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ABSTRACT. Lorentzian polynomials serve as a bridge between continuous and discrete
convexity, connecting analysis and combinatorics. In this article, we study the topology
of the space PLJ of Lorentzian polynomials on J modulo R>0, which is nonempty if
and only if J is the set of bases of a polymatroid. We prove that PLJ is a manifold with
boundary of dimension equal to the Tutte rank of J, and more precisely, that it is homeo-
morphic to a closed Euclidean ball with the Dressian of J removed from its boundary.
Furthermore, we show that PLJ is homeomorphic to the thin Schubert cell GrJ(Tq) of J
over the triangular hyperfield Tq, introduced by Viro in the context of tropical geometry
and Maslov dequantization, for any positive real number q. This identification enables
us to apply the representation theory of polymatroids developed in the companion paper
[4], as well as earlier work by the first and fourth authors on foundations of matroids,
to give a simple explicit description of PLJ up to homeomorphism in several key cases.
Our results show that PLJ always admits a compactification homeomorphic to a closed
Euclidean ball. They can also be used to answer a question of Brändén in the negative
by showing that the closure of PLJ within the space of all polynomials modulo R>0 is
not homeomorphic to a closed Euclidean ball in general. In addition, we introduce the
Hausdorff compactification of the space of rescaling classes of Lorentzian polynomials
and show that the Chow quotient of a complex Grassmannian maps naturally to this
compactification. This provides a geometric framework that connects the asymptotic
structure of the space of Lorentzian polynomials with classical constructions in algebraic
geometry.
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1. Introduction

In [18], Brändén and the second author introduced the notion of Lorentzian polynomials
and used it to establish the log-concavity of various sequences of combinatorial origin.
Lorentzian polynomials serve as a bridge between continuous and discrete convexity,
connecting analysis and combinatorics. Among their many applications to combinatorics,
Lorentzian polynomials were used by Brändén–Huh [18], and independently Anari et al.
[2], to prove the following conjecture of Mason from [42]:

If Ik(M) is the number of independent sets of size k of a matroid M on [n],
then the sequence Ik(M)/

(n
k

)
is log-concave in k.

If we assume the support of the polynomials in question to be square-free1, then
Lorentzian polynomials admit a simple characterization: a nonzero homogeneous polyno-
mial f in n variables with nonnegative coefficients and square-free support is Lorentzian
if and only if log( f ) is a concave function on the positive orthant Rn

>0. In general, a
homogeneous polynomial f with nonnegative coefficients is Lorentzian if and only if
the partial derivative ∂α f is identically zero or log-concave on Rn

>0 for all α ∈ Zn
≥0.

See Section 4.1 for an extended discussion in the general setting. Our primary goal in
this paper is to study the topology of the space of Lorentzian polynomials with a given
support. Throughout this introduction, we focus on the case of square-free support for
expositional simplicity.

Let H(d,n) be the vector space of homogeneous polynomials of degree d with real
coefficients in variables x1, . . . ,xn, and let L(d,n) be the set of Lorentzian polynomials
in H(d,n). We use H(d,n)⊠ and L(d,n)⊠ to denote, respectively, the subsets of H(d,n)
and L(d,n) consisting of polynomials with square-free support. For a subset S of [n], we
write xS for the square-free monomial ∏i∈S xi. Thus, H(d,n)⊠ is the span of xS, where

1The support of a polynomial f is the set of monomials appearing in f with nonzero coefficients. The
support is square-free if every monomial in it is square-free. Polynomials with square-free support are also
known in the literature as multi-affine polynomials.
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S ranges over all d-element subsets of [n]. We denote by PH(d,n) the projectivization
of the vector space H(d,n), and by PX the image of X\0 in PH(d,n) for a subset X of
H(d,n). A fundamental result on the space of Lorentzian polynomials is the following
statement due to Brändén [16]:

Theorem 1.1. The spaces PL(d,n) and PL(d,n)⊠ are homeomorphic to closed Euclidean
balls of dimensions dimPH(d,n) and dimPH(d,n)⊠, respectively.

Our main goal is to relate spaces of Lorentzian polynomials to various Grassmannians.
A first instance of such a connection goes back to [22]:

Example 1.2. Let (pS) be the Plücker coordinates of a linear subspace of Cn of dimension
d, where S ranges over all d-element subsets of [n]. Then the polynomial f = ∑S |pS|2 xS

is stable [22, Theorem 8.1], and hence Lorentzian [18, Proposition 2.2]. Therefore, we
obtain a continuous map

Gr(d,n)(C)−→ PL(d,n)⊠, (pS) 7−→ ∑
S
|pS|2 xS. (1)

We study this map in detail in Section 5.1. For example, when d = 2 and n = 4, we show
that the map sends Gr(2,4)(R) to the boundary of PL(2,4)⊠, and the induced map

Gr(2,4)(R)−→ ∂PL(2,4)⊠

is the quotient of Gr(2,4)(R) by the action of {±1}4. By Theorem 1.1, the right-hand
side is homeomorphic to the four dimensional sphere.

1.1. Thin Schubert cells. Let B(M) be a collection of d-element subsets of [n], viewed
as a collection of degree d square-free monomials in x1, . . . ,xn. We set

HM :=
{

f ∈ H(d,n) | the support of f is B(M)
}

and LM := L(d,n)∩HM .

One of the basic results proved in [18] hints at a surprising link between the continuous
and the discrete world: The set LM is nonempty if and only if B(M) is the set of bases of
a matroid of rank d on [n].2

2A matroid M on [n] is given by a nonempty collection B(M) of subsets of [n] satisfying the symmetric
exchange property: For any B1,B2 ∈ B(M) and any b1 ∈ B1\B2, there is b2 ∈ B2\B1 such that both
B1\{b1}∪{b2} and B2\{b2}∪{b1} belong to B(M). Members of the collection B(M) are called bases
of the matroid M. The symmetric exchange property implies that any two bases have the same cardinality,
called the rank of the matroid. For general introduction to matroids, we refer to [45].
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We regard PLM as the analogue of a thin Schubert cell (or matroid stratum) in
PL(d,n)⊠. While a thin Schubert cell in a Grassmannian over a field can be empty,
depending on whether or not the matroid is representable over that field, every matroid
occurs as the support of some Lorentzian polynomial. In fact, the generating polynomial
∑B∈B(M) xB is a Lorentzian polynomial if and only if B(M) is the set of bases of a matroid
[18, Theorem 3.10]. Our first result is the following:

Theorem 1.3 (Corollary 4.20). For every matroid M, the space PLM is a manifold with
boundary.

This should be contrasted with the various universality theorems for thin Schubert
cells in Grassmannians over a field, which roughly state that such thin Schubert cells can
exhibit arbitrary singularities [38, 39, 53]. In fact, we can explicitly describe PLM up to
homeomorphism. In order to formulate the result, we recall from [18] the connection
between Lorentzian polynomials and the Dressian, the piecewise-linear space of all rank
d valuated matroids on [n] which plays the role of the Grassmannian in tropical geometry.

Example 1.4. Let M be a matroid of rank d on [n] with the set of bases B(M). A function
ν : B(M)→R is a valuated matroid if for any B1,B2 ∈B(M) and any b1 ∈ B1\B2, there
is b2 ∈ B2\B1 such that

ν(B1)+ν(B2)⩽ ν(B1\{b1}∪{b2})+ν(B2\{b2}∪{b1}).

The Dressian DrM of M is the set of all valuated matroids ν : B(M)→R modulo addition
of constant functions on B(M). If ν ∈ DrM, then fν := ∑B∈B(M) e−ν(B) xB is a Lorentzian
polynomial [18, Theorem 3.14]. Therefore, we obtain a continuous injective map

exp : DrM −→ PLM, ν 7−→ fν . (2)

Clearly, we have tν ∈ DrM for any t > 0 and any ν ∈ DrM. Moreover, if ν is not
constant, then the limit of ftν as t goes to infinity is a Lorentzian polynomial with support
strictly smaller than B(M), and hence it is not an element of PLM. In a sense, this the
only obstruction to PLM being compact:

Theorem 1.5 (Theorem 4.19). The space PLM can be compactified to a closed Euclidean
ball by adding a point for each ray contained in the Dressian DrM.

We also compute the dimension of PLM in terms of M. An obvious upper bound is the
ambient dimension |B(M)|−1, which is not tight in general. The following constraint is
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analogous to the corresponding statement of Brändén on stable polynomials [14, Lemma
6.1]:

Lemma 1.6 (Lemma 4.2). Let f = ∑B pB xB be a degree d Lorentzian polynomial with
square-free support. Let S be a set of cardinality d −2 in [n], and let i, j,k, l be pairwise
distinct elements of [n] not in S. If one of the three terms

pS∪{i, j}pS∪{k,l}, pS∪{i,k}pS∪{ j,l}, pS∪{i,l}pS∪{ j,k} (3)

is zero, then the other two are equal.

Note that the three terms in Equation (3) correspond to the monomial terms in the three-
term Plücker relations for Grassmannians, which shows immediately that Lemma 1.6
holds for polynomials in the image of the map from Equation (1). We also note that the
conditions from Lemma 1.6 only depend on the support of f , and they give binomial
equations on HM for each matroid M. Hence the image of the solution set to these
equations in HM under the coefficient-wise “logarithm of the absolute value” map

log | · | : HM −→ RB(M)

is a linear subspace VM, whose dimension is an upper bound on the dimension of LM.
Composing the map exp from Equation (2) with log | · |, we may consider DrM as a subset
of VM/1, where 1 is the all-ones vector. In this way we obtain the following more precise
description of PLM:

Theorem 1.7 (Theorem 4.19). Let B ⊆VM/1 be the closed unit ball around the origin
with respect to a norm on VM/1. Then PLM is homeomorphic to the space B\(∂ B∩DrM).
In particular, the dimension of PLM is equal to dim(VM)−1.

All results outlined here can be straight-forwardly extended to the general case of
Lorentzian polynomials with a support that is not necessarily square-free, see Section 4.

In the next subsection of this introduction, we explain a conceptual interpretation and
common framework for the space VM, its dimension, and the map from Equation (2).

1.2. Grassmannians over triangular hyperfields. In order to make precise the intuition
that the space of Lorentzian polynomials is like a Grassmannian, we recall from [3] that
there is a natural way to generalize the notion of a field by relaxing the requirement that
addition is a binary operation; such generalized fields are called tracts.



6 Matthew Baker, June Huh, Mario Kummer and Oliver Lorscheid

The definition of a tract will be given in Section 3.1. For now it is enough to know
that a tract F consists of a multiplicative abelian group F×, together with the null set of
“additive relations” of the form a1 + · · ·+ak = 0 with ai ∈ F = F×∪{0}.

Given nonnegative integers d ≤ n and a tract F , we define the F-Grassmannian
Gr(d,n)(F) as the set of solutions in F(n

d)/F× to the Plücker equations: For any set S1

of cardinality d −1 in [n] and any set S2 of cardinality d +1 in [n], we have

∑
x∈S2\S1

sign(x)pS1∪{x}pS2\{x} = 0,

where sign(x) =±1 is determined by the parity of #{x < s ∈ S1}+#{x < s ∈ S2}, see
Section 3.3. When F = K is a field, this recovers the usual Grassmannian Gr(d,n)(K)

over K, parametrizing d-dimensional subspaces of Kn. Similarly, for a matroid M of
degree d on [n], one defines the thin Schubert cell GrM(F) to be the subset of Gr(d,n)(F)

consisting of points with support B(M), which is naturally embedded into (F×)B(M)/F×.
If the tract F carries a topology, this induces a natural topology on Gr(d,n)(F) and
GrM(F), see [4, Section 12] and [6].

As an algebraic framework for Maslov dequantization, Viro defines in [55,56] a family
Tq of tracts indexed by a positive real number q, called triangular hyperfields. See
Section 3.5 for their relation to amoebas and tropicalizations. The multiplicative group
T×

q of Tq is (R>0, ·) for all q > 0, and for a1, . . . ,ak ⩾ 0, we have a1 + · · ·+ ak = 0 in

Tq if and only if a1/q
1 , . . . ,a1/q

k form the side lengths of a (possibly degenerate) convex
k-gon. So, for example, a+b+ c = 0 in T1 if and only if a,b,c form the side lengths
of a possibly degenerate Euclidean triangle (hence the name “triangular hyperfield”),
and, up to a positive multiple, Gr(2,4)(T1) is the set of nonnegative real numbers
(p12, p13, p14, p23, p24, p34) such that

pi j pkl + pik p jl ≥ pil p jk for any i, j,k, l.

This family of tracts has two limit objects T0 (the tropical hyperfield) and T∞ (the
degenerate triangular hyperfield), whose ground sets are also R⩾0 with the usual multi-
plicative structure. The additive relations are given as follows:

(1) a1 + · · ·+ak = 0 holds in T0 if and only if it holds in all Tq with q > 0.

(2) a1 + · · ·+ak = 0 holds in T∞ if and only if it holds in some Tq with q > 0.



Lorentzian polynomials and matroids over triangular hyperfields. Part 1 7

See Lemma 3.9 for alternative descriptions of the null sets of T0 and T∞. The topology
on Tq is defined as the Euclidean topology on R⩾0.

In the previous subsection, we have already seen the Grassmannians over T0 and
T∞ in disguise. Namely, the coordinate-wise logarithm map RB(M)

>0 /R>0 → RB(M)/R1
takes GrM(T0) to −DrM and GrM(T∞) to the vector space VM/R1. The statements of
Example 1.4 and Lemma 1.6 can be rephrased as follows:

Theorem 1.8. For every matroid M, there are natural inclusions

GrM(T0) ↪→ PLM ↪→ GrM(T∞). (4)

The following theorem allows us to apply the theory of matroids over tracts to study
the topology of PLM. We will explain some consequences in the next subsection.

Theorem 1.9 (Corollary 4.21). For every positive real number q and every matroid M,
the spaces PLM and GrM(Tq) are homeomorphic.

We have PL(d,n)⊠ =
∐

M PLM and Gr(d,n)(Tq) =
∐

M GrM(Tq), where the unions
are over all matroids of rank d on [n]. In light of Theorem 1.9, we make the following
conjecture.

Conjecture 1.10. The spaces PL(d,n)⊠ and Gr(d,n)(Tq) are homeomorphic to each
other for all 0 < q < ∞.

By Theorem 1.1, this would also imply that Gr(d,n)(Tq) is homeomorphic to a ball.
Theorem 1.9 shows that it has the correct Euler characteristic.

The dimension of PLM has a natural interpretation resulting from the theory of Grass-
mannians over tracts as well. Namely, for every matroid M, there is a tract TM, called the
universal tract of M, that represents the thin Schubert cell GrM, considered as a functor
from the category of tracts to the category of sets [4, Proposition 5.2]. Its multiplicative
group T×

M , called the Tutte group of M, is finitely generated. The Tutte rank of M is the
free rank of T×

M .

Theorem 1.11 (Theorem 3.25). The dimension of PLM is equal to the Tutte rank of M.

The results from this subsection, along with Conjecture 1.10, can be extended to the
general case of Lorentzian polynomials with not necessarily square-free support. For this,
one has to extend the theory of Grassmannians over tracts from matroids to polymatroids
as in [4].
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1.3. Orbit spaces. For every matroid M, there is an action of Rn
>0 on LM defined by

(c1, . . . ,cn) · f (x1, . . . ,xn) := f (c1x1, . . . ,cnxn). (5)

We denote the quotient space by LM. Similarly, the group (F×)n acts on GrM(F) for
every tract F , and we denote the quotient space by GrM(F). After taking coefficient-wise
logarithms, this action of Rn

>0 corresponds to addition of elements from a certain linear
subspace WM of VM. We set DrM := DrM /WM and call this space the reduced Dressian
over M. We determine the homeomorphism types of the orbit spaces LM and GrM(Tq):

Theorem 1.12 (Theorems 3.26 and 4.22). Let B ⊆VM/WM be the closed unit ball around
the origin with respect to a norm on VM/WM, and let q be a positive real number. Then
LM and GrM(Tq) are both homeomorphic to the space B\(∂ B∩DrM).

For the relationship between Theorem 4.19 and Theorem 1.12, see Proposition 3.30.

Example 1.13. For M = U2,4, the reduced Dressian consists of three rays. Hence
the space LM is homeomorphic to a closed disc with three points from the boundary
removed, see Figure 1. For an arbitrary matroid M, the map from Equation (1) induces a
continuous map GrM(C)→ LM. For M =U2,4, this map is a 2-to-1 cover that restricts to
a homeomorphism GrM(R)→ ∂ LM, see Theorem 5.1.

logLU2,4
Dr(U2,4)

FIGURE 1. The picture shows the reduced Dressian DrM (red) inside
the space LM (purple) of orbits of Lorentzian polynomials in logarithmic
coordinates when M is the uniform matroid U2,4. The boundary (green) is
the image of GrM(R) under the map from Equation (1).
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Using the theory of matroid representations over tracts, we derive several results on
the topology of GrM(Tq), and thus of LM.

Example 1.14 (Example 3.27). If M is a binary matroid, then GrM(Tq) is a singleton for
all q ∈ [0,∞]. This implies that LM is also a singleton.

Example 1.15 (Theorem 3.32). If M is a ternary matroid, then GrM(Tq) is homeomorphic
to the product of finitely many half-open intervals and discs with three points removed
from the boundary. By Theorem 1.12, the same is true for LM.

Example 1.16 (Theorem 3.33). If M is any matroid, then GrM(Tq) is homeomorphic to
the inverse limit of a finite directed system of topological spaces, each of which is either
a disc with three points removed from the boundary or a five-dimensional ball with a
copy of the Petersen graph removed from the boundary. By Theorem 1.12, the same is
true for LM.

Example 1.17 (Theorem 5.18). The Betsy Ross matroid M = B11 is the rank 3 matroid on
11 elements whose point-line arrangement is illustrated in Figure 2. There is an explicit
homeomorphism GrM(T∞)→ R which maps GrM(Tq) to the closed interval [−q,q] for
all 0 ⩽ q < ∞. It identifies the space LM with the closed interval [−2,2], and under this
identification the points of [−2,2] which correspond to stable polynomials are precisely
the two boundary points {−2,2}. We note that the space GrM(T0) is a singleton, while
GrM(T∞) is of positive dimension; this answers a question of Brandt–Speyer [19, Remark
3.2].

FIGURE 2. Point-line arrangement of the Betsy Ross matroid

1.4. Compactifications. Theorem 1.7 implies that the space PLM admits a compactifi-
cation by a closed Euclidean ball for every matroid M of rank d on [n]. It is interesting
to compare this with another natural compactification, namely the closure PLM of PLM
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in PH(d,n). Since PL(d,n)⊠ = PLM when M is the uniform matroid Ud,n, Theorem 1.1
implies that the space PLM is homeomorphic to a closed Euclidean ball, and in particular
χ(PLM) = 1, in this case. Our results imply that the same holds for another family of
matroids.

Theorem 1.18 (Proposition 6.25 and 6.26). Let M be a matroid M of rank d on [n].

(1) If GrM(T∞) is a singleton (this happens, e.g., for binary matroids), then PLM is
homeomorphic to a closed Euclidean ball.

(2) If GrM(T0) is a singleton, then the Euler characteristic of PLM is equal to one.

On the other hand, we find a matroid for which both parts of the theorem fail. This
answers [16, Questions 5.1, 5.3] in the negative:

Example 1.19 (Example 6.34). The elliptic matroid M = T11 is the matroid of rank 3
on [11] whose non-bases are all 3-element subsets {i, j,k} ⊆ [11] such that i+ j+ k is
divisible by 11. Using Theorem 1.7, we can show that the Euler characteristic of PLM is
equal to 11. In particular, the space PLM is not homeomorphic to a closed Euclidean ball.

The following example answers another question by Brändén [16, page 7] in the
negative:

Example 1.20 (Example 6.37). Let M = B11 be the Betsy Ross matroid, and denote by
SM the space of stable polynomials with support M. Then the Euler characteristic of the
space PSB11 is equal to 17. In particular, this space is not homeomorphic to a closed
Euclidean ball.

The close connection between spaces of Lorentzian polynomials and Dressians also
allows us to deduce new statements about Dressians. For example, the following can be
deduced from the corresponding statement about PL(d,n)⊠.

Theorem 1.21 (Remark 6.24). The Euler characteristic of Gr(d,n)(T0) is equal to 1 for
any d ≤ n.

We do not know how to prove this combinatorial statement without the detour to
Lorentzian polynomials.

The spaces LM can also be compactified in a natural way:
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Theorem 1.22 (Corollary 6.47). Let H be the space of compact subsets of PLM equipped
with the topology induced by the Hausdorff metric. The map LM → H that sends an orbit
to its closure is a homeomorphism onto its image. In particular, the closure HC(LM) in
H of the image of this map is a compactification of LM.

For uniform matroids, we set HC(L(d,n)⊠) := HC(LUd,n
). This compactification inter-

acts nicely with the Chow quotient Gr(d,n)(C)//(C×)n of the complex Grassmannian,
as introduced in [33]. The Chow quotient is the compactification of GrUd,n

(C) obtained
as the closure of the image of the map from GrUd,n

(C) to the Chow variety of Gr(d,n)(C)
that sends a torus orbit to the cycle corresponding to its closure. We will prove in
Theorem 6.48 that there is a continuous map

Gr(d,n)(C)//(C×)n −→ HC(L(d,n)⊠) (6)

which sends a cycle to the image of its underlying set under the map from Equation (1).
By the same construction, we obtain a compactification HC(GrM(Tq)) of GrM(Tq).

Example 1.23 (Section 6.3.6). The Chow quotient Gr(2,n)(C)//(C×)n is isomorphic to
the Grothendieck–Knudson moduli space M0,n of stable rational curves with n marked
points [33, Chapter IV]. We examine the map

M0,n −→ HC(L(2,n)⊠)

from Equation (6) for small n:

(1) For n < 4, both the source and target are a point.

(2) The space HC(L(2,4)⊠) is the disc obtained by adding the three missing points to the
boundary of LU2,4

, see Figure 1. The space M0,4 is the complex projective line and
the map M0,4 → HC(L(2,4)⊠) is the quotient by the action of complex conjugation.

(3) The image of the map M0,5 → HC(L(2,5)⊠) is the closure of the boundary ∂ LU2,5

in HC(L(2,5)⊠), which we denote by ∂HC(L(2,5)⊠). Again, the map M0,5 →
∂HC(L(2,5)⊠) is the quotient by the action of complex conjugation on M0,5.

(4) For n > 5, the map M0,n → HC(L(2,n)⊠) is constant on complex conjugate pairs,
but there are fibers that contain more than one such pair.

Just as for the Chow quotient of the Grassmannian [33, Section 1.2], the points in
HC(LM) and HC(GrM(Tq)) can be characterized in terms of regular matroid subdivisions
of the base polytope of M. Namely, every point in our compactification is the union of
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orbit closures, one for each maximal cell of a regular matroid subdivision, where points
in LM and GrM(Tq) correspond to the trivial subdivision. However, unlike the case of
classical Chow quotients, there are points in our compactification corresponding to every
such subdivision, see Theorem 6.49. We end with a question on the topology of the
spaces HC(LM) and HC(GrM(Tq)).

