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LINEAR OPERATORS PRESERVING VOLUME POLYNOMIALS

LUKAS GRUND, JUNE HUH, MATEUSZ MICHAŁEK, HENDRIK SÜSS, AND BOTONG WANG

ABSTRACT. Volume polynomials measure the growth of Minkowski sums of convex bodies and
of tensor powers of positive line bundles on projective varieties. We show that Aluffi’s covolume
polynomials are precisely the polynomial differential operators that preserve volume polynomials,
reflecting a duality between homology and cohomology. We then present several applications to
matroid theory.

1. INTRODUCTION

In [Min03], Minkowski made a foundational observation that became a cornerstone of convex
geometry: For any collection of convex bodies C “ pC1, . . . , Cnq in Rd, the function

fC : Rně0 ÝÑ Rě0, px1, . . . , xnq ÞÝÑ
1

d!
volpx1C1 ` ¨ ¨ ¨ ` xnCnq

is a degree d homogeneous polynomial in x1, . . . , xn. This polynomial, called the volume polyno-
mial of C, is then used to define the mixed volume of convex bodies as its normalized coefficients

MVpCi1 , . . . , Cidq –
B

Bxi1
¨ ¨ ¨

B

Bxid
fCpx1, . . . , xnq.

The mixed volumes satisfy the Alexandrov–Fenchel inequalities, of which the classical isoperi-
metric inequality is a special case. For a comprehensive introduction to the Brunn–Minkowski
theory, see [Sch14].

The analogous volume polynomial in algebraic geometry is defined as follows: Let D “

pD1, . . . , Dnq be a collection of semiample divisors on a d-dimensional projective variety Y over
an algebraically closed field k.1 Then the volume polynomial of D is

fD –
1

d!

ż

Y

ˆ n
ÿ

i“1

xiDi

˙d

,

which is a homogeneous polynomial of degree d in x1, . . . , xn. When the base field is C and each
Di is an ample divisor, the restriction of fD to the nonnegative orthant measures the volume of
Y with respect to the Kähler class determined by x [GH94, Chapter 0]. A standard construc-
tion in toric geometry shows that any volume polynomial of convex bodies arises as a limit
of volume polynomials of ample divisors on projective varieties [Ful93, Section 5.4]. Our goal

1Throughout this paper, a variety is by definition reduced and irreducible. A Cartier divisor on a complete variety
is semiample if some positive multiple moves in a basepoint-free linear system. Undefined terms concerning divisors on
varieties are as in [Laz04].
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is to demonstrate that the set of all volume polynomials satisfies several remarkable analytic
properties.

Definition 1.1. Let k be an algebraically closed field.

(1) A homogeneous polynomial f is a realizable volume polynomial over k if f “ λfD for some
λ P Qě0 and a collection of semiample divisors D on a projective variety Y over k.

(2) A homogeneous polynomial f is a volume polynomial over k if it is a limit of realizable volume
polynomials over k.

We write VdnpQ, kq for the set of realizable volume polynomials over k of degree d in n variables,
and VdnpR, kq for the set of all volume polynomials over k of degree d in n variables.

We say that a quadratic form is Lorentzian if it has nonnegative coefficients and its Hessian
has at most one positive eigenvalue. By [HHM`, Theorem 1.8], we have

V2
npQ, kq “

!

Lorentzian quadratic forms in n variables with rational coefficients
)

,

V2
npR, kq “

!

Lorentzian quadratic forms in n variables
)

.

We say that a degree d bivariate form
řd
k“0 ck

xk
1

k!
xd´k
2

pd´kq! is Lorentzian if pckq is a log-concave se-
quence of nonnegative numbers with no internal zeros. Then, by [Huh12, Theorem 21], we
have

Vd2pQ, kq “

!

Lorentzian bivariate forms of degree d with rational coefficients
)

,

Vd2pR, kq “

!

Lorentzian bivariate forms of degree d
)

.

In general, a volume polynomial is a Lorentzian polynomial in the sense of [BH20, Definition
2.1]. It is not known whether the set of volume polynomials over k depends on the choice of k.
On the other hand, the basis generating polynomial of the Fano matroid is a realizable volume
polynomial over k if and only if the characteristic of k is 2, see Example 5.5. For a Lorentzian
polynomial that is not a volume polynomial over k for any k, see [Huh23, Example 14]. The
distinction between the notions of realizable volume polynomials and volume polynomials will
be important in the application to algebraic matroids in Section 5.

Aluffi introduced the dual notion of covolume polynomials in [Alu24, Definition 2.1]. To define
covolume polynomials and state their main properties, it will be convenient to work with the
dual pair of polynomial rings in countably many variables

RrBs “ lim
ÝÑ
n

RrB1, . . . , Bns and Rrxs “ lim
ÝÑ
n

Rrx1, . . . , xns,

where the polynomial rings are given the topology of direct limits. We write Z8
ě0 “ lim

ÝÑn
Zně0

for the set of exponent vectors of the monomials in Rrxs, and write xrαs for the normalized
monomial xα

α! in Rrxs. The polynomial ring RrBs acts on Rrxs as differential operators by the
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usual rule

Bα ˝ xrβs –

$

&

%

xrβ´αs if α ď β,

0 if otherwise,

where α ď β means that their components satisfy αi ď βi for all i. For any further conventions
for multivariate polynomials, we refer to [BH20, Section 2]. For µ P Z8

ě0, we consider

RrBsďµ – spanpBαqαďµ and Rrxsďµ – spanpxαqαďµ.

Then Rrxsďµ is an RrBs-submodule of Rrxs generated by xrµs, and the linear map

RrBsďµ ÝÑ Rrxsďµ, Bα ÞÝÑ Bα ˝ xrµs “ xrµ´αs

is an isomorphism of finite-dimensional vector spaces.

Definition 1.2. Let g be a homogeneous polynomial in RrBsďµ.

(1) We say that g is a realizable covolume polynomial over k if gpBq ˝ xrµs is a realizable volume
polynomial over k.

(2) We say that g is a covolume polynomial over k if it is a limit of realizable covolume polynomials
over k.

As observed in [Alu24, Remark 2.2], the property of being a (realizable) covolume polynomial
over k does not depend on the choice of µ. This follows from the cone construction in Section 2:
If
ř

α cαx
rαs is a realizable volume polynomial over k, then

ř

α cαx
rα`βs is a realizable volume

polynomial over k for any nonnegative β.

Our first main result is the following characterization of realizable covolume polynomials.
This parallels the characterization of dually Lorentzian polynomials in [RSW, Theorem 1.2].

Theorem 1.3. The following conditions are equivalent for any polynomial g P QrBs.

(1) The polynomial g is a realizable covolume polynomial over k.

(2) For any realizable volume polynomial f over k, the polynomial gpBq ˝ fpxq is a realizable
volume polynomial over k.

The corresponding characterization of covolume polynomials follows by taking limits.

Corollary 1.4. The following conditions are equivalent for any polynomial g P RrBs.

(1) The polynomial g is a covolume polynomial over k.

(2) For any volume polynomial f over k, the polynomial gpBq ˝ fpxq is a volume polynomial
over k.

Our next theorem is an immediate consequence of Theorem 1.3.

Theorem 1.5. If g1 and g2 are realizable covolume polynomials over k, then g1g2 is a realizable
covolume polynomial over k.
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By taking limits, we recover the following statement of Aluffi [Alu24, Corollary 2.14].

Corollary 1.6. If g1 and g2 are covolume polynomials over k, then g1g2 is a covolume polynomial
over k.

Aluffi shows in [Alu24, Theorem 2.13] that any nonnegative linear change of coordinates of
a covolume polynomial is also a covolume polynomial, and from this he deduces Corollary 1.6.
We strengthen Aluffi’s theorem in Theorem 2.7 by showing that any nonnegative rational linear
change of coordinates of a realizable covolume polynomial is a realizable covolume polynomial.

