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REALIZATIONS OF HOMOLOGY CLASSES AND PROJECTION AREAS

DAOJI HUANG, JUNE HUH, MATEUSZ MICHAŁEK, BOTONG WANG, AND SHOUDA WANG

ABSTRACT. The relationship between convex geometry and algebraic geometry has deep historical
roots, tracing back to classical works in enumerative geometry. In this paper, we continue this
theme by studying two interconnected problems regarding projections of geometric objects in four-
dimensional spaces:

(1) Let A be a convex body in R4, and let pp12, p13, p14, p23, p24, p34q be the areas of the six
coordinate projections of A in R2. Which tuples of six nonnegative real numbers can arise in
this way?

(2) Let S be an irreducible surface in pP1q4, and let pp12, p13, p14, p23, p24, p34q be the degrees of
the six coordinate projections from S to pP1q2. Which tuples of six nonnegative integers can
arise in this way?

We show that these questions are governed by the Plücker relations for the Grassmannian Grp2, 4q

over the triangular hyperfield T2. We extend our analysis by determining the homology classes
in pPmqn proportional to the fundamental classes of irreducible algebraic surfaces, resolving the
algebraic Steenrod problem in this setting. Our results lead to several conjectures on realizable
homology classes in smooth projective varieties and on the projection volumes of convex bodies.

1. INTRODUCTION

The connection between convex geometry and intersection theory traces back to classical
results of Newton [New03] and Minding [Min41] that relate the solutions of polynomial systems
to their Newton polyhedra.1 In this paper, we expand upon this classical theme by addressing
two closely related problems: one concerning projection areas of convex bodies in R4, and the
other involving homology classes of algebraic surfaces in pP1q4, drawing inspiration from both
convex and algebraic geometry.

Question 1.1. Let A be a convex body in R4, and let p “ pp12, p13, p14, p23, p24, p34q be the areas
of the six coordinate projections of A in R2. Which tuples of six nonnegative real numbers can
arise in this way?

Question 1.2. Let S be an irreducible surface in pP1q4, and let p “ pp12, p13, p14, p23, p24, p34q be
the degrees of the six coordinate projections from S to pP1q2. Which tuples of six nonnegative
integers can arise in this way?

1For historical overviews and commentaries on Newton’s and Minding’s work from a modern perspective, see
[Edw22, Essay 4.4] and [Min03, Section 2].
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We answer Question 1.1 in Theorem 1.4, and Question 1.2 modulo positive multiples in The-
orem 1.6. Based on our findings, we formulate a possible answer to the n-dimensional analogue
of Question 1.1 in Conjecture 1.9, and provide an extension of Theorem 1.6 from pP1q4 to pPnqm

in Theorem 1.8.

Questions 1.1 and 1.2 find their solutions encoded in the Plücker relations for the Grassman-
nian Grp2, 4q over a triangular hyperfield T2. For general discussions of Plücker relations over
triangular hyperfields and other algebraic objects, we refer to [BB19, BHKL]. For our purposes,
the following explicit definition will suffice.

Definition 1.3. Let ∆pT2q be the set of pp12, p13, p14, p23, p24, p34q P
Ź2 R4 such that

pij ě 0 and
?
pijpkl `

?
pikpjl ě

?
pilpjk for any i, j, k, l.

The set ∆pT2q is a non-convex semialgebraic set whose image in the projective space of
Ź2 R4

is homeomorphic to the 5-dimensional closed ball [BHKL]. This image is the set of T2-valued
points in the Grassmannian Grp2, 4q in the sense of [BL21], so one may view ∆pT2q as the set of
T2-valued points in the affine cone over the Grassmannian. The points in the interior ∆pT2q˝

are called nondegenerate. These are the sextuples of positive numbers such that the square roots
of p12p34, p13p24, p14p23 form the side lengths of a nondegenerate triangle.

We answer Question 1.1. Let πij be the coordinate projection of R4 onto the plane orthogonal
to the standard basis vectors ei and ej .

Theorem 1.4. The following holds for any p “ pp12, p13, p14, p23, p24, p34q P
Ź2 R4.