Question 1.24. Are the spaces HC(LM) and HC(GrM(Tq)) homeomorphic to a closed
Euclidean ball for every matroid M and every q > 0?

In Section 6.3.5, we provide positive evidence for a few matroids, including the matroid
M = T11 from Example 1.19, for which the compactification PLM is ill-behaved.

1.5. Acknowledgements. Matt Baker was partially supported by NSF grant DMS-
2154224 and a Simons Fellowship in Mathematics (1037306, Baker). June Huh was
partially supported by the Oswald Veblen Fund and the Simons Investigator Grant.
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was partially supported by NSF grant DMS-1926686 and by the Institute for Advanced
Studies. Mario Kummer would like to thank Georg Loho for helpful discussions on topics
related to this paper. We thank the Korea Institute for Advanced Studies in Seoul and the
Institute for Advanced Studies in Princeton for hosting us during our collaboration.

2. Elementary properties of star-shaped sets

We fix a finite dimensional R-vector space V equipped with a norm ∥ · ∥.

Recall that a triple (x∗,X ,V ), where X ⊆ V and x∗ ∈ X , is called star-shaped if for
every x ∈ X and every t ∈ [0,1], the point x∗+ t · (x− x∗) lies in X .

Definition 2.1. A triple (x∗,X ,V ), where X ⊆V and x∗ ∈X , is called strongly star-shaped
if X is closed in V and if for every x ∈ X and every t ∈ [0,1), the point x∗+ t · (x− x∗)
lies in the interior of X (with respect to the topology of V ).

Note that (x∗,X ,V ) being strongly star-shaped implies in particular that x∗ is in the
interior of X . Our first goal is to show that if (x∗,X ,V ) is strongly star-shaped, then it is
homeomorphic to an open subset of a Euclidean ball.

Lemma 2.2. Let (x∗,X ,V ) be strongly star-shaped. The following map is continuous:

ψ : V −→ R⩾0, x 7−→ inf
{

t > 0
∣∣x∗+ x− x∗

t
∈ X

}
.
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Furthermore, we have for all x ∈ X:

(1) ψ(x)⩽ 1.

(2) If ψ(x)> 0, then x∗+ x−x∗
ψ(x) ∈ X.

(3) If ψ(x) = 0, then x∗+ s · (x− x∗) is in the interior of X for all s ⩾ 0.

Proof. Without loss of generality, we can assume that x∗ = 0 is the origin. In order to
prove that ψ is continuous, let (xi)i∈N ⊆V be a sequence converging to x0 ∈V . We first
let t0 > liminfi→∞ψ(xi). Then there is a subsequence (yi)i∈N of (xi)i∈N and a sequence
(ti)i∈N ⊆R with ti > ψ(yi) for all i ∈N which converges to t0. Then the sequence (yi

ti
)i∈N

is in X and converges to x0
t0

, which is therefore also in X . Thus t0 ⩾ ψ(x0), which implies
liminfi→∞ψ(xi)⩾ ψ(x0). Next we prove that limsupi→∞ψ(xi)⩽ ψ(x0). Let t0 > ψ(x0).
Then x0

t0
is in the interior of X . If U ⊆ X is an open neighbourhood of x0

t0
, then U ′ = t0 ·U

is an open neighbourhood of x0 such that ψ(x) ⩽ t0 for all x ∈ U ′. This implies that
limsupi→∞ψ(xi)⩽ ψ(x0).

The first of the three additional statements is trivial, the second follows because X is
closed, and the third follows from the definition of a strongly star-shaped set. □

We denote by S the unit sphere in V around the origin. Let (x∗,X ,V ) be strongly
star-shaped and consider the following set of directions:

S(x∗,X) = {x ∈ S | ψ(x∗+ x) = 0}.

Corollary 2.3. Let B⊆V be the closed unit ball. Then X is homeomorphic to B\S(x∗,X).

Proof. After replacing X by X − x∗ we can assume without loss of generality that x∗ is
the origin. We consider the map

φ : B\S(0,X)−→ X , x 7−→ x
1+ψ(x)−∥x∥

,

which is continuous by Lemma 2.2. Its inverse is given by the continuous map

ϕ : X −→ B\S(0,X), x 7−→ x
1−ψ(x)+∥x∥

. □

Corollary 2.4. Every strongly star-shaped set is a topological manifold with boundary.

Proof. Let (x∗,X ,V ) be a strongly star-shaped. The set S(x∗,X) is closed because ψ is
continuous. Therefore, Corollary 2.3 shows that X is homeomorphic to an open subset of
the closed unit ball, and thus to a manifold with boundary. □
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Finally, we provide some criteria to show that a set is strongly star-shaped.

Lemma 2.5. Assume that V is contained in a finite dimensional R-vector space U.
Let Ui for i ∈ [n] = {1, . . . ,n} be some further finite dimensional R-vector spaces. Let
πi : U → Ui be linear maps and Vi ⊆ Ui linear subspaces such that V = ∩n

i=1π
−1
i (Vi).

Furthermore, let Xi ⊆Vi for all i ∈ [n] be subsets and set X = ∩n
i=1π

−1
i (Xi). Finally, let

x∗ ∈V be such that (πi(x∗),Xi,Vi) is strongly star-shaped for all i ∈ [n]. Then (x∗,X ,V )

is strongly star-shaped.

Proof. Let x ∈ X and t ∈ [0,1). Because (πi(x∗),Xi,Vi) is strongly star-shaped, it follows
that πi(x∗+ t · (x− x∗)) lies in the interior (relative to Vi) of Xi for all i ∈ [n]. Since
V = ∩n

i=1π
−1
i (Vi) and X = ∩n

i=1π
−1
i (Xi), this implies that x∗ + t · (x− x∗) lies in the

interior (relative to V ) of X . □

Lemma 2.6. Consider the triple (x∗,X ,V ) consisting of a closed subset X ⊆V which is
star-shaped with respect to a point x∗ in the interior of X. Assume that for every x ∈ X,
there exists 0 < t0 < 1 such that for every t ∈ (t0,1), the point x∗+ t · (x− x∗) lies in the
interior of X. Then (x∗,X ,V ) is strongly star-shaped.

Proof. Let x ∈ X and t ∈ [0,1). We need to prove that the point x1 = x∗+ t · (x− x∗)
lies in the interior of X . If t = 0, then we are done because x∗ is in the interior of X . If
0 < t < 1, then by assumption there exists c ⩾ 1 such that xc = x∗+ c · t · (x− x∗) lies in
the interior of X . Let U ⊆ X be an open neighbourhood of xc. Then the set{

x∗+
1
c
(y− x∗) | y ∈U

}
is an open neighbourhood of x1 which is contained in X (because X is star-shaped). □

Lemma 2.7. Let X ⊆ V be a closed subset and W ⊆ V a linear subspace such that
W +X = X. For every x∗ ∈ X and w ∈W, (x∗,X ,V ) is strongly star-shaped if and only
if (w+ x∗,X ,V ) is strongly star-shaped.

Proof. This follows directly from the definitions. □

Lemma 2.8. Let X ⊆ V be a closed subset and W ⊆ V a linear subspace such that
W +X = X, and consider the projection π : V →V/W. We choose some norm on V/W.
Let x∗ ∈ X be such that (x∗,X ,V ) is strongly star-shaped. Then:

(1) (π(x∗),π(X),V/W ) is strongly star-shaped.
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(2) The set of directions S(π(x∗),π(X)) is equal to{
π(x) ∈ S ⊆V/W | ∀t ⩾ 0 : x∗+ tx ∈ X

}
,

where S is the unit sphere in V/W.

Proof. It follows from W +X = X that π(X) is closed. Let x ∈ X and 0 ⩽ t < 1. Then
x∗+ t(x− x∗) is in the interior of X . Thus π(x∗)+ t(π(x)−π(x∗)) is in the interior of
π(X), since π is open. This establishes part (1).

For part (2), the inclusion ⊃ is clear. For the other inclusion, let x ∈ V such that
π(x) ∈ S(π(x∗),π(X)). Then for all t ⩾ 0, there is xt ∈ X such that π(x∗)+ tπ(x) = π(xt).
This is equivalent to x∗+ tx = xt +wt for some wt ∈W = ker(π). Because W +X = X ,
this implies the claim. □

3. The topology of representation spaces over triangular hyperfields

We first recall some definitions and results on polymatroid representations over tracts.

3.1. Definition of tracts. A pointed monoid is a multiplicatively written commutative
monoid F with unit 1 and a distinguished element 0 that satisfies 0 ·a = 0 for all a ∈ F .
The unit group of F is the group

F× = {a ∈ F | ab = 1 for some b ∈ F}

of all invertible elements in F . A pointed group is a pointed monoid F such that
F× = F −{0}. The ambient semiring of a pointed group F is the group semiring

F+ = N[F×].

We denote its elements by ∑na.a (where na ∈ N and na = 0 for all but finitely many
a ∈ A), n1.a1+ · · ·+nr.ar, or ∑ai (where a appears na times as a summand). The pointed
group F embeds into F+ by sending 0 to the additively neutral element of F+ and a ∈ F×

to a = 1.a ∈ F+. An ideal of F+ is a subset that contains 0 and is closed under addition
and under multiplication by elements of F+.

Definition 3.1. A tract3 is a pointed group F together with an ideal NF of F+, called
the null set of F , such that for every a ∈ F there is a unique b ∈ F with a+b ∈ NF . A
homomorphism of tracts is a multiplicative map f : F1 → F2 with f (0) = 0 and f (1) = 1
such that the induced map F+

1 → F+
2 sends every element of NF1 to an element of NF2 .

3What we call a tract in this text is, in the language of [7], an ideal tract or an idyll.
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We write −a for the unique element b with a+b ∈ NF and call it the additive inverse
of a, and we use a−b for a+(−b). Typically, we denote a tract by F and suppress its
null set NF from the notation.

Example 3.2. The most basic example of a tract is a field F , which is a pointed group
with respect to multiplication, with null set NF consisting of all formal sums of elements
that sum to zero in F .

3.2. Triangular hyperfields. Viro introduces triangular hyperfields in [55, 56] as an
algebraic framework for Maslov dequantization, which we review in Section 3.5. In
this text, we consider triangular hyperfields (whose definition we give in Lemma 3.3) as
tracts.

For a,b ⩾ 0, we define

a⊞q b =
{

c ⩾ 0 | |a1/q −b1/q|⩽ c1/q ⩽ a1/q +b1/q}.
In other words, c ∈ a⊞q b if and only if a1/q, b1/q and c1/q are the side lengths of a
Euclidean triangle.

If A,B are subsets of R⩾0, we define

A⊞q B =
⋃

a∈A,b∈B

a⊞q b.

It was shown in [55, §5] that ⊞q, together with the usual multiplication on R⩾0, defines
a so-called hyperfield. We will not define hyperfields here, but only note the following
consequence of the definition:

Lemma 3.3. The pointed group R⩾0, together with the null set

NTq =
{

0
}
∪
{ n

∑
i=1

ai | n ∈ N⩾2 and 0 ∈ a1 ⊞q · · ·⊞q an
}
,

is a tract, called the triangular hyperfield Tq.

Proof. This follows from the fact that ⊞q, together with the usual multiplication on R⩾0,
defines a hyperfield (cf. [55, Section 5], [3, Section 2.3], and [7, Theorem 2.21]). It can
also be verified directly without any difficulties. □

In order to avoid confusion with the usual addition of nonnegative real numbers, we
will from now on denote addition in the group semiring T+

q by +q.
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Remark 3.4. For all a ⩾ 0 and q > 0, we have a+q a ∈ NTq . Furthermore, we have

a1 +q · · ·+q an ∈ NTq if and only if a1/q
1 +1 · · ·+1 a1/q

n ∈ NT1 .

We will also make use of the following description of elements of length larger than
three in the null set of T1. Recall that a cyclic n-gon is an n-gon whose vertices lie on a
circle in the Euclidean plane.

Lemma 3.5. Let a1, . . . ,an ∈ R⩾0. Then the following are equivalent:

(1) a1 +1 · · ·+1 an ∈ NT1;

(2) ai ⩽ ∑ j ̸=i a j for all i = 1, . . . ,n;

(3) a1, . . . ,an are the side-lengths (proceeding clockwise from a fixed vertex) of a (possi-
bly degenerate) n-gon in the Euclidean plane;

(4) a1, . . . ,an are the side-lengths (proceeding clockwise from a fixed vertex) of a (possi-
bly degenerate) convex n-gon in the Euclidean plane;

(5) a1, . . . ,an are the side-lengths (proceeding clockwise from a fixed vertex) of a (possi-
bly degenerate) cyclic n-gon in the Euclidean plane.

Proof. It is clear that (5) implies (4), which implies (3). And, since the shortest distance
between two points is a straight line, (3) implies (2). Moreover, it is proved in [47,
Theorem 6.2] (see also [51]) that (5) is equivalent to (2). Therefore (2), (3), (4), and (5)
are all equivalent. (We note that one can show in a much simpler and more direct way
that (2) implies (3), and with a bit of additional work that (2) implies (4).)

So it suffices to show that (1) is equivalent to (2). For this, we use the elementary
observation (cf. [11, Proposition 1.10 and Lemma 2.3]) that if H is a hyperfield with
hyperaddition ⊞, we have 0 ∈ a1 ⊞ · · ·⊞ an iff there exists a ∈ H such that 0 ∈ a1 ⊞

a2 ⊞ · · ·⊞ an−2 ⊞ a and 0 ∈ an−1 ⊞ an ⊞ (−a). Since −1 = 1 in T1, it follows that
a1 +1 · · ·+1 an ∈ NT1 iff there exists a ∈ T1 such that a1 +1 a2 +1 · · ·+1 an−2 +1 a ∈ NT1

and an−1 +1 an +1 a ∈ NT1 . (A tract with this property is called a fusion tract in [11].)

We know that (1) is equivalent to (2) when n = 3, so we may assume that n ⩾ 4.
Assume (1) holds. Then there exists a ∈ T1 such that a1 +1 a2 +1 · · ·+1 an−2 +1 a ∈ NT1

and an−1+1 an+1 a ∈ NT1 . By induction, we may assume that ai ⩽ ∑ j ̸=i, j⩽n−2 a j +a for
all i = 1, . . . ,n−2, and a ⩽ an−1 +an, and therefore (2) holds.
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Conversely, assume (2) holds. One can give an elementary direct algebraic proof of
(1), but it is perhaps more enlightening to proceed as follows. Since (2) implies (4), there
is a convex n-gon P with side lengths a1, . . . ,an. Then an−1 and an are consecutive side
lengths in P, and we draw a diagonal of P of length a which splits P into a triangle with
side lengths a,an−1, and an and a convex (n−1)-gon P′ with side lengths a1, . . . ,an−2 and
a. Since these side lengths satisfy (2), it follows by induction that both an−1 +1 an +1 a
and a1+1 a2+1 · · ·+1 an−2+1 a belong to NT1 . Thus a1+1 · · ·+1 an ∈NT1 as desired. □

Remark 3.6. Penner also proves in [47, Theorem 6.2] that the cyclic polygon in (5) is
unique in the non-degenerate case where ai < ∑ j ̸=i a j for all i = 1, . . . ,n.

Lemma 3.7. Let n ⩾ 2, 0 ⩽ q < 1, and x1, . . . ,xn > 0. Then

(x1 + · · ·+ xn)
q < xq

1 + · · ·+ xq
n.

Proof. By induction, it suffices to prove the case n = 2. We have

(x1 + x2)
q =

x1

x1 + x2
· (x1 + x2)

q +
x2

x1 + x2
· (x1 + x2)

q

=
( x1

x1 + x2

)1−q
· xq

1 +
( x2

x1 + x2

)1−q
· xq

2 < xq
1 + xq

2,

where the last the inequality follows because x1
x1+x2

, x2
x1+x2

< 1. □

Corollary 3.8. Let 0 < p ⩽ q < ∞. Then NTp ⊆ NTq as subsets of N[R>0].

Proof. The claim is clear for p = q, so we may assume that p < q. Consider ∑ai ∈ NTp ,

i.e. a1/p
j ⩽ ∑i̸= j a1/p

i for all j. After taking p-th powers of all ai, we can assume that

p = 1 < q, i.e., a j ⩽ ∑ai and 0 < q < 1. By Lemma 3.7, we have a1/q
j ⩽ ∑i̸= j a1/q

i for
all j, which shows that ∑ai ∈ NTq , as claimed. □

We define the tropical hyperfield as the tract T0 = R⩾0 with null set NT0 =
⋂

q>0 NTq

and the degenerate triangular hyperfield as the tract T∞ = R⩾0 with null set NT∞
=⋃

q>0 NTq . It follows formally from Corollary 3.8 that both null sets satisfy the axioms of
a tract.

Lemma 3.9. Let a1, . . . ,an ⩾ 0 and let q > 0. Then:

(1) ∑
n
i=1 ai ∈ NT0 if and only if the sum is identically zero or the maximum among

a1, . . . ,an appears at least twice.
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(2) ∑
n
i=1 ai ∈NT∞

if and only if the sum is identically zero, the maximum among a1, . . . ,an

appears at least twice, or at least three of the ai are nonzero.

Proof. For part (1), assume that a1 > a2, . . . ,an. Then a2
a1
, · · · , an

a1
< 1 and there exists

p > 0 small enough such that
(

ai
a1

)1/p
< 1

n for all i = 2, . . . ,n. It follows that a1/p
1 >

a1/p
2 + · · ·+a1/p

n , contradicting (1) for q = 1 by Lemma 3.5. The other direction of (1)
follows directly from Lemma 3.5.

The “only if” direction of part (2) is clear. For the other direction, it suffices to
prove a1/p

1 ⩽ a1/p
2 + · · ·+ a1/p

n for a suitable p > 0. We can further assume that a1 >

a2, . . . ,an. Again, this implies a2
a1
, · · · , an

a1
< 1 and there exists p > 0 large enough such

that
(

ai
a1

)1/p
⩾ 1

2 for all i = 2, . . . ,n with ai ̸= 0. Since, by assumption, this is the case
for at least two i ∈ {2, . . . ,n}, the claim follows. □

Finally, we study tract homomorphisms into triangular hyperfields. The situation is
particularly simple for the degenerate triangular hyperfield T∞:

Example 3.10. Let F be a tract and f : F× → T×
∞ = R>0 a group homomorphism. We

claim that the induced map F+ →T+
∞ sends NF to NT∞

. Indeed, by part (2) of Lemma 3.9,
this is true for all sums of length at least three in the null set of F . Thus it only remains
to show that f (a) = f (−a) for all a ∈ F×. Since a2 = (−a)2 and thus f (a)2 = f (−a)2,
this follows from R>0 being torsion-free. Therefore, tract homomorphisms F → T∞ are
canonically in bijection with group homomorphisms F× → R>0, cf. [4, Proposition 9.2].

Next we study tract homomorphisms C→ Tq.

Lemma 3.11. For t ⩾ 0, define ψt : C→ R⩾0 by x 7→ |x|t . The following holds for all
q ⩾ 0:

(1) If 0 ⩽ t ⩽ q, then ψt is a homomorphism of tracts C→ Tq.

(2) Conversely, if t > q, then for all a1,a2,a3 ∈ R× with a1 + a2 + a3 = 0, we have
ψt(a1)+qψt(a2)+qψt(a3) ̸∈ NTq .

Proof. The case q = 0 is clear, so we may assume that q > 0. It is clear that ψt is a group
homomorphism. Next, let a1, . . . ,an ∈ C be such that a1 + · · ·+an = 0. By the triangle
inequality, we have

|a1|⩽ |a2|+ · · ·+ |an|=⇒ |a1|t/q ⩽ (|a2|+ · · ·+ |an|)t/q ⩽ |a2|t/q + · · ·+ |an|t/q,
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where the last inequality follows from Lemma 3.7. By Lemma 3.5, this is exactly
what we need to show for part (1). For part (2), assume without loss of generality
a1 > 0 and a2,a3 < 0. Assume that ψt(a1)+qψt(a2)+qψt(a3) ∈ NTq . This implies that
|a1|t/q ⩽ |a2|t/q + |a3|t/q. This implies, by Lemma 3.7, that a1 < a2 + a3 since q

t < 1,
which contradicts our assumption. □

3.3. Polymatroid representations. There are several cryptomorphic definitions of an
(integral) polymatroid [24, 44, 57]. For us, a polymatroid will always be given by its
set of bases: A subset J ⊆ ∆d

n = {α ∈ Nn | α1 + · · ·+αn = d} is the set of bases of a
polymatroid if and only it is M-convex in the following sense.

Definition 3.12. A subset J of ∆d
n is M-convex if J ̸= ∅ and for all α,β ∈ J and every

i ∈ [n] with αi < βi, there exists j ∈ [n] such that α j > β j and J contains both α+ ei − e j

and β− ei + e j. The rank of the M-convex set J is r.

Example 3.13. If we identify a subset of [n] with its indicator function, regarded as an
element of {0,1}n, then the set of bases of a rank d matroid on [n] is an M-convex set in
∆d

n .

Recall the following definitions from [4]. We consider Nn as a partially ordered set
with respect to the partial order α⩽ β if and only if αi ⩽ βi for all i ∈ [n].

Definition 3.14. Let J ⊆ ∆d
n be an M-convex set. We define δ−J = inf(J) ∈ Nn to be the

vector whose i-th coordinate is min{αi | α ∈ J}. Similarly, we define δ+J = sup(J) ∈ Nn

to be the vector whose i-th coordinate is max{αi | α ∈ J}.

Definition 3.15. Let F be a tract and J ⊆ ∆d
n an M-convex set. A function ρ : ∆d

n → F is
a strong F-representation of J if its support is J and if it satisfies the Plücker relations

s

∑
k=0

(−1)k+ϵ(k) ·ρ(α+ ei0 + · · · êik · · ·+ eis) ·ρ(α+ eik + e j2 + · · ·+ e js) ∈ NF (7)

for all 2 ⩽ s ⩽ d, all α ∈ ∆d−s
n , all 1 ⩽ i0 ⩽ . . .⩽ is ⩽ n and all 1 ⩽ j2 ⩽ . . .⩽ js ⩽ n with

δ−J ⩽ α and α+ ei0 + · · ·+ eis + e j2 + · · ·+ e js ⩽ δ+J ,

where ϵ(k) is the number of k ∈ {2, . . . ,s} with ik < js.

It is a weak F-representation of J if its support is J and if it satisfies the 3-term Plücker
relations
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ρ(α+ e j + ek) ·ρ(α+ ei + el) − ρ(α+ ei + ek) ·ρ(α+ e j + el)

+ ρ(α+ ei + e j) ·ρ(α+ ek + el) ∈ NF

for all α ∈ ∆d−2
n and 1 ⩽ i ⩽ j ⩽ k ⩽ l ⩽ n with δ−J ⩽ α and α+ ei + e j + ek + el ⩽ δ+J .

Remark 3.16. If F is a field, then Equation (7) describes the usual Plücker relations. If
F is idempotent, i.e., 1+1, 1+1+1 ∈ NF , then the signs can be ignored. For example
the triangular hyperfields are all idempotent.