Remark 1.7 (Application to algebraic matroids). The support of a polynomial f in Rrx1, . . . , xns

is the set of all exponent vectors α such that the monomial xα appears in f with nonzero coeffi-
cient. By [BH20, Theorem 2.25], the support J of any Lorentzian polynomial is M-convex subset
of Zně0:

For any i and α, β P J whose i-th coordinate satisfy αi ą βi, there is j satisfying

αj ă βj and α ´ ei ` ej P J and β ´ ej ` ei P J,

where ei denotes the i-th standard basis vector of Zn.

The notion of M-convex sets originates in discrete convex analysis [Mur03, Chapter 4]. The con-
dition is equivalent to J being the set of bases of an integral polymatroid on rns in the sense of
[Wel76, Chapter 18], and to J being the set of lattice points of an integral generalized permutohe-
dron in Rn in the sense of [Pos09, Section 4]. When J consists of zero-one vectors, the condition
is equivalent to J being the set of bases of a matroid on rns if we identify a subset of rns with
its indicator vector in Zně0. For a comprehensive treatment of discrete convex analysis and M-
convexity, see [Mur03]. For background specific to matroids, see [Oxl11].

Every volume polynomial is Lorentzian [BH20, Theorem 4.6], so its support is the set of bases
of an integral polymatroid. In Proposition 5.4, we prove that polymatroids algebraic over k are
precisely those arising as supports of realizable volume polynomials over k, thereby answering
[CCRL`20, Question 5.8]. In Theorem 5.11, we use this connection to deduce the following
statement from Theorem 1.5: If M1 and M2 are matroids algebraic over k, then the intersection
M1 ^ M2 is algebraic over k. This generalizes Piff’s theorem that the truncation of an algebraic
matroid is algebraic [Wel76, Section 11.3, Theorem 2], and complements the dual result of Welsh
that the union of matroids algebraic over k is algebraic over k [Wel76, Section 11.3, Theorem 4].

Remark 1.8 (Application to Brunn–Minkowski theory). Corollary 1.4 can be used to deduce new
inequalities for mixed volumes of convex bodies, or more generally, for intersection numbers
of nef divisors on a projective variety. For instance, given a Schubert polynomial swpBq and a
volume polynomial fCpxq, any known inequality for the coefficients of a volume polynomial can
be applied to swpBq˝fCpxq to produce another inequality for the coefficients of fCpxq, since every
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Schubert polynomial is a covolume polynomial [HMMSD22, Theorem 6].2 For an overview
of known inequalities for the coefficients of the volume polynomial, such as the Khovanskii–
Teissier inequality or the reverse Khovanskii–Teissier inequality, see [HMW].

We now formulate a dual characterization of volume polynomials. The polynomial ring Rrxs

acts on RrBs as differential operators by the rule

xβ ¨ Brαs –

$

&

%

Brα´βs if α ě β,

0 if otherwise.

Despite its appearance, the following statement is qualitatively different from Theorem 1.3. See
Remark 3.4 for a discussion of this asymmetry.

Theorem 1.9. The following conditions are equivalent for any polynomial f P Qrxs.

(1) The polynomial f is a realizable volume polynomial over k.

(2) For any realizable covolume polynomial g over k, the polynomial fpxq ¨ gpBq is a realizable
covolume polynomial over k.

The corresponding characterization of volume polynomials follows by taking limits.

Corollary 1.10. The following conditions are equivalent for any polynomial f P Rrxs.

(1) The polynomial f is a volume polynomial over k.

(2) For any covolume polynomial g over k, the polynomial fpxq ¨gpBq is a covolume polynomial
over k.

It follows formally from Theorem 1.9 that the product of realizable volume polynomials over
k is a realizable volume polynomial over k, and that the product of volume polynomials over
k is a volume polynomial over k. These facts are straightforward to verify directly [RS, Lemma
2.4], unlike the corresponding statements for covolume polynomials in Theorem 1.5 and Corol-
lary 1.6. It is instructive to compare the statements in the simplest case of bivariate polynomials.
In this case, the statement for covolume polynomials is equivalent to the assertion that the con-
volution of log-concave sequences without internal zeros is a log-concave sequence without
internal zeros, and the statement for volume polynomials is equivalent to the assertion that the
convolution of ultra-log-concave sequences without internal zeros is an ultra-log-concave se-
quence without internal zeros. Menon gives a direct argument for the former in [Men69], and
Liggett gives a direct argument for the latter in [Lig97].

2Proposition 2.6 in [RS] states that swpBq ˝ fCpxq is a volume polynomial for any Schubert polynomial swpBq and
volume polynomial fCpxq. The proof given there relies on the statement that the Schubert degeneracy class of w

associated to the sum of globally generated line bundles can be represented by an irreducible subvariety, which is not
true in general and unknown when all the line bundles are ample. The main results of [RS] and the previous version of
the current paper [GS] depend on this proposition. Our initial motivation for this study was to close this gap.
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Using Theorem 1.3, we derive a volume analogue of the symbol theorem for Lorentzian poly-
nomials. The study of symbols of linear operators dates back to Gårding [Gr51] and appears
prominently in the work of Borcea and Brändén on the Pólya–Schur program [BB09a, BB09b].
Let x “ px1, x2, . . .q and y “ py1, y2, . . .q be two sets of variables, and let T be a linear operator

T : Rrxsďµ ÝÑ Rrysďν .

We suppose that T is homogeneous, that is, deg T pxαq ´ deg xα P Z does not depend on α ď µ.

Definition 1.11. The symbol of T is the homogeneous polynomial

symT px, yq “
ÿ

0ďαďµ

T pxrαsqxrµ´αs.

The symbol theorem for Lorentzian polynomials states that, if the symbol of T is a Lorentzian
polynomial, then T sends Lorentzian polynomials to Lorentzian polynomials [BH20, Theorem
3.2]. We prove the parallel statement for realizable volume polynomials.

Theorem 1.12. If the symbol of T is a realizable volume polynomial over k, then T sends real-
izable volume polynomials over k to realizable volume polynomials over k.

Corollary 1.13. If the symbol of T is a volume polynomial over k, then T sends volume polyno-
mials over k to volume polynomials over k.

We use Theorem 1.12 to show that many familiar operators from the theory of Lorentzian
polynomials preserve realizable volume polynomials over k for any k:

– The polarization operator ΠÒ preserves realizable volume polynomials over k (Proposition 4.1).

– For any nonnegative rational number t, the interlacing operator 1 ` txiBj preserves realizable
volume polynomials over k (Proposition 4.3).

– For any nonnegative rational number t, the symmetric exclusion process Φ1,2
t preserves realiz-

able multiaffine volume polynomials over k (Proposition 4.4).

Theorem 1.12 also yields, for example, the following generalizations of the corresponding state-
ments from [RS] for volume polynomials over k:

– If f is a realizable volume polynomial over k, then the lower truncation fěγ and the upper
truncation fďγ are realizable volume polynomials over k (Corollary 3.3).

– If f is a realizable volume polynomial over k, then the normalization Npfq is a realizable
volume polynomial over k (Proposition 4.2).

– If Npf1q and Npf2q are realizable volume polynomials over k, then Npf1f2q is a realizable
volume polynomial over k (Corollary 2.6).

The statements for volume polynomials follow from taking limits.
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Remark 1.14. In the literature on volume and covolume polynomials, it is customary to work
over an algebraically closed field. However, for any field k, the notions of volume and covol-
ume polynomials over k coincide with those over its algebraic closure k, see Proposition 2.10.
Therefore, all the results above remain valid over any field k.

Acknowledgements. The authors thank Paolo Aluffi, Petter Brändén, Matt Larson and Jonathan
Montaño for their insightful comments. Lukas Grund and Hendrik Süss acknowledge support
from DFG grant 539864509. June Huh is partially supported by the Oswald Veblen Fund and
the Simons Investigator Grant. Mateusz Michałek is partially supported by the Charles Simonyi
Endowment. Botong Wang is partially supported by the NSF grant DMS-1926686.