(1) p P ∆pT2q˝ if and only if there is a smooth convex body A Ď R4 that satisfies

pij “

´

the area of the projection πijpAq

¯

for all i ă j.

(2) p P ∆pT2q if and only if there is a convex body A Ď R4 that satisfies

pij “

´

the area of the projection πijpAq

¯

for all i ă j.

For any undefined terms in the theory of convex bodies, we refer to [Sch14]. One of our key
tools will be the theory of mixed volumes [Sch14, Chapter 5]. To each pair of convex bodies A

and B in R4, we associate a vector of real numbers

A ^ B “ pp12, p13, p14, p23, p24, p34q P
Ź2 R4,

where the components pij are defined as the mixed volumes of the projections of A and B:

pij “

´

the mixed volume of πijpAq and πijpBq in R2
¯

.

With this notation, the basic properties of mixed volumes read

A ^ B “ B ^ A and pλ1A1 ` λ2A2q ^ B “ λ1pA1 ^ Bq ` λ2pA2 ^ Bq for λ1, λ2 ě 0.
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Theorem 1.4 provides a characterization of vectors of the form A ^ A. Our second main contri-
bution is Theorem 3.7, which states that

∆pT2q X
Ź2 Q4 “

␣

A ^ B
ˇ

ˇ A,B are rational polytopes in R4
(

.

We conjecture that, in fact, ∆pT2q X
Ź2 Q4 is the set of projection areas of rational polytopes in

R4.

The parallel Question 1.2 in algebraic geometry can be rephrased as follows: For E Ď r4s,
write φE for the coordinate projection pP1q4 Ñ pP1q4´|E| that forgets the coordinates labelled by
E. If S is an irreducible surface in pP1q4 over the complex numbers, we can uniquely express its
homology class as a nonnegative integral linear combination

rSs “ p12rP1 ˆ P1 ˆ P0 ˆ P0s ` ¨ ¨ ¨ ` p34rP0 ˆ P0 ˆ P1 ˆ P1s.

Which vectors of nonnegative integers pp12, p13, p14, p23, p24, p34q can arise in this way? We call
such homology classes realizable. Such questions are algebraic analogues of the Steenrod problem
in topology [Eil49, Problem 25], which asks whether every homology class in any simplicial
complex X is the image of the fundamental class of a closed oriented manifold by a map into
the simplicial complex. In 1954, as part of his work on cobordism theory, Thom showed that in
general the answer to this question depends on the chosen coefficients [Tho54]: the answer is
positive for H‚pX,Qq and negative for H‚pX,Zq. We introduce the necessary definitions adapted
to the setting of algebraic geometry.

Definition 1.5. Let X be a complex smooth projective variety.2

(1) A class η P H2kpX,Zq is realizable over Z if there is a subvariety V Ď X with η “ rV s.

(2) A class η P H2kpX,Qq is realizable over Q if λη is realizable over Z for some λ P Qě0.

(3) A class η P H2kpX,Rq is realizable over R if it is a limit of classes realizable over Q.

We provide a characterization of homology classes in pP1q4 that are realizable over Q.

Theorem 1.6. For p “ pp12, p13, p14, p23, p24, p34q P
Ź2 Q4, consider the homology class

ηppq – p12rP1 ˆ P1 ˆ P0 ˆ P0s ` ¨ ¨ ¨ ` p34rP0 ˆ P0 ˆ P1 ˆ P1s P H4ppP1q4,Qq.

The class ηppq is realizable over Q if and only if p is in the set ∆pT2q.

Compare Theorem 1.6 with Theorem 5.5, where we identify the set of complete intersection
surface classes in pP1q4, up to a rational multiple, with the set of rational points in

∆pT1q –
␣

p P
Ź2 R4

ˇ

ˇ pij ě 0 and pijpkl ` pikpjl ě pilpjk for any i, j, k, l
(

.