Definition 3.17 (Representation spaces). Let F be a tract and J ⊆ ∆d
n an M-convex set.

The (strong) representation space of J over F is defined as the set RJ(F) of all strong
F-representations of J. The weak representation space of J over F is the set Rw

J (F) of
all weak F-representations of J. The group R>0 acts diagonally on the (weak and strong)
representation space. The (strong) thin Schubert cell of J over F is GrJ(F) =RJ(F)/R>0.
The weak thin Schubert cell of J over F is Grw

J (F) = Rw
J (F)/R>0.

Remark 3.18. Let J ⊆ ∆d
n be an M-convex set. There exists a tract TJ , called the universal

tract of J, and, for every tract F , a bijection

Hom(TJ,F)
∼−→ GrJ(F)

which is functorial in F , see [4, Proposition D].

Remark 3.19. It follows from our considerations in Section 3.2 that we have, for all
0⩽ q1 ⩽ q2 ⩽∞, the inclusion RJ(Tq1)⊆RJ(Tq2), and similarly for weak representations
and (weak) thin Schubert cells.

Remark 3.20. If F is a field or F ∈ {T0,T∞}, then we have RJ(F) = Rw
J (F) by [4,

Theorem J]. This is not the case for 0 < q < ∞, see [3, Example 3.37].

Representations over T0 are essentially the same thing as M-convex functions.

Definition 3.21. A function f : ∆d
n → R∪{∞} with non-trivial support J = {α ∈ Zn |

f (α) ̸= ∞} is M-convex if it satisfies the following exchange property: for α,β ∈ J and
k ∈ [n] with αk > βk, there is an l ∈ [n] with αl < βl and

f (α) + f (β) ⩾ f (α− ek + el) + f (β+ ek − el). (8)

Lemma 3.22 ([4, Proposition 4.10]). Let J be an M-convex set and ρ : ∆d
n → T0 = R⩾0

a function with support J. Then ρ is a weak T0-representation of J if and only if
f =− log(ρ) is M-convex.
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The set RJ(F) is also invariant under rescaling by elements of (F×)n, see [4, Section
6.1]. In more detail, given an F-representation ρ : ∆d

n → F of J and t = (t1, . . . , tn) ∈ F×n,
we define

(t.ρ)(α) =
( n

∏
i=1

tαi
i

)
·ρ(α). (9)

The same holds true for weak representations.

Definition 3.23 (Realization spaces). The realization space of J over F is defined as the
quotient set GrJ(F) = RJ(F)/F×n. Similarly, we define Grw

J (F) = Rw
J (F)/F×n.

The representation spaces RJ(Tq) and Rw
J (Tq) can naturally be considered as subsets

of RJ
>0, and as such they inherit the Euclidean topology of RJ

>0. We equip the (weak)
Schubert cells as well as the (weak) realization spaces with the quotient topology. The
goal of this section is to prove that these spaces are topological manifolds with boundary
by employing the results from Section 2.

Let J ⊆ ∆d
n be an M-convex set. The coordinate-wise logarithm map

log : RJ
>0 → RJ

is a homeomorphism. By the description in part (2) of Lemma 3.9, it maps the set
RJ(T∞) = Rw

J (T∞) to a linear subspace VJ of RJ .

Proposition 3.24. Let 0 < q < ∞, and let T ⊆VJ be either log(RJ(Tq)) or log(Rw
J (Tq)).

Then (0,T,VJ) is strongly star-shaped.

Proof. We first prove the case of strong representations. It is clear from the definitions
that RJ(Tq)⊆RJ

>0, and hence log(RJ(Tq)) is closed. Let ρ ∈ RJ(Tq) and 0 ⩽ t < 1. We
have to show that

ρt : J −→ R>0, α 7−→ ρ(α)t

is in the interior of RJ(Tq) relative to RJ(T∞). Let s ⩽ r, δ−J ⩽ α ∈ ∆r−s
n , i0, . . . , is ∈ [n],

and j2, . . . , js ∈ [n]. If in the corresponding Plücker relation at most two terms are nonzero,
it is satisfied, as a relation over Tq, by all elements of RJ(T∞) by Lemma 3.9.

Assume otherwise. We have, for all 0 ⩽ l ⩽ s,

ρt(α+ ei0 + · · · êil · · ·+ eis)
1/q ·ρt(α+ eil + e j2 + · · ·+ e js)

1/q

=ρ(α+ ei0 + · · · êil · · ·+ eis)
t/q ·ρ(α+ eil + e j2 + · · ·+ e js)

t/q
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⩽

(
s

∑
k=0,k ̸=l

ρ(α+ ei0 + · · · êik · · ·+ eis) ·ρ(α+ eik + e j2 + · · ·+ e js)

)t/q

<
s

∑
k=0,k ̸=l

ρ(α+ ei0 + · · · êik · · ·+ eis)
t/q ·ρ(α+ eik + e j2 + · · ·+ e js)

t/q

=
s

∑
k=0,k ̸=l

ρt(α+ ei0 + · · · êik · · ·+ eis)
1/q ·ρt(α+ eik + e j2 + · · ·+ e js)

1/q,

where the first inequality holds because ρ ∈ RJ(Tq) and the second inequality follows
from Lemma 3.7. Thus, every ρ′ ∈ RJ(T∞) in the proximity of ρt satisfies all Plücker
relations over Tq. This shows the claim for strong representations. The proof for weak
representations is identical after restricting to the case s = 2. □

The coordinate-wise logarithm map log : RJ
>0 → RJ induces a homeomorphism

log : RJ
>0/R>0 −→ RJ/R1,

where 1 is the all-ones vector. The dimension τ(J) of VJ/R1 is called the Tutte rank. By
[4, Section 10.2] this is the rank of the multiplicative group of the universal tract of J.
The image of GrJ(T0) under this map is called the (local) Dressian DrJ of J. The orbit
of the constant-one map J → R>0 under the action from Equation (9) is mapped by the
coordinate-wise logarithm map log : RJ

>0 → RJ to a linear subspace WJ of VJ , which is
called the lineality space of DrJ . We obtain an induced map

log : RJ
>0/R

n
>0 −→ RJ/WJ

which satisfies log(GrJ(Tq)) = log(RJ(Tq))/WJ for all 0 ⩽ q ⩽ ∞. We write DrJ =

log(GrJ(T0)), and call this set the reduced Dressian of J.

Theorem 3.25. Let B ⊆VJ/R1 be the unit ball with respect to some norm and let X =

B\(DrJ ∩∂ B). For 0 < q < ∞, the spaces GrJ(Tq) and Grw
J (Tq) are both homeomorphic

to X. In particular, these spaces are topological manifolds with boundary which can be
compactified to a closed ball of dimension τ(J).

Proof. By Proposition 3.24 and part (1) of Lemma 2.8, both (0, log(GrJ(Tq)),VJ/R1)
and (0, log(Grw

J (Tq)),VJ/R1) are strongly star-shaped. It follows from the definition
of T0 and part (2) of Lemma 2.8 that DrJ ∩∂ B is equal to S(0, log(GrJ(Tq))) (resp.
S(0, log(Grw

J (Tq)))). Thus the claim follows from Corollary 2.3. □
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We have a similar result for the spaces GrJ(Tq) and Grw
J (Tq). The proof is the same

as for Theorem 3.25.

Theorem 3.26. Let B ⊆VJ/WJ be the unit ball with respect to some norm and let X =

B\(DrJ ∩∂ B). For 0 < q < ∞, the spaces GrJ(Tq) and Grw
J (Tq) are both homeomorphic

to X. In particular, these spaces are topological manifolds with boundary which can be
compactified to a closed Euclidean ball.

3.4. Foundations. Let J ⊆ ∆d
n be an M-convex set. There exists a tract FJ , called the

foundation of J, such that for every tract F there is a bijection

Hom(FJ,F)
∼−→ Grw

J (F)

which is functorial in F ; cf. [4, Section 6]. We call the image of the identity map FJ → FJ

in Grw
J (FJ) under this bijection the universal weak rescaling class of J.

Example 3.27. The foundation FJ of J is finite (in the sense that F×
J is finite) if and only if

GrJ(T∞) is a singleton. Indeed, the space GrJ(T∞) =Grw
J (T∞) corresponds bijectively to

the set of tract homomorphisms FJ →T∞, which by Example 3.10 corresponds bijectively
to the set of group homomorphisms F×

J → R>0. Since F×
J is a finitely generated abelian

group, there is a non-trivial group homomorphism F×
J → R>0 if and only if |F×

J |= ∞.

The theory of foundations, as developed in [8, 10], gives us an explicit way of calculat-
ing Grw

J (Tq), and hence (by Theorem 3.26) GrJ(Tq).

For 0 < q < ∞ and every tract F , we define on Hom(F,Tq) the compact-open topology,
where we consider F with the discrete topology and Tq = R⩾0 with the Euclidean
topology. We recall from [4, Section 12] the following facts:

Proposition 3.28. Let J be an M-convex set and let FJ be its foundation. Then the
bijection Hom(FJ,Tq)

∼−→ Grw
J (Tq) is a homeomorphism.

Proposition 3.29. If a tract F is the colimit of a finite diagram of tracts Fi, i ∈ I, then the
topological space Hom(F,Tq) is the limit of the corresponding diagram of topological
spaces Hom(Fi,Tq), i ∈ I.

Recall from [4, Proposition 2.29] that every M-convex set J can be decomposed (as a
Cartesian product) into indecomposable M-convex sets, and that such a decomposition is
unique up to permuting the factors. In particular, the number c(J) of indecomposable
components of J is well-defined.
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Proposition 3.30. Let J ⊆ ∆d
n be an M-convex set with c(J) indecomposable components

and s= n−c(J) (see [4, Section 2.5.1]). Then there is a (non-canonical) homeomorphism

Grw
J (Tq)≃ Grw

J (Tq)×Rs.

We draw some consequences for the spaces Grw
J (Tq) from this. Note that by The-

orem 3.25, Theorem 3.26, and Proposition 3.30, we immediately get corresponding
statements for the spaces GrJ(Tq), Grw

J (Tq), and GrJ(Tq):

Corollary 3.31. If two M-convex sets J1 and J2 have the same foundation, then Grw
J1
(Tq)

and Grw
J2
(Tq) are homeomorphic. In particular, this happens in the following cases:

(1) J1 and J2 are combinatorially equivalent in the sense of [4, Definition 2.23], e.g., if
J1 and J2 are matroids that are dual to each other.

(2) J1 is a matroid and J2 is obtained from J1 by a segment-cosegment exchange in the
sense of [9].

Proof. In [4, Corollary 7.5] and [9, Theorem D], it was shown that the foundations agree
in these cases. □

Theorem 3.32. Let M be a matroid that does not have a U2,5 or U3,5 minor. (This happens,
for example, whenever M is a ternary matroid.) Then Grw

M(Tq) is homeomorphic to the
product of finitely many half-open intervals and discs with three points removed from the
boundary.

Proof. We consider the five tracts F2,F3,D,H,U defined as follows. Each of these tracts
is a partial field. More precisely, the unit group is the unit group of a certain ring R and
the null set is the ideal generated by all formal sums of three elements a1,a2,a3 ∈ R× that
sum to zero in R. The rings in question are F2,F3,Z[1

2 ],Z[ζ6], and Z[x, 1
x ,

1
1−x ], where

ζ6 ∈ C is a primitive root of unity. It was shown in [8, Theorem B] that the foundation of
M is the coproduct of finitely many tracts F1, . . . ,Fr from {F2,F3,D,H,U}. For each of
these five tracts, we determine the topological type of Hom(F,Tq).

The unit group of each of the rings F2,F3, and Z[ζ6] is finite. Thus, by Example 3.27,
the space Hom(F,Tq) is a singleton for F ∈ {F2,F3,H}. The tract U is the foundation
of the matroid U2,4 [10, Section 3.2], which by Theorem 3.26 shows that Hom(U,Tq) =

GrU2,4
(Tq) is a disc with three points removed from the boundary. Finally, since Z[1

2 ]
× is

generated by 2 and −1, and since R>0 is torsion-free, for every x > 0 there is a unique
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FIGURE 3. A 2-dimensional projection of the Petersen graph

group homomorphism φx : Z[1
2 ]

× → R>0 with φx(2) = x. The null set of D is the ideal
generated by 2+(−1)+ (−1). Hence φx ∈ Hom(D,Tq) if and only if x1/q ⩽ 2. This
identifies Hom(D,Tq) with the half-open interval (0,2q]. The claim now follows from
Proposition 3.29. □

Theorem 3.33. Let M be a matroid. Then Grw
M(Tq) is homeomorphic to the inverse limit

of a finite diagram of topological spaces, each of which is homeomorphic to a disc with
three points removed from the boundary or a five-dimensional ball with a copy of the
Petersen graph (Figure 3) removed from the boundary.

Proof. It follows from Proposition 3.29 and [10, Theorem B] that Grw
J (Tq) is homeomor-

phic to the direct limit of a finite directed system of topological spaces Grw
J (Tq), where J

is one of the matroids U2,4,U2,5,C5,U2,4 ⊕U1,2,F7 or their duals. Here C5 is a series ex-
tension of U2,4 and F7 is the Fano matroid. By [10, Remark 5.2], the spaces Grw

J (Tq) are
all homeomorphic to each other for J ∈ {U2,4,C5,U2,4⊕U1,2}, and thus homeomorphic to
a disc with three points from the boundary removed by Theorem 3.26. By Theorem 3.26
and [41, Example 4.3.2] (together with the fact that the tropical Grassmannian equals
the Dressian for U2,n, see p.184 of loc. cit.), the space Grw

U2,5
(Tq) is homeomorphic to

a five-dimensional ball with a copy of the Petersen graph removed from the boundary.
Finally, since F7 is binary, the space Grw

F7
(Tq) is a singleton, cf. Example 3.27. □

Remark 3.34. The results in [10] give an explicit description of the directed system
appearing in Theorem 3.33 in terms of certain embedded minors of the matroid M.

3.5. Maslov dequantization. The realization of triangular hyperfields as tracts allows
for the following reformulation of Maslov dequantization (cf. Viro’s papers [55, 56]).
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In a nutshell, the idea behind Maslov dequantization is to deform the usual addition
(a,b) 7→ a+b of nonnegative real numbers via the rule

(a,b) 7→
(
a1/q +b1/q)q

,

which in the limit as q goes to zero becomes the tropical sum:

lim
q→0

(
a1/q +b1/q)q

= max{a,b}.

In the language of tracts, Maslov dequantization is reflected in the fact that the tropical
hyperfield T0 is the limit as q → 0 of the triangular hyperfields Tq for q > 0, in the sense
that NT0 =

⋂
q>0 NTq . This limiting process extends to Tq-rational points of varieties,

leading to a novel framework for amoebas and their “tropical” limit, as explained in the
following.

Let X be a complex variety embedded into the torus (C×)n. The q-amoeba of X is the
image Aq(X) of X under the map (C×)n → Rn given by

(a1, . . . ,an) 7−→ (log |a1|q, . . . , log |an|q).

The tropicalization of X is the Hausdorff limit

X trop := A0(X) := lim
q→0

Aq(X)

as a subset of Rn.

These spaces are controlled by a certain tract F = C(x1, . . . ,xn)�π−1(I) associated
with X ⊆ (C×)n, which we define in the following. Let R = C[x±1

1 , . . . ,x±1
n ] be the ring

of Laurent series over C and let I ⊆ R be the vanishing ideal of X . As a pointed monoid,
F is the submonoid {axn | a ∈ C, n ∈ Zn} of R/I, where p is the class of p ∈ R in R/I.
The inclusion F → R extends linearly to a semiring homomorphism π : F+ → R, where
F+ = N[axn | a ∈ C×, n ∈ Zn] is the ambient semiring of F . The null set of F is the
pullback NF = π−1(I) of the vanishing ideal of X .

For the purposes of the following construction, we define a complex tract to be a tract
T together with a tract morphism αT : C→ T . For example, Tq is a complex tract (for
q ⩾ 0) with respect to the map z 7→ |z|q, which is a tract morphism αTq : C→ Tq since
whenever ∑ai ∈ NC (i.e., ∑ai = 0 in C), the |ai| form the side lengths of a (possibly
degenerate) n-gon in the Euclidean plane, and thus ∑ |ai|q ∈ NTq by Lemma 3.5. A
C-linear map between complex tracts S and T is a tract morphism f : S → T such that
αT = f ◦αS. We denote by HomC(S,T ) the set of C-linear maps from S to T . The
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natural inclusion αF : C→ C(x1, . . . ,xn)�π−1(I) = F provides F with the structure of a
complex tract.

Since F× is generated by x1, . . . ,xn, the evaluation map

ιF,T : HomC(F,T ) −→ (T×)n

[ f : F → T ] 7−→
(

f (x1), . . . , f (xn)
)

is an injection for every complex tract T . Also, by construction, the image of the map
ιF,C : HomC(F,C)→ (C×)n is equal to X .

Proposition 3.35. Let X ⊆ (C×)n be a subvariety. Let Aq(X)⊆ Rn be its q-amoeba (for
q > 0) and let A0(X) = X trop ⊆ Rn be its tropicalization. Let F = C(x1, . . . ,xn)�π−1(I)
be as above. Then Aq(X) is contained in the image of the embedding

log(ιX ,Tq) : HomC(F,Tq) −→ Rn

[ f : F → Tq] 7−→
(

log f (x1), . . . , log f (xn)
)

for all q ⩾ 0, and X trop = im
(

log(ιX ,T0)
)

as subsets of Rn.

Proof. The inclusions ιF,T are evidently functorial in T , and thus C→ Tq induces the
commutative diagram:

X = Hom(F,C) (C×)n

Hom(F,Tq) (T×
q )

n Rn

ιF,C

ιF,Tq

log
∼

Thus Aq, the image of X → Rn, is contained in the image of Hom(F,Tq) → Rn, as
claimed.

We turn to the claim that X trop = im
(

log(ιX ,T0)
)
. By [43, Corollary 6.4], the Hausdorff

limit X trop = limq→0Aq(X) is equal to the bend locus of Itrop in Rn, where Itrop is
the tropicalization of I with respect to the trivial absolute value | · |0 : C → R⩾0. By
Kapranov’s theorem ([41, Theorem 3.1.3]) and a result of Payne [46, Proposition 2.2],
the bend locus of Itrop is equal to the image X̃ trop of the Berkovich space Xan ⊆ Gn,an

m

under the Payne map Gn,an
m → Rn

>0. As explained in [6, Example 3.8] and [40, Theorem
3.5], the Kajiwara–Payne tropicalization X̃ trop is equal to HomC(F,T0), which concludes
the proof. □
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Remark 3.36. In contrast to tropicalizations, the amoebas Aq(X) (for q > 0) are typ-
ically lower-dimensional subspaces of logHomC(F,Tq). For example, we will see in
Section 5.1 that the image of the thin Schubert cell X = GrM(C) for M = U2,5 under
the coordinate-wise squared absolute value map | · |2 : X → R10

>0/R>0 is exactly the
boundary ∂PLM of the projective space PLM of Lorentzian polynomials with support M
(Lemma 5.11.(3)). We will see in Section 4.4 that ∂PLM, and hence the amoebas Aq(X)

for q > 0, all have dimension eight.

On the other hand, logHomC(F,Tq) is always star-shaped (with respect to the origin
of R10/R), which follows from Lemma 3.7 by the same arguments as in the proof of
Proposition 3.24. Thus logHomC(F,T2) contains the minimal star-shaped set containing
A2(X). In the example X = GrU2,5(C), this shows that logHomC(F,T2) has nonempty
interior in R10/R, and thus has dimension nine.

Remark 3.37 (Difference between the tropicalized Grassmannian and the Dressian).
The thin Schubert cell X = GrJ(C) embeds into the torus (C×)J/C× by means of
its non-vanishing Plücker coordinates indexed by J. Let F = C(xα | α ∈ J)�π−1(I)
be as in Proposition 3.35. Then the tropicalization GrJ(C)trop is equal to the subset
logHomC(F,T0) of RJ/R.

As explained in Remark 3.18, we have GrJ(C) = HomC(F,C) = Hom(TJ,C) for the
universal tract TJ , which is, roughly speaking, the tract generated over F±

1 by variables
xα for α ∈ J and whose null set is generated by the Plücker relations. The space
logHom(TJ,T0) equals the Dressian DrJ of J as subsets of RJ (cf. the passage before
Theorem 3.25). Under these identifications, the inclusion GrJ(C)trop → DrJ corresponds
to the map HomC(F,T0)→ Hom(TJ,T0) given by pre-composition with TJ → F .

4. The topology of spaces of Lorentzian polynomials

4.1. Definitions. We denote by H(d,n) the space of homogeneous polynomials of degree
d in x1, . . . ,xn with nonnegative real coefficients. Let L̊

2
n be the space of homogeneous

quadratic polynomials f ∈ H(2,n) with strictly positive coefficients whose Hessian H f

has Lorentzian signature, that is, H f has one positive eigenvalue and n− 1 negative
eigenvalues, counting multiplicities. A strictly Lorentzian polynomial of degree d in
x1, . . . ,xn is a polynomial f ∈H(d,n) with strictly positive coefficients such that ∂α f ∈ L̊

2
n

for all α ∈ ∆d−2
n . A Lorentzian polynomial is a limit of strictly Lorentzian polynomials.
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It was shown in [18] that a nonzero polynomial f ∈ H(d,n) with nonnegative coefficients
is Lorentzian if and only if it satisfies one of the following equivalent conditions:

(1) The support of f is an M-convex set and the Hessian of ∂α f ∈ H(2,n) has at most
one positive eigenvalue for all α ∈ ∆d−2

n .

(2) The partial derivative ∂α f is identically zero or log-concave on Rn
>0 for all α ∈ Zn

≥0.

For an M-convex set J, we denote by LJ the set of Lorentzian polynomials with support
J.

Example 4.1. A polynomial f ∈R[x1, . . . ,xn] is called (real) stable if f = 0 or f (w) ̸= 0
for all w = (w1, . . . ,wn) ∈Hn, where H := {z ∈C | Im(z)> 0} is the complex upper half-
plane. Homogeneous stable polynomials with nonnegative coefficients are Lorentzian
by [18, Proposition 2.2]. Moreover, in degree two the notions of stable and Lorentzian
coincide by [18, Lemma 2.5]. We denote the set of stable polynomials with nonnegative
coefficients and support J by SJ .

The multiplicative group R>0 acts on LJ by scalar multiplication, and we denote the
quotient space by PLJ . Similarly, the multiplicative group Rn

>0 acts on LJ by scaling
each variable, and we denote by LJ the quotient space. The same notation applies to
spaces of stable polynomials. If

f = ∑
α∈∆d

n

cα
xα

α!
∈ H(d,n),

we define ρ f : ∆d
n → R⩾0 by ρ f (α) = cα.

The space of Lorentzian polynomials with support J can be related to representations
of J over T0 and T∞ as follows.

Lemma 4.2. If f is a Lorentzian polynomial with support J, then ρ f ∈ Rw
J (T∞).

Proof. Let J ⊆ ∆d
n be an M-convex set, let f ∈ LJ , and let ρ = ρ f . Let α ∈ ∆d−2

n and
choose i, j,k, l ∈ [n] such that one of the three terms

ρ(α+ ei + e j)ρ(α+ ek + el),ρ(α+ ei + ek)ρ(α+ e j + el),ρ(α+ ei + el)ρ(α+ e j + ek)

is zero. Without loss of generality, we can assume that

ρ(α+ ei + e j) = 0.
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To show that ρ f ∈ Rw
J (T∞), we need to prove that the other two terms are equal to one

another. If i = j, this is clear, and so we may assume that i ̸= j. The multi-affine part of
∂α f is Lorentzian, cf. [18, Corollary 3.5]. Because Lorentzian polynomials of degree
two are real stable, we can apply [14, Lemma 6.1] and the claim follows. □

Remark 4.3. As a consequence of Lemma 4.2 and the equality Rw
J (T∞) = RJ(T∞) (see

Remark 3.20), if f = ∑α∈∆d
n

cα xα
α! ∈ LJ is Lorentzian then ρ f belongs to RJ(T∞), which

means that f satisfies all degenerate Plücker relations. More precisely,

cβ+ei0
· cγ+ei1

= cβ+ei1
· cγ+ei0

for all β,γ ∈ ∆d−1
n such that cβ+ei0+ei1−ek · cγ+ek = 0 whenever k ∈ [n] and βk > γk.

By [14, Lemma 6.1], this fact is known for stable polynomials when β− ek = γ− el

for some k, l ∈ [n], i.e., stable polynomials satisfy the degenerate 3-term Plücker relations.
That Lorentzian polynomials, or even stable polynomials, satisfy all degenerate Plücker
relations appears to be a new observation.

An example of a degenerate Plücker relation with more than 3 terms is

c123 · c456 + c124 · c356 + c134 · c256︸ ︷︷ ︸
=0

+ c234 · c156︸ ︷︷ ︸
=0

∈ NT∞

for the matroid J = {α ∈ ∆3
6 | αi ⩽ 1 for all i ∈ [n] and e3 + e4 ̸⩽ α}, which is a parallel

extension of U3,5 with parallel elements 3 and 4. Consequently, we have c123 · c456 =

c124 · c356 for any Lorentzian polynomial f = ∑α∈∆d
n

cα xα
α! with support J.

For f = ∑α∈∆d
n

cα xα
α! and p > 0, we define Rp( f ) = ∑α∈∆d

n
cp
α

xα
α! .

Theorem 4.4 ([18]). Let f be a Lorentzian polynomial with support J. Then:

(1) For every 0 ⩽ p ⩽ 1, the polynomial Rp( f ) is Lorentzian.

(2) ρ f is a T0-representation of J if and only if the polynomial Rp( f ) is Lorentzian for
all p ⩾ 0 .

Proof. Part (1) is [18, Proposition 3.25]. Part (2) follows from [18, Theorem 3.14],
together with Lemma 3.22. □

4.2. Simplification of Lorentzians in degree two. We first recall the following property
of M-convex sets J ⊆ ∆2

n.
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Lemma 4.5. Let J ⊆ ∆2
n be an M-convex set. Let V ⊆ [n] be the set of all i ∈ [n] such that

ei + e j ∈ J for some j ∈ [n], and let E be the set of all two-element subsets {i, j} ⊆ V
such that ei + e j ∈ J. Finally, let D the set of all i ∈ J such that 2ei ∈ J. Then:

(1) We have ei + e j ∈ J for all i ∈ D and j ∈V .

(2) The graph G = (V,E) is a complete multipartite graph where V is partitioned into the
equivalence classes of the equivalence relation ∼ generated by i ∼ j if ei + e j /∈ J.

Proof. Let i ∈V such that 2ei ∈ J and let j ∈V . Because j ∈V , there exists k ∈V such
that e j + ek ∈ J. If k = i, then we are done. Otherwise, it follows from M-convexity that
ei + e j ∈ J. This proves part (1). For part (2), we note that E is the set of bases of a rank
2 matroid on the ground set V , which is a parallel extension of a uniform matroid U2,r.
The claim then follows from [22, Corollary 5.4], noting that the equivalence class of
i ∈V is the flat (or parallel class) of i. □

Definition 4.6. Let J ⊆ ∆2
n be an M-convex set. We use the notation from Lemma 4.5.

By part (2) of Lemma 4.5, there is a partition V =
∐r

i=1Vi such that {i, j} is an edge of
G if and only if i and j are contained in two different Vl . For i ∈V , we let p(i) ∈ [r] be
such that i ∈Vp(i). We then define

Jsimp = {2ep(i) | i ∈ D}∪{ei + e j | i, j ∈ [r] and i ̸= j} ⊆ ∆
2
r .

Theorem 4.7 (Simplification). Let J ⊆ ∆2
n be an M-convex set and Jsimp as above. Let

f ∈ H(d,n) with supp( f ) = J such that ρ f ∈ RJ(T∞). Then:

(1) There exists a unique polynomial g ∈ H(d,r) with supp(g) = Jsimp and unique
λ1, . . . ,λn > 0 such that:
(1) For all j ∈ [r] we have ∑i∈V j λi = 1.

(2) As polynomials in H(d,n), we have

f (x1, . . . ,xn) = g
(

∑
i∈V1

λixi, . . . , ∑
i∈Vr

λixi

)
.

(2) f is Lorentzian if and only if g is Lorentzian.

Proof. Let k, l ∈ [r] be two different indices, and let fkl the polynomial obtained from f
by setting all variables to zero that are not in Vk ∪Vl . We claim that there are akk,all ⩾ 0,
akl > 0, and µk,l

i > 0, i ∈Vk ∪Vl , such that

∑
i∈Vk

µk,l
i = ∑

i∈Vl

µk,l
i = 1
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and
fkl = akk · ∑

i∈D∩Vk

x2
i +all · ∑

i∈D∩Vl

x2
i +akl · (∑

i∈Vk

µk,l
i xi) · (∑

i∈Vl

µk,l
i xi). (10)

We further require akk = 0 (resp. all = 0) if D∩Vk = ∅ (resp. D∩Vl = ∅). Then all
akk,all,akl,µ

k,l
i are uniquely determined by Equation (10) if they exist. It follows from

part (1) of Lemma 4.5 that D∩Vk ̸=∅ implies |Vk|= 1, and the same holds true for Vl .
Therefore, the claim is clear when D∩ (Vk ∪Vl) ̸=∅, and for the remainder of the proof
we assume that D∩ (Vk ∪Vl) = ∅. In this case, the claim is equivalent to the matrix
(ρ f (ei+e j))i∈Vk, j∈Vl having rank one. However, this is true because ρ f ∈ RJ(T∞) implies
that every 2×2 minor of this matrix vanishes.

In order to prove part (1), it remains to show that for all pairwise different k, l, l′ ∈ [r]
and i ∈Vk, we have µk,l

i = µk,l′
i . To this end, let i1, i2 ∈Vk, j1 ∈Vl , and j2 ∈Vl′ . Then

ρ f (ei1 + ei2)︸ ︷︷ ︸
=0

·ρ f (e j1 + e j2) = 0.

Because ρ f is a representation over T∞, this implies that

ρ f (ei1 + e j1)ρ f (ei2 + e j2) = ρ f (ei1 + e j2)ρ f (ei2 + e j1).

If we plug in the expressions from Equation (10) for the coefficients of f , we obtain

aklakl′µ
k,l
i1 µ

k,l
j1 µ

k,l′
i2 µk,l′

j2 = aklakl′µ
k,l′
i1 µk,l′

j2 µ
k,l
i2 µ

k,l
j1

which shows that µk,l
i1 µ

k,l′
i2 = µk,l′

i1 µk,l
i2 . This means that the vectors (µk,l

i | i ∈ Vk) and

(µk,l′
i | i ∈ Vk) are linearly dependent. Because both are in the standard simplex, these

vectors must be equal. This implies the claim of part (1).

For part (2), assume first that g is Lorentzian. Then f is Lorentzian by [18, Theorem
2.10]. Conversely, assume that f is Lorentzian. We obtain g by setting all but one
variable from each group equal to zero and appropriately scaling the remaining one. This
operation also preserves the Lorentzian property by [18, Theorem 2.10]. □

Definition 4.8. Given f ∈ H(d,n) with supp( f ) = J such that ρ f ∈ RJ(T∞), we call the
unique polynomial g from Theorem 4.7 the simplification of f .

Corollary 4.9. Let J ⊆ ∆2
n be an M-convex set. We use the notation from Definition 4.6.

For i ∈ [r], let ∆◦
Vi

be the open standard simplex in RVi , and consider the map

ψJ : RJsimp(T∞)×∆
◦
V1
×·· ·×∆

◦
Vr
−→ RJ(T∞), (ρg,λ1, . . . ,λn) 7−→ ρ f

where f = g(∑i∈V1 λixi, . . . ,∑i∈Vr λixi). Then:



34 Matthew Baker, June Huh, Mario Kummer and Oliver Lorscheid

(1) ψJ is bijective.

(2) Both ψJ and ψ−1
J are regular in the sense that they are given by rational functions

without poles on their domains.

(3) ψJ maps LJsimp ×∆◦
V1
×·· ·×∆◦

Vr
onto LJ .

Proof. It is clear that ψJ is regular, and by Theorem 4.7 it is bijective. This proves
part (1) and for part (2) it remains to show that the inverse of ψJ is regular on RJ(T∞).
This follows from the fact that g can be recovered from f by equating all variables
from one group, and the λi can be recovered by dividing suitable coefficients of f by a
corresponding coefficient of g. Part (3) is covered by Theorem 4.7. □

Corollary 4.10. Let f be a Lorentzian polynomial of degree two and let J = supp( f ). If
the Hessian of the simplification of f has full rank, then f is in the interior of LJ relative
to RJ(T∞).

Proof. If the Hessian of the simplification of f has full rank, then it is in the interior of
LJsimp . Hence the claim is implied by Corollary 4.9. □

We will later need the following partial converse of Corollary 4.10.

Lemma 4.11. If f is in the interior of LM for M =U2,n, then the Hessian of f has full
rank.

Proof. Let f ∈ LM be such that the Hessian A of f has rank less than n. Note that this
implies n > 2. Let 0 ̸= v ∈ ker(A). Because every off-diagonal entry of A is positive,
there are at least two indices j,k ∈ [n] such that v j and vk are nonzero. Because n > 2,
there exists i ∈ [n]\{ j,k}. Now let B = (brs)r,s be the symmetric n×n matrix such that
bik = bki = 1, b jk = bk j =−vi+vk

v j
, and all other entries are zero. Then

vtBv = 2 ·
(

vivk − v jvk
vi + vk

v j

)
=−2v2

k .

Furthermore, letting e = ei + ek, we have etBe = 2 and

etBv = vtBe = vi + vk − v j ·
vi + vk

v j
= 0.

Finally, we compute

(λ · e+µ · v)t(A− ϵ ·B)(λe+µv) = λ2(etAe−2ϵ)+µ2 · ϵ · v2
k .
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Therefore, for small enough ϵ > 0, the matrix A− ϵ ·B is positive definite on the two
dimensional span of e and v. This shows that f is not in the interior of LM. □

4.3. Strong star-shapedness in degree two. For J ⊆ ∆2
n an M-convex set, we now

examine the image log(LJ) of LJ under the coefficient-wise logarithm map. Note that we
take coefficients with respect to the normalized monomial basis, i.e.,

log(LJ) =
{
(logcα)α∈J | ∑

α∈J
cα

xα

α!
∈ LJ

}
⊆ RJ.

By Lemma 4.2, log(LJ) is contained in the linear space VJ = log(RJ(T∞)). Further-
more, it follows from Theorem 4.4 that log(LJ) is star-shaped with respect to the origin.
However, in general the origin does not lie in the interior of log(LJ). In particular, the
triple (0, log(LJ),VJ) is not strongly star-shaped in general. However, we will prove that
log(LJ) is a strongly star-shaped subset of VJ with respect to another point.

Lemma 4.12. Let A = (ai j)i j be a symmetric n×n matrix with entries in R⩾0 which has
exactly one positive eigenvalue. If 0 ⩽ di ⩽ aii for all i ∈ [n], then the matrix

A′ = A−Diag(d1, . . . ,dn)

has exactly one positive eigenvalue or is the zero matrix.

Proof. Assume that the matrix A′ is not the zero matrix. Then A′ has at least one positive
eigenvalue, because it has only nonnegative entries. It cannot have more than one positive
eigenvalue, because then the same would be true for the matrix

A = A′+Diag(d1, . . . ,dn)

as Diag(d1, . . . ,dn) is positive semidefinite. □

Theorem 4.13. Let J ⊆ ∆2
n be an M-convex set. For every i ∈ [n], let aii ∈ [0,1], and

consider the polynomial

f = ∑
2ei∈J

aii ·
x2

i
2
+ ∑

ei+e j∈J, i ̸= j
xix j.

(1) The set log(LJ) is star-shaped with respect to log( f ).

(2) If aii < 1 for every i ∈ [n], then the Hessian of the simplification of f has full rank.

(3) If aii < 1 for every i ∈ [n], then (log( f ), log(LJ),VJ) is strongly star-shaped.
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Proof. For part (1), we need to prove that for all g ∈ LJ and p ∈ [0,1] we have

log( f )+ p · (log(g)− log( f )) ∈ log(LJ). (11)

Let (ai j)i j and (bi j)i j be the Hessian matrices of f and g, respectively. Then (11) is
equivalent to the matrix(

ai j ·
(

bi j

ai j

)p)
i j
=
(

bp
i j

)
i j
−Diag(d1, . . . ,dn)

having exactly one positive eigenvalue, where di = bp
ii · (1−a1−p

ii ). This follows from
Lemma 4.12 together with [18, Lemma 3.24].

For part (2), we observe that the Hessian of the simplification of f has the form

H = 1r −D,

where 1r is the r× r all-ones matrix and D is a diagonal matrix whose diagonal v has
strictly positive entries that are at most 1. Furthermore, if r = 1, then the entry of v is

strictly less than 1. Letting w be the vector whose i-th entry is v
− 1

2
i , the matrix H has the

same rank as

H ′ = w ·wt − Ir.

The matrix w ·wt has only one nonzero eigenvalue, which is the norm of w. Because
0 < vi ⩽ 1 and 0 < v1 < 1 if r = 1, the norm of w is strictly larger than 1, which implies
that H ′ has full rank.

In order to prove part (3), we first note that log(LJ) is closed because LJ is closed. By
part (2) and Corollary 4.10, the point log( f ) is in the interior of log(LJ) relative to VJ .
In order to conclude that (log( f ), log(LJ)) is strongly star-shaped as a subset of VJ , we
would like to apply Lemma 2.6. To this end, we need to prove that for every g ∈ LJ there
exists 0 < p0 < 1 such that for every p ∈ (p0,1), the point

xp = log( f )+ p · (log(g)− log( f ))

lies in the interior of log(LJ) relative to VJ . We can write xp = log(hp) for some polyno-
mial hp. The determinant of the Hessian of the simplification of hp is an analytic function
in p by Corollary 4.9. It does not vanish for p = 0 by part (2). Therefore, it has only
isolated zeros. This implies that there exists 0 < p0 < 1 such that for every p ∈ (p0,1),
the Hessian of the simplification of hp has full rank. By Corollary 4.10, this implies the
desired statement. □
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4.4. Conclusion about the topology. Now we are ready to complete the proof of
Theorem 1.7. Consider the linear operator N on polynomials defined by the con-
dition N(xα) = xα

α! . (We call N the normalization operator.) If a polynomial f is
Lorentzian, then N( f ) is also Lorentzian by [18, Corollary 3.7]. We will prove that
(log(N( fJ)), log(LJ),VJ) is strongly star shaped for every M-convex J ⊆ ∆d

n , where
VJ = log(RJ(T∞)), as above, and fJ = ∑α∈J

xα
α! is the (exponential) generating function

of J, i.e.,

N( fJ) = ∑
α∈J

xα

(α!)2 .

More generally, for any real number t, we write Nt for the linear operator on polyno-
mials defined by the condition

Nt(xα) =
xα

(α!)t .

The operator N0 is the identity and the operator N1 is the normalization operator N. Note
furthermore that Ns ◦Nt = Ns+t . The following lemma generalizes [18, Corollary 3.5]
and [18, Corollary 3.7] by interpolating between them.

Lemma 4.14. The operator Nt preserves the Lorentzian property for all t ≥ 0.

Proof. The proof of [18, Corollary 3.7] admits a straightforward generalization and
shows that the symbol of Nt is a Lorentzian polynomial in 2n variables. □

We will need the following lemma.

Lemma 4.15. Let f = ∑β∈∆d
n

cβ
β! · x

β , a ∈ ∆d−2
n , and g = ∂ a Nt( f ) for some t ∈ R. Then

g((1+a1)
t · x1, . . . ,(1+an)

t · xn)

=
1

(a!)t ·

(
n

∑
i=1

ca+2ei ·
(

1+ai

2+ai

)t

· x2
i

2
+ ∑

1⩽i< j⩽n
ca+ei+e j · xix j

)
.

Proof. This is a straight-forward calculation. □

Next, we note that the linear subspace WJ ⊆ RJ spanned by the vectors (αi)α∈J for
i ∈ [n] is contained in VJ . Adding a multiple of one of these vectors in log-coordinates
corresponds to scaling one variable of the corresponding polynomial by a positive
constant. As the latter preserves Lorentzians, we conclude that WJ + log(LJ) = log(LJ).

Theorem 4.16. Let t > 0, let J ⊆ ∆d
n be an M-convex set, and let fJ be the generating

function of J. Then (log(Nt( fJ)), log(LJ),VJ) is strongly star-shaped.
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Proof. We will apply Lemma 2.5 to (x∗,X) = (log(Nt( fJ)), log(LJ)). To this end, we
consider V =VJ as a linear subspace of U = RJ . For every a ∈ ∆d−2

n , we consider the
M-convex set

Ja = {α ∈ ∆
2
n | α+a ∈ J}.

We let Ua = RJa and πa = ∂ a : U → Ua. Then Va = VJa = log(RJa(T∞)) ⊆ Ua and
Xa = log(LJa) satisfy the assumptions of Lemma 2.5. Therefore, it suffices to show that

(πa(x∗),Xa) = (log(∂ a Nt( fJ)), log(LJa))

is strongly star-shaped as a subset of VJa for all a∈∆d−2
n . By Lemma 4.15 and Lemma 2.7,

this follows from part (3) of Theorem 4.13. □

Remark 4.17. Theorem 4.16 is in general not true for the space of stable polynomials SJ

with support J, even if SJ is nonempty. For example, for the non-Fano matroid M = F−
7 ,

the basis generating polynomial fM is not stable, although SM ̸=∅ [22, Example 11.5]. In
particular, the set log(SM) is not even star-shaped with respect to log( fM) = log(N( fM)).
In Theorem 5.18 we will consider a matroid M for which SM is not even connected.

Lemma 4.18. Let J ⊆ ∆d
n be an M-convex set and let fJ be the generating function of J.

For t ⩾ 0 and ν ∈VJ ⊆ RJ , we have

log(Nt( fJ)) + s ·ν ∈ log(LJ)

for all s ⩾ 0 if and only if ν : J → R is M-concave.

Proof. The “if” direction follows from Theorem 4.4 and the fact that the operator Nt

preserves Lorentzians (Lemma 4.14). The “only if” direction is implied by [18, Theorem
3.20] and Tarski’s principle which says that a first-order sentence in the language of
ordered fields holds in a given real closed field if and only if it holds in R [48, Section
5]. □

Theorem 4.19. Let B ⊆ VJ/R1 be the unit ball with respect to some norm, and let
X = B\(DrJ ∩∂B). Then the space PLJ is homeomorphic to X.

Proof. Let t > 0. By Theorem 4.16 and part (1) of Lemma 2.8, it follows that

(log(Nt( fJ)), log(PLJ),VJ/R1)

is strongly star-shaped. It follows from Lemma 4.18 and part (2) of Lemma 2.8 that
DrJ ∩∂B is equal to S(log(Nt( fJ)), log(PLJ)). Thus the claim follows from Corollary 2.3.

□
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Corollary 4.20. For an M-convex set J, the space PLJ is a manifold with boundary.

Proof. This follows from Corollary 2.4 and Theorem 4.16. □

Corollary 4.21. The spaces PLJ , GrJ(Tq), and Grw
J (Tq) are all homeomorphic to each

other.

Proof. This is Theorem 4.19 together with Theorem 3.25. □

By the same argument, we obtain the corresponding results for orbit spaces.

Theorem 4.22. Let B ⊆ VJ/WJ be the unit ball with respect to some norm and let
X = B\(DrJ ∩∂ B). Then the space LJ is homeomorphic to X.

Corollary 4.23. The spaces LJ , GrJ(Tq), and Grw
J (Tq) are all homeomorphic to each

other.

The preceding results allow us to transfer all the results on the topology of Grw
J (Tq)

and Grw
J (Tq) from Section 3.4 to LJ and PLJ .

5. Some detailed examples

5.1. Small uniform matroids. In this section we fix a matroid M on [n]. The map

C−→ R⩾0, z 7−→ |z|2,

defines a homomorphism of tracts from the field C to T2 by Lemma 3.11. From this, we
obtain a (continuous) map RM(C)→ RM(T2). Our goal is to prove the following:

Theorem 5.1. The image of the map RM(C)→ RM(T2) is contained in LM. In fact, every
polynomial in the image is stable. Moreover, we have:

(1) If M has a U2,4 minor, then the image of RM(R) is contained in ∂ LM.

(2) If M has a U2,5 minor, then the image of RM(C) is contained in ∂ LM.

(Here ∂ LM is the boundary of LM relative to RM(T∞).)

(3) If M =U2,4, then the induced map

GrM(R)−→ ∂ LM

is a homeomorphism.
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(4) The map Gr(2,4)(R) → ∂PL(2,4)⊠ is the quotient by the multiplicative group
{−1,1}4 acting on Gr(2,4)(R) via rescaling.

Remark 5.2. By [16], the space PL(2,4)⊠ is homeomorphic to a five-dimensional ball.
Therefore, part (4) of Theorem 5.1 implies that the quotient space

Gr(2,4)(R)/{−1,1}4

is homeomorphic to a four-dimensional sphere. This non-obvious fact was independently
proven in [20].

Remark 5.3. Let π : Gr+(2,4)(R) → Gr(2,4)(R) be the universal cover. It is well
known that Gr+(2,4)(R) is homeomorphic to S2 ×S2 and π is the quotient map by the
action of (t, t) on S2×S2, where t : S2 → S2 is the antipodal map. In order to describe the
map from part (4) of Theorem 5.1, for i = 1,2,3, let hi : S2 → S2 be the reflection along
the hyperplane xi = 0, where we think of S2 being embedded in the standard way into R3,
and let gi = (hi,hi) be the diagonal action on S2 ×S2. Furthermore, let g4 exchange the
two copies of S2×S2. Then g1, ...,g4 generate a group K isomorphic to {−1,1}4 that acts
on S2 ×S2. The map Gr+(2,4)(R)→ ∂PL(2,4)⊠, obtained by precomposing π with the
map from part (4) of Theorem 5.1 is the quotient map S2 ×S2 → (S2 ×S2)/K. Since the
componentwise antipodal map (t, t) is in K, it factors through the map (S2 ×S2)/(t, t)→
(S2 ×S2)/K, which is the map from part (4) of Theorem 5.1. As in the previous remark,
we obtain as a corollary the non-obvious statement that (S2 ×S2)/K is homeomorphic to
S4.