2. VOLUME AND COVOLUME POLYNOMIALS

Let f “
ř

α cαx
rαs be a nonzero degree d realizable volume polynomial over k in Qrx1, . . . , xns.

We use the following construction throughout the paper and refer to it as the basic construction.
By definition, there is a d-dimensional projective variety Y over k, a collection of semiample
divisors D “ pD1, . . . , Dnq on Y , and a positive rational number λ such that

f “ λfD, where fD “
1

d!

ż

Y

ˆ n
ÿ

i“1

xiDi

˙d

.

Choose a positive integer m such that mDi is a basepoint-free divisor for every i. The collection
mD of basepoint-free divisors on Y defines a map to the product of projective spaces

Y ÝÑ Pµ –

n
ź

i“1

PH0pY,OY pDiqq_.

The Chow group of Pµ is the free abelian group

CHpPµq “
à

αďµ

Z ¨ rPαs “
à

αďµ

Z ¨ hµ´α X rPµs,

where rPαs is the class of the product of linear spaces of the form
śn
i“1 Pαi and hi is the pullback

of the hyperplane class from the i-th factor Pµi . Let X be the image of Y in Pµ. By the projection
formula, there is a positive rational number λ such that

λrXs “
ÿ

αďµ

cαrPαs “
ÿ

αďµ

cαh
µ´α X rPµs,

where λ is determined by the number m and the degree of Y Ñ X . The volume polynomial of
X with respect to h is λ´1f . We make the following observations:

(1) For ν P Zně0, the equations satisfied by X in Pµ define a subvariety Xν of Pµ`ν such that

λrXνs “
ÿ

αďµ

cαrPα`νs “
ÿ

αďµ

cαh
µ´α X rPµ`νs.

Thus fν –
ř

α cαx
rα`νs is a realizable volume polynomial over k for any ν. The cycles X

and Xν correspond to the same realizable covolume polynomial gpBq –
ř

α cαBµ´α.
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(2) For ν P Zně0, choose a linear embedding Pµ Ñ Pµ`ν . The image Xν of X satisfies

λrXνs “
ÿ

αďµ

cαrPαs “
ÿ

αďµ

cαh
µ`ν´α X rPµ`νs.

Thus gν –
ř

α cαBµ`ν is a realizable covolume polynomial over k for any ν. The cycles X
and Xν correspond to the same realizable volume polynomial fpxq “

ř

α cαx
rαs.

We now prove the main technical lemma of this paper. Let X be a complete homogeneous
variety over k, that is, a complete variety with a transitive action of a connected algebraic group
G. For a rational point g ofG and a morphism φ : Y Ñ X , we write gY Ñ X for the composition
g ˝ φ.

Lemma 2.1. Let φ : Y Ñ X and ψ : Z Ñ X be proper morphisms over k from irreducible
varieties Y and Z to a complete homogeneous variety X . Then, for a general point g of Gpkq,
the irreducible components of the fiber product

gY ˆX Z //

��

Z

��

gY // X

are algebraically equivalent to each other in Y ˆ Z.

When φ and ψ are closed immersions, we have gY ˆX Z » gY X Z. In this case, Lemma 2.1
says that, for general g in Gpkq, the irreducible components of the intersection are algebraically
equivalent to each other in Y and in Z, and hence in X . See Examples 2.2 and 2.3 for irre-
ducible Y and irreducible Z in X such that the intersection of Z with a general translate of Y is
disconnected and has positive dimension.

Proof. By [SdS03, Theorem 5.2], the complete homogeneous variety X must be of the form A ˆ

H{P , whereA is an abelian variety,H is a connected affine algebraic group, and P is a parabolic
subgroup of H . Since any parabolic subgroup is connected [Spr98, Corollary 6.4.10], we may
assume that X » G{P , where G and P are connected algebraic groups. We consider the fiber
squares

UY,Z – tgφpyq “ ψpzqu //

��

Gˆ Y ˆ Z

idˆϕˆψ

��

// Y ˆ Z

ϕˆψ

��

UX,X – tgx1 “ x2u // GˆX ˆX // X ˆX,

where the right horizontal arrows are the projections and the left horizontal arrows are the
closed immersions. By generic flatness and the transitivity of the G-action on X , we see that the
projection

πX,X : UX,X ÝÑ X ˆX
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is a flat morphism whose fibers over closed points are isomorphic to P , which is irreducible by
our assumption. Flatness is preserved under pullbacks, so the projection

πY,Z : UY,Z ÝÑ Y ˆ Z

shares the same properties. Since πY,Z is open and surjective, π´1
Y,Zpyˆzq is irreducible for every

closed point y ˆ z, and Y ˆ Z is irreducible, it follows that UY,Z is irreducible [Sta18, Lemma
5.8.14].

SinceG is quasi-projective [Sta18, Lemma 39.8.7], we may take its projective compactification
G. Let VY,Z be the closure of UY,Z in Gˆ Y ˆ Z, and consider the projection

p : VY,Z ÝÑ G.

Since VY,Z is irreducible, we may apply the following lemma from [HHM`, Lemma 2.6] to the
reduced induced scheme of VY,Z :

Let f : V Ñ W be a proper surjective morphism between irreducible varieties over k.
Then the irreducible components of a general fiber of f are algebraically equivalent to
each other in V .

Therefore, for general g P Gpkq, the irreducible components of the fiber

p´1pgq » gY ˆX Z

are algebraically equivalent to each other in VY,Z . Since algebraic equivalence is preserved
under proper pushforwards, the irreducible components of p´1pgq are algebraically equivalent
in Y ˆ Z. □

The following example is a modification of [KL22, Example 29].

Example 2.2. Let G be the general linear group GL5 and let X be the Grassmannian Grp2, 5q. For
any one-dimensional subspace F1 of k5 and three-dimensional subspace F3 of k5, we consider
the Schubert varieties

Y pF1q – Y “ tV P Grp2, 5q |V contains F1u » P3,

SpF3q – tV P Grp2, 5q |V is contained in F3u » P2.

The intersection of Y pF1q and SpF3q is either P1 or empty, depending on whether F1 is in F3 or
not. LetH be the intersection of four general hyperplanes in Grp3, 5q Ď P9. This is an irreducible
surface in the parameter space for F3. We consider the irreducible fourfold

Z –
ď

F3PH

SpF3q Ď X.

From the classical Schubert calculus, we know that there are precisely two F3 P H that contain a
given general F1. Thus, a general translate of Y meets Z in two disjoint copies of P1 in Grp2, 5q.
Lemma 2.1 says that these two copies of P1 are algebraically equivalent in Y and in Z.
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The following example illustrates Lemma 2.1 when the intersection of Z with a general trans-
late of Y is not smooth.

Example 2.3. Let k be an algebraically closed field of odd characteristic p, and let ι be the product
of the identity map on P1 with the Segre embedding

ι : P1 ˆ P1 ˆ P1 ÝÑ P1 ˆ P3, pa0, a1q ˆ pb0, b1q ˆ pc0, c1q ÞÝÑ pa0, a1q ˆ pb0c0, b0c1, b1c0, b1c1q.

We consider a smooth threefold Y and a smooth surface Z in X – P1 ˆ P3 defined by

Y “

!

a0 “ 0
)

and Z “ ι
!

a0b
2p
0 ` a1b

2p
1 “ 0

)

.

The intersection of Z with a general translate of Y in X is the disjoint union of two copies of P1,
each with multiplicity p. The two connected components are algebraically equivalent in Y and
in Z.

We are ready to show that realizable covolume polynomials are precisely the polynomial
differential operators that preserve realizable volume polynomials.

Proof of Theorem 1.3. We first show that realizable covolume polynomials preserve realizable
volume polynomials. We write

fpxq “
ÿ

α

cαx
rαs, gpBq “

ÿ

β

dβBβ , and gpBq ˝ fpxq “
ÿ

α

eαx
rαs.