As in the case of ∆pT2q, the image of ∆pT1q in the projective space of
Ź2 R4 is the set of T1-

valued points in the Grassmannian Grp2, 4q, also homeomorphic to the 5-dimensional closed
ball [BHKL]. A boundary point of ∆pT2q is in ∆pT1q if and only if pij “ 0 for some i and j.

2In this paper, a variety and its subvarieties are by definition reduced and irreducible.
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Question 1.2, the realizability problem over Z for pP1q4, is more subtle. For example, the
homology class corresponding to p “ p1, 1, 1, 1, 1, 3q is realizable over Q but not over Z. To see
this, note that the hypothetical surface S should satisfy

rφ3pSqs “ rφ4pSqs “ rP1 ˆ P1 ˆ P0s ` rP1 ˆ P0 ˆ P1s ` rP0 ˆ P1 ˆ P1s.

Thus, the defining equations of φ´1
3 φ3pSq and φ´1

4 φ4pSq in an affine chart are of the form

˚1 ` ˚x1 ` ˚x2 ` ˚x4 ` ˚x1x2 ` ˚x1x4 ` ˚x2x4 ` ˚x1x2x4 “ 0,

˚1 ` ˚x1 ` ˚x2 ` ˚x3 ` ˚x1x2 ` ˚x1x3 ` ˚x2x3 ` ˚x1x2x3 “ 0,

where the ˚’s are placeholders for coefficients. For generic values of x3 and x4, this system has
at most 2 solutions, contradicting p34 “ 3. In Proposition 5.2, we observe more generally that
the realizability of p over Z implies

pij ď pikpjl ` pilpjk for any i, j, k, l.

For p P ∆pT2q˝, we know no other obstructions to the realizability of p over Z. In Section 6,
using global surjectivity of the period map for marked complex K3 surfaces [Huy16, Chapter
7], we show that for any integral vector p P ∆pT2q and any integer λ1 ą 1, there is an integer
λ2 ą 0 such that λ1λ

´1
2 ηppq is realizable over Z.

Definition 1.7. We say that a real symmetric matrix is Lorentzian if it has only nonnegative
entries and has at most one positive eigenvalue.

Let m be a vector of positive integers pm1, . . . ,mnq, and let Pm be the product of projective
spaces

śn
i“1 Pmi . Let Hi be the pullback of the cohomology class of a hyperplane by the i-th

projection Pm Ñ Pmi . As observed in [BHKL], a point p P
Ź2 R4 is in ∆pT2q if and only if

Lppq –

¨

˚

˚

˚

˝

0 p12 p13 p14

p12 0 p23 p24

p13 p23 0 p34

p14 p24 p34 0

˛

‹

‹

‹

‚

is a Lorentzian matrix, see Proposition 3.1. Therefore, the following statement extends Theo-
rem 1.6.

Theorem 1.8. For η P H4pPm,Qq, consider the n ˆ n symmetric matrix Lpηq with entries

Lpηqij “

ż

η

HiHj for 1 ď i ď j ď n.

The class η is realizable over Q if and only if Lpηq is Lorentzian.

Extending Theorem 1.8, we propose in Conjecture 7.3 a numerical characterization of 2-
dimensional universally pseudoeffective classes that are realizable over R. For the case when X

is the Grassmannian Grpd, nq, see Theorem 7.7.
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Based on our findings, we formulate a convex geometric analogue of Theorem 1.8 that ex-
tends Theorem 1.4 to any dimension d ě 3. Extending the notation before, we write πij for
the coordinate projection of Rd onto the coordinate subspace orthogonal to the standard basis
vectors ei and ej .

Conjecture 1.9. For any d ˆ d real symmetric matrix ppijq with nonnegative off-diagonal and
zero diagonal entries, the following conditions are equivalent.

(1) There is a convex body A Ď Rd that satisfies

pij “

´

the volume of the projection πijpAq

¯

for all i ‰ j.

(2) The matrix ppijq is Lorentzian.

By Corollary 2.5, condition p1q implies condition p2q in Conjecture 1.9. By Theorem 1.4, con-
dition p2q implies condition p1q when d “ 4. One may also formulate the weaker conjecture that
ppijq is Lorentzian if and only if there exist convex bodies A1, . . . , Ad´2 Ď Rd such that

pij “

´

the mixed volume of the projections πijpA1q, . . . , πijpAd´2q

¯

for all i ‰ j.