The proof of Theorem 5.1 requires some preparation.

Lemma 5.4. Let K be R or C. The map RM(K)→ RM(T2) is proper.

Proof. Let B be the set of bases of M. The map KB → RB defined by taking the square
of the absolute value of each coordinate is clearly proper. The restriction to the preimage
of the set where all coordinates are nonzero remains proper. The same is then true for the
restriction to the closed subset of points satisfying the Plücker relations. □

Corollary 5.5. Let K be R or C. The map GrM(K)→ GrM(T2) is closed.

Proof. Let A ⊆ GrM(K) be a closed subset and let B ⊆ GrM(T2) be its image. Then the
preimage A′ of A under the map RM(K)→ GrM(K) is sent by the map RM(K)→ RM(T2)

to the preimage B′ of B under the map RM(T2) → GrM(T2). The set A′ is closed, as
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the preimage of a closed set, and B′ is closed by Lemma 5.4. Finally, because GrM(T2)

carries the quotient topology of RM(T2), we see that B is closed. □

Lemma 5.6. Let 0 ̸= f ∈ R[x1, . . . ,xn] be a homogeneous polynomial of degree d with
nonnegative coefficients.

(1) If there exist positive semidefinite Hermitian d ×d matrices A1, . . . ,An such that

f = det(x1A1 + · · ·+ xnAn),

then f is stable.

(2) If f is stable, then f is Lorentzian.

Proof. Part (1) is [14, Lemma 4.1] and part (2) is [18, Proposition 2.2]. □

Lemma 5.7. Let A be a complex d ×n matrix with columns v1, . . . ,vn ∈ Cd , let X be the
n×n diagonal matrix with diagonal entries x1, . . . ,xn, and let f = det(AXA∗). Here B∗

denotes the conjugate transpose of a matrix B.

(1) We have the following equalities:

f = det(x1 · v1 · v∗1 + · · ·+ xn · vn · v∗n) = ∑
S∈([n]d )

|A(S)|2 ·∏
i∈S

xi

where A(S) denotes the determinant of the d ×d submatrix of A whose columns are
indexed by S.

(2) The polynomial f is stable (and hence Lorentzian).

In particular, the image of the map RM(C)→ RM(T2) is contained in SM ⊆ LM.

Proof. The first equality in part (1) is straight-forward and the second one follows from
the Cauchy–Binet formula. Now part (2) follows from Lemma 5.6 applied to the positive
semidefinite Hermitian d ×d matrices vi · v∗i . □

The proof of Lemma 5.7 gives a more precise description of the image of the map
RM(C)→ LM.

Lemma 5.8. A Lorentzian polynomial f ∈ LM is in the image of RM(C)→ LM if and
only if there are positive semidefinite Hermitian d × d matrices A1, . . . ,An such that
A1 + · · ·+An is positive definite and

f = det(x1A1 + · · ·+ xnAn). (12)
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It is in the image of RM(R)→ LM if and only if these matrices can be chosen to be real.

Proof. The ‘only if’ direction for both claims follows from part (1) of Lemma 5.7. For
the ‘if’ direction, we first observe that the matrices Ai must have rank one by [15, page
1207] (since f is multi-affine). Thus, we can write Ai = vi · v∗i for suitable vi ∈ Cd (resp.
vi ∈ Rd in the real case). The coefficients of f are given by the square of the absolute
value of the maximal minors of the matrix whose columns are v1, . . . ,vn, which proves
the claim. □

Whether a multi-affine polynomial f has a representation as in Equation (12) was
characterized in [36] for real matrices and in [1] for Hermitian matrices. Namely, f has a
representation of this form if and only if the polynomial

∂ f
∂xi

· ∂ f
∂x j

− f · ∂ 2 f
∂xi∂x j

is a (Hermitian) square for all i, j ∈ [n]. We will derive another characterization when f
has degree two.

Lemma 5.9. Consider r ⩾ 1 and the polynomial

f = x2
1 − (x2

2 + · · ·+ x2
r ).

There are Hermitian 2×2 matrices A1, . . . ,Ar such that

f = det(x1A1 + · · ·+ xrAr) (13)

if and only if r ⩽ 4. These matrices can be chosen to be real if and only if r ⩽ 3.
Furthermore, whenever such matrices exist, they can be chosen in such a way that A1 is
the identity matrix.

Proof. In both cases, the ‘if’ direction can be deduced from the following identity:

x2
1 − x2

2 − x2
3 − x2

4 = det

(
x1 + x2 x3 + ix4

x3 − ix4 x1 − x2

)
. (14)

Conversely, assume there are Hermitian (resp. real symmetric) 2×2 matrices A1, . . . ,Ar

with f = det(A(x)) where A(x) = x1A1 + · · ·+ xrAr. If r > 4 (resp. r > 3), then, for
dimension reasons, there exists 0 ̸= λ ∈ Rr such that A(λ) = 0. Then the gradient of
det(A(x)) vanishes at λ, which contradicts the assumption that f = det(A(x)) because
the gradient of f = x2

1 − (x2
2 + · · ·+ x2

r ) does not vanish at nonzero points in Rr. □
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Proposition 5.10. Assume that the rank of M is two. A Lorentzian polynomial f ∈ LM is
in the image of RM(C)→ LM if and only if its Hessian has rank at most four. It is in the
image of RM(R)→ LM if and only if its Hessian has rank at most three.

Proof. We prove the statement for RM(C) → LM; the statement about RM(R) → LM

follows analogously.

Let f ∈ LM. Because f has degree two and nonnegative coefficients, and because
its Hessian has exactly one positive eigenvalue, there is a linear change of coordinates
ψ : Rn → Rn with ψ(e1) = ∑

n
i=1 ei such that

f ◦ψ = x2
1 − (x2

2 + · · ·+ x2
r ),

where r is the rank of the Hessian of f .

Assume that f is in the image RM(C)→ LM. Then, by Lemma 5.8, there are Hermitian
2×2 matrices A1, . . . ,An such that f = det(A(x)), where A(x) = x1A1+ · · ·+xnAn. This
implies that

x2
1 − (x2

2 + · · ·+ x2
r ) = det(A(ψ(x))).

Lemma 5.9 now implies that r ⩽ 4.

Conversely, assume that r ⩽ 4. Then, by Lemma 5.9, there are Hermitian 2× 2
matrices A1, . . . ,An such that f ◦ψ = det(A(x)) and A1 = I2 is the identity matrix. (Here
we choose Ar+1 = · · ·= An = 0.) We have

f = det(A(ψ−1(x)))

and A(ψ−1(∑n
i=1 ei)) = I2 is positive definite. By Lemma 5.8, it remains to prove that

A(ψ−1(ei)) is positive semidefinite for i = 1, . . . ,n. This follows since

det(t · I2 +A(ψ−1(ei))) = f (t, . . . , t, t +1︸︷︷︸
ith position

, t, . . . , t)

has only non-positive zeros (which follows from the fact that f has nonnegative coeffi-
cients). □

Lemma 5.11. Let M be a matroid of rank two and let n ∈ N be maximal such that M has
an U2,n-minor.

(1) If n ⩽ 3, then the map RM(R)→ LM is surjective.

(2) If n = 4, then the map RM(C)→ LM is surjective.

(3) If n = 5, then the map RM(C)→ ∂ LM is surjective.
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Proof. Let f be an element of the target of one of the maps in question. It follows from
Corollary 4.9 that the Hessian of f has rank at most three in case (1) and rank at most
four in case (2). In case (3), it follows from Corollary 4.9 and Corollary 4.10 that the rank
of the Hessian of f is at most four. Now the claim follows from Proposition 5.10. □

Proof of Theorem 5.1(1)–(2). We prove part (2); part (1) can be proved analogously.
Suppose M has a U2,5 minor, i.e., there are disjoint, possibly empty, subsets X ,Y ⊆ [n]
such that (M/X)\Y is isomorphic to U2,5. Without loss of generality, we can assume that
[n]\(X ∪Y ) = [5]. We consider the commutative diagram

RM(C) LM

RU2,5(C) LU2,5

(15)

where the horizontal arrows are the coefficient-wise absolute square maps z 7→ |z|2 and
the vertical arrows correspond on the level of polynomials to

h 7→

(
∏
i∈X

∂

∂xi
h

)
|x j=0 for j∈Y .

Let f ∈ LM be in the image of RM(C)→ LM. It suffices to show that for every ϵ > 0,
we have (1+ ϵ) · log( f ) ̸∈ log(LM). For this, it suffices to show that for every ϵ > 0,
we have (1+ ϵ) · log(g) ̸∈ log(LU2,5), where g ∈ LU2,5 is the image of f under the map
LM → LU2,5 from (15). Because g is in the image of the map RU2,5(C)→ LU2,5 from (15),
the Hessian of g has rank at most four by Proposition 5.10. Thus, Lemma 4.11 implies
that g is on the boundary of LU2,5 (inside RU2,5(T∞)). By Theorem 4.16, this shows that
(1+ ϵ) · log(g) ̸∈ log(LU2,5) for all ϵ> 0. □

We now prepare for the proof of parts (3) and (4) of Theorem 5.1.

Lemma 5.12. Let f = x2
1 − x2

2 − x2
3 − x2

4 and

A1 =
(

1 0
0 1

)
, A2 =

(
1 0
0 −1

)
, A3 =

(
0 1
1 0

)
, A4 =

(
0 i
−i 0
)
.

The following holds true:

(1) f = det(x1A1 + x2A2 + x3A3 + x4A4).

(2) The set of tuples (B1,B2,B3,B4) of Hermitian 2×2 matrices with

f = det(x1B1 + x2B2 + x3B3 + x4B4)
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consists of exactly four orbits under the SL2(C)-action of coordinate-wise conjuga-
tion, i.e., (B1,B2,B3,B4) 7→ (SB1S∗,SB2S∗,SB3S∗,SB4S∗) for S ∈ SL2(C). Again S∗

denotes the conjugate transpose of S.

(3) The following tuples are representatives of the four orbits:

(A1,A2,A3,A4), (−A1,−A2,−A3,A4), (A1,A2,A3,−A4), (−A1,−A2,−A3,−A4).

Proof. Part (1) is a direct calculation, see also Equation (14). For part (2), we first observe
that such a tuple (B1,B2,B3,B4) is necessarily a basis of the real vector space H of
Hermitian 2×2 matrices. Indeed, if not, there would be some 0 ̸= λ ∈ R4 such that B(λ)
is the zero matrix, but then the gradient of det(B(x)) at λ would be zero, contradicting
f = det(B(x)). Therefore, there exists an automorphism of the vector space H which
maps Ai to Bi. Because it preserves f , this automorphism is an element of the Lorentz
group O(1,3). On the other hand, the action Y 7→ SY S∗ for S ∈ SL2(C) defines a group
homomorphism SL2(C)→ O(1,3) whose image is the identity component SO+(1,3) of
O(1,3). Because O(1,3) has four connected components [30, page 15], this shows that
there are four orbits. For part (3), it remains to show that the four given matrices are
in different orbits. This can be seen by observing that the SL2(C)-action preserves the
property of being positive definite, and that elements in the image of SL2(C)→ O(1,3)
have positive determinant. □

Corollary 5.13. The set of all tuples (B1,B2,B3,B4) of Hermitian 2×2 matrices such
that B1 is positive definite and

det(x1B1 + x2B2 + x3B3 + x4B4) = λ · (x2
1 − x2

2 − x2
3 − x2

4)

for some λ> 0 consists of exactly two orbits under the GL2(C)-action of coordinate-wise
conjugation. Complex conjugation exchanges these two orbits.

Proof. By Lemma 5.12, the set in question is the union of the GL2(C)-orbits of the
following pair of complex conjugated tuples:

(A1,A2,A3,A4) and (A1,A2,A3,−A4).

Because GL2(C) is connected, for every S ∈ GL2(C) the automorphism Y 7→ SY S∗ of
the space of Hermitian matrices has positive determinant. This shows that these are two
different orbits. □
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Lemma 5.14. Let f = x2
1 − x2

2 − x2
3 and

A1 =
(

1 0
0 1

)
, A2 =

(
1 0
0 −1

)
, A3 =

(
0 1
1 0

)
.

The following holds true:

(1) f = det(x1A1 + x2A2 + x3A3).

(2) The set of tuples (B1,B2,B3) of real symmetric 2×2 matrices with

f = det(x1B1 + x2B2 + x3B3)

consists of exactly four orbits under the SL2(R)-action of coordinate-wise conjuga-
tion.

(3) The following tuples are representatives of the four orbits:

(A1,A2,A3), (−A1,−A2,A3), (A1,A2,−A3), (−A1,−A2,−A3).

Proof. This follows from an argument similar to the proof of the previous lemma. □

Corollary 5.15. The set of all tuples (B1,B2,B3) of real symmetric 2×2 matrices such
that B1 is positive definite and

det(x1B1 + x2B2 + x3B3) = λ · (x2
1 − x2

2 − x2
3)

for some λ> 0 consists of exactly one orbit under the GL2(R)-action of coordinate-wise
conjugation.

Proof. By Lemma 5.14, the set in question is the union of the GL2(R)-orbits of the two
tuples

(A1,A2,A3) and (A1,A2,−A3).

The claim then follows from the identity

(A1,A2,A3) =

(
−1 0
0 1

)
(A1,A2,−A3)

(
−1 0
0 1

)
. □

Lemma 5.16. Let M =U2,n for n ⩾ 3, and let f ∈ LM. The Hessian of f has rank at least
three.

Proof. After scaling the first three variables appropriately, we can assume that the coffi-
cients of the monomials xix j for 1 ⩽ i < j ⩽ 3 are all one. Now the claim is apparent. □
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Proof of Theorem 5.1(3). Let M =U2,4. We first prove that the map GrM(R)→ ∂ LM is
surjective. For this, it suffices to prove that the map RM(R)→ ∂ LM is surjective. To this
end, let f ∈ ∂ LM. By Corollary 4.10, this implies that the rank of the Hessian of f is at
most three, and therefore f is in the image of RM(R)→ ∂ LM by Proposition 5.10.

As a next step, we prove injectivity of the map GrM(R)→ ∂ LM. To this end, let R and
R′ be real 2×4 matrices that both represent the same f ∈ ∂ LM. We have to show that,
after scaling their columns by nonzero scalars, their rows span the same two dimensional
subspace of R4. Let v1,v2,v3,v4 ∈ R2 and v′1,v

′
2,v

′
3,v

′
4 ∈ R2 be the columns of R and R′,

respectively. Letting Ai = vi · vt
i and Ai = v′i · v′ti for i = 1,2,3,4, Lemma 5.7 shows that

f = det(x1A1 + x2A2 + x3A3 + x4A4) = det(x1A′
1 + x2A′

2 + x3A′
3 + x4A′

4).

By Corollary 4.10 and Lemma 5.16, the Hessian of f has rank three. Thus, by a linear
change of coordinates, one can bring f to the form x2

1 − x2
2 − x2

3. Therefore, it follows
from Corollary 5.15 that there exists S ∈ GL2(R) such that Ai = SA′

iS
t for all i = 1,2,3,4.

Replacing R′ by SR does not change the row span, so we can assume from now on that
vivt

i = v′iv
′t
i holds for i = 1,2,3,4. This implies that vi =±v′i for i = 1,2,3,4 as desired.

Therefore, the map GrM(R)→ ∂ LM is continuous and bijective. Because it is also
closed by Corollary 5.5, it is a homeomorphism. □

Proof of Theorem 5.1(4). We denote by G= (R×)4 and H = (R×)4 the groups that act on
Gr(2,4)(R) and PL(2,4)⊠, respectively. We also write f : Gr(2,4)(R)→ ∂PL(2,4)⊠
and φ : G → H for the map that takes squares coordinate-wise. Finally, we let K =

ker(φ) = {−1,1}4.

Since Gr(2,4)(R) is compact, it suffices to show that the fibers of f are exactly the
orbits of the action of K on Gr(2,4)(R). By construction, we have φ(g). f (x) = f (g.x) for
all g ∈ G and x ∈ Gr(2,4)(R). This shows in particular that every fiber of f is invariant
under K. We also note that every fiber f−1(y) of f is contained in an orbit of G; this
follows from part (3) of Theorem 5.1 for y ∈ ∂PLU2,4 and the fact that G acts transitively
on GrM(R) for every other matroid M of rank 2 on [4].

Next, we claim that it suffices to prove for all x ∈ Gr(2,4)(R) that

φ−1(H f (x))⊆ K ·Gx. (16)
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In fact, if f (x) = f (y) then there exists g ∈ G with y = g.x and thus φ(g) ∈ H f (x). By
Equation (16), we can write g = ab with a ∈ K and b ∈ Gx. Thus, y = g.x = a.(b.x) = a.x,
which proves the claim.

In order to prove Equation (16), let x ∈ GrM(R). We first note that H f (x) consists of all
tuples for which all the entries corresponding to the same connected component of M
agree. Then φ−1(H f (x)) consists of all tuples for which all the entries corresponding to
the same connected component of M agree up to a sign. This proves Equation (16), and
hence Theorem 5.1(4). □

We conclude with a lemma for future reference.

Lemma 5.17. Let M be a matroid of rank two. Then the fiber over every element in the
image of the map GrM(C)→ LM is an orbit under complex conjugation.

Proof. The statement is trivial if the simplification of M is U2,2. Hence we can assume
that M has a U2,3-minor. We first prove that the fiber over an element in the image
of GrM(R) is a singleton. By Proposition 5.10 and Lemma 5.16, the Hessian of every
element f in the image of RM(R) → LM has rank three. The desired statement now
follows from the same argument we used to prove injectivity in Theorem 5.1(3).

Next, we prove that the fiber over an element in the image of GrM(C) which is not in the
image of GrM(R) has cardinality two, and that the two fibers are exchanged by complex
conjugation. Let R and R′ be complex 2×n matrices that both represent the same f in the
image, which cannot be represented over R. Let v1, . . . ,vn ∈ C2 and v′1, . . . ,v

′
n ∈ C2 be

the columns of R and R′, respectively. Letting Ai = vi · v∗i and Ai = v′i · v′∗i for i = 1, . . . ,n,
Lemma 5.7 shows that

f = det(x1A1 + · · ·+ xnAn) = det(x1A′
1 + · · ·+ xnA′

n).

By Proposition 5.10, the Hessian of f has rank four. Thus, by a linear change of
coordinates, one can bring f to the form x2

1 − x2
2 − x2

3 − x2
4. Using Corollary 5.13, we can

then argue as in the proof of injectivity in Theorem 5.1(3). □

5.2. The Betsy Ross matroid. The Betsy Ross matroid B11 is the rank 3 matroid on 11
elements whose point-line arrangement is illustrated in Figure 2. The goal of this section
is to prove the following theorem.

Theorem 5.18. We have GrB11
(Tq) = Grw

B11
(Tq) for all 0 ⩽ q ⩽ ∞. Moreover, there is an

explicit homeomorphism GrB11
(T∞)→ R which maps GrB11

(Tq) to the closed interval
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[−q,q] for all 0 ⩽ q < ∞. It identifies the space LB11
with the closed interval [−2,2] and

SB11
with its boundary points {−2,2}.

By [10, Appendix A.3.5], the foundation of B11 is the golden ratio partial field G,
considered as a partial field or as a pasture.4 Partial fields and, more generally, pastures
can be realized in different ways as tracts, and a suitable interplay of two such realizations
G1 and G2 allows us to determine both Grw

B11
(Tq) and GrB11

(Tq).

The tract G1 is the foundation of the matroid B11 in the sense of Section 3.4 and
satisfies Grw

B11
(F) = Hom(G1,F) for every tract F . Its unit group G×

1 = G× is the

multiplicative subgroup of R× generated by −1 and the golden ratio b = 1+
√

5
2 . The

null set of G1 is the ideal of N[G×
1 ] generated by all formal sums of three elements

a1,a2,a3 ∈G=G×∪{0} that sum to zero in R.

The tract G2 has the same unit group G×
2 =G× as G1 and the null set of G2 consists

of all formal sums of elements that sum to zero in R, without any restriction on their
lengths. Since NG1 ⊆ NG2 , the identity map G1 → G2 is a tract morphism, which
defines a weak rescaling class ρ in Grw

B11
(G2). By [11, Section 1.5], G2 is perfect and

thus Grw
B11

(G2) = GrB11
(G2), which shows that ρ is in fact a strong rescaling class.

Consequently, composing ρ with a tract homomorphism ψ : G2 → F yields a strong
rescaling class of GrB11

(F) for every tract F .

Remark 5.19. A concrete matrix representation of ρ is given by

A =

 0 0 1 1 1 1 1 1 1 1 1
1 0 1 φ+1 φ φ+1 0 φ φ φ+1 0
0 1 1 φ 1

φ 0 φ φ 1 1 0

 ,

in the sense that it is represented by the map U3,11 → G that sends ei + e j + ek to the
minor of the 3×3-submatrix of A with columns i < j < k. This matrix was computed
using an implementation of the algorithms developed in [21].

Now we determine Grw
B11

(T∞) = GrB11
(T∞). Clearly, for all t ∈ R the map

ψt : G× −→ R>0, x 7−→ |x|t

4As a partial field, G is the pair (G×,R) where R = Z[φ] is the subring of R that is generated by the
golden ratio φ= 1+

√
5

2 and G× = R× is the unit group of R.
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is a group homomorphism. Because the abelian group G× has rank one, every group
homomorphism G× → R>0 is of this form. By Example 3.10, this implies that

R−→ GrB11
(T∞), t 7−→ ρt := ψt ◦ρ (17)

is a bijection; in fact, it is a homeomorphism. Moreover, for every 0 ⩽ q ⩽ ∞, the map
ρt is in Grw

B11
(Tq) if and only if ψt defines a tract homomorphism G1 → Tq. Finally, the

map ρt is in GrB11
(Tq) if ψt defines a tract homomorphism G2 → Tq. Hence the first part

of Theorem 5.18 follows from the following lemma.

Lemma 5.20. The following holds for all q ⩾ 0:

(1) If t ∈ [−q,q], then ψt is a homomorphism of tracts G2 → Tq.

(2) If t ̸∈ [−q,q], then ψt is not a homomorphism of tracts G1 → Tq.

Proof. The unique nontrivial field automorphism of Q(b) sends b to −b−1 and thus
restricts to an automorphism τ of both G1 and G2. For all t ∈ R, we have ψ−t = ψt ◦ τ .
Hence it suffices to prove (1) and (2) for t ⩾ 0. By definition of G2, part (1) follows
from part (1) of Lemma 3.11. For part (2), it suffices by part (2) of Lemma 3.11 to find
a1,a2,a3 ∈G× with a1 +a2 +a3 = 0. We can choose, for example, a1 = b2, a2 =−b,
and a3 =−1. □

The remaining parts of Theorem 5.18 are covered by the following proposition.

Proposition 5.21. Let t ∈ R and ft ∈ R[x1, . . . ,x11] be such that ρ ft = ρt . Then ft is
Lorentzian if and only if t ∈ [−2,2] and ft is stable if and only if t ∈ {−2,2}.

Proof. Theorem 5.1 implies that f2 is stable. Applying the unique nontrivial field
automorphism of Q(b), as in the previous proof, we conclude that f−2 is stable as well.
Part (1) of Theorem 5.1 implies, moreover, that f2 and f−2 are boundary points of LB11 .
Hence Theorem 4.4 implies the claim on Lorentzian polynomials.

For the claim on stable polynomials, recall that by [14, Theorem 5.6] the polynomial
ft is stable only if the polynomial

Wt =
∂ ft
∂x1

∂ ft
∂x11

− ft ·
∂ 2 ft

∂x1∂x11

is nonnegative on R11. We define the polynomial gt to be the restriction of Wt given by:

x1 = x2 = x3 = x5 = x7 = x11 = 0, x4 = 1+bt , x6 = b−2t +b−t , x8 = x, x9 = bt , x10 =−bt .
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One can calculate that

gt(x) =−
(bt + x+1)

(
b4tx−b3tx−4b2tx−b2t −2btx−bt + x

)
bt .

We note that gt(x) is nonnegative on R for every value of t ⩾ 0 for which ft is stable.
Because gt(x) has degree two, it is nonnegative if and only if its discriminant is non-
positive. The discriminant is given by

(bt +1)6 (b2t −3bt +1
)2

b2t .

It is non-positive if and only if it is zero, and one checks that the only real values of t for
which this expression is zero are t = 2 and t =−2. This shows the remaining part of the
claim. □

6. Compactifications and Euler characteristics

Let J ⊆ ∆d
n be an M-convex set. Theorem 4.19 shows that PLJ has a compactification

that is homeomorphic to a closed Euclidean ball. On the other hand, one can consider the
closure PLJ of PLJ inside the projective space of homogeneous polynomials of degree
r in n variables. It was conjectured in [18, Conjecture 2.29] that PLJ is homeomorphic
to a closed Euclidean ball in the case that J = ∆d

n . This was confirmed in [16, Theorem
3.3] for a larger class of polymatroids, also including all uniform matroids. It was
asked in [16, Question 5.1] whether this is true for arbitrary polymatroids, or at least for
matroids [16, Question 5.3]. The analogous question was also asked for spaces of stable
polynomials, i.e., whether PSJ is homeomorphic to a closed Euclidean ball for every
polymatroid J [16, page 7]. The following summarizes our findings in connection with
these questions:

Theorem 6.1. Let J be an M-convex set.

(1) If GrJ(T∞) is a singleton, then PLJ is homeomorphic to a closed Euclidean ball. In
this case, either PSJ = PLJ or PSJ =∅.

(2) If J is rigid, i.e., GrJ(T0) is a singleton, then the Euler characteristic of PLJ is equal
to one.

(3) There is a rigid matroid M with dim(GrM(T∞)) = 1 such that PSM is nonempty with
Euler characteristic not equal to one. In particular, the set PSM is nonempty but not
homeomorphic to a closed Euclidean ball.



52 Matthew Baker, June Huh, Mario Kummer and Oliver Lorscheid

(4) There is a matroid M with dim(GrM(T0)) = 1 such that the Euler characteristic of
PLM is not equal to one. In particular, the set PLM is not homeomorphic to a closed
Euclidean ball.

Part (1) is shown in Proposition 6.25 and part (2) in Proposition 6.26. Parts (3) and (4)
are Example 6.34 and Example 6.37, respectively.

Remark 6.2. It follows from Example 3.27 that the space GrJ(T∞) is a singleton if and
only if the foundation FJ of J (see Section 3.4) is finite.

Remark 6.3. The condition that GrJ(T∞) is a singleton is satisfied, for example, when J
is a binary matroid or a projective geometry of projective dimension d ⩾ 2 over a finite
field [17, Propositions 3.5 and 3.6]. If M is a binary matroid, then PSM = PLM if and
only if M is a regular matroid. This follows from the previous theorem in combination
with [17, Theorem 1.4].

6.1. Initial polymatroids and base polytopes. For every r,n ∈ N, the space of nonzero
Lorentzian polynomials of degree r in n variables has a natural stratification:⊔

J⊆∆d
n M-convex

LJ.

We will need to understand when the closure of one such cell intersects another cell.

Definition 6.4. Let J ⊆ ∆d
n be M-convex and ∅ ̸= J′ ⊆ J a subset. We say that J′ is

an initial subset of J if there exists an M-convex function v : J → R which takes only
nonnegative values and is zero exactly on J′. A polymatroid is an initial polymatroid of
another polymatroid if its corresponding M-convex set is an initial subset of the M-convex
set of the other polymatroid.

Remark 6.5. It follows directly from the definition of M-convex sets and M-convex
functions that every initial subset of an M-convex set is M-convex itself.

Example 6.6. If a matroid M′ is a relaxation of another matroid M in the sense of
[45, Theorem 1.5.14], then M is an initial matroid of M′.

Lemma 6.7. Let ∅ ̸= J,J′ ⊆ ∆d
n be M-convex sets. The following are equivalent:

(1) J′ is an initial subset of J.

(2) fJ′ ∈ LJ .
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(3) LJ ∩LJ′ ̸=∅.

Here fJ′ = ∑α∈J′
1
α!x

α is the is the (exponential) generating function of J′ as defined in
Section 4.4.

Proof. It follows from Theorem 4.4 that (1) implies (2). It is clear that (2) implies
(3). Now assume (3). The curve selection lemma from semi-algebraic geometry [12,
Theorem 3.19] implies that there are algebraic Puiseux series cα(t) for α ∈ J such that
the polynomial

∑
α∈J

cα(t)
α!

xα

is in LJ for for sufficiently small t > 0, and in LJ′ for t = 0. This means that the function

v : J → R, α 7→ val(cα(t))

takes only nonnegative values and is zero exactly on J′. From [18, Theorem 3.20], it
follows that v is M-convex, which proves (1). □

Remark 6.8. Spaces of stable polynomials are less well-behaved with respect to initial
polymatroids. For example, the non-Fano matroid F−

7 is a relaxation of the Fano matroid
F7. By [22, Example 11.5], we have SF−

7
̸= ∅, but SF7 = ∅ by [14]. An example of a

relaxation M′ of a matroid M such that SM′ =∅ but SM ̸=∅ is given in [37, Example
4.10].

We now take a more careful look at the set LJ ∩LJ′ in the case where it is nonempty.

Lemma 6.9. Let J′ be an initial subset of J. Then the set log(LJ ∩ LJ′) ⊆ RJ′ is star-
shaped with respect to the origin.

Proof. Let f = ∑α∈J′
cα
α! xα ∈ LJ′ , and let ( fi)i∈N ⊆ LJ be a sequence converging to f .

Writing fi = ∑α∈J
ci,α
α! xα ∈ LJ , it follows from Theorem 4.4 that for all 0 ⩽ p ⩽ 1 and all

i ∈ N, the polynomial fi,p = ∑α∈J
cp

i,αxα

α! is Lorentzian as well. For fixed 0 < p ⩽ 1, the
limit of the sequence ( fi,p)i∈N ⊆ LJ is the polynomial ∑α∈J′

cp
α
α! xα ∈ LJ′ . This shows the

claim. □

For understanding the topology of a star-shaped set, we need to understand the rays it
contains.
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Lemma 6.10. Let J′ be an initial subset of J. If ν ′ ∈RJ′ is such that −λ ·ν ′ ∈ log(LJ∩LJ′)

for all λ⩾ 0, then for every N ∈N, there is an M-convex function ν : J →R which extends
ν ′ and satisfies ν(β)⩾ N for all β ∈ J\J′.

Proof. Let ν ′ ∈ RJ′ be such that −λ ·ν ′ ∈ log(LJ ∩LJ′) for all λ⩾ 0. This implies that
the polynomial with coefficients in the field of Puiseux series

g = ∑
α∈J′

tν
′(α)

α!
xα ∈ LJ′

is Lorentzian and belongs to the closure of the set of Lorentzian polynomials with support
J over the field of Puiseux series. Now let ϵ > 0, and let q ∈ N be larger than N and
every ν ′(α) for α ∈ J′. We consider the intersection of the ball of radius tq around g
in the max-norm on the coefficients with the set of Lorentzian polynomials over the
Puiseux series with support J. By assumption, this intersection is nonempty. Therefore,
there exist Puiseux series cα(t) for α ∈ J such that val(cα(t)) = ν ′(α) if α ∈ J′ and
val(cα(t))⩾ q otherwise, and such that ∑α∈J

cα(t)xα
α! is Lorentzian. This implies that the

function ν : J → R defined by ν(α) = val(cα(t)) has the desired properties. □

Before we continue, we note a useful consequence of Lemma 6.10. For d,n ∈ N and
a tract F , we define the Polygrassmannian PolyGr(d,n)(F) to be the projectivization
of the set all functions ρ : ∆d

n → F whose support is M-convex and that are a strong
F-representation of their support. If d ⩽ n, then we define Gr(d,n)(F) to be the subset of
PolyGr(d,n)(F) consisting of projective equivalence classes of functions whose support
is contained in [0,1]n. If F = Tq for some 0 ⩽ q ⩽ ∞, then these spaces inherit a topology

from the Euclidean topology on R∆d
n

⩾0, see [4, Section 10.1] for equivalent definitions and
further properties. We demonstrate that the connection between Lorentzian polynomials
and M-convex functions can be used to recover some basic properties of Dressians
[18, Lemma 3.27].

Corollary 6.11. For every d,n ∈ N, the space Gr(d,n)(T0) is the closure of its maximal
cell GrUd,n(T0). The same is true for polymatroids, namely PolyGr(d,n)(T0) is the
closure of its maximal cell Gr∆d

n
(T0).

Proof. Let ρ : ∆d
n → R⩾0 be a T0-representation of some polymatroid, and let J be the

support of ρ. Since J is M-convex, the generating polynomial fJ is Lorentzian. By
definition, it is a limit of Lorentzian polynomials with full support ∆d

n . By Lemma 6.7, J
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is an initial subset of ∆d
n . By Lemma 4.18, the function −(log◦ρ) : J → R satisfies the

hypotheses of Lemma 6.10. Thus, for every N ∈ N, there exists an M-concave function
νN : ∆d

n → R which extends log◦ρ and satisfies νN(α) ⩽ −N for all α ∈ ∆d
n\J. This

shows that ρN = exp◦νN is in R∆d
n
(T0) and satisfies

ρN(α) =

ρN(α) = ρ(α) if α ∈ J,

ρN(α)⩽ e−N otherwise.

It follows that ρ= limN→∞ ρN , which yields the claim for PolyGr(d,n)(T0). The claim
for Gr(d,n)(T0) can be shown in the same way using the result from [16] that every
multiaffine Lorentzian polynomial is a limit of multiaffine Lorentzian polynomials with
full support. □

Initial polymatroids of a given polymatroid can be understood in terms of regular poly-
matroid subdivisions. We assume some familiarity with the theory of regular subdivisions.
As references we recommend [23, Section 5] or [32, Section 1.2].

Definition 6.12. Let ∅ ̸= J ⊆ ∆d
n be an M-convex set. The base polytope BPJ of J is the

convex hull of J in Rn. A regular polymatroid subdivision of J (or of BPJ) is a regular
subdivision of J that is induced by an M-convex function ν : J → R (i.e., the subdivision
equals the subset of BPJ where ν is not differentiable).

Remark 6.13. Let ν : J → R be an M-convex function.

(1) Let ℓ : Rn → R be a linear function and a,b > 0. Then the M-convex functions ν
and a · ν + b · ℓ|J induce the same regular polymatroid subdivision, see e.g. [23,
Proposition 5.4.1].

(2) Let J′ ⊆ J be the set of vertices of a cell5 in the regular polymatroid subdivision
induced by ν. Then there is a linear function ℓ : Rn → R such that ν+ ℓ|J takes only
nonnegative values and is zero exactly on J′. This shows that the initial subsets of
J are exactly those subsets of J that correspond to a cell in a regular polymatroid
subdivision of J. In particular, it follows from Remark 6.5 that subsets of J which
correspond to a cell in a regular polymatroid subdivision of J are themselves M-
convex.

5By a cell of a regular polymatroid subdivision we mean one of the (not necessarily maximal) polytopes
that comprise the regular polymatroid subdivision (which is a compact polyhedral complex).
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(3) Let ρ : J → T0 be a T0-representation of J and let t = (t1, . . . , tn) ∈ (R>0)
n. By

Lemma 3.22, the function ν =− log(ρ) : J → R is M-convex. If ℓ : Rn → R is the
linear function that maps the i-th unit vector to − log(ti), then

− log(t.ρ) = ν+ ℓ|J,

where t.ρ denotes the action of ρ defined in Equation (9). Thus − log(ρ) and
− log(t.ρ) induce the same regular polymatroid subdivision (by part (1) of this
remark), and we can speak of the regular polymatroid subdivision induced by an
element of GrJ(T0). By Lemma 3.22, every regular polymatroid subdivision of J is
induced by an element of GrJ(T0) in this sense.

The easiest special case where the intersection LJ ∩LJ′ is always nonempty is when
the base polytope of the initial subset J′ corresponds to a face of the base polytope of J.

Lemma 6.14. Let ∅ ̸= J′ ⊆ J ⊆ ∆d
n be M-convex sets, and let f ∈ LJ . We consider the

orbit

O f = { f (ϵ1x1, . . . ,ϵnxn) | ϵ1, . . . ,ϵn > 0} ⊆ LJ .

The following are equivalent:

(1) BPJ′ is a face of BPJ .

(2) The closure of O f intersects LJ′ .

In this case, the intersection of the closure of O f with LJ′ is

Og = {g(ϵ1x1, . . . ,ϵnxn) | ϵ1, . . . ,ϵn > 0},

where g is the sum over all terms in f that correspond to points in J′.

In particular, LJ ∩LJ′ is nonempty whenever BPJ′ is a face of BPJ

Proof. Assuming (1), there exists β ∈ Rn such that the linear form ⟨−,β⟩ takes its
minimum γ on BPJ exactly on BPJ′ . Then we have

lim
ϵ→0

f (ϵβ1−γ/rx1, . . . ,ϵ
βn−γ/rxn) = g ∈ LJ′, (18)

which proves (2). By replacing each xi by ϵixi for some ϵi > 0 in Equation (18), we
further see that the intersection of the closure of O f with LJ′ contains Og.

Now assume (2), and let h ∈ LJ′ be in the closure of O f . By the curve selection lemma
[12, Theorem 3.19] and the existence of semi-algebraic sections [50, Proposition 4.5.9],
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there are algebraic Puiseux series ci(t) for i ∈ [n], which are positive for small enough
t > 0, such that

h = lim
t→0

f (c1(t)x1, . . .cn(t)xn).

Letting β = (val(c1(t)), . . . ,val(cn(t))) ∈ Rn, this implies that the linear form ⟨−,β⟩
takes its minimum on BPJ exactly on BPJ′ , where it is zero. This shows (1). Furthermore,

h = lim
t→0

f (c1(t)x1, . . .cn(t)xn) = g(cin
1 x1, . . . ,cin

n xn),

where cin
i ∈ R is the coefficient of smallest degree in ci(t). This shows that h ∈ Og. □

Corollary 6.15. Let ∅ ̸= J′ ⊆ J ⊆ ∆d
n be M-convex sets such that BPJ′ is a face of BPJ .

For ν ′ ∈ RJ′ , the following are equivalent:

(1) −λ ·ν ′ ∈ log(LJ ∩LJ′) for all λ⩾ 0.

(2) ν ′ extends to an M-convex function ν : J → R.

Proof. It follows from Lemma 6.10 that (1) implies (2). Assume (2) holds, and let
ν : J → R be an M-convex function that extends ν ′. For every q > 0, it follows from
Theorem 4.4 that the polynomial f = ∑α∈J

qν(α)
α! xα is Lorentzian. Hence, by Lemma 6.14,

the polynomial g = ∑α∈J′
qν

′(α)

α! xα is in the closure of LJ . This establishes (1). □

If the reduced Dressian DrJ = − log(GrJ(T0)) of J has only finitely many rays, we
have a good understanding of the rays in log(LJ ∩LJ′).

Theorem 6.16. Let J ⊆ ∆d
n be an M-convex set such that log(GrJ(T0)) has only finitely

many rays. Let ∅ ̸= J′ ⊆ J be an initial subset, and let WJ′ be the linear subspace of
RJ′ corresponding to the image under the orbit of the generating polynomial under
the rescaling action of (R×)n. Finally, let 0 ̸= ν ′ ∈ RJ′ . Then −ν ′ generates a ray of
log(LJ ∩LJ′) if and only if one of the following holds:

(1) BPJ′ is a face of BPJ and ν ′ is the restriction of an M-convex function ν : J → R.

(2) BPJ′ is not a face of BPJ and ν ′ ∈WJ′ .

Proof. The case where BPJ′ is a face of BPJ was settled in the preceding corollary.
Thus, we may assume that BPJ′ is not a face of BPJ . If ν ′ ∈ WJ′ , then it follows from
Lemma 6.14 that −ν ′ generates a ray of log(LJ ∩ LJ′). Conversely, assume that −ν ′

generates a ray of log(LJ ∩ LJ′). By Lemma 6.10, there exists an M-convex function
ν0 : J → R extending ν ′. For every i ∈ N, we recursively define νi : J → R to be an
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M-convex extension of ν ′ such that νi(β) > maxγ∈J(vi−1(γ)) for all β ∈ J\J′. This is
possible by Lemma 6.10. Because log(GrJ(T0)) has only finitely many rays, there are
i > j, λ> 0, and ω ∈WJ such that

λ ·νi = ν j +ω.

This show that the restriction of ω to J′, which lies in WJ′ , is equal to (λ−1) ·ν ′. Thus,
it remains to show that λ ̸= 1. Assume for the sake of a contradiction that λ = 1, i.e.,
that ω = νi −ν j. By construction, νi(β)> ν j(β) for every β ∈ J\J′. This shows that ω is
nonnegative on J and is zero exactly on J′. Because ω ∈WJ , this implies that BPJ′ is a
face of BPJ , contradicting our previous assumption. □

6.2. Compactly supported Euler characteristic. Building upon the results from the
previous subsection, we will compute the Euler characteristic of PLM for some matroids
M. In particular, we will see an example of a matroid M for which χ(PLM) ̸= 1, which
shows in particular that PLM is not homeomorphic to a ball.

To this end, for any M-convex J, we consider the decomposition

PLJ =
⊔
J′
(PLJ ∩PLJ′),

where the disjoint union is over all initial subsets J′ of J.

For computing χ(PLJ) in terms of the cells PLJ ∩PLJ′ , we will make use of some
concepts and results from tame topology (see [54] for an introduction to this topic).

We say that a subset S ⊆ Rn is definable if it is of the form

{x ∈ Rn | ∃y ∈ Rk : P(x,y,ex,ey) = 0},

where P is a real polynomial in 2(n+ k) variables, and where x = (x1, . . . ,xn), y =

(y1, . . . ,yk), ex = (ex1, . . . ,exn), ey = (ey1, . . . ,eyk). A map f : S → Rm from a definable
set S ⊆ Rn is definable if its graph is definable. It was shown by Wilkie [58] that the
definable sets form an o-minimal structure. This implies in particular that:

(1) Every semi-algebraic set and every semi-algebraic map is definable.

(2) Boolean combinations of definable sets are definable.

(3) If A is definable, then so are R×A and A×R.

(4) The image of a definable set under a definable map is definable.

Example 6.17. Note that the map Rn → Rn, x 7→ ex is definable but not semi-algebraic.
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Remark 6.18. Let S ⊆ Rn+1 be a definable set. Then the set

{x ∈ Rn | ∃t ∈ R : (x, t) ∈ S}

is the image of S under the definable map

π : Rn+1 → Rn, (x, t) 7→ x,

and thus is again definable by property (4) of o-minimality. Similarly, the set

{x ∈ Rn | ∀t ∈ R : (x, t) ∈ S}= Rn\π(Rn+1\S)

is definable. We say that definable sets satisfy quantifier elimination.

Theorem 6.19 (§4.2 in [54]). There is a unique integer-valued map χ∗ on the set of
definable sets that satisfies the following conditions:

(1) χ∗(Rn) = (−1)n,

(2) If S,T ⊆ Rn are disjoint definable sets, then χ∗(S∪T ) = χ∗(S)+χ∗(T ),

(3) If S ⊆ Rn is a definable set and f : S → Rm is an injective definable map, then
χ∗(S) = χ∗( f (S)).

(4) If S ⊆ Rn and T ⊆ Rn are definable sets, then χ∗(S×T ) = χ∗(S) ·χ∗(T ).

Remark 6.20.

(1) Let S ⊆ Rn be a compact definable set. Because S can be triangulated by means
of definable homeomorphisms, see [54, §8.2], it follows that χ∗(S) is equal to the
topological Euler characteristic χ(S) of S, defined as the alternating sum

χ(S) = b0 −b1 +b2 −b3 + · · · ,

where bi is the rank of the ith singular homology group of S.

(2) If S ⊆ Rn is definable but not compact, then χ∗(S) might differ from χ(S). For
example χ(Rn) = 1 because Rn is contractible, but χ∗(Rn) = (−1)n by part (1) of
Theorem 6.19.

Applying these considerations to our situation, we obtain the following formula.

Lemma 6.21. Let J be an M-convex set. Then

χ(PLJ) = ∑
J′
χ∗(PLJ ∩PLJ′) =−∑

J′
χ∗(LJ ∩LJ′) =−∑

J′
χ∗(log(LJ ∩LJ′)),

where the sums are over all initial subsets J′ of J.
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Proof. The first equality follows from part (2) of Theorem 6.19. For proving the second
equality, we first note that PLJ ∩ PLJ′ can be identified with the subset of LJ ∩ LJ′

consisting of all polynomials for which the sum of the coefficients is equal to one. Under
this identification we obtain the homeomorphism(

PLJ ∩PLJ′
)
×R>0 → LJ ∩LJ′, ( f ,λ) 7→ λ · f .

Because χ∗(R>0) = χ∗(R) = −1 by part (1) of Theorem 6.19, the second equality of
the claim now follows from part (4) of Theorem 6.19. Finally, the third equality follows
from part (3) of Theorem 6.19. □

The sets log(LJ ∩LJ′) are star-shaped by Lemma 6.9. Thus we can use Lemma 6.21
and the following lemma to compute the Euler characteristic of χ(PLJ).

Lemma 6.22. Let X ⊆ Rn be a closed definable set that is star-shaped with respect to
the origin. Let S ⊆ Rn be the unit sphere. Consider the set of rays contained in X:

S(X) = {ν ∈ S | ∀t ⩾ 0 : t ·ν ∈ X}.

Then S(X) is a definable set satisfying χ∗(S(X))+χ∗(X) = 1.

Proof. By Remark 6.18, definable sets satisfy quantifier elimination, and thus the set
S(X) is definable. For the same reason, the following map is definable:

ψ : X → R⩾0, x 7→ inf{t > 0 | x
t
∈ X}.

Furthermore, by Lemma 2.2, we have for all x ∈ X :

(1) ψ(x)⩽ 1.

(2) If ψ(x)> 0, then x
ψ(x) ∈ X .

(3) ψ(x) = 0 if and only if x = 0 or x ̸= 0 and x
∥x∥ ∈ S(X).

The proof of Lemma 2.2 also shows that ψ is lower semi-continuous, as this part of the
proof only uses that X is closed and star-shaped.

Let B ⊆ Rn be the closed unit ball, and consider the map

ϕ : X → B\S(X), x 7→ x
1−ψ(x)+∥x∥

.

The map is well-defined because for all x ∈ X we have 0 ⩽ ψ(x)⩽ 1 and x ̸= 0 whenever
ψ(x) = 1. Its norm is lower semi-continuous, because ψ is. For fixed x ∈ X , the map

ϕx : [0,1]→ Rx, λ 7→ ϕ(λ · x)
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is continuous, its norm is monotonically increasing, and it satisfies ϕx(0) = 0 and ϕx(1) =
x. This shows that the image ϕ(X) is star-shaped with respect to the origin. Furthermore,
ϕ is definable, and a short calculation shows that it is injective. Thus χ∗(X) = χ∗(ϕ(X)).

We claim that the closure Y of ϕ(X) is the disjoint union of ϕ(X) and S(X). A point
x ∈ X is mapped by ϕ to S if and only if ψ(x) = 1. Thus, by (3), we cannot have
ϕ(x) = x

∥x∥ ∈ S(X). This shows that ϕ(X) and S(X) are disjoint. Now let x ∈ S(X),
meaning that ∥x∥= 1 and t · x ∈ X for all t ⩾ 0. We have

lim
t→∞

ϕ(tx) = lim
t→∞

tx
1+ t

= x.

This shows that S(X) is contained in the closure of ϕ(X).

Conversely, let (xi)i∈N be a sequence in X such that (ϕ(xi))i∈N converges. If it is
unbounded, then (ϕ(xi))i∈N converges to a point in S(X). Otherwise, it converges to a
point in ϕ(X) by semi-continuity and star-shapedness. Thus we have shown that the
closure Y of ϕ(X) is the disjoint union of ϕ(X) and S(X). As Y is a compact star-shaped
definable set, we have

1 = χ∗(Y ) = χ∗(ϕ(X))+χ∗(S(X)) = χ∗(X)+χ∗(S(X)). □

Corollary 6.23. For every M-convex set ∅ ̸= J ⊆ ∆d
n , we have χ∗(PLJ) = χ∗(DrJ).

Proof. It suffices to prove that χ∗(log(LJ)) = χ∗(log(RJ(T0))). By Lemma 3.22 and
Lemma 4.18, the star-shaped definable sets log(LJ) and log(RJ(T0)) contain the same
rays. The claim therefore follows from the preceding lemma. □

Remark 6.24. The preceding corollary, together with Theorem 1.1, imply that for all
d,n we have ∑J χ∗(DrJ) = 1, where the sum is over all nonempty M-convex sets J ⊆ ∆d

n

or over all matroids J of rank d on [n]. We do not know how to prove this combinatorial
statement without the detour to Lorentzian polynomials.

Proposition 6.25. If ∅ ̸= J ⊆ ∆d
n is an M-convex set such that GrJ(T∞) is a singleton,

then PLJ is homeomorphic to the base polytope BPJ . In particular, it is homeomorphic
to a closed ball.

Proof. The assumptions imply that PLJ is the orbit closure of the generating polynomial
under the action of Rn

>0 by rescaling the variables. Thus the claim follows directly from
the proposition in [26, §4.2]. □
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If GrJ(T0) is a singleton, but GrJ(T∞) is not, we are not able to conclude that PLJ

is homeomorphic to a closed ball, but we can at least show that it has the same Euler
characteristic as a closed ball:

Proposition 6.26. Let ∅ ̸= J ⊆ ∆d
n be a rigid M-convex set, that is, the space GrJ(T0) is

a singleton. Then χ(PLJ) = 1.

Proof. We use the notation from Theorem 6.16. Because J is rigid, it follows that
log(RJ(T0)) =WJ . Thus, for every initial subset J′ of J, the union of rays contained in
log(LJ ∩LJ′) is exactly the set WJ′ . Lemma 6.22 now implies that

χ∗(log(PLJ ∩PLJ′)) =−χ∗(log(LJ ∩LJ′)) =−χ∗(WJ′) = (−1)dim(WJ′)−1.

This shows that χ(PLJ) = ∑J′(−1)dim(WJ′)−1, where the sum is over all initial subsets
J′ of J. Because J is rigid, every M-convex function J → R is the restriction of a linear
function Rn →R, see Remark 6.13. This implies that the initial subsets J′ of J are exactly
those nonempty subsets of J for which BPJ′ is a face of BPJ . Moreover, the dimension
of BPJ′ is dim(WJ′)−1. It follows that χ(PLJ) is the Euler characteristic of BPJ , which
implies the claim. □

The following theorem will allow us to compute the Euler characteristic χ(PLJ) in the
case that the polyhedral fan DrJ = − logGrJ(T0) consists of finitely many rays. Here
and in the following, we refer to the restriction map resJ,J′ : logGrJ(T0)→ logGrJ′(T0)

that is given by ρ 7→ ρ|J′ .

Theorem 6.27. Let ∅ ̸= J ⊆ ∆d
n be an M-convex set such that logGrJ(T0) consists of m

rays. For i = 0, . . . ,n, let gi be the number of initial subsets J′ of J such that BPJ′ has
dimension i and is not a face of BPJ . In addition, for i = 0, . . . ,n and j = 0, . . . ,m, let fi j

be the number of initial subsets J′ of J such that BPJ′ has dimension i, is a face of BPJ ,
and such that the image of resJ,J′ : logGrJ(T0)→ logGrJ′(T0) consists of j rays. Then

χ(PLJ) =
n

∑
i=0

(−1)i ·

(
gi +

m

∑
j=0

fi j · (1− j)

)
.

Proof. We use the formula

χ(PLJ) =−∑
J′
χ∗(log(LJ ∩LJ′)),
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where the sum is over all nonempty initial subsets of J. By Lemma 6.22 and Theorem 6.16,
we find, as in the proof of Proposition 6.26, that

−χ∗(log(LJ ∩LJ′)) = (−1)dim(WJ′)−1 = (−1)dimBPJ′

in the case that BPJ′ is a face of BPJ and

−χ∗(log(LJ ∩LJ′)) =−((−1)dim(WJ′)+ j · (−1)dim(WJ′)+1) = (−1)dimBPJ′ (1− j)

otherwise, where j is the number of rays of the image of logGrJ(T0)→ logGrJ′(T0).
This implies the claim. □

Remark 6.28. Given an M-convex set J, one can compute the polyhedral fan logGrJ(T0),
for example, using the software gfan [31]. In the case that J is a matroid, this is described
in detail in [19, Algorithm 1]6. If logGrJ(T0) consists only of finitely many rays, then one
can compute the numbers gi and fi j from Theorem 6.27 as follows. We first compute all
initial subsets of J. To this end, we have to compute all faces of the polytope BPJ and all
faces of the regular subdivisions of BPJ defined by a generator of each ray of logGrJ(T0).
This can be done, for example, using the software polymake [27], where the command
SubdivisionOfPoints allows to compute the regular subdivisions. Finally, for every
initial subset J′, we record the dimension of BPJ′ and, if BPJ′ is a face of BPJ , then we
also record the number of rays of the image of resJ,J′ : logGrJ(T0)→ logGrJ′(T0).

Example 6.29. Let M =U2,4 be the uniform matroid of rank 2 on 4 elements, whose
base polytope is an octahedron. It has three non-trivial regular matroid subdivisions
corresponding to the three rays of logGrJ(T0). None of these subdivisions subdivides
any of the proper faces. It follows that f00 = 6, f10 = 12, f20 = 8, and f33 = 1. All other
fi j are zero. Each of the three non-trivial subdivisions consists of two pyramids that
intersect at a quadrilateral, hence each contains two additional faces of dimension three
and one of dimension two. Thus g0 = g1 = 0, g2 = 3, and g3 = 6. By Theorem 6.27, we
obtain

χ(PLM) = 6−12+(3+8)− (6+1 · (1−3)) = 1.

Definition 6.30. For every n ⩾ 4, the elliptic matroid Tn is defined to be the matroid of
rank 3 on the ground set [n] for which a three element subset {i, j,k} ⊆ [n] is a non-basis
if and only if i+ j+ k ≡ 0 (mod n).

6With minor adaptions, this algorithm can also treat the case of a general M-convex set J but in this
paper we will perform such computations only in the case that J is a matroid.
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Remark 6.31. The matroid Tn can be realized in the projective plane as the subgroup of
points on an elliptic curve generated by a torsion point of order n, hence the name. The
complex representation spaces of Tn have been studied in [13, 35].

Computer experiments suggest that logGrTp
(T0) is one-dimensional, consisting of pre-

cisely p−1
2 rays, whenever p ⩾ 7 is a prime number. We compute the Euler characteristic

for some small prime numbers.

Example 6.32. The matroid M = T5 has the two non-bases {0,1,4} and {0,2,3}. This
matroid is binary and therefore rigid. Thus χ(PLM) = 1 by Proposition 6.26.

Example 6.33. The matroid M = T7 has the five non-bases {0,1,6}, {0,2,5}, {0,3,4},
{1,2,4}, and {3,5,6}. It coincides with the matroid P7 from [45, page 644]. The fan
logGrM(T0) consists of three rays, and we calculate that

( fi j)i, j =



30 0 0 0
150 0 0 0
281 0 0 0
222 0 0 24
68 0 0 36
6 0 0 13
0 0 0 1


.

The vector (gi)i is equal to (0,0,72,267,294,111,12). From Theorem 6.27, we can now
calculate that χ(PLM) = 1.
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FIGURE 4. The deletion of T11 by 11 is a configuration of ten points and
ten lines in the plane such that each point is contained in three lines and
each line contains three points. Its Dressian was studied in [19].

Example 6.34. Finally, we consider the matroid M = T11. The fan logGrM(T0) consists
of five rays, and we calculate that

( fi j)i, j =



150 0 0 0 0 0
1620 0 0 0 0 0
5510 0 0 0 0 0
8680 0 0 1120 0 0
8260 0 0 1960 0 784
5720 0 0 975 0 1747
2820 0 0 205 0 1445
915 0 0 15 0 645
175 0 0 0 0 165
15 0 0 0 0 22
0 0 0 0 0 1



.

The vector (gi)i is equal to(
0 0 3360 21590 51250 63330 47005 22050 6405 1040 70

)
.
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From Theorem 6.27, we can now calculate that χ(PLM) = 11. In particular, the space
PLM is not homeomorphic to a ball. This answers [16, Questions 5.1 and 5.3] in the
negative.

We believe that the spaces PLM and GrM(T0) for M = Tn deserve further attention.
We formulate a conjecture and a question in this regard.

Conjecture 6.35. Let n ⩾ 7 be an integer.

(1) The reduced Dressian DrTn
is one-dimensional if and only if n is prime.

(2) When n = p is prime, the one-dimensional fan DrTp
consists of precisely p−1

2 rays.

Griffin Edwards has verified the conjecture computationally for all n with 7 ⩽ n ⩽ 26.

Question 6.36. Let p ⩾ 11 be a prime number and M = Tp. What is the Euler character-
istic χ(PLM)? In particular, is it equal to p?

Note that p = 7 and p = 11 are the first prime numbers satisfying the assumptions of
[13, Theorem 1] and [13, Theorem 2], respectively. This might explain the failure of
Conjecture 6.35 and Question 6.36 for small primes p.

In [16, page 7], it was also asked whether the closure of PSJ is homeomorphic to
a closed Euclidean ball for every M-convex set J. We give a negative answer to this
question as well:

Example 6.37. Let M = B11 be the Betsy Ross matroid from Section 5.2. Because M is
rigid, every initial matroid corresponds to a face of the base polytope. The f -vector of
the base polytope of M is(

140 1410 5010 9355 10774 8257 4295 1470 305 32 1
)
.

We have seen in Section 5.2 that PSM consists of two orbits under rescaling of the
variables. By Lemma 6.14, the closure of each orbit is the disjoint union of cells
corresponding to faces F of the base polytope that are, under the log map, homeomorphic
to a real vector space of dimension dim(F). For each face F , these cells are themselves
orbits. Thus the two cells are either disjoint or equal to one other. If MF is the initial
matroid corresponding to the face F , then the two cells are equal if and only if resM,MF :
GrM(T∞)→ GrMF

(T∞) is not injective. The following table records the number of faces
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in each dimension for which this happens:(
140 1410 5010 8705 8770 5775 2570 715 105 5 0

)
.

Therefore, we can compute the Euler characteristic χ(PSM) of PSM as

2− (140−1410+5010−8705+8770−5775+2570−715+105−5+0) = 17.

In particular, this shows that the space PSM is not homeomorphic to a ball.

6.3. Compactifications of orbit spaces. The next goal is to provide a natural compacti-
fication of the orbit spaces LJ and GrJ(Tq). This is done via the concept of Hausdorff
quotients, as introduced in [28]. We first recall their construction.

6.3.1. The Hausdorff quotient. Let X be a compact metrizable space. Recall that for any
choice of metric on X , the set H(X) of compact subsets of X equipped with the Hausdorff
metric is again a compact metric space. The topology of H(X) does not depend on
the metric on X . A continuous map f : X → Y of compact metrizable spaces induces a
continuous map H( f ) : H(X)→ H(Y ). We will make frequent use the following easy
lemma:

Lemma 6.38. Let (Ki)i∈N be a sequence of compact subsets Ki of X that converges to
the compact set K ⊆ X in the Hausdorff metric. For each i ∈ N, let Ui be a dense subset
of Ki. Then K is the set of all x ∈ X for which there is a sequence (xi)i∈N with xi ∈Ui that
converges to x.

Given a topological group G acting continuously on X , we recall from [28] the
construction of the Hausdorff quotient X/HG. We consider the map

e : X −→ H(X), x 7−→ Gx.

Let U be the set of open, dense, and G-invariant subsets of X . Then the Hausdorff
quotient of X by G, denoted X/HG, is defined as

X/HG =
⋂

U∈U
e(U).

Because X/HG is a closed subspace of H(X), it is compact and metrizable.

Definition 6.39. A set U ∈ U is stable if e|U : U → H(X) is continuous. A set U ∈ U is
semi-stable if X/HG = e(U).
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Remark 6.40. Being stable implies being semi-stable [28, Remark 1.2].

In certain situations, the Hausdorff limit interacts nicely with the Hilbert quotient of a
projective variety.

Theorem 6.41 ([28, Theorem 7]). Let X be a complex projective variety equipped with
the action of a group scheme G. Assume that every point of the Hilbert quotient X///G is
a reduced closed subscheme of X. Then, with respect to the analytic topology on X///G,
there is a natural homeomorphism

X///G −→ X/HG

which maps a reduced closed subscheme to its underlying set.

As a corollary, we find that the Hausdorff quotient of the complex Grassmannian with
respect to the action of the algebraic torus is the underlying topological space of the
Chow quotient:

Corollary 6.42. Consider the action of G = (C×)n on the complex Grassmannian
Gr(d,n)(C). There is a natural homeomorphism

Gr(d,n)(C)//G −→ Gr(d,n)(C)/HG

from the Chow quotient to the Hausdorff quotient which sends a cycle to its underlying
set.

Proof. Let us denote X = Gr(d,n)(C). By [33, Lemma 1.5.3], every point in X///G is
a reduced closed subscheme of X . Thus the preceding theorem gives a natural homeo-
morphism X///G → X/HG. Furthermore, by [33, Theorem 1.5.2], the natural morphism
X///G → X//G is an isomorphism. □

6.3.2. Compactifications of LJ and GrJ(Tq). Let J be a polymatroid on [n] of rank r, and
let U denote either PLJ or GrJ(Tq) for some arbitrary but fixed q > 0. We consider U as a
subset of PR⩾0[x1, . . . ,xn], which we identify with the set of polynomials in R[x1, . . . ,xn]r

whose coefficients sum to one. On the latter space, we consider the Euclidean metric d
and we let X denote the closure of U . The group G = Rn

+ acts on X by rescaling. For
J′ ⊆ J another M-convex set, we write UJ′ = PLJ′ or UJ′ = GrJ′(Tq), respectively.

Remark 6.43. For p ∈ X , we can explicitly describe the orbit closure of p. Namely, for
every face F of the base polytope of J, we denote by pF the polynomial obtained from p
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by removing all terms that do not correspond to elements of F . Then Gp is the union of
GpF over all faces F .

Lemma 6.44. Let K ⊆U be a compact subset. For every ϵ> 0, there exists δ > 0 such
that for all p1, p2 ∈ K with d(p1, p2)< δ and all q1 in the orbit closure of p1, there is a
point q2 in the orbit closure of p2 with d(q1,q2)< ϵ.

Proof. We denote by G the orbit closure in PR⩾0[x1, . . . ,xn] of the polynomial with
support J and all coefficients equal to each other. We consider the map

ψ : G×K −→ X

defined by coefficient-wise multiplication and then dividing by the sum of the coefficients.
By Remark 6.43, for every p ∈ K the image ψ(G×{p}) is exactly the orbit closure
of p. By the Heine–Cantor theorem, the map ψ is uniformly continuous. This means
that for every ϵ > 0, there exists δ > 0 such that for all (g1, p1),(g2, p2) ∈ G×K with
d(g1,g2)+ d(p1, p2) < δ, we have d(ψ(g1, p1),ψ(g2, p2)) < ϵ. Given p1, p2 ∈ K with
d(p1, p2)< δ and a point q1 in the orbit closure of p1, it follows that q1 = ψ(g, p1) for
some g ∈ G and d(q1,ψ(g, p2))< ϵ, which proves the claim. □

Corollary 6.45. The open subset U of X is stable.

Proof. This follows from the previous lemma, together with the fact that U is locally
compact. □

Lemma 6.46. The map e : X → H(X), x 7→ Gx restricted to U is an open mapping onto
its image.

Proof. Let V ⊆U be an open subset, and let x ∈V . We have to show that e(x) = Gx has
an open neighborhood in e(U) which is contained in the image of V under e. Let ϵ> 0 be
such that the open ball B of radius ϵ around x is contained in V . We claim that the open
ball of radius ϵ around Gx is contained in the image of V . Indeed, if the orbit closure Gy
of y ∈U has Hausdorff distance smaller than ϵ to Gx, then in particular it intersects B
nontrivially. Because orbits of G are closed in U , there exists y′ ∈ Gy∩B. This shows
that e(y) = e(y′) is in e(B). □

Corollary 6.47. The Hausdorff quotient X/HG is a compactification of U/G.
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Proof. By Corollary 6.45 and Lemma 6.46, the map that sends an orbit x ∈U/G to the
point in H(X) that corresponds to its closure is a homeomorphism onto its image V . By
stability of U , the closure of V is X/HG. □

We will denote the compactification X/HG by HC(LJ) resp. HC(GrJ(Tq)) when
U = PLJ and U = GrJ(Tq), respectively. Our compactification is compatible with the
Chow quotient of complex Grassmannians:

Theorem 6.48. Let J =Ud,n and q > 0.

(1) The map

Gr(d,n)(C)//(C×)n −→ HC(GrJ(Tq)),

which sends a cycle in the Chow quotient to the image of its underlying set under the
coordinate-wise map z 7→ |z|q, is continuous.

(2) Similarly, the map

Gr(d,n)(C)//(C×)n −→ HC(L(d,n)⊠),

which sends a cycle in the Chow quotient to the image of its underlying set under the
coordinate-wise absolute square map, is continuous.

Proof. This follows from Corollary 6.42 and the fact that the qth power of the coordinate-
wise absolute value map sends every (C×)n-orbit closure to an Rn

>0-orbit closure. □

Next, we study the boundary points of X/HG. Recall that U denotes either PLJ

or GrJ(Tq) and that X is the closure of U considered as a subset of PR⩾0[x1, . . . ,xn].
Then, by definition, the elements of X/HG are compact subsets of X and the set of orbit
closures of elements of U is an open dense subset of X/HG. We will see in the following
Theorem 6.49 that the remaining points of X/HG are not orbit closures themselves but
finite unions of such.

We let P = BPJ ⊆ Rn be the base polytope of J. Let P be a regular polymatroid
subdivision of P, whose maximal cells correspond to initial polymatroids J1, . . . ,Js. We
denote by Y (P) the set of all K ∈ X/HG for which there exist xi ∈UJi , for i = 1, . . . ,s,
such that K = ∪s

i=1Gxi.

Theorem 6.49. The following holds true.

(1) For x ∈ X there exists K ∈ X/HG ⊆ H(X) such that x ∈ K.
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(2) We have X/HG = ∪PY (P), where the union is over all regular polymatroid subdi-
visions P of P.

(3) We have Y (P) ̸=∅ for every regular polymatroid subdivision P of P.

Proof of Theorem 6.49(1). Let y ∈ X , and let (yi)i∈N be a sequence in U converging to
y. Then the sequence (Gyi)i∈N in X/HG has a subsequence converging to some point x.
Then x contains y by Lemma 6.38. □

Lemma 6.50. Let K ∈ X/HG and let J′ ⊆ J be an M-convex set such that K ∩UJ′ ̸=∅.
Then K ∩UJ′ is a G-orbit.

Proof. Let (yi)i∈N be a sequence in U such that the corresponding sequence of orbit
closures converges to K in the Hausdorff metric. By Lemma 6.38, we can assume
without loss of generality that (yi)i∈N converges to a point y ∈ K ∩UJ′ . We will prove
that K ∩UJ′ = Gy. If g ∈ G, then (gyi)i∈N converges to gy. Thus, by Lemma 6.38, we
see that Gy ⊆ K ∩UJ′ . Conversely, let z ∈ K ∩UJ′ . By Lemma 6.38, there is a sequence
(gi)i∈N in G such that (giyi)i∈N converges to z. Then the sequence (giy)i∈N in Gy also
converges to z. Since Gy is a closed subset of UJ′ , it follows that z ∈ Gy. □

In light of Remark 6.43 and the preceding lemma, in order to prove part (2) of
Theorem 6.49, it remains to show that for all K ∈ X/HG, the set of J′ ⊆ J such that
K ∩UJ′ ̸=∅ corresponds exactly to the cells in a regular polymatroid subdivision of P.
To this end, we will associate to a sequence (yi)i∈N in U an M-convex function on J with
values in a certain real closed field R. M-convex functions with values in a real closed
field R other than R are defined in the same way as over R, and it follows either from
Tarski’s principle, which says that a first-order sentence in the language of ordered fields
holds in a given real closed field if and only if it holds in R [48, Section 5], or in the same
way as over R that parts (1) and (2) of Remark 6.13 remain valid in this more general
setup. Similarly, Tarski’s principle implies that every regular polymatroid subdivision of
P that is induced by an M-convex function with values in R can also be realized by an
M-convex function with values in R. In the following, we will introduce the real closed
field that we will be using.

6.3.3. Interlude on the ℵ1-saturation. We first recall some basic properties of the so-
called ℵ1-saturation R∗ of R, see [49, §2.2]. Let F be a non-principal ultrafilter on N, i.e.,
an ultrafilter containing the filter of cofinite subsets of N, and let R∗ be the ultrapower
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RN/F of R with respect to F. This is the set of equivalence classes of sequences in R,
where two sequences (xi)i∈N and (yi)i∈N are defined to be equivalent if the set of indices
i ∈ N for which xi = yi is in F. By [49, Theorem 2.2.7 and 2.2.8], the ultrapower R∗

is a real closed field. Here sum and product are defined as the equivalence class of the
component-wise sum and product of two representing sequences, respectively. Moreover,
one can consider R as a subfield of R∗ via the map R→ R∗ that sends a to the class of
the constant sequence (a)i∈N. The total order on R∗ is given by

[(xi)∈N]⩾ 0 ⇐⇒{i ∈ N | xi ⩾ 0} ∈ F. (19)

Next recall, for example from [34], that the convex hull o of R in R∗ is the set of
all elements x ∈ R∗ such that there are a,b ∈ R with a ⩽ x ⩽ b. It is clear that o is a
valuation ring of R∗ which contains R. The maximal ideal m of o consists of all x ∈ R∗

such that for all ϵ ∈ R with ϵ> 0, we have |x|< ϵ. Finally, we denote by κ= o/m the
corresponding residue field, and by π : o→ κ the natural homomorphism.

Lemma 6.51. The restriction of π to R is an isomorphism onto κ.

Proof. This follows from [34, Proposition 2.5.3] and the fact that R has no free Dedekind
cut, see [34, §2.9]. □

In light of Lemma 6.51, we may identify κ with R. The value group of R∗ is the
abelian group Γ = (R∗)×/o×. The relation a ⩽ b defined by a−1b ∈ o for a,b ∈ Γ makes
Γ a totally ordered group. Since R∗ is real closed, Γ is divisible. We will use additive
notation for the group Γ.

By Hahn’s embedding theorem [29], we can embed Γ into the additive group of a real
closed field R, namely the field of Hahn series over R, whose value group is the divisible
closure of the group of Archimedean equivalence classes of Γ. Because Γ is divisible, it
is a Q-linear subspace of R. For f ∈ (R∗)×, we let v( f ) denote the residue class of f in
Γ ⊆ R. We further define v(0) = ∞. The map v : R∗ → R∪{∞} is a valuation on R∗ that
is compatible with the ordering of R∗, meaning that v(a)> v(b) for positive a,b ∈ R∗

implies a < b.

Remark 6.52. Let (xi)i∈N be a sequence in R and let x∗ = [(xi)i∈N] ∈ R∗ be its cor-
responding class. If (xi)i∈N is convergent, then π(x∗) = limi→∞(xi)i∈N. Conversely,
if x∗ ∈ o, then (xi)i∈N has a subsequence converging to π(x∗). Furthermore, we have
v(x∗)> 0 if and only if π(x∗) = 0. If x ̸∈ o, then (xi)i∈N is unbounded.
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In the proof of Theorem 6.49 we will need the following two lemmas.

Lemma 6.53. Let J ⊆ ∆d
n be an M-convex set. Let (ym)m∈N be a sequence in RJ(Tq), for

some q > 0, and let y∗ = [(ym)m∈N] be its equivalence class in (R∗)J . The map

ρ : J −→ R, α 7−→ v(y∗(α))

is M-convex.

Proof. In order to prove that ρ is M-convex, we will use a characterization of M-convex
functions due to Murota [44, Theorem 6.4]: A function f : J → R is M-convex if and
only if for all α ∈ ∆d−2

n and all i, j,k, l ∈ [n] such that {i,k}∩{ j, l}=∅,

f (α+ ei + ek)+ f (α+ e j + el)

⩾ min
{

f (α+ ei + e j)+ f (α+ ek + el), f (α+ ei + el)+ f (α+ e j + ek)
}
. (20)

By Tarski’s principle the same characterization applies to functions with values in the
real closed field R.

Now consider a sequence (ym)m∈N in RJ(Tq) for some q > 0. Let α ∈ ∆d−2
n and

i, j,k, l ∈ [n] such that {i,k}∩{ j, l}=∅. Then for all m ∈ N we have

ym(α+ ei + ek)
1/q · ym(α+ e j + el)

1/q

⩽ ym(α+ ei + e j)
1/q · ym(α+ ek + el)

1/q + ym(α+ ei + el)
1/q · ym(α+ e j + ek)

1/q.

By the definition of the order on R∗, see Equation (19), this implies that

y∗(α+ ei + ek)
1/q · y∗(α+ e j + el)

1/q

⩽ y∗(α+ ei + e j)
1/q · y∗(α+ ek + el)

1/q + y∗(α+ ei + el)
1/q · y∗(α+ e j + ek)

1/q.

Now taking the valuation of both sides implies that ρ satisfies Equation (20) because the
valuation v on R∗ is compatible with the order on R∗. □

Lemma 6.54. Let J ⊆ ∆d
n be an M-convex set. Let (gm)m∈N be a sequence in LJ and

consider the equivalence class y∗ = [(ym)m∈N] ∈ (R∗)J where ym = ρgm ∈ RJ . The map

ρ : J −→ R, α 7−→ v(y∗(α))

is M-convex.
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Proof. The corresponding statement was shown in [18, Theorem 3.20] for the valued real
closed field of real Puiseux series and the same proof applies to R∗.

Alternatively, the statement of the lemma follows from the previous lemma and the
fact that gm ∈ LJ implies ym ∈ RJ(T2), for all m ∈ N, which we will show in [5]. □

The role that the field R∗ plays in the proof of Theorem 6.49 can be roughly ex-
plained as follows. For K ∈ X/HG every point x ∈ K is the limit of a sequence in U
by Lemma 6.38. Such a sequence can be interpreted as a point with coordinates in
R∗. Its valuation is M-convex by the two preceding lemmas and thus defines a regular
polymatroid subdivision.

6.3.4. Proof of Theorem 6.49. For part (2) of Theorem 6.49, it remains to show that
for K ∈ X/HG, those J′ ⊆ J with K ∩UJ′ ̸= ∅ correspond exactly to the cells in a
certain regular polymatroid subdivision of P. We consider a sequence in U such that the
corresponding sequence of orbit closures converges to K in the Hausdorff metric. Such a
sequence is represented by a sequence (yi)i∈N in RJ . Letting y∗ = [(yi)i∈N] ∈ (R∗)J be
its equivalence class, Lemmas 6.53 and 6.54 imply that the map ρ : J → R, α 7→ v(y∗α) is
M-convex. Let P be the polymatroid subdivision of J induced by ρ.

First, we let J′ ⊆ J be such that there exists z ∈ K ∩UJ′ . We will show that J′ defines a
cell of the subdivision P . By Lemma 6.38, there is a sequence (gi)i∈N in G such that
(zi)i∈N := (giyi)i∈N converges to z. Let z∗ ∈ (R∗)J be the equivalence class of (zi)i∈N.
As above, the map ρ′ : J → R, α 7→ v(z∗α) is M-convex and J′ is the set of α ∈ J where
ρ′ attains its minimum. If g∗ is the equivalence class of (gi)i∈N in (R∗

>0)
n, then for all

α ∈ J, we have

ρ′(α) = ρ(α)+
n

∑
j=1

v(g∗j) ·α j.

In particular, the M-convex functions ρ and ρ′ only differ by a linear function, which
shows that they induce the same subdivision of J. Thus, the cell defined by J′ is in P .

Conversely, let J′ ⊆ J be the lattice points of a cell in P . This means that there is
a linear function l : Rn → R such that ρ′ := ρ+ l|J attains its minimum exactly at J′.
We can further assume that this minimum is zero. Because ρ takes its values in the
Q-linear subspace Γ of R, we can choose l to take its values on J in Γ as well. For j ∈ [n],
choose t∗j ∈ R∗

>0 with v(t∗j ) = l(e j), and let (gi)i∈N be a sequence in G representing the
tuple (t∗1 , . . . , t

∗
n) ∈ (R∗

>0)
n. Let (zi)i∈N := (giyi)i∈N, and let z∗ be the element of (R∗)J it
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represents. By construction, we have v(z∗α)⩾ 0 for all α ∈ J and v(z∗α) = 0 if and only
if α ∈ J′. This means that z∗α ∈ o for all α ∈ J and π(z∗α) ̸= 0 if and only if α ∈ J′. By
Remark 6.52, there is a subsequence of (giyi)i∈N which converges to an element with
support J′. Such element lies in x∩UJ′ by Lemma 6.38. Thus we have proven part (2) of
Theorem 6.49.

For part (3), let P be a regular polymatroid subdivision, and let ρ : J → R be an
M-convex function that induces P . Let (ti)i∈N be a nullsequence with ti > 0 for all i ∈N,
and define the sequence (yi)i∈N in GrJ(T0) via

(yi)α = tρ(α)i .

Since X/HG is compact, after passing to a subsequence if necessary, we can assume
that (Gyi)i∈N converges. We claim that the limit point is in Y (P). Indeed, letting
y∗ = [(yi)i∈N] ∈ (R∗)J and t∗ = [(ti)i∈N] ∈ R∗, it follows that

v(y∗α) = ρ(α) · v(t∗)

for all α ∈ J, concluding the proof of Theorem 6.49. □

6.3.5. Examples. In some examples, we can show that X/HG is homeomorphic to a
closed Euclidean ball.

Example 6.55 (Rigid polymatroids). If J is rigid, i.e., the space GrJ(T0) is a singleton,
then U/G is homeomorphic to a closed Euclidean ball whose dimension is the rank of
the multiplicative group of the foundation of J, see Theorem 3.26 and Theorem 4.22.
Moreover, since U/G is compact, we have X/HG =U/G by Corollary 6.47.

Examples of rigid matroids are binary matroids and projective geometries over finite
fields, for which X/HG is a point, and the Betsy Ross matroid, for which X/HG is
homeomorphic to a closed interval.

The next simplest case is when logGrJ(T0) is one-dimensional and consists of a
finite number r of rays. In this case, by Theorem 3.26 and Theorem 4.22, U/G is
homeomorphic to a closed Euclidean ball with r points removed from its boundary —
one for each ray of logGrJ(T0). These rays correspond to pairwise different regular
polymatroid subdivisions. If we further assume that every proper initial matroid of M
has a finite foundation, then Theorem 6.49 implies that X/HG is obtained from U/G by
adding r points. Hence X/HG is homeomorphic to a closed Euclidean ball.
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Example 6.56. Every proper initial matroid of U2,4 is binary. Thus X/HG is homeomor-
phic to a two dimensional closed disc.

Example 6.57. For the non-Fano matroid J = F−
7 , the space logGrJ(T0) consists of

exactly one ray. The two maximal cells of the corresponding regular matroid subdivision
are the base polytopes of the Fano matroid and another matroid which is graphic by
[25, Theorem 5.4]. In particular, both are binary. The space X/HG is homeomorphic to a
closed interval, with one endpoint corresponding to the non-trivial matroid subdivision.

Example 6.58. Let T11 be the matroid from Example 6.34. We have already seen that
logGrJ(T0) consists of five rays. A computer calculation shows that every initial matroid
of T11 is binary. Therefore, the space X/HG is homeomorphic to a four-dimensional
closed ball.

6.3.6. The Grothendieck–Knudson moduli space of stable rational curves. Recall that the
Chow quotient of Gr(2,n)(C) is isomorphic to the Grothendieck–Knudson moduli space
M0,n of stable rational curves with n marked points [33, Chapter IV]. By Theorem 6.48,
there is a natural continuous map

M0,n −→ HC(L(2,n)⊠),

where HC(L(2,n)⊠) = HC(LU2,n
). We discuss this map for n = 4 and n = 5. (These are

the first interesting cases, as for n < 4 source and target are a point.) We further observe
that, by construction, the map is constant on orbits of the action of complex conjugation
on M0,n.

The space M0,4 is the complex projective line, and by Example 6.56 the space
HC(L(2,4)) is homeomorphic to a closed disc.

Lemma 6.59. The map M0,4 → HC(L(2,4)⊠) is the quotient by the action of complex
conjugation.

Proof. Since the map is continuous and both source and target are compact Hausdorff
spaces, it suffices to show that the map is surjective and its fibers are exactly the orbits
under complex conjugation. By Lemma 5.11, the map M0,4 → LU2,4

is surjective. This
establishes the surjectivity of our map, because M0,4 and HC(L(2,4)⊠) are compacti-
fications of M0,4 and LU2,4

. Fibers of points in LU2,4
are orbits by Lemma 5.17. The

compactification M0,4 has three additional points, all of them are real, and these are
mapped injectively to the three additional points in the compactification of LU2,4

. □
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The space M0,5 is the complex projective plane blown-up at four general points. By
Lemma 5.11, the image of the map M0,5 → HC(L(2,5)⊠) is the closure of ∂ LU2,5

inside
HC(L(2,5)⊠), which we denote by ∂HC(L(2,5)⊠).

Lemma 6.60. The map M0,5 → ∂HC(L(2,5)⊠) is the quotient by the action of complex
conjugation.

Proof. As in Lemma 6.59, we need to show that each fiber of the map is a single orbit
under complex conjugation. By the description in [33, Section 1.2], for every cycle
Z ∈ Gr(2,5)(C)//(C×)5 there is a regular matroid subdivision of the base polytope of
U2,5, corresponding to matroids M1, . . . ,Mr, such that

Z = Z1 ∪·· ·∪Zr,

where each Zi is the orbit closure of a point from GrMi(C). The fiber over the image of Z
is equal to

{σe1(Z1)∪·· ·∪σer(Zr) | e1, . . . ,er ∈ {0,1}},

where σ denotes complex conjugation. However, for every regular matroid subdivision
of the base polytope of U2,5, at most one of the Zi is not mapped to itself by σ. Thus the
fiber over the image of Z is just the orbit of Z. □

Remark 6.61. The quotient map of M0,5 by complex conjugation was studied in detail
in [52], and it exhibits some beautiful combinatorics. For example, the authors define
cell structures on M0,5 and its quotient which are, in a certain precise sense, dual to the
Desargues graph and the Petersen graph, respectively.

For n ⩾ 6, fibers of M0,n → HC(L(2,n)⊠) can consist of more than one complex
conjugate pair:

Example 6.62. Let n ⩾ 6, let a,b ∈ C be distinct non-real complex numbers, and let
c1, . . . ,cn ∈ R be pairwise distinct real numbers. We construct a stable curve Xa,b with n
marked points that has two irreducible components. On the first component, we mark
the three real points c1,c2,c3, while the remaining n− 3 points c4, . . . ,cn are marked
on the second component. Finally, the point a on the first component is identified with
the point b on the second one. Then the four stable curves Xa,b ,Xā,b, Xa,b̄, and Xā,b̄

represent four distinct points in M0,n which are all mapped to the same point under the
map M0,n → HC(L(2,n)⊠).
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[20] Victor M. Buchstaber and Svjetlana Terzić, Topology and geometry of the canonical action of T 4 on
the complex grassmannian G4,2 and the complex projective space CP5, Mosc. Math. J. 16 (2016),
no. 2, 237–273.

[21] Justin Chen and Tianyi Zhang, Representing matroids via pasture morphisms, 2023. Preprint,
arXiv:2307.14275.

[22] Young-Bin Choe, James G. Oxley, Alan D. Sokal, and David G. Wagner, Homogeneous multivariate
polynomials with the half-plane property, Adv. Appl. Math. 32 (2004), no. 1-2, 88–187.

[23] Jesús A. De Loera, Jörg Rambau, and Francisco Santos, Triangulations. Structures for algorithms
and applications, Algorithms Comput. Math., vol. 25, Berlin: Springer, 2010.

[24] Jack Edmonds, Submodular functions, matroids, and certain polyhedra, Combinatorial Structures
and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), 1970, pp. 69–87.

[25] Luis Ferroni, On the Ehrhart polynomial of minimal matroids, Discrete Comput. Geom. 68 (2022),
no. 1, 255–273.

[26] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton
University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.

[27] Ewgenij Gawrilow and Michael Joswig, Polymake: a framework for analyzing convex polytopes,
Polytopes — combinatorics and computation. DMV-seminar Oberwolfach, Germany, November
1997, 2000, pp. 43–73.

[28] W. D. Gillam and A. Karan, The Hausdorff topology as a moduli space, Topology Appl. 232 (2017),
102–111.

[29] H. Hahn, Über die nichtarchimedischen Größensysteme., Wien. Ber. 116 (1907), 601–655.
[30] Brian C. Hall, Lie groups, Lie algebras, and representations. An elementary introduction, Grad. Texts

Math., vol. 222, New York, NY: Springer, 2003.
[31] Anders N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties, Available at

http://home.imf.au.dk/jensen/software/gfan/gfan.html.
[32] Michael Joswig, Essentials of tropical combinatorics, Graduate Studies in Mathematics, vol. 219,

American Mathematical Society, Providence, RI, 2021.
[33] M. M. Kapranov, Chow quotients of Grassmannians. I, I. M. Gelfand seminar. Part 2: Papers of the

Gelfand seminar in functional analysis held at Moscow University, Russia, September 1993, 1993,
pp. 29–110.

[34] Manfred Knebusch and Claus Scheiderer, Real algebra. A first course. Translated from the German
and with contributions by Thomas Unger, Universitext, Cham: Springer, 2022.

[35] Lukas Kühne and Xavier Roulleau, Regular polygons, line operators, and elliptic modular surfaces
as realization spaces of matroids, 2023. Preprint arXiv:2312.03470.

[36] Mario Kummer, Daniel Plaumann, and Cynthia Vinzant, Hyperbolic polynomials, interlacers, and
sums of squares, Math. Program. 153 (2015), no. 1 (B), 223–245.

[37] Mario Kummer and David Sawall, Three results related to the half-plane property of matroids, Algebr.
Comb. 8 (2025), no. 1.

[38] Laurent Lafforgue, Chirurgie des grassmanniennes, CRM Monograph Series, vol. 19, American
Mathematical Society, Providence, RI, 2003. MR1976905

http://arxiv.org/pdf/2307.14275
http://home.imf.au.dk/jensen/software/gfan/gfan.html
http://arxiv.org/pdf/2312.03470


80 Matthew Baker, June Huh, Mario Kummer and Oliver Lorscheid

[39] Seok Hyeong Lee and Ravi Vakil, Mnëv-Sturmfels universality for schemes, A celebration of algebraic
geometry, 2013, pp. 457–468. MR3114952

[40] Oliver Lorscheid, Tropical geometry over the tropical hyperfield, Rocky Mountain J. Math. 52 (2022),
no. 1, 189–222.

[41] Diane Maclagan and Bernd Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathe-
matics, vol. 161, American Mathematical Society, Providence, RI, 2015.

[42] J. H. Mason, Matroids: unimodal conjectures and Motzkin’s theorem, Combinatorics (Proc. Conf.
Combinatorial Math., Math. Inst., Oxford, 1972), 1972, pp. 207–220. MR349445

[43] Grigory Mikhalkin, Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology
43 (2004), no. 5, 1035–1065.

[44] Kazuo Murota, Discrete convex analysis, SIAM Monographs on Discrete Mathematics and Applica-
tions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.

[45] James Oxley, Matroid theory, Second, Oxford Graduate Texts in Mathematics, vol. 21, Oxford
University Press, Oxford, 2011. MR2849819

[46] Sam Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), no. 3,
543–556.

[47] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113
(1987), no. 2, 299–339.

[48] Alexander Prestel, Lectures on formally real fields, Lect. Notes Math., vol. 1093, Springer, Cham,
1984.

[49] Alexander Prestel and Charles N. Delzell, Positive polynomials. From Hilbert’s 17th problem to real
algebra, Springer Monogr. Math., Berlin: Springer, 2001.

[50] Claus Scheiderer, A course in real algebraic geometry. Positivity and sums of squares, Grad. Texts
Math., vol. 303, Cham: Springer, 2024.

[51] Peter Schreiber, On the existence and constructibility of inscribed polygons, Beiträge Algebra Geom.
34 (1993), no. 2, 195–199.

[52] Nobuki Takayama and Masaaki Yoshida, CR-geometry on the configuration space of 5 points on the
projective line, Funkc. Ekvacioj, Ser. Int. 39 (1996), no. 1, 165–181.

[53] Ravi Vakil, Murphy’s law in algebraic geometry: badly-behaved deformation spaces, Invent. Math.
164 (2006), no. 3, 569–590. MR2227692

[54] Lou van den Dries, Tame topology and o-minimal structures, Lond. Math. Soc. Lect. Note Ser.,
vol. 248, Cambridge: Cambridge University Press, 1998.

[55] Oleg Viro, Hyperfields for tropical geometry I. Hyperfields and dequantization, 2010. Preprint,
arXiv:1006.3034.

[56] , On basic concepts of tropical geometry, Proc. Steklov Inst. Math. 273 (2011), no. 1, 252–
282.

[57] D. J. A. Welsh, Matroid theory, Lond. Math. Soc. Monogr., vol. 8, Academic Press, London, 1976.
[58] A. J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by

restricted Pfaffian functions and the exponential function, J. Am. Math. Soc. 9 (1996), no. 4, 1051–
1094.

http://arxiv.org/pdf/1006.3034


Lorentzian polynomials and matroids over triangular hyperfields. Part 1 81

Matthew Baker, Georgia Institute of Technology

Email address: mbaker@math.gatech.edu

June Huh, Princeton University and Korea Institute for Advanced Study

Email address: huh@princeton.edu

Mario Kummer, Technische Universität Dresden

Email address: mario.kummer@tu-dresden.de

Oliver Lorscheid, University of Groningen

Email address: olorscheid@rug.nl


	1. Introduction
	1.1. Thin Schubert cells
	1.2. Grassmannians over triangular hyperfields
	1.3. Orbit spaces
	1.4. Compactifications
	1.5. Acknowledgements

	2. Elementary properties of star-shaped sets
	3. The topology of representation spaces over triangular hyperfields
	3.1. Definition of tracts
	3.2. Triangular hyperfields
	3.3. Polymatroid representations
	3.4. Foundations
	3.5. Maslov dequantization

	4. The topology of spaces of Lorentzian polynomials
	4.1. Definitions
	4.2. Simplification of Lorentzians in degree two
	4.3. Strong star-shapedness in degree two
	4.4. Conclusion about the topology

	5. Some detailed examples
	5.1. Small uniform matroids
	5.2. The Betsy Ross matroid

	6. Compactifications and Euler characteristics
	6.1. Initial polymatroids and base polytopes
	6.2. Compactly supported Euler characteristic
	6.3. Compactifications of orbit spaces

	References