Suppose f is a realizable volume polynomial over k and g is a realizable covolume polynomial
over k. By the basic construction, we may choose positive rational numbers λ1 and λ2, a nonneg-
ative integral vector µ satisfying f P Qrxsďµ and g P QrBsďµ, and subvarieties Y and Z of the
product of projective spaces Pµ satisfying

λ1rY s “
ÿ

α

cαrPαs and λ2rZs “
ÿ

β

dβh
β X rPµs.

By [Kle74, Theorem 2], the intersection of gY and Z is equidimensional and has the expected
dimension for a general g in the automorphism group of Pµ, and hence

λ1λ2rgY X Zs “
ÿ

α

eαrPαs.

By Lemma 2.1, any irreducible component of V of gY X Z satisfies λ1λ2λ3rV s “
ř

α eαrPαs for
some positive rational number λ3. It follows that gpBq ˝ fpxq is a volume polynomial over k.

For the converse, choose an integral vector µ satisfying g P QrBsďµ. Since xrµs is a realizable
volume polynomial over k, our hypothesis on g implies that gpBq ˝ xrµs is a realizable volume
polynomial over k. This means that g is a realizable covolume polynomial over k, by definition.

□

We collect several consequences of Theorem 1.3.

Corollary 2.4. If g is a Schubert polynomial and f is a realizable volume polynomial over k,
then gpBq ˝ fpxq is a realizable volume polynomial over k.



LINEAR OPERATORS PRESERVING VOLUME POLYNOMIALS 11

Proof. By [HMMSD22, Theorem 6], a Schubert polynomial is a realizable covolume polynomial
over k. The conclusion follows from Theorem 1.3. □

Remark 2.5. The authors of [CRLM24] show more generally that any double Richardson poly-
nomial is a realizable covolume polynomial over k. Thus, these polynomials preserve realizable
volume polynomials over k.

It formally follows from Theorem 1.3 that the product of realizable covolume polynomials
over k is a realizable covolume polynomial over k. We state here a related property of realizable
volume polynomials in terms of the normalization operator N defined by

Npxαq “ xrαs for all α P Z8
ě0.

The following statement sharpens [RS, Corollary 2.9]. See [BH20, Corollary 3.8] for the corre-
sponding statement for Lorentzian polynomials.

Corollary 2.6. If Npf1q and Npf2q are realizable volume polynomials over k, then Npf1f2q is a
realizable volume polynomial over k.

Proof. Choose µ such that f1, f2 P Rrxsďµ. We define polynomials g1, g2 P RrBs by

f1 “
ÿ

α

cαx
α, f2 “

ÿ

α

dαx
α, g1 “

ÿ

α

cαBµ´α, g2 “
ÿ

α

dαBµ´α.

Since Npf1q and Npf2q are realizable volume polynomials over k, g1 and g2 are realizable co-
volume polynomials over k. It follows from Theorem 1.5 that the product g1g2 is a realizable
covolume polynomial over k. It follows that

Npf1f2q “ g1g2 ˝ xr2µs

is a realizable volume polynomial over k. □

The following statement recovers a result of Aluffi that any nonnegative linear change of
coordinates preserves covolume polynomials [Alu24, Theorem 2.13].

Theorem 2.7. If gpBq is a realizable covolume polynomial over k and A is a matrix with nonneg-
ative rational entries, then gpAδq is a realizable covolume polynomial over k.

Proof. The proof is similar to that of [Alu24, Theorem 2.13]. The use of Debarre’s connected-
ness theorem [Deb96, Théorème 2.2] by Aluffi is replaced by Lemma 2.1 to obtain the stronger
statement.

Let B “ pB1, . . . , Bnq and δ “ pδ1, . . . , δmq be the variables viewed as column vectors, and let
A “ paijq be an n ˆ m matrix whose entries are nonnegative rational numbers. Replacing A by
its multiple by a sufficiently divisible positive integer, we may assume that aij are nonnegative
integers. Let d be the degree of g. By combining the Veronese map, the Segre map, and the linear
embedding, we may construct a map

φ : pPdqm ÝÑ pPeqn such that φ˚phiq “ ai1h1 ` ¨ ¨ ¨ ` aimhm for all i,
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where hi is the pullback of the hyperplane class from the i-th factor and e ě d is an integer.

We write Pµ “ pPdqm, Pν “ pPeqn, and gpBq “
ř

α cαBα. By increasing e using linear embed-
dings if necessary, we can find a positive rational number λ and a subvariety Y of Pν such that
λrY s “

ř

α cαh
ν´α X rPνs. By Lemma 2.1, for a general g in the automorphism group of Pν , the

irreducible components of

φ´1pgY q » gY ˆPν Pµ

are algebraically equivalent to each other in Pµ. Therefore, any one of the irreducible compo-
nents witnesses the fact that gpAδq is a realizable covolume polynomial over k. □

It is instructive to compare Theorem 2.7 with the corresponding statement for realizable vol-
ume polynomials, which is easier.

Proposition 2.8. If fpxq is a realizable volume polynomial over k and A is a matrix with non-
negative rational entries, then fpAyq is a realizable volume polynomial over k.

Proof. It is enough to prove the statement when the entries of A are nonnegative integers. In
this case, the assertion follows from the fact that nonnegative integral linear combinations of
semiample divisors are semiample. □

Theorem 1.9 strengthens the following corollary.

Corollary 2.9. If f1 and f2 are realizable volume polynomials over k, then f1f2 is a realizable
volume polynomial over k.

Proof. The argument is identical to that for [RS, Lemma 2.4]: If f1pxq is the realizable volume
polynomial arising from semiample divisors on Y1 and f2pyq is the realizable volume polyno-
mial from semiample divisors on Y2, then f1pxqf2pyq is the realizable volume polynomial from
semiample divisors on Y1 ˆ Y2. By Proposition 2.8, we conclude that f1pxqf2pxq is a realizable
volume polynomial over k. □

We conclude this section by examining how our results extend when the ground field k is
not necessarily algebraically closed. We extend the definition of realizable volume polynomials
over any field k as follows:

A homogeneous polynomial f is a realizable volume polynomial over k if there exist a
nonnegative rational number λ and a collection of semiample divisors D on a projective
variety Y over k such that f “ λfD, where a variety over k means a reduced and
irreducible scheme of finite type over k.

We show that the resulting class of polynomials depends only on the characteristic of k.

Proposition 2.10. The following conditions are equivalent for a polynomial f and p ě 0.

(1) The polynomial f is a realizable volume polynomial over some field of characteristic p.
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(2) The polynomial f is a realizable volume polynomial over any field of characteristic p.

Proof. Let ℓ{k be a field extension. We show that f is a realizable volume polynomial over ℓ if
and only if it is a realizable volume polynomial over k. In the argument below, we implicitly
use that rXs and rXreds are equal up to a positive multiple for any irreducible scheme X in the
Chow ring of X .

First, we consider the case when ℓ is a separable algebraic extension of k. It is enough to prove
the statement when ℓ is the separable closure of k. Let f be a realizable volume polynomial over
k, and let X be a subvariety of Pµ over k constructed from f using the basic construction. By
[Liu02, Section 3.2, Exercise 2.10], the Galois group of ℓ{k acts transitively on the irreducible
components of Xℓ – X ˆSpecpkq Specpℓq and trivially on the Chow group of Pµℓ . Thus, the
realizable volume polynomial determined by any irreducible component of Xℓ is equal to f up
to a positive multiple, and hence f is a realizable volume polynomial over ℓ.

For the converse direction, let f be a realizable volume polynomial over ℓ, and let Y be a
subvariety of Pµℓ over ℓ constructed from f as above. The union of the orbits of Y under the
Galois group of ℓ{k defines a subvarietyX of Pµ over k. Thus, the realizable volume polynomial
determined by Y is equal to f up to a positive multiple, and hence f is a realizable volume
polynomial over k.

Second, we consider the case when ℓ is a purely inseparable extension of k. In this case, the
set of realizable volume polynomials over ℓ coincide with that over k because the natural map
Pµℓ Ñ Pµk is a homeomorphism [Liu02, Section 3.2, Proposition 2.7].

Third, we consider the case when ℓ is a purely transcendental extension of k. Let f be a
realizable volume polynomial over k, and let X be a subvariety of Pµ over k constructed from
f as above. Since the polynomial ring Rrxs is an integral domain for any integral domain R, it
follows that Xℓ is reduced and irreducible, witnessing that f is a realizable volume polynomial
over ℓ.

For the converse direction, let f be a realizable volume polynomial over ℓ, and let Y be a
subvariety of Pµℓ over ℓ constructed from f as above. Since Y is of finite type over ℓ, we may
suppose that ℓ is a finitely generated purely transcendental extension of k. Thus, by induction,
we may further suppose that ℓ “ kptq, where t is a transcendental element over k. Since kptq is
an algebraic extension of kptq, we may use our previous analysis to suppose in addition that k
is algebraically closed.

By clearing denominators of the equations for Y Ď Pµℓ and taking the closure of the generic
fiber in the resulting integral model, we can construct a family Y Ď A1 ˆPµ, proper and flat over
A1 “ Specpkrtsq, such that Y irreducible and Y Ñ A1 has the generic fiber Y . By the lemma on
the irreducible components of a general fiber [HHM`, Lemma 2.6], used before in the proof of
Lemma 2.1, the irreducible components of a general fiber of Y Ñ A1 are algebraically equivalent
to each other in Y. Let X be any irreducible component of a general fiber of Y Ñ A1. Since the
intersection number is locally constant in flat families [GW23, Proposition 23.151], the realizable



14 LUKAS GRUND, JUNE HUH, MATEUSZ MICHAŁEK, HENDRIK SÜSS, AND BOTONG WANG

volume polynomial determined by X Ď Pµ is equal to f up to a positive multiple, and hence f
is a realizable volume polynomial over k. □

It follows that the properties of being a volume polynomial, a covolume polynomial, a re-
alizable volume polynomial, or a realizable covolume polynomial over k only depend on the
characteristic of k.

3. THE SYMBOL THEOREM FOR VOLUME POLYNOMIALS

The goal is to prove Theorem 1.12. We use two pairs of dual variables:

x “ px1, x2, . . .q and B “ pB1, B2, . . .q, y “ py1, y2, . . .q and δ “ pδ1, δ2, . . .q.

As before, we let RrB, δs act on Rrx, ys as differential operators by the rule

Bαδβ ˝ xrζsyrηs “

$

&

%

xrζ´αsyrη´βs if α ď ζ and β ď η,

0 if otherwise.

We define the coefficients cTα,β of a homogeneous linear operator T : Rrxsďµ Ñ Rrysďν by

symT “
ÿ

αďµ

T pxrαsqxrµ´αs “
ÿ

α,β

cTα,β x
rµ´αsyrβs.

The cosymbol of T is the homogeneous polynomial in the dual variables3

cosymT –
ÿ

α,β

cTα,β Bαδν´β P RrB, δs.

Lemma 3.1. For any homogeneous linear operator T : Rrxsďµ Ñ Rrysďν and f P Rrxsďµ,
”

cosymT ˝ fpxq yrνs
ı

x“0
“ T pfpxqq.

The left-hand side is the polynomial in y obtained by first applying the cosymbol of T to
the product fpxq yrνs, then evaluating the result at x “ 0. For visual simplicity, the parentheses
around the product will be omitted.

Proof. Both sides of the equation are linear in T . Thus, it is enough to verify the identity for
homogeneous linear operators T of the form

T pxrαsq “

$

&

%

yrγs if α “ β,

0 if α ‰ β.

In this case, the symbol of T is the normalized monomial xrµ´βsyrγs, and the cosymbol of T is
the monomial Bβδν´γ . Therefore, for any f “

ř

α cαx
rαs, we have

”

cosymT ˝ fpxq yrνs
ı

x“0
“

”

Bβδν´γ ˝ fpxq yrνs
ı

x“0
“ cβy

rγs “ T pfpxqq. □

3The authors of [RSW] use the term for a related polynomial that is different from the cosymbol considered here.
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Proof of Theorem 1.12. If the symbol of T is a realizable volume polynomial over k, then the
cosymbol of T is a realizable covolume polynomial over k. If fpxq is a realizable volume poly-
nomial over k, so is fpxqyrνs, by Corollary 2.9. It follows from Theorem 1.3 that

cosymT ˝ fpxqyrνs

is a realizable volume polynomial over k. By Proposition 2.8, we see that
”

cosymT ˝ fpxqyrνs
ı

x“0

is a realizable volume polynomial over k. By Lemma 3.1, this is equal to T pfpxqq. □

Remark 3.2. Geometrically, one may view T as a map φT : CHpPµqR Ñ CHpPνqR. If this map is
induced by an irreducible correspondence Γ Ď Pµ ˆ Pν so that

φT pΛq “ p2˚

`

Γ X p˚
1 pΛq

˘

for Λ P CHpPµqR,

it preserves the classes of irreducible cycles up to a rational multiple, by Lemma 2.1.

The first item of the following corollary sharpens a statement from [RS, Corollary 2.10].

Corollary 3.3. Let f “
ř

α cαx
rαs be a realizable volume polynomial over k, and let γ P Z8

ě0.

(1) The lower truncation fěγ –
ř

αěγ cαx
rαs is a realizable volume polynomial over k.

(2) The upper truncation fďγ –
ř

αďγ cαx
rαs is a realizable volume polynomial over k.

Proof. For any µ P Z8
ě0, the symbol of the lower truncation operator on Rrxsďµ is the product

ÿ

γďαďµ

xrµ´αsyrαs “
ź

i

˜

ÿ

γiďαiďµi

x
rµi´αis

i y
rαis

i

¸

.

Each factor is a Lorentzian bivariate form, so it is a realizable volume polynomial over k by
[Huh12, Theorem 21]. Since the product of realizable volume polynomials over k is a realizable
volume polynomial over k by Corollary 2.9, this symbol is a realizable volume polynomial over
k. We conclude the proof of the first item by Theorem 1.12.

On the other hand, the symbol of the upper truncation operator on Rrxsďµ is the product

ÿ

0ďαďγ

xrµ´αsyrαs “
ź

i

˜

ÿ

0ďαiďγi

x
rµi´αis

i y
rαis

i

¸

.

Again, each factor is a Lorentzian bivariate form, so we may conclude the proof of the second
item in the same way. □

We now use the symbol theorem to show that realizable volume polynomials are precisely
the polynomial differential operators that preserve realizable covolume polynomials.
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Proof of Theorem 1.9. Let f be a realizable volume polynomial over k in Rrxs. We show that
fpxq ¨ gpBq is a realizable covolume polynomial over k for any realizable covolume polynomial
g in RrBs. If fpxq “

ř

α cαx
rαs and gpBq “

ř

β dβBβ , then

fpxq ¨ gpBq “
ÿ

αďβ

cαdβ
β!

α!
Brβ´αs “

ÿ

αďβ

cαdβ

ˆ

β

α

˙

Bβ´α.

For any fixed µ satisfying g P RrBsďµ, we consider the polynomials

g_pxq –
ÿ

β

dβx
rµ´βs and

´

fpxq ¨ gpBq

¯_

–
ÿ

αďβ

cαdβ

ˆ

β

α

˙

xrµ´β`αs.

Then g is a realizable covolume polynomial over k if and only if g_ is a realizable volume
polynomial over k, and f ¨ g is a realizable covolume polynomial over k if and only if pf ¨ gq_ is
a realizable volume polynomial over k. Consider the homogeneous linear operator

T : Rrxsďµ ÝÑ Rrys, g_pxq ÞÝÑ

´

fpyq ¨ gpδq

¯_

.

We use the following key formula for the symbol of T :4

symT px, yq “
1

µ!

”

fpxqpx` yqµ
ı

ďpµ,µq
.

Since both sides of the identity are linear in f , it is enough to verify the identity when f is a
monomial, say xγ , and the verification is straightforward in this case:

symT px, yq “
ÿ

αďµ

T pxrαsqxrµ´αs “
ÿ

αďµ´γ

pµ´ αq!

pµ´ α ´ γq!
xrµ´αsyrα`γs “

1

µ!

”

xγpx` yqµ
ı

ďpµ,µq
.

The symbol is a realizable volume polynomial over k because the product of realizable volume
polynomials over k is a realizable volume polynomial over k (Corollary 2.9) and the upper
truncation of a realizable volume polynomial over k is a realizable volume polynomial over k
(Corollary 3.3). It follows from Theorem 1.12 that T preserves realizable volume polynomials
over k. Thus, if g is a realizable covolume polynomial over k, then f ¨ g is a realizable covolume
polynomial over k.

We now prove the converse direction. Suppose f ¨ ´ preserves realizable covolume polyno-
mials over k. We choose µ so that f P Rrxsďµ, and consider the polynomial

ÿ

βďµ

Bβδµ´β “
ź

i

˜

ÿ

βiďµi

B
βi

i δ
µi´βi

i

¸

P RrB, δs.

Since its factors are bivariate Lorentzian forms, the product is a realizable covolume polynomial
over k. If f “

ř

α cαx
rαs, then

fpxq ¨

˜

ÿ

βďµ

Bβδµ´β

¸

“
ÿ

αďβďµ

cα
β!

α!
Brβ´αsδµ´β ,

4The same formula appears in [RSW, Proof of Proposition 5.4], considered there in the context of dually Lorentzian
polynomials.
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and this is a realizable covolume polynomial over k by the assumption on f ¨ ´. It follows from
Theorem 2.7 that

«

fpxq ¨

˜

ÿ

βďµ

Bβδµ´β

¸ff

B“0

“
ÿ

α

cαδ
µ´α “ f_pδq

is a realizable covolume polynomial over k as well. Therefore, fpxq “ f_pBq ˝xrµs is a realizable
volume polynomial over k. □

Remark 3.4. The proof of Theorem 1.3 gives the following characterization of covolume polyno-
mials over k in n variables:

A homogeneous polynomial g P RrB1, . . . , Bns is a covolume polynomial if and only if
g ˝ f is a volume polynomial for every volume polynomial f P Rrx1, . . . , xns.

On the other hand, the proof of Theorem 1.9 gives the following characterization of volume
polynomials over k in n variables:

A homogeneous polynomial f P Rrx1, . . . , xns is a volume polynomial if and only if
f ¨ g is a covolume polynomial for every covolume polynomial g P RrB1, . . . , B2ns.

The “if” direction of the latter statement fails if we only test against g P RrB1, . . . , Bns. To see this
in the simplest setting, consider the bivariate polynomial with nonnegative coefficients

f “ ax31x2 ` bx21x
2
2 ` cx1x

3
2 “ 6ax

r3s

1 x2 ` 4bx
r2s

1 x
r2s

2 ` 6cx1x
r3s

2 .

By [Huh12, Theorem 21], f is a volume polynomial if and only if p4bq2 ě p6aqp6cq, and

g “

d
ÿ

k“1

dkBk1B
d´k
2 “

d
ÿ

k“1

dkk!pd´ kq!B
rks

1 B
rd´ks

2

is a covolume polynomial if and only if pdkq is a nonnegative log-concave sequence with no
internal zeros. A direct but lengthy computation shows that f ¨ g is a covolume polynomial for
every covolume polynomial g P RrB1, B2s if and only if b2 ě ac, which is weaker than p4bq2 ě

p6aqp6cq.

Remark 3.5. The proof of Theorem 1.9 yields the following strengthening of [RSW, Proposition
5.4]:

A homogeneous polynomial f P Rrxs is a Lorentzian polynomial if and only if f ¨ g is a
dually Lorentzian polynomial for every dually Lorentzian polynomial g P RrBs.

4. LINEAR OPERATORS PRESERVING VOLUME POLYNOMIALS

We use the symbol theorem for volume polynomials to show that various operators from the
theory of Lorentzian polynomials in [BH20] preserve volume polynomials as well.

For fixed µ P Z8
ě0 and d P Zě0, we consider the polarization operator

ΠÒ : Rrx, z0sďpµ,dq ÝÑ Rry, z1, . . . , zds, zk0x
α ÞÝÑ

ekpz1, . . . , zdq
`

d
k

˘ yα,
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where ekpz1, . . . , zdq is the k-th elementary symmetric polynomial in pz1, . . . , zdq. Recall that
a polynomial is said to be multiaffine if each variable appears with degree at most one. Any
polynomial can be made multiaffine by successive applications of the polarization operator.
The following statement parallels that for Lorentzian polynomials in [BH20, Proposition 3.1].

Proposition 4.1. A polynomial f is a realizable volume polynomial over k if and only if ΠÒpfq

is a realizable volume polynomial over k.

Proof. Note that f can be recovered from ΠÒpfq by setting z0 “ z1 “ ¨ ¨ ¨ “ zd. Therefore, if ΠÒpfq

is a realizable volume polynomial, then f is a realizable volume polynomial by Proposition 2.8.

For the other implication, we compute the symbol of the polarization operator:

symΠÒ “
ÿ

pα,kqďpµ,dq

ΠÒ
´

z
rks

0 xrαs
¯

z
rd´ks

0 xrµ´αs “
1

d!

1

µ!
px` yqµ

d
ź

i“1

pz0 ` ziq.

Since each factor is a realizable volume polynomial over k, the product is a realizable volume
polynomial over k. The conclusion follows from the symbol theorem for volume polynomials
(Theorem 1.12). □

The next result improves [RS, Corollary 3.3]. See [BH20, Corollary 3.7] for the corresponding
statement for Lorentzian polynomials.

Proposition 4.2. If f is a realizable volume polynomial over k, then the normalization Npfq is a
realizable volume polynomial over k

Proof. For any µ P Z8
ě0, the symbol of the normalization operator on Rrxsďµ is the product

ÿ

0ďαďµ

1

α!
xrµ´αsyrαs “

ź

i

˜

ÿ

0ďαiďµi

1

αi!
x

rµi´αis

i y
rαis

i

¸

.

Since 1
a! is a log-concave sequence in a, the conclusion follows from [Huh12, Theorem 21], com-

bined with Corollary 2.9 and Theorem 1.12 as above. □

For any t P Rě0 and µ P Z8
ě0, we consider the interlacing operator

T12ptq : Rrxsďµ ÝÑ Rrys, fpxq ÞÝÑ p1 ` ty1δ2qfpyq.

The following statement parallels that for Lorentzian polynomials in [BH20, Proposition 2.7].

Proposition 4.3. A polynomial f is a realizable volume polynomial over k if and only if p1 `

tx1B2qf is a realizable volume polynomial over k for all nonnegative rational number t.

Proof. One direction is obtained by setting t “ 0. For the other direction, we compute the symbol
of the interlacing operator:

symT12ptq “
1

µ!

´

px` yqµ ` ty1δ2px` yqµ
¯

“
1

µ!
px` yqµ´e2

´

x2 ` y2 ` tµ2y1

¯

,
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where, as before, ei stands for the i-th standard basis vector of Z8. Since each factor is a realiz-
able volume polynomial over k, the product is a realizable volume polynomial over k. □

The following operator Φ12ptq occurs in the context of the symmetric exclusion process:

Φ12ptq : Rrxs ÝÑ Rrys, f ÞÝÑ tfpy1, y2, y3, . . . , ynq ` p1 ´ tqfpy2, y1, y3, . . . , ynq.

It plays a key role in Brändén’s proof of the fact that the space of Lorentzian polynomials Ldn
modulo Rą0 is homeomorphic to a compact ball [Brä21]. The following statement parallels that
for Lorentzian polynomials in [BH20, Proposition 3.9].

Proposition 4.4. For every rational number 0 ď t ď 1, the linear operator Φ12ptq preserves
multiaffine realizable volume polynomials over k.

As in the case of Lorentzian polynomials, the multiaffine hypothesis is necessary. For exam-
ple, x21 is a volume polynomial, but 1

2 px21 ` x22q is not a volume polynomial.

Proof. The symbol of the linear operator Φ12ptq on Rrx1, . . . , xnsďp1,...,1q is

symΦ12ptq “

´

tpx1 ` y1qpx2 ` y2q ` p1 ´ tqpx2 ` y1qpx1 ` y2q

¯

n
ź

i“3

pxi ` yiq.

It suffices to show that the first factor is a realizable volume polynomial over k. Its Hessian is
¨

˚

˚

˚

˝

0 1 1 ´ t t

1 0 t 1 ´ t

1 ´ t t 0 1

t 1 ´ t 1 0

˛

‹

‹

‹

‚

,

which has eigenvalues 2, 0, 2pt ´ 1q,´2t. Thus, the Hessian is Lorentzian for every 0 ď t ď 1.
By [HHM`, Theorem 1.8], every quadratic Lorentzian polynomial with rational coefficients is a
realizable volume polynomial over k, and this finishes the proof. □

As in Section 1, the versions of Propositions 4.1, 4.2, 4.3, and 4.4 for volume polynomials
follow by taking limits.

5. ALGEBRAIC MATROIDS AND VOLUME POLYNOMIALS

Recall that the support of a polynomial f in Rrxs is the set of all exponent vectors α such
that the monomial xα appears in f with nonzero coefficient. We discuss relations between the
support of realizable volume polynomials and polymatroids. Our statements are valid for any
field k. For a reduction to the case of algebraically closed fields, see Proposition 2.10.

We first recall the definition and basic properties of polymatroids [Wel76, Chapter 18]. Let E
be a finite set. For any subset A Ď E and any vector α P ZEě0, we set αA –

ř

iPA αi.

Definition 5.1. A function h : 2E Ñ Zě0 is a polymatroid rank function if it satisfies the following
properties:
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(1) Normalization: hp∅q “ 0.

(2) Monotonicity: hpAq ď hpBq for all A Ď B Ď E.

(3) Submodularity: hpAYBq ` hpAXBq ď hpAq ` hpBq for all A,B Ď E.

A polymatroid rank function h is a matroid rank function if hpAq ď |A| for all A Ď E.

Definition 5.2. A subset J of ZEě0 is M-convex if it satisfies the symmetric basis-exchange property:
For any i P E and α, β P J whose i-th coordinate satisfy αi ą βi, there is j P E satisfying

αj ă βj and α ´ ei ` ej P J and β ´ ej ` ei P J,

where ei denotes the i-th standard basis vector of ZE .

We recall the standard bijection between polymatroid rank functions on E and nonempty
M-convex subsets of ZEě0 from [Mur03, Chapter 4]. Firstly, a polymatroid rank function h gives

Jh –
␣

α P ZEě0

ˇ

ˇ αE “ hpEq and αA ď hpAq for all A Ď E
(

.

Then Jh is an M-convex subset of ZEě0. Conversely, an M-convex subset J of ZEě0 defines

hJ : 2E ÝÑ Zě0, hJpAq – max
␣

βA | β ď α for some α P J
(

.

Then hJ is a polymatroid rank function onE. The constructions Jh and hJ are mutually inverse,
providing a polymatroid generalization of the classical cryptomorphism between the matroid
rank function axioms and the symmetric basis-exchange property. A polymatroid P is a pair
ph “ hJ , J “ Jhq, where h is the rank function of P and J is the set of bases of P.5 A polymatroid
P is a matroid if h is a matroid rank function, or equivalently if J consists of zero-one vectors.

An algebraic matroid over k is a matroid that arises from algebraic independence relations over
a field k: Given a field extension F of k and a finite subset E of F , the corresponding algebraic
matroid on E has as its independent sets those subsets of E that are algebraically independent
over k. For basic results on this classical subject, see [Wel76, Chapter 11] and [Oxl11, Section
6.7].

The following definition from [CCRL`20] extends that of algebraic matroids. For field exten-
sions Fi Ď F for i P E, we write FA for the composite of tFiuiPA in F , that is, the smallest subfield
of F containing Fi for all i P A.

Definition 5.3. Let h be the rank function of a polymatroid P on E. We say that P is algebraic
over k if there are field extensions k Ď Fi Ď F for i P E such that

hpAq “ trdegkpFAq for all A Ď E.

5What we call a polymatroid is termed an integral polymatroid in [Wel76, Chapter 18] and [HH11, Chapter 12].
This paper only considers integral polymatroids. In [Mur03, Chapter 4], the bijection between h and J is formulated
more generally for integral submodular functions on E satisfying the normalization condition and nonempty M-convex
subsets of ZE .
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We characterize algebraic polymatroids in terms of their sets of bases. This gives an affirma-
tive answer to [CCRL`20, Question 5.8].

Proposition 5.4. The following statements are equivalent for any polymatroid P “ ph, Jq and
any field k.

(1) There is a realizable volume polynomial over k whose support is J .

(2) The polymatroid P is algebraic over k.

Proof. The forward direction follows from [CCRL`20, Proposition 5.1], which we briefly sum-
marize here using the current notation. Let f be a realizable volume polynomial over k with
support J . Let X be a subvariety of Pµ obtained from f by the basic construction in Section 2. For
any A Ď E, we consider the coordinate projection

πA : Pµ “
ź

iPE

Pµi ÝÑ
ź

iPA

Pµi .

Let F be the function field of X , and let Fi be the function field of the projection of πipXq. The
function field of πApXq is FA. By [CCRL`20, Theorem 3.12], we know that the rank function of
P satisfies

hpAq “ dimπApXq “ trdegkpFAq for all A Ď E.

This shows that P is algebraic over k.

For the other implication, suppose that there are field extensions k Ď Fi Ď F such that

hpAq “ trdegkpFAq for all A Ď E.

We construct a subvariety X of a product of projective spaces over k such that the associated
realizable volume polynomial has the support J . Since the composite of algebraic extensions is
an algebraic extension, we may replace Fi with a finitely generated subfield of the same tran-
scendence degree over k to assume without loss of generality that each Fi is a finitely generated
extension over k. Choose a finite set of generators fi,1, . . . , fi,µi of each field extension Fi{k, and
let R be the k-subalgebra of F generated by fi,j over k. The functions fi,j on the specturm of R
define a closed immersion

SpecpRq
fi,j

ÝÝÝÝÝÝÑ Aµ “
ź

iPE

Aµi .

Writing X for the closure of the image of this map in the standard compactification Pµ of Aµ,

dimπApXq “ dimSpec krfi,jsiPA “ trdegkpFAq “ hpAq for any A Ď E.

By [CCRL`20, Theorem 3.12], the support of the realizable volume polynomial associated to
X Ď Pµ is equal to J . □

In particular, a matroid M is algebraic over k if and only if there is a multiaffine realizable
volume polynomial over k whose terms with nonzero coefficients correspond to the bases ofM .
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Example 5.5. The Fano matroid F7 is the matroid on seven elements whose bases are the three-
element subsets that are not colinear in the following picture of the Fano plane:

The basis generating polynomial f of F7 is a degree 3 homogeneous polynomial in 7 variables
that has 28 squarefree monomial summands. We observe that f is a realizable volume poly-
nomial over k if and only if the characteristic of k is 2. The “if” direction follows from the the
general construction of arrangement Schubert varieties from linear realizations of matroids in
[AB16, Theorem 1.3]. See [Huh23, Section 3] for a brief overview. The “only if” direction follows
from Proposition 5.4, together with Lindström’s theorem that the Fano matroid is algebraic over
k only if the characteristic of k is 2 [Lin85]. It is not known whether f is a volume polynomial
over k when the characteristic of k is not 2.

This connection to matroid theory yields several corollaries, which we present using the stan-
dard terminology and results in [Wel76] and [Oxl11]. The arguments presented here apply to
polymatroids with little or no modification.

Corollary 5.6. If a matroid M is algebraic over k, then every minor of M is algebraic over k.

Proof. Let f be a realizable volume polynomial over k whose support is the set of bases of M ,
viewed as a set of squarefree monomials. Then the derivative Bif is a realizable volume poly-
nomial over k by Theorem 1.3, and the support of Bif is the set of bases of the contraction M{i.
Similarly, the evaluation f |xi“0 is a realizable volume polynomial over k by Proposition 2.8,
and the support of f |xi“0 is the set of bases of the deletion of Mzi. The conclusion follows from
Proposition 5.4. □

This basic statement is typically deduced from a theorem of Lindström [Lin89], who proved
Piff’s conjecture from [Pif72] that M is algebraic over k if M is algebraic over kptq. See [Oxl11,
Corollary 6.7.14], and compare [Wel76, Section 11.3]. The following result strengthens Lind-
ström’s theorem.

Corollary 5.7. The following conditions are equivalent for a matroid M and p ě 0.

(1) The matroid M is algebraic over some field of characteristic p.

(2) The matroid M is algebraic over all fields of characteristic p.

This recovers another result of Lindström [Lin88] that M is algebraic over the prime field of
k if M is algebraic over k.

Proof. The statement follows from combining Propositions 2.10 and 5.4. □
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Recall that the truncation of a rank d matroid M is a matroid on the same ground set where
a subset is a base if and only if it is an independent set in M with exactly d ´ 1 elements.
The next result is a strengthening of a theorem of Piff, who proved that the truncation of a
matroid algebraic over k is algebraic over some transcendental extension of k [Wel76, Section
11.3, Theorem 2].

Corollary 5.8. If M is algebraic over k, then the truncation of M is algebraic over k.

Proof. Since any nonnegative linear form is a realizable covolume polynomial, p
ř

i Biq ˝ fpxq is
a realizable volume polynomial over k for any realizable volume polynomial fpxq over k by
Theorem 1.3. If the support of f is the set of bases of M , then the support of p

ř

i Biq ˝ fpxq is the
set of bases of the truncation of M . The conclusion follows from Proposition 5.4. □

The dual a matroid M on E, denoted M˚, is the matroid on E where a subset is a basis
if and only if its complement is a basis of M . We observe that the duality in matroid theory
corresponds to the duality between volume and covolume polynomials. Using this connection,
we prove the dual statement of Corollary 5.8. Recall that the Higgs lift of M is the dual of the
truncation of M˚.

Corollary 5.9. If M is algebraic over k, then the Higgs lift of M is algebraic over k.

Proof. Since any nonnegative linear form is a realizable volume polynomial, p
ř

i xiq ¨ gpBq is a
realizable covolume polynomial over k for any realizable covolume polynomial gpBq over k by
Theorem 1.9. The conclusion follows from Proposition 5.4. □

We now exploit multiplicative properties of realizable volume polynomials and realizable
covolume polynomials to prove a result in matroid theory.

Definition 5.10. Let M1 and M2 be matroids on a common ground set E.

(1) The union M1 _ M2 is the matroid on E whose independent sets are the subsets of E that
can be expressed as a union I1 Y I2, where I1 is an independent set of M1 and I2 is an
independent set of M2.

(2) The intersection M1 ^ M2 is the matroid on E whose spanning sets are the subsets of E that
can be expressed as an intersection S1 X S2, where S1 is a spanning set of M1 and S2 is a
spanning set of M2.

The two constructions are related by the matroid duality by M1 ^M2 “ pM˚
1 _M˚

2 q˚.

We say that M1 _M2 has the expected rank if the set of bases of M1 _M2 is

␣

B “ B1 YB2 | B1 P J1, B2 P J2, and B1 XB2 “ ∅
(

,
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where J1 is the set of bases of M1 and J2 is the set of bases of M2. Dually, we say that M1 ^ M2

has the expected rank if the set of bases of M1 ^M2 is
␣

B “ B1 XB2 | B1 P J1, B2 P J2, and B1 YB2 “ E
(

.

Welsh’s theorem states that the union M1 _M2 is algebraic over k when both M1 and M2 are
algebraic over k [Wel76, Section 11.3, Theorem 4]. We prove the dual statement.

Theorem 5.11. The intersectionM1 ^M2 is algebraic over k when bothM1 andM2 are algebraic
over k.

The result is consistent with a positive answer to one of the oldest questions in the subject: Is
the dual of an algebraic matroid also algebraic?

Proof. Let Ji be the set of bases of Mi and let Ki be the set of bases of Ni – M˚
i . By Proposition

5.4, there are realizable volume polynomials f1 and f2 over k such that the support of f1 is J1
and the support of f2 is J2. Thus, there are realizable covolume polynomials g1 and g2 over k
such that the support of g1 is K1 and the support of g2 is K2. By Theorem 1.5, the product of
realizable covolume polynomials over k is a realizable covolume polynomial over k, so g1g2 is
a realizable covolume polynomial over k. If M1 ^ M2 has the expected rank, the set of bases of
M1 ^M2 is the support of the realizable volume polynomial pg1g2q ˝xE . By Proposition 5.4, this
implies that M1 ^M2 is algebraic over k.

When M1 ^ M2 fails to have the expected rank, we use a result of Cunningham [Cun79,
Theorem 2]: We can repeatedly truncate N1 and N2 without changing their union so that the
union of the truncations has the expected rank. In other words, we can take Higgs lifts of
M1 and M2 without changing their intersection so that the intersection of the Higgs lifts has
the expected rank. We only need to check that the Higgs lift of a matroid algebraic over k is
algebraic over k, which is Corollary 5.9. □

Remark 5.12. In the proof of Theorem 5.11, the use of Theorem 1.5 cannot be replaced by Corol-
lary 1.6, which states that the product of covolume polynomials over k is a covolume polynomial
over k.

Remark 5.13. Welsh’s theorem on the union of algebraic matroids can be proved using the same
argument. In place of Theorem 1.5, one uses Corollary 2.9, the easier fact that the product of
realizable volume polynomials over k is a realizable volume polynomial over k.

Remark 5.14. A real p1, 1q-class rωs on a compact Kähler manifold Y is semipositive6 if it contains
a smooth semipositive representative, that is, if there is a smooth function φ on Y such that

ω ` iBBφ ě 0.

6When Y is a smooth projective variety over C, every semiample divisor class is semipositive, but not every nef
divisor class is semipositive [Yau74]. For an example of a nef divisor class that is semipositive but not semiample, see
[Koi15]. A comprehensive survey of semipositive classes on compact Kähler manifolds can be found in [Tos24].
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A degree d homogeneous polynomial f is a realizable analytic volume polynomial if there is a d-
dimensional compact Kähler manifold Y and semipositive classes rω1s, . . . , rωns such that

fpx1, . . . , xnq “

ż

Y

px1ω1 ` ¨ ¨ ¨ ` xnωnq^d.

A homogeneous polynomial f is an analytic volume polynomial if it is a limit of realizable analytic
volume polynomials. The mixed Hodge–Riemann relations for compact Kähler manifolds im-
ply that an analytic volume polynomial is a Lorentzian polynomial, so the support of an analytic
volume polynomial defines a polymatroid. An analytic polymatroid is the support of a realizable
analytic volume polynomial. These generalize algebraic polymatroids over C in the same way
Kähler manifolds generalize smooth projective varieties over C. It will be interesting to decide
whether analytic volume polynomials satisfy the analogues of Theorems 1.3, 1.9, 1.12, and to
decide whether the classes of analytic matroids and algebraic matroids over C coincide.
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