See Remark 6.12 for the subtlety involved in formulating a similar conjecture for codimension 3

projections πijk : Rd Ñ Rd´3.

Notations. The field k will be the field of real or rational numbers. We will work with projective
varieties over C, and use singular homology and cohomology of their underlying topological
spaces. All of our theorems remain valid over an arbitrary algebraically closed field if we re-
place the homology group by the group of algebraic cycles modulo homological or numerical
equivalence, except in Theorem 6.3, where we need the ground field to be uncountable or of
characteristic 0, and in Theorem 6.13, where we need the ground field to be of characteristic 0.
A lattice polytope in Rd is a convex polytope all of whose vertices are in Zd. A rational polytope
in Rd is a convex polytope all of whose vertices are in Qd.

Acknowledgements. The authors thank the Institute for Advanced Study for providing an ex-
cellent working environment, and Matt Larson, Elizabeth Pratt, Stefan Schreieder, and Chenyang
Xu for their insightful comments. Daoji Huang is supported by the Charles Simonyi Endow-
ment and NSF-DMS2202900. June Huh is partially supported by the Oswald Veblen Fund, the
Fund for Mathematics, and the Simons Investigator Grant. Mateusz Michałek is partially sup-
ported by the Charles Simonyi Endowment and the DFG grant 467575307. Botong Wang is
partially supported by the National Science Foundation.
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2. HOMOLOGY CLASSES AND VOLUMES

Let X be a complex smooth projective variety, S be an irreducible surface in X , and let
D1, . . . , Dn be the cohomology classes of divisors on X .3 We consider the n ˆ n intersection
matrix LpSq “ LpS;D1, . . . , Dnq defined by

LpSqij “

ż

S

DiDj .

The following proposition is a direct consequence of the Hodge Index Theorem [Har77, Section
5.1] applied to the resolution of singularities of S.

Proposition 2.1. The matrix LpSq has at most one positive eigenvalue. If the linear span of Di

contains an ample class of X , then LpSq has exactly one positive eigenvalue.

Let m be a vector of nonnegative integers pm1, . . . ,mnq, and let Pm be the product of projec-
tive spaces

śn
i“1 Pmi . By the Künneth formula, we have

H‚pPm,Zq »

n
â

i“1

ZrHis{pHmi`1
i q,

where Hi is the pullback of the hyperplane class by the i-th projection Pm Ñ Pmi .

Corollary 2.2. For any irreducible surface S in Pm, the matrix LpS;H1, . . . ,Hnq is Lorentzian.

This corollary provides necessary restrictions on the classes in H4pPm,Zq that are realizable
over Z. However, these conditions are not sufficient, see Proposition 5.2 and Example 5.1.

One of our key tools will be the theory of mixed volumes. For a sequence of convex bodies
A1, . . . , Ad in Rd, the mixed volume MVpA1, . . . , Adq is given by

MVpA1, . . . , Adq –
1

d!

B

Bx1
¨ ¨ ¨

B

Bxd
Volpx1A1 ` ¨ ¨ ¨ ` xdAdq,

where Vol denotes the d-dimensional normalized volume in Rd. The mixed volume enjoys sev-
eral important properties: it is symmetric in its arguments, multilinear with respect to Minkowski
sums with nonnegative coefficients, monotone with respect to inclusion of convex bodies, and
satisfies the identity

MVpA, . . . , Aq “ VolpAq for any convex body A Ď Rd.

For additional background and further properties of mixed volumes, we refer the reader to
[Sch14, Chapter 5].

The connection to intersection theory is provided by toric geometry. We start by recalling
the Bernstein–Khovanskii–Kushnirenko theorem [CLO05, Section 7.5]. Consider an algebraic
torus T » pC˚qd with the lattice of characters MT » Zd. Let P1, . . . , Pd be a sequence of lattice

3The statements of this section hold over any algebraically closed field if we use the Chow groups in place of the
singular homology groups.
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polytopes in MT b R. We write fPi for a general C-linear combination of characters in Pi X MT ,
viewed as a function on T .

Theorem 2.3 (Bernstein–Khovanskii–Kushnirenko). The number of solutions x P T of the sys-
tem of equations fP1

pxq “ . . . “ fPd
pxq “ 0 is equal to the mixed volume MVpP1, . . . , Pdq.

Let m be a vector of positive integers pm1, . . . ,mnq whose sum is d ě 2. In the remainder of
this section, let T be the product torus

śn
i“1pC˚qmi with the lattice of characters

Àn
i“1 Zmi . For

each i, we set

∆i – pthe convex hull of 0 and the standard basis vectors of Rmiq Ď Rd “

n
à

i“1

Rmi .

We may view f∆i as a function on the torus T of Pm, whose homogenization defines the inverse
image of a hyperplane under the i-th projection Pm Ñ Pmi .

Theorem 2.4. Let P1, . . . , Pd´2 be convex polytopes in Rd.

(1) If every Pi is a rational polytope, then there is λ P Qą0 and an irreducible surface S Ď Pm

such that
ż

S

HiHj “ λ´1 MVpP1, . . . , Pd´2,∆i,∆jq for all i, j.

(2) If every Pi is a lattice polytope, then there is λ P Zą0 and an irreducible surface S Ď Pm such
that

ż

S

HiHj “ λ´1 MVpP1, . . . , Pd´2,∆i,∆jq for all i, j.

In the latter case, if dimp
ř

iPI Piq ą |I| for all nonempty I Ď rds, then we may take λ “ 1.

By Poincaré duality, the constant and the mixed volumes in Theorem 2.4 determine the ho-
mology class of S in Pm. By varying the polytopes, we obtain many classes in H4pPm,Qq that
are realizable over Q. In Section 5, we show that every class in H4ppP1q4,Qq that is realizable
over Q can be realized in this way.

Proof. We use the language and basic constructions of toric geometry. For background, see
[Ful93]. To keep our argument valid in arbitrary characteristic, we avoid applying Bertini’s
theorem on the smoothness of general members of a basepoint-free linear system.

It is enough to prove the statements on lattice polytopes. Let Y be a smooth projective toric
variety of T whose normal fan refines the normal fans of Pi and ∆i. Each Pi defines a basepoint-
free divisor class Di on Y and a map

fi : Y ÝÑ PH0pY,OY pDiqq_,

whose image has dimension equal to that of Pi. To simplify notation, we write Di for a general
member in its linear system. First suppose that dimp

ř

iPI Piq ą |I| for every nonempty index
set I . Under this assumption, we prove that the intersection Z of all the Di’s is an irreducible
surface in Y .
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We proceed inductively, assuming that the intersection Zi :“ D1 X ¨ ¨ ¨ X Di is irreducible of
codimension i in Y for i ă k. We claim that the dimension of fi`1pZiq is strictly larger than one.

For contradiction, suppose this is not the case. Then, the intersection Zi X Di`1 X Ei`1 is
empty, where Ei`1 is another general member in the linear system of Di`1. Let H be a very am-
ple divisor class on Y corresponding to a polytope P . The Bernstein–Khovanskii–Kushnirenko
theorem implies that

MVpP1, . . . , Pi, Pi`1, Pi`1, P, . . . , P q “ 0.

By translating Pi and P , we may assume they all contain the origin of Rd. By our assumption
and Rado’s theorem [Rad42, Theorem 1], picking general points in P1, . . . , Pi, Pi`1, Pi`1, P, . . . , P ,
we obtain a basis of Rd. This contradicts the fact that mixed volume is zero, as mixed volume of
linearly independent line segments is nonzero and mixed volume is monotone under inclusions
of convex bodies. This finishes the proof of the claim.

We conclude from Bertini’s irreducibility theorem [Jou83, Theorem 6.3 (4)] that Zi`1 is irre-
ducible. This finishes the proof that Z “ Zd´2 is nonempty and irreducible. Writing S for the
image of Z in Pm, Theorem 2.3 guarantees that

ż

S

HiHj “

ż

Z

HiHj “ MVpP1, . . . , Pd´2,∆i,∆jq for all i, j.

In the general case, we show in Lemma 2.6 that ZiXDi`1 is a union of irreducible components
that are algebraically equivalent to each other. We may therefore define Zi`1 to be any one of
these irreducible components. Since algebraic equivalence implies homological equivalence
[Ful98, Chapter 19], we have

ż

S

HiHj “

ż

Z

HiHj “ λ´1 MVpP1, . . . , Pd´2,∆i,∆jq for all i, j,

where λ is a positive rational number. □

Since convex bodies A1, . . . , Ad´2 Ď Rd can be approximated by rational polytopes, Proposi-
tion 2.2 implies the following classical result in convex geometry.4

Corollary 2.5. For any convex bodies A1, . . . , Ad´2 Ď Rd, the n ˆ n symmetric matrix with
entries MVpA1, . . . , Ad´2,∆i,∆jq is Lorentzian.

By [Sch14, Theorem 5.3.1], when mi “ 1 for all i, we have

MVpA1, . . . , Ad´2,∆i,∆jq “ MVpπijpA1q, . . . , πijpAd´2qq for any i ‰ j.

Since the mixed volume is zero when i “ j, condition (1) implies condition (2) in Conjecture 1.9.

The remainder of this section is devoted to a general lemma used in the proof of Theorem 2.4.

4The same argument works more generally when ∆i’s are arbitrary convex bodies. This is one of the main conclu-
sions of Brunn–Minkowski theory, equivalent to the Alexandrov–Fenchel inequality. See Section 4 for a more complete
discussion. We refer to [Sch14, Section 7.3] for Alexandrov’s original proof.
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Lemma 2.6. If f : Y Ñ X is a surjective map between irreducible projective varieties over an
algebraically closed field, then the irreducible components of a general fiber of f are algebriaclly
equivalent to each other in Y .

Proof. We first consider the case when f˚OY “ OX and Y is normal. Under these assumptions,
we show that a general fiber is irreducible. By [Laz04, Example 2.1.12], the function field of X
is algebraically closed in the function field of Y . Therefore, the generic fiber of f is geomet-
rically irreducible [Sta25, Lemma 10.47.8], and hence a general fiber of f is irreducible [Sta25,
Lemma 37.27.5].

Next we consider the case when f is finite. If m is the purely inseparable degree of the
function field of Y over the function field of X , for a general point x P X ,

rf´1pxqs “ mry1s ` ¨ ¨ ¨ ` mryks,

where yi are the closed points in the fiber of f over x.

We now consider the general case. Let g : Y 1 Ñ Y be the normalization. Consider the

composition Y 1 g
ÝÑ Y

f
ÝÑ X , and denote its Stein factorization by Y 1 f 1

ÝÑ X 1 g1

ÝÑ X . We have the
commutative diagram

Y 1

g

��

f 1

// X 1

g1

��

Y
f
// X

where g1 : X 1 Ñ X is a finite morphism and f 1 : Y 1 Ñ X 1 satisfies f 1
˚pOY 1 q “ OX1 . The variety

X 1 can be considered as the normalization of X in Y 1. Consider the closed subset

V 1 “ tx1 P X 1 | f 1´1px1q is reducible or contained in the exceptional locus of gu.

The image of V 1 in X is a proper closed subset of X . Let x be a general point of X so that, in
particular, x is not in the image of V 1 and the fiber of g1 over x lies in the smooth locus of X 1.
Let F1, . . . , Fk be the irreducible components of the fiber of g1 ˝ f 1 over x. Since a general fiber
of g1 consists of points of the same multiplicity and a general fiber of f 1 is irreducible, Fi are
algebraically equivalent to each other in Y 1. Since g is birational, this shows that the irreducible
components of f´1pxq are algebraically equivalent to each other in Y . □

3. PROJECTIONS AND MIXED VOLUMES OF FOUR-DIMENSIONAL BODIