ¢ < j.

(2) There is a nondegenerate triangle with side lengths \/P12P34, \/P13DP24, \/P14D23-

The realization space of (p12, p13, P14, P23, P24, P34) 1 the set of all convex bodies
in R* with the given projection areas. Theorem 1.1 characterizes the vectors with
nonempty realization spaces. One can show that, in a precise sense, the realization
space of a given vector only depends on the associated triangle with side lengths

v/D12D34, \/P13D24, \/P14D23-

EXAMPLE 1.3. The vector (w,w, 7, 7, m, ) is realizable as the vector of projec-
tion areas of a convex body in R*. For example, one may take the unit ball, the
hypercube with side lengths /7, or more generally any convex body preserved by
the Sy-symmetry of R*, scaled appropriately.

EXAMPLE 1.4. According to Theorem 1.1, the vector (2,1,1,1,1,2) is realizable
as the vector of projection areas of a convex body A C R* because there is a triangle
with side lengths 2,1,1. By Theorem 1.2, such a convex body cannot be smooth.
As a realization, one may take

A=+2 (the convex hull of e;, ez, €3, €4, + €2, €3 + €4 in R?).

The projections m2(A) and 734(A) are squares with side lengths v/2, and the re-
maining projections of A are triangles with side lengths 2, /2, /2.

EXAMPLE 1.5. According to Theorem 1.1, the vector (3,2,1, 1,2, 3) is realizable
as the vector of projection areas of a convex body A C R* because there is a triangle
with side lengths 3,2, 1. For example, one may take the 4 x 16 matrices

' 0-1 0-1-1 0 0 O 1 1 1 0 0-1 1 O]

;| 0-1 0 1 1.0 0 0 1L 1-1 0 0-1-1 0
- 1 0-1 0 0-1-1 1 0 0 O 1-1 0 0 1}

| 1 0-1 0 0 1 1 1 0 0 0-1-1 0 0 -1

o o 0 0 1 0-1-1-1 0 0 1 1 1-1 0]

Me— |2 0 0-2-10-1-1-1-2 0-1-1-1-1-2
- 0o 0 0 0-1 0 1-1-1 0 0-1 111 0]}

-2 0 0 0-1-2-1-1-1-2-2-1-1-1-1 0]

and let A be the convex hull in R* of the 16 columns of L + %M . With patience,

one can check that A has the projections with given areas. For example,
T24(A) = (the convex hull of e;, —ey, e3, —e3 in R?).

Can you think of a simpler convex body in R* that has the same six projection
areas? See [HHM™, Section 4] for a discussion of this particular case.

The condition characterizing the realizability of (pi2,p13, P14, P23, D24, P34) N
Theorem 1.1 is precisely the validity of the Plicker relation

P12P34 — P13P24 + p1apas = 0 for the Grassmannian Gr(2,4),

interpreted over the triangular hyperfield Ty on the set of nonnegative real numbers
[BHKLa]. As noted in [HHM™, Proposition 3.1], the condition is also equivalent
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to the statement that the nonnegative symmetric matrix

0 pi2 pi13 pua
pri2 0 p23s pas
Pz P23 0 p3g
P14 P24 p3a O

Theorem 1.1 is related to the fact that the set of quadratic volume polynomials
V2 (R, k) is equal to the set of Lorentzian polynomials (Section 3).

has at most one positive eigenvalue.

1.2. One quickly encounters interesting questions when trying to formulate
similar realization problems in higher dimensions. The asymmetry in the follow-
ing pair of conjectures points to the distinction between volume polynomials and
covolume polynomials (Section 4).

Let m;; be the coordinate projection of R® onto the coordinate subspace or-
thogonal to the standard basis vectors e; and e;.

CONJECTURE 1.6. The following conditions are equivalent for any vector of
nonnegative real numbers (p;;)1<i<j<s:

(1) There is a convex body A C R® that satisfies
Dij = (the volume of the projection 7;; (A)) for all 7 < j.

(2) The nonnegative symmetric matrix

0 pi2 pi3 puu pis
P12 0 pos poa pos
p1s P23 0  pss pss | has at most one positive eigenvalue.
P1a P24 p3a 0 pgs
P15 P25 P35 pas O

Let ;; be the coordinate projection of R® onto the coordinate subspace spanned
by the standard basis vectors e; and e;.

CONJECTURE 1.7. The following conditions are equivalent for any vector of
nonnegative real numbers (¢;;)1<i<j<5:

(1) There is a convex body A C R that satisfies
gij = (the area of the projection ¢;; (A)) for all i < j.
(2) Every 4 x 4 principal submatrix of the nonnegative symmetric matrix

0 q2 q13 qu s
g1z 0 @3 g4 go5
@13 q23 0 ¢34 ¢35 | has at most one positive eigenvalue.
qia g4 @4 0 qus
@15 q25 @35 qas O

In both cases, the forward implication follows from the Alexandrov—Fenchel
inequality on mixed volumes. Similar conjectures can be made more generally for
projections 7;; : R? — R972 and ¢;; : RY — R2

ExaMPLE 1.8. To compare Conjectures 1.6 and 1.7, we consider the case of
(4,1,1,1,1,1,1,1,1,1). Since the corresponding symmetric matrix has eigenvalues

34+VT, 3-V7, 1, -1, —4,
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there is no convex body A in R® such that the projection m12(A4) has volume 4
while all the other projections m;;(A) have volume 1. On the other hand, every
4 x 4 principal submatrix of the same matrix has at most one positive eigenvalue,
suggesting that there is a convex body A in R® such that the projection ¢;2(A) has
area 4 while all the other projections ¢;;(A) have area 1. Indeed, there is

A= (the convex hull of 2e1, 2e5, 2e1 + 2e5,€3,€4,€5,€3 + €4,€3 + €5,€e4 + e5),
which is consistent with Conjectures 1.6 and 1.7.
1.3. We may pose analogous realization problems in the setting of projective
geometry. Fix an algebraically closed field k, and consider the projective line P!

over k. If S is an irreducible surface in (P!)?4, we can uniquely express its homology
class as a nonnegative integral linear combination

[S] = pr2[P* x Pt x PO x PY] + -+ + p3a[P? x P* x P! x P'] € CH((P")*).

Which vectors of nonnegative integers (pi2, p13, P14, P23, P24, P34) can arise in this
way? We call such homology classes realizable.! While the answer to this question
is not known, the following partial result was given in [HHM™, Theorem 1.6].

THEOREM 1.9. The following conditions are equivalent for any vector of non-
negative rational numbers (pi2, p13, P14, P23, P24, P34)-
(1) There is an irreducible surface S C (P!)* and a nonnegative A\ € Q such that

ALS] = pr2[P! x PL x PO x P°] + - - + pga [P? x P° x P! x P).

(2) There is a Euclidean triangle with side lengths \/p12p34, \/P13P24, \/P14P23-

The algebraic realization problem here has additional obstructions not present
in the convex realization problem in Section 1.1. For example, the homology class
corresponding to (1,1,1,1,1,3) is not realizable by an irreducible surface in (P*)*,
although there is a Euclidean triangle with side lengths v/3,1, 1. To see this, note
that the hypothetical surface S should satisfy

[13(9)] = [14(S)] = [P* x P! x PO] + [P* x PO x P'] + [PV x P! x P!],
where 7; is the projection (P')* — (P')? that forgets the i-th coordinate of (P*)?.
Thus, the defining equations of the hypersurfaces 73 '73(S) and 7, '74(S) in an
affine chart of (P')* are of the form
1 4 %T1 4 *xTo + *x4 + *T1 T2 + *T1T4 + *To2Ty + *T1T2x4 = 0,
1 4+ %1 + *To + *x3 + *T1T2 + *T1T3 + *T2x3 + *T1T2x3 = 0,
where the *’s are placeholders for the coefficients in k. For generic values of x3 and
x4, the displayed system of equations reduces to
*1 + *x1 + *29 + *x122 = 0,
1 + %z 4+ *To + *xx122 = 0,
which has at most 2 solutions. This contradicts the assumption that p34 = 3.

The proof of Theorem 1.9 in [HHM™] shows that, in fact, the homology class
corresponding to (2,2,2,2,2,6) is realizable by an irreducible surface in (P!)%.

1Such questions are algebraic analogues of the Steenrod problem in topology [Eil49, Problem
25], which asks whether every homology class in any simplicial complex X is the image of the
fundamental class of a closed oriented manifold by a map into the simplicial complex.
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Modulo this subtlety involving integral coefficients, one can formulate state-
ments in algebraic geometry parallel to Conjectures 1.6 and 1.7 in convex geometry,
the first of which is a special case of [HHM™, Theorem 1.8].

THEOREM 1.10. The following conditions are equivalent for any vector of non-
negative integers (pi;)i<i<j<s:
(1) There is an irreducible surface S C (P!)® and a nonnegative A\ € Q such that

A[S] = pra[P! x Pt x PY x PO x PO + .- + pys[P° x PO x PO x P* x P'].
(2) The nonnegative symmetric matrix

0 pi2 p13 puu P15
pi2 0 pas pas pos
P13 P23 0 pssa pss | has at most one positive eigenvalue.
P1a P24 p3a 0 pas
P15 P25 Pp3s pas O

The following conjecture suggests the possibility that, in Conjecture 1.7, the
convex body A can be chosen to be a rational convex polytope whenever all p;;i
are rational.

CONJECTURE 1.11. The following conditions are equivalent for any vector of
nonnegative integers (g;;)1<i<;<s:
(1) There is an irreducible threefold S C (P')® and a nonnegative A € Q such that
A[S] = qua[P? x PO x P! x P! x PY] - 4 qu5[P! x P' x P* x PO x PY).
(2) Every 4 x 4 principal submatrix of the nonnegative symmetric matrix

0 q2 q13 quu @5
g1z 0 @3 @4 go5
q1s ¢23 0 q34 gs5 | has at most one positive eigenvalue.
Q14 G2a @3¢ 0 qus
q15 925 35 qas O

In both cases, the Hodge index theorem for projective surfaces can be used to
show the forward implication.

2. Volume polynomials in convex geometry

2.1. In [Min03], Minkowski made a foundational observation that has since
become a cornerstone of convex geometry:

The volume of the Minkowski sum of convex bodies varies poly-
nomially under scaling.

More precisely, for positive integers n and d, and any collection of n convex bodies
C = (Cy,...,Cy) in the d-dimensional Euclidean space R%, the function

1
fo: RTZLO — RZO7 (.1'1,. .. ,l‘n) — Evol(xlcl + - +xnCn)

is a degree d homogeneous polynomial in = (x1,...,,). This polynomial, called
the volume polynomial of C, is then used to define the mized volume of convex
bodies in C' as its normalized coefficients

0 0
17"'7Cid)'287i1”.87

id

MV (C; fe(y,... zn).
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The mixed volume is symmetric in its arguments, and it is multilinear with respect
to the Minkowski sum and nonnegative scaling: For any convex bodies By and By
in R* and nonnegative real numbers A\; and Ay, we have

MV()\1B1 + /\QBQ, C27 ey Cd) = )\1MV(Bl, Cg, . ,Cd) + /\QMV(BQ, 027 . Cd)

When all the arguments coincide, the mixed volume reduces to the usual volume:
For any convex body A in R, we have

MV(4, ..., A) = vol(A).
d

More generally, if I; is the unit interval joining the origin and e; in R?, we have

1
d MV(Il,...,Ik7A,...7A):fVOl(’]Tl...kA),
k —— k!

d—k

where 71...;; is the projection onto the coordinate subspace orthogonal to eq, ..., eg.
For a comprehensive introduction to mixed volumes, see [Sch14, Chapter 5].

Mixed volumes of convex bodies satisfy a rich collection of fundamental in-
equalities, the most basic being nonnegativity:

0 < MV(Cy,...,Cy) for any convex bodies Ci,...,Cy in RY,

More generally, mixed volumes are monotone in each argument: If B; C C; are
convex bodies in R?, we have

MV(By,...,By) <MV(Cy,...,C4).

Apart from the nonnegativity, the most important inequality involving mixed vol-
umes is the Alerzandrov—Fenchel inequality, which generalizes classical inequalities
such as the isoperimetric and Brunn—Minkowski inequalities. It states that, for any
convex bodies C1,...,Cy in RY, we have

MV(CI7 Cl; C?) ceey Cd) MV<027 027 037 XN Cd) < MV(Cla CQa CS R Cd)g'

This inequality is a cornerstone of modern convex geometry and underlies many
structural and analytic results.

2.2. The realization problem for volume polynomials of convex bodies is to de-
termine which homogeneous polynomials of degree d in n variables with nonnegative
coefficients can be realized as the volume polynomials of n convex bodies in R
The problem of finding the full set of inequalities for mixed volumes is sometimes
referred to as Alexandrov’s problem.

For a degree d homogeneous polynomial f in n variables x = (z1,...,2,), we
write

Qn

@ a1
r_n T

f@) = Y paal®l, a2l =

al T ay! an!’
acAd ! "

where p, are the normalized coefficients of f and A¢ is the discrete simplex con-

sisting of all the nonnegative vectors in Z"™ whose coordinates sum to d. Here are

the first two necessary conditions for f to be a volume polynomial.

(1) (Nonnegative change of coordinates) If f(x) is a volume polynomial of n convex
bodies, then f(Ay) is a volume polynomial of m convex bodies, for any n x m
nonnegative matrix A and variables y = (y1,...,Ym)-
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(2) (Alexandrov—Fenchel inequality) If f(x) is a volume polynomial of convex bod-
ies, then its normalized coefficients satisfy

Patei—e;Pa—e;te; < pi for any o € AfL and any 1 <i < j<n.
The first condition is a formal consequence of the observation that the Minkowski
sum of convex bodies is a convex body. The combination of the two properties leads
to the conclusion that any volume polynomial must be a Lorentzian polynomial in
the sense of [BH20]. Here we give an equivalent definition, following [BL, Section
2]. We set
{Lorentzian polynomials of degree < 1} =
{homogeneous polynomials of degree < 1 with nonnegative coefﬁcients}.

For a nonnegative vector u = (uy, ..., u,), we write 9, for the corresponding direc-
tional derivative > | u;0;.

DEFINITION 2.1. A homogeneous polynomial f of degree d > 2 in n variables
with nonnegative coefficients is Lorentzian if, for all vy,...,vq € RY, we have

(D010 D -+~ Do f) (D300 ug - D f) < (B Doy - Do ).

Applying the Alexandrov—Fenchel inequality after a nonnegative linear change
of coordinates, we see that

{Volume polynomials of convex bodies} C {Lorentzian polynomials}.

Thus, Alexandrov’s problem is to find inequalities between mixed volumes that
identify the volume polynomials of convex bodies among Lorentzian polynomials.

EXAMPLE 2.2 (n = 2). According to [BH20, Example 2.26], a bivariate poly-
nomial with nonnegative coefficients

d a d—a
x¢ x5
F=Y pa—t—
| —a)!
— al (d—a)!
is Lorentzian if and only if the sequence py, ..., ps has no internal zeros and

Pa—1Pa+1 < pi for all positive integers a < d.

In [She60], Shephard showed that any such polynomial is the volume polynomial of
two convex bodies in R?. This characterizes volume polynomials of convex bodies
in two variables:

A homogeneous polynomial in two variables is the volume poly-
nomial of two conver bodies if and only if it is Lorentzian.
When every p; is rational, Shephard’s construction gives two rational convex poly-

topes. This is used in [Huh12, Theorem 21] to characterize realizable homology
classes in P? x P4 up to a multiple: Some nonnegative rational multiple of the class

d
> pa [P* x P47 € CH(P x P?)
a=0
is the class of an irreducible subvariety if and only if pg,...,pq is a log-concave

sequence of nonnegative rational numbers with no internal zeros.?

2As observed in [Huh, Section 5], there is no irreducible subvariety of P> x P> whose homology
class corresponds to the log-concave sequence (1,2,3,4,2,1).
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EXAMPLE 2.3 (d = 1). By definition, a linear form is Lorentzian if and only if
all its coefficients are nonnegative. Any such linear form is a volume polynomial of
convex bodies in R!:

vol(z1Cy + -+ - 4 2,Cy) = x1 vol(C1) 4 - - - + x, vol(Cy), C4,...,Cp CRL

EXAMPLE 2.4 (d = 2). A quadratic form is Lorentzian if and only if all its
coeflicients are nonnegative and its Hessian has at most one positive eigenvalue
[BH20, Section 2]. In [Hei38], Heine showed that, when there are at most three
variables, any such quadratic form is the volume polynomial of three convex bodies
in R2. This characterizes quadratic volume polynomials of convex bodies in three
variables:

A ternary quadratic form is the volume polynomial of three con-
vex bodies if and only if it is Lorentzian.

The analogous statement fails when n = 4. For example, as observed in [She60,
Theorem 5], there are no convex bodies C1, Co, C3, Cy in R? satisfying

VOl(l‘lcl + 29Cy + 23C3 + 1‘404) =12 + X123 + X1T4 + ToX3 + T2y + T3y,

even though the right-hand side is a Lorentzian polynomial. In fact, using the com-
pactness theorem of Shephard for the affine equivalence classes of convex bodies
[She60, Theorem 1], one can show that the displayed elementary symmetric poly-
nomial is not even the limit of volume polynomials of convex bodies in the plane.
This contrasts with the fact that there is an irreducible surface in (P*)* with class
(1,1,1,1,1,1) in the Chow group. For example, one may take the closure of a
general two-dimensional linear subspace of an affine chart of (P!)%.

2.3. The main result of [BH20] provides a finite description of the set of
Lorentzian polynomials that generalizes Example 2.2. The central notion is that

of a generalized permutohedron. Let E be a finite set with n elements, and let
{e;}icr be the standard basis of RF.

DEFINITION 2.5. A generalized permutohedron is a polytope in R¥ all of whose
edges are in the direction e; — e; for some ¢ and j in E.

A generalized permutohedron is integral if all its vertices belong to ZF C RF.
For example, the standard permutohedron in R™, which is the convex hull of all

permutations of (1,2,...,n), and the k-th hypersimplex in R™, which is the convex
hull of all permutations of (1,...,1,0,...,0), are integral generalized permutohedra.
T
i

The above pictures show the standard permutohedron and the second hypersimplex
in R%. Generalized permutohedra are precisely the polytopes obtained from the
standard permutohedron by moving the vertices so that all the edge directions are
preserved [Pos09].
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DEFINITION 2.6. A subset J C ZE; is M-convex if it is the set of all lattice
points of an integral generalized permutohedron. A matroid on E is an M-convex

subset of Z% consisting of zero-one vectors. The vectors in a matroid J are called
bases of J.

The notion of M-convex sets originates in discrete convex analysis [Mur03].
In [Mur03, Chapter 4], one can find several other equivalent characterizations of
M-convex sets. For example, a subset J C ZZ is M-convex exactly when it satisfies
the symmetric basis exchange property: -

For any a, 8 € J and i € E with o; > (;, there is j € E with
o; < B and aoao—e;+e;€J and B—e;+e; € J
For background specific to matroids, see [Ox111].

DEFINITION 2.7. A function h : 2¥ — Zs¢ is a polymatroid rank function if it
satisfies the following properties:

(1) Normalization: h(2) = 0.

(2) Monotonicity: h(A) < h(B) forall AC BCE.

(3) Submodularity: h(AU B) 4+ h(ANB) < h(A) + h(B) for all A,BC E.

A polymatroid rank function h is a matroid rank function if h(A) < |A]| for all
ACE.

We recall the standard bijection between polymatroid rank functions on E and
nonempty M-convex subsets of Zgo from [Mur03, Chapter 4]. For A C FE and

E — .
a € L5, we set aq = D ica Qi

(1) A polymatroid rank function h defines
Jn={ac€ Zgo | g =h(E) and aa < h(A) forall AC E},
which is an M-convex subset of Zgo.

(2) An M-convex subset .J of Z£ defines
hy:2F — Z>o, hy(A):= max{ﬁA | B <« for some « € J},

which is a polymatroid rank function on E.

The constructions J, and h; are mutually inverse, providing a polymatroid
generalization of the classical cryptomorphism between the matroid rank function
axioms and the symmetric basis exchange property. A polymatroid & is a pair
(h=hy,J = Jp), where h is the rank function of &2 and J is the set of bases of L.
A polymatroid &2 is a matroid if h is a matroid rank function, or equivalently if J
consists of zero-one vectors. Throughout this text, we restrict attention to integral
polymatroids and do not consider nonintegral ones. Accordingly, we use the terms
polymatroid and M-convex set interchangeably.

EXAMPLE 2.8 (Graphic matroids). For any finite connected graph G with the
edge set E, consider the set of indicator vectors

J(G) == {ep | B is a spanning tree of G} C Z&.

The subset J(G) is M-convex for any such G. Such matroids are said to be graphic.
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EXAMPLE 2.9 (Linear matroids). For any function ¢ : E — W from a finite
set F to a vector space W over a field k, consider the set of indicator vectors

J(p) ={ep | ¢(B) is a basis of W} C Zgo

The subset J(¢) is M-convex for any ¢ : E — W. Such matroids are said to be
linear over k, and the function ¢ is called a linear realization over k. One typically
requires without loss of generality that the image of ¢ spans W. A graphic matroid
is linearly realizable over every field [Ox111, Section 5.1]. In general, a matroid
may or may not have a linear realization over k:

NN

Among the four matroids pictured above, where the bases are given by all triples
of points not on a line, the first is linear over k if and only if the characteristic of
k is 2, the second is linear over k if and only if the characteristic of k is not 2, the
third is linear over k if and only if the cardinality of k& is not 2, 3, or 5, and the
fourth is not linear over any field [Ox111, Appendix].

EXAMPLE 2.10 (Algebraic matroids). For any function ¢ : E — £ from a finite
set E to a field extension £ of k, consider the set of indicator vectors

J(¢) =={ep | ¢(B) is a transcendence basis of ¢ over k} C Z,

The subset J(y¢) is M-convex for any ¢ : E — £. Such matroids are said to
be algebraic over k, and the function ¢ is called an algebraic realization over k.
One typically requires without loss of generality that the image of ¢ contains a
transcendence basis of £ over k. A linear matroid over k is algebraic over k [Ox111,
Section 6.7]. In general, a matroid may or may not have an algebraic realization
over k:

A A X XK

Among the four matroids pictured above, where the bases are given by all triples
of points not on a line, the first is algebraic over k if and only if the characteristic
of k is 2, the second and the third are algebraic over any field, and the fourth is
algebraic over k if and only if k& has nonzero characteristic [Ox111, Appendix].

Let HY be the vector space of all homogeneous polynomials of degree d in n
variables with real coefficients, and set

L} = {linear forms in n variables with nonnegative coefficients}.

Let L2 C H2 be the closed subset of quadratic forms with nonnegative coefficients
whose Hessians have at most one positive eigenvalue. For d larger than 2, we define
L4 C HE by setting

:{f6M2|8if€}Lfb_1 foralli:l,...,n},
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where M? C H? is the set of polynomials with nonnegative coefficients whose
supports are M-convex.®> The following characterization in [BH20, Theorem 2.25]
is central to the theory of Lorentzian polynomials.

THEOREM 2.11. L¢ is the set of Lorentzian polynomials in H.

Theorem 2.11 makes it possible to decide whether a given polynomial is Lorentzian
or not. For example, the following polynomials are not Lorentzian because their
supports are not M-convex:

xf + acg, .13?333 + xg
Note that, in each case, all the partial derivatives 0;f are Lorentzian.
One can also use Theorem 2.11 to show that a given polynomial is Lorentzian.
For example, the elementary symmetric polynomial of degree d in n variables is

Lorentzian because its support is M-convex and all its quadratic partial derivatives
have the Hessian

o011 - 1
101 --- 1
110 --- 1
111 - 0

which have exactly one positive eigenvalue n — d + 1. When n = 2, Theorem 2.11
specializes to the explicit description of bivariate Lorentzian polynomials given in
Example 2.2.

3. Volume polynomials in projective geometry

3.1. The analogous volume polynomial in algebraic geometry is defined as fol-
lows: Let D = (Dy, ..., D,,) be a collection of semiample divisors on a d-dimensional
projective variety Y over a field k.* The volume polynomial of D is

fo(x) = %/Y (éxiDz)da

which is a homogeneous polynomial of degree d in = (z1,...,2,). When the base
is the field of complex numbers and each D; is ample, the restriction of fp to the
nonnegative orthant measures the volume of Y with respect to the Kéahler class
determined by z.

DEFINITION 3.1. Let & be a field.

(1) A homogeneous polynomial f is a realizable volume polynomial over k if f =
Afp for some A € Q> and a collection of semiample divisors D on a projective
variety Y over k.

(2) A homogeneous polynomial f is a volume polynomial over k if it is a limit of
realizable volume polynomials over k.

3By definition, the support of a polynomial f is the set of all monomials appearing in f with
nonzero coefficients.

4Throughout this paper, a variety over k is by definition a reduced and irreducible scheme of
finite type over k. A Cartier divisor on a complete variety is semiample if some positive multiple
moves in a basepoint-free linear system. For background and any undefined terms concerning
divisors on varieties, we refer to [Laz04].
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We write V2 (Q, k) for the set of realizable volume polynomials over k of degree d
in n variables, and V¢ (R, k) for the set of all volume polynomials over k of degree
d in n variables.

Recall that a quadratic form is Lorentzian if and only if all its coefficients are
nonnegative and its Hessian has at most one positive eigenvalue. It is easy to see
that, for any n and any k, we have

V}l(@, k)= {linear forms in n variables with nonnegative rational coeﬁcicz'ents},
V,ll (R, k) = {linear forms in n variables with nonnegative coeﬁcients}.
By [HHM™, Theorem 1.8], for any n and any k, we have
Vi(@, k)= {Lorentzz'an quadratic forms in n variables with rational coeﬁcients},
V2(R, k) = { Lorentzian quadratic forms in n variables}.
Also, by [Huh12, Theorem 21], for any d and any k, we have

V4(Q, k) = {Lorentzian bivariate forms of degree d with rational coeﬁ%cients},

V4R, k) = { Lorentzian bivariate forms of degree d}.

In general, V4 (R, k) is preserved under a nonnegative linear change of coordinates,
and the normalized coeflicients p, of its members satisfy the Khovanskii—Teissier
inequality:

Date;—e;Pa—eite; < pi for any o € Afl and any 1 <i < j<n.
As observed in [BH20, Section 4.2], it follows that
{volume polynomials over k} C {Lorentzian polynomials} for any k.

The realization problem for volume polynomials over k is to identify the volume
polynomials over k among Lorentzian polynomials. The distinction between the
notions of realizable volume polynomials and volume polynomials will be relevant
in applications to algebraic matroids in Section 5.

ExAMPLE 3.2. A standard construction in toric geometry shows that any vol-
ume polynomial of rational convex polytopes arises as the volume polynomial of
semiample divisors on projective varieties [Ful93, Section 5.4]. Thus, we have

{volume polynomials of n rational polytopes in ]Rd} C V4(Q, k) for any k.

Since any convex body is a limit of a sequence of rational convex polytopes [Sch14,
Section 1.8], we have

{volume polynomials of n convex bodies in Rd} C V4(R, k) for any k.

As noted in Example 2.4, the elementary symmetric polynomial xixs + x123 +
T12T4 + Tox3 + xoxy + 324 is not in the left-hand side. On the other hand, any
Lorentzian quadratic form is a volume polynomial over k for any &, so the inclusion
is strict.

EXAMPLE 3.3. Let P = (P4, ..., P,) be a collection of d xd positive semidefinite
Hermitian matrices. The volume polynomial of P is

fe(z) =det(x1 P+ -+ x,Pp),
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which is a homogeneous polynomial of degree d in © = (z1,...,2,). Using the
abelian variety C?/(Z? + Z4\/—1), one can show that

{volume polynomials of n positive semidefinite d x d matrices} C V¢(R,C).

Since volume polynomials of positive semidefinite Hermitian matrices are stable
[Wag11, Proposition 2.1], the bivariate Lorentzian polynomial 23 4 6x2xs + 62123 +
273 is not in the left-hand side. On the other hand, any Lorentzian bivariate form
is a volume polynomial over k for any k, so the inclusion is strict. For a detailed
discussion of volume polynomials of positive semidefinite Hermitian matrices, see

ExXAMPLE 3.4. The Fano matroid Fr is the rank 3 matroid on 7 elements whose
bases are all the triples that are not colinear in the following configuration:

Its basis gemerating polynomial is the cubic polynomial in seven variables

bp, (01, T2, T3, T4, T5, T, T7) = Y TilljTk,
ijkeFy
where the sum is over all the 28 bases of the Fano matroid. According to [GHMT,
Example 5.5], we have

br, € V3(Q, k) if and only if char(k) = 2.
Is br, a volume polynomial over k& when the characteristic of £ is not 27

ExAMPLE 3.5. If a matroid J of rank d on n elements is linear over k, then
its basis generating polynomial f; is a homogeneous polynomial of degree d in n
variables. The arrangement Schubert variety of any linear realization of J over k
witnesses the fact that f; is a realizable volume polynomial over K [BHM™, Section
1.3].

EXAMPLE 3.6. The Schur module V(X) of a Young diagram A is the irreducible
representation of the general linear group GL,(C) with highest weight A. It has
the weight space decomposition

V) =@ V), with dimV(\), = Ky,

where K, is the Kostka number counting semistandard Young tableaux of given
shape A and weight u [Ful97, Section 8.3]. The normalized Schur polynomial is
the generating polynomial

© H1
@y, ..o x,) = ZK,\Hx[“], where zlW =2 — 11
“w

hn
!t el

For example, for the Young diagram \ = Hj, we have
L o L o L oo, 1, L oo, 1 5
vz, xe,x3) = 5 %122 + 52123 + 5 %1% + %273 + 52173 + %23 + 2211073,

The proof of [ HMMSD22, Theorem 3| shows that any normalized Schur polyno-
mial is a realizable volume polynomial over k for any k.
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ExaMPLE 3.7. The product of two realizable volume polynomials over k is a
realizable volume polynomial over k: If fi(x) is the realizable volume polynomial
obtained from a collection of semiample divisors D; on Y7 and f2(x) is the realizable
volume polynomial obtained from a collection of semiample divisors Dy on Y3,
then f1(z)f2(z) is the realizable volume polynomial obtained from the collection
of semiample divisors 7Dy + 75D on Y7 X Y3, where the addition is defined
componentwise.

It is known that V¢(Q, k), and hence V% (R, k), only depends on the character-
istic of k¥ [GHMT™, Proposition 2.10]. It is not known whether V¢ (R, k) depends
on k when d > 3 and n > 3.

CONJECTURE 3.8. The set of volume polynomials over k is independent of the
choice of k.

3.2. As observed in [Huh23, Example 14|, we have the proper inclusion
V4R, k) CLE for any field k when d > 3 and n > 3.

Thus, the realization problem for volume polynomials over k has a nontrivial answer
in these cases. For example, consider the cubic polynomial

[ = 1423 4 62329 + 24xTw3 + 12212973 + 62105 + w073,

The support of f is M-convex, as it is the set of all lattice points of the following
integral generalized permutohedron:

(3,0,0)

(2,1,0) (2,0,1)
(1,1,1) (1,0,2)
(0,1,2)

The Hessians of the partial derivatives 0y f, ds f, 05 f are

84 12 48 12 0 12 48 12 12
12 0 12/, (o o o}, |12 0 6],
48 12 12 12 0 6 12 6 0

each of which has exactly one positive eigenvalue. Then, by Theorem 2.11, f is a
Lorentzian polynomial. The fact that f is not the volume polynomial over & follows
from the reverse Khovanskii—Teissier inequality [LX17, Theorem 5.7]: For any nef
divisors D1, Do, D3 on a d-dimensional projective variety Y and any e < d,

d e — e — e _
(£) @3- Dty (05 DY)y = DDy (05 D)y,

The complex analytic proof of the inequality in [LX17] relies on the Calabi-Yau
theorem [YauT78]. The algebraic proof of the inequality in [JL23] using Okounkov
bodies works over any algebraically closed field. As mentioned before,

{Volume polynomials of n convex bodies in Rd} C V4(R, k) for any k.

Since Lorentzian polynomials are strongly log-concave [BH20, Theorem 2.31], the
Lorentzian cubic f provides a counterexample to Gurvits’ conjecture that a strongly
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log-concave homogeneous polynomial in three variables with nonnegative coeffi-
cients is the volume polynomial of three convex bodies [Gur09, Conjecture 4.1].

In [HMWX], the authors introduce a new family of inequalities for volume
polynomials that subsumes both the Khovanskii—Teissier and the reverse Khovanskii—
Teissier inequalities as special cases.

3.3. A basic property of volume polynomials over k is that it is preserved under
any nonnegative linear change of coordinates, as in the case of volume polynomials
of convex bodies (Section 2). More precisely, for any n x m matrix A with nonneg-
ative rational entries and sets of variables x = (z1,...,2,) and ¥y = (y1,...,Ym),
we have the implication

f(x) € VE(Qk) = [(Ay) € Vi, (Q,k).
It follows that, for any n X m matrix A with nonnegative real entries, we have
f@) eVRR.E) = f(Ay) € VL(R.k).

Here are two additional basic operations on the set of realizable volume polynomials
over k, and hence on the set of volume polynomials over k. Let F be a finite set
indexing the variables in a polynomial ring with real coefficients.

DEFINITION 3.9. For a nonzero degree d homogeneous polynomial f € R[z;];cp
and an element j € E, we write

€max

x€
f= Z fdfeeii»

€=€min
where fy_. are polynomials in R[xi]#j that are nonzero for e = enin, €max-
(1) The deletion of f by j is the degree d homogeneous polynomial
€max—1 l.e
; — _J
f \ .] - Z fd—e 6! I
€=€min

(2) The contraction of f by j is the degree d — 1 homogeneous polynomial

€max m(i*l
fli= fa—er—"—5;
ez;ﬂﬁ_l “(e—1)V

A minor of f is a polynomial obtained from f by a sequence of deletion and
contraction operations.

When applied to the spanning tree polynomials of graphs and the basis gener-
ating polynomials of matroids, Definition 3.9 recovers the corresponding notions of
contraction, deletion, and minor in the context of graph theory and matroid theory
[Ox111, Chapter 3].> For a discussion of minors in the more general framework of
polymatroids over tracts, see [BHK™, Section 2.2].

A special case of [GHMT™, Corollary 3.3] implies that deletions and contractions
of realizable volume polynomials over k are realizable volume polynomials over k.
For a systematic study of linear operators preserving the set of realizable volume
polynomials over k, see Section 4.

5In [Ox111, Section 1.2], a matroid is required to have at least one basis. This leads to minor
differences in the definition of f\ j and f/j when j is a loop (when j is contained in no basis of
the matroid) or a coloop (when j is contained in every basis of the matroid).
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PROPOSITION 3.10. Any minor of a realizable volume polynomial over k is a
realizable volume polynomial over k.

It follows that any minor of a volume polynomial over k is a volume polynomial
over k. This contrasts with the fact that the set of volume polynomials of convex
bodies is not closed under minors.

EXAMPLE 3.11. Let Cy, Cy, Cs, Cy be four equiangular unit segments in R?, and
let C5 be the unit ball in R3. The volume polynomial for C' = (Cy, Cy, Cs, Cy, Cs)
is the cubic in five variables

> @i $§+4\/§[ > wi

dm 4
fo=—xs+7 3
1<i<4 1<i<j<4

3

43
x5 + i [ Z TiTT

9
1<i<j<k<4

Recall from Example 2.4 that the quadratic elementary symmetric polynomial in
T1, T2, X3, T4 is N0t a volume polynomial of convex bodies. However, it is a minor
of the volume polynomial fc.

To what extent do the volume polynomials arising in algebraic geometry coin-
cide with those arising in convex geometry? Proposition 3.10 shows that any minor
of a volume polynomial of convex bodies is a volume polynomial over k for any k.
The following strengthening of Conjecture 3.8 was suggested during a discussion
with Shouda Wang.

CONJECTURE 3.12. Every volume polynomial over k is a limit of minors of
volume polynomials of convex bodies.

3.4. A real (1,1)-class [w] on a compact Kéhler manifold Y is semipositive if it
contains a smooth semipositive representative, that is, if there is a smooth function
@ on Y such that

w 4 i00¢p > 0.

DEFINITION 3.13. A degree d homogeneous polynomial f in n variables is a
realizable analytic volume polynomial if there is a d-dimensional compact Kéahler
manifold Y and semipositive classes [w1], ..., [wy] such that

1
f(xlv"'axn) = E/ (.’L'lb.)1 + - 'l‘xnwn)/\d.
Sy
A homogeneous polynomial f is an analytic volume polynomial if it is a limit of

realizable analytic volume polynomials.

By [Gro90], the (1, 1)-part of the cohomology of Y satisfies the mized Hodge—
Riemann relations, and hence

{analytic volume polynomials} - {Lorentzian polynomials}.

It follows that the support of an analytic volume polynomial is M-convex, defining
the class of analytic polymatroids [GHM™, Section 5. On the other hand, the
resolution of singularities for complex projective varieties implies that any realizable
volume polynomial over C is a realizable analytic volume polynomial, and hence

{volume polynomials over (C} C {analytic volume polynomials}.

The answers to the following basic questions regarding analytic volume polynomials
remain unknown.
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QUESTION 3.14. Is there an analytic volume polynomial that is not a volume
polynomial over C?

QUESTION 3.15. Is the class of analytic volume polynomials closed under taking
minors?

4. Linear operators preserving volume polynomials

4.1. The set of volume polynomials over k is, in a precise sense, dual to the set
of covolume polynomials over k. To define covolume polynomials and state their
main properties, it will be convenient to work with the dual pair of polynomial
rings

We write Zgo for the set of exponent vectors of the monomials in the two polynomial
rings, and set
. x
0% = H % and = H L for a € Zgo.

: : ay!
) i€E

The polynomial ring R[0] acts on R[xz] as differential operators by the usual rule

9% o x[ﬁ] — Jf[ﬁ_a] if a S ﬁ?
0 if otherwise,

where @ < 3 means that their components satisfy «; < §; for all ¢ € E. For any
further conventions for multivariate polynomials, we refer to [BH20, Section 2].
For pp € Z%,5, we consider
R[0]<, == span(0%)a<, and Rlz]<, = span(z®)a<p-
Then R[z]<,, is an R[9]-submodule of R[z] generated by z*l, and the linear map
R[0]<, — Rlz]<p, 9% — 9% o glHl = gln—al
is an isomorphism of finite-dimensional vector spaces.

DEFINITION 4.1. Let g be a homogeneous polynomial in R[0]<,,.

(1) We say that g is a realizable covolume polynomial over k if g(9) o zlM is a
realizable volume polynomial over k.

(2) We say that g is a covolume polynomial over k if it is a limit of realizable
covolume polynomials over k.

As observed in [Alu24, Remark 2.2], the property of being a realizable covol-
ume polynomial over k£ does not depend on the choice of u. This follows from the
translation invariance

( Z corl® is a realizable volume polynomial over k) <=

(e

( Z caz!®Pl s a realizable volume polynomial over k), for any S € Zgo.

[e3

For the cone construction that justifies this, see [GHMT™, Section 2].
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REMARK 4.2. According to [BHK™, Section 2.1], the dual of an M-convex set
J C Zgo, defined up to translation in Zgo, is the M-convex subset

p-J={u—-alaeJ}czs,

where y is any nonnegative integral vector satisfying a@ < p for all o € J.6 Since
the support of a covolume polynomial over k is the dual of the support of a volume
polynomial over k, the support of a covolume polynomial is an M-convex set.

REMARK 4.3. The class of (realizable) volume polynomials over k is closed
under nonnegative (rational) linear changes of coordinates, as well as under taking
products and minors. Similarly, the class of (realizable) covolume polynomials over
k is closed under nonnegative (rational) linear changes of coordinates [GHM™,
Theorem 2.7], as well as taking products and minors [GHM™, Theorem 1.5]. It is
interesting to note that the corresponding statements for volume polynomials and
covolume polynomials sometimes have substantially different proofs.

EXAMPLE 4.4. Let f; be the basis generating polynomial of a matroid J linear
over k. By Example 3.5, f; is a realizable volume polynomial over k. Since the
dual of a linear matroid over k is linear over the same field [Ox111, Corollary 2.2.9],
f7 is a realizable covolume polynomial over k as well.

EXAMPLE 4.5. The proof of [ HMMSD22, Theorem 6] shows that the Schubert
polynomial s,,(0) is a realizable covolume polynomial over k for any permutation
w and any k. In particular, any Schur polynomial is a realizable covolume polyno-
mial over k for any field k. By Example 3.6, any normalized Schur polynomial is
a realizable volume polynomial over k for any k. It is not known whether normal-
ized Schubert polynomials are realizable volume polynomials over k for any k. See
[HMMSD22, Conjecture 15] for a weaker statement.

EXAMPLE 4.6. The convex polytope in Example 1.8 shows that, for any k,
T1T2x3 + T1X2%4 + T1T2T5 + T1X3%4 + T1T3T5
+ 212425 + To2X324 + To2X3T5 + ToTaTs + 432425
is a realizable volume polynomial over k. It follows that, for any k,
0405 + 0305 + 0304 + 0205 + 0204 + 0203 + 0105 + 0104 + 0103 + 49105

is a realizable covolume polynomial over k. This covolume polynomial over k is not
a Lorentzian polynomial, and hence it is not a volume polynomial over k for any k.

Conjecture 1.11 suggests that a quadratic polynomial Zl<i<j<n ¢i;0:0; is a
covolume polynomial over k if and only if its coefficients are nonnegative and satisfy
the Pliicker relations over the triangular hyperfield Ts:

V@i < V@Gre@Gl + /@age forany 1 <i<j<k<l<n.

For general discussions of Grassmannians over triangular hyperfields, see [ BHKLa,
BHKLDb].

6A standard choice used in [BHK, Section 2.1] is to take u to be the duality vector 6; =
6j + 67, where 6j =supJ and §; = infJ.
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4.2. The main result of [GHM] is the following characterization of realizable
covolume polynomials. This parallels the characterization of dually Lorentzian
polynomials in [RSW25, Theorem 1.2].

THEOREM 4.7. The following conditions are equivalent for any g € Q[9).
(1) The polynomial g is a realizable covolume polynomial over k.

(2) For any realizable volume polynomial f over k, the polynomial ¢g(9) o f(z) is a
realizable volume polynomial over k.

The corresponding characterization of covolume polynomials is obtained by
taking limits.

COROLLARY 4.8. The following conditions are equivalent for any g € R[d].
(1) The polynomial g is a covolume polynomial over k.

(2) For any volume polynomial f over k, the polynomial g(9) o f(x) is a volume
polynomial over k.

Example 3.11 shows that the set of volume polynomials of convex bodies does
not satisfy the analogous statement.” For a parallel statement characterizing volume
polynomials as linear operators preserving covolume polynomials, see [GHM™,
Theorem 1.9].

Corollary 4.8 can be used to deduce new inequalities for mixed volumes of
convex bodies, or more generally, for intersection numbers of nef divisors on a
projective variety. For instance, given a Schubert polynomial s,,(9) and a volume
polynomial fo(x), any known inequality for the coefficients of a volume polynomial
can be applied to s,(9) o fo(x) to produce another inequality for the coefficients
of fo(x). For an overview of known inequalities for the coefficients of the volume
polynomial, such as the Khovanskii—Teissier inequality or the reverse Khovanskii—
Teissier inequality, sce [HMWX].

REMARK 4.9. One can define (realizable) analytic covolume polynomials as the
duals of (realizable) analytic volume polynomials as in Definition 4.1. Do they
satisfy the analogues of Theorem 4.7 and Corollary 4.87

4.3. The symbol theorem for Lorentzian polynomials states that, if the sym-
bol of a linear operator 7" is a Lorentzian polynomial, then T sends Lorentzian
polynomials to Lorentzian polynomials [BH20, Theorem 3.2]. Theorem 4.7 can be
used to derive a volume polynomial analogue of the symbol theorem for Lorentzian
polynomials.®

Let * = (2;)ier and y = (y;)jer be two finite sets of variables. Let T be a
homogeneous linear operator

T :Rlz]<, — Rly|<,, where p € Zgo and v € Zgo-
The symbol of T is the homogeneous polynomial in variables (z,y) given by

symp(z,y) =y T(zl*halel,
0<a<u

"For example, 05 fc is not a volume polynomial of convex bodies.

8The study of symbols of linear operators dates back to Garding [Gar51] and appears promi-
nently in the work of Borcea and Brédndén on the Pdlya—Schur program for stable polynomials
[BB09a, BB09b].

9This means that T is linear over R and deg T'(z*) — deg z* € Z does not depend on a < pu.
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THEOREM 4.10. If the symbol of T is a realizable volume polynomial over k,
then T sends realizable volume polynomials over k to realizable volume polynomials
over k.

COROLLARY 4.11. If the symbol of T is a volume polynomial over k, then T
sends volume polynomials over k to volume polynomials over k.

Geometrically, one may view T as a graded linear map between Chow groups
or : CH(P*) @ R — CH(P") ® R.
If this map is induced by an irreducible correspondence I' C P* x P¥ so that

er(A) = pou (T NP5 (),

then, by [GHM™, Lemma 2.1], it preserves the classes of irreducible cycles up to
a rational multiple.

The symbol theorem for realizable volume polynomials shows that many famil-
iar operators from the theory of Lorentzian polynomials preserve realizable volume
polynomials over k for any k:

(1) The upper truncation operators and the lower truncation operators preserve
realizable volume polynomials over k¥ [GHM™, Corollary 3.3].

(2) The polarization operator IIT preserves realizable volume polynomials over k
[GHM™, Proposition 4.1].

(3) The normalization operator N preserves realizable volume polynomials over k
[GHM™, Proposition 4.2].

4) For any nonnegative rational number ¢, the interlacing operator 1+ tx;0; pre-
J
serves realizable volume polynomials over ¥ [GHM™, Proposition 4.3].

(5) For any nonnegative rational number ¢, the symmetric exclusion process fbi’j
preserves realizable multiaffine volume polynomials over & [GHM™, Proposi-
tion 4.4].

The corresponding statements for volume polynomials over k follow from taking
limits.

5. Realization problems for polymatroids

Recall that the support of a polynomial f in R[z;];cg is the set of all exponent
vectors a € Zgo such that the monomial = appears in f with nonzero coefficient.

QUESTION 5.1. If f is a volume polynomial over k (Definition 3.1), then the
support of f is the set of bases of a polymatroid. Which polymatroids arise in this
way?

QUESTION 5.2. If f is a covolume polynomial over k (Definition 4.1), then the
support of f is the set of bases of a polymatroid. Which polymatroids arise in this
way?

QUESTION 5.3. If f is an analytic volume polynomial (Definition 3.13), then
the support of f is the set of bases of a polymatroid. Which polymatroids arise in
this way?
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QUESTION 5.4. If f is an analytic covolume polynomial (Remark 4.9), then the
support of f is the set of bases of a polymatroid. Which polymatroids arise in this
way?

At present, the author is not aware of any obstructions for any of the above
cases.

The following connection between algebraic matroids and the support of real-
izable volume polynomials is known [GHM™, Proposition 5.4]. A polymatroid on
E is algebraic over k if there are field extensions k C ¢; C £ for i € E such that

h(A) = trdeg,, ( Viea Ei) forall ACE,
where h is the rank function of the polymatroid.

PRrROPOSITION 5.5. A polymatroid is algebraic over k if and only if it is the
support of a realizable volume polynomial over k.

Proposition 5.5 implies that every minor of an algebraic polymatroid over k
is an algebraic polymatroid over k [GHMT, Section 5].1° In the classical case of
matroids, this statement is typically deduced from a theorem of Lindstrém [Lin89],
who proved Piff’s conjecture that M is algebraic over k if M is algebraic over an
extension of k, see [Ox111, Corollary 6.7.14]. Since the set of realizable volume
polynomials over k depends only on the characteristic of & [GHMT™, Proposition
2.10], Proposition 5.5 gives the following version of Lindstréom’s theorem for poly-
matroids.

COROLLARY 5.6. A polymatroid is algebraic over some field of characteristic p
if and only if it is algebraic over all fields of characteristic p.

Another consequence of Proposition 5.5 is that the intersection M A M, of alge-
braic matroids over k is an algebraic matroid over kK [GHM™, Theorem 5.11]. This
generalizes Piff’s theorem that the truncation of an algebraic matroid is algebraic
[Wel76, Section 11.3].*

Is the support of a realizable covolume polynomial over k an algebraic polyma-
troid over k? This question extends the following long-standing open problem in
matroid theory. For up-to-date discussions, see [BFP25, Hoc].

QUESTION 5.7. Is the dual of an algebraic matroid over k algebraic over k?
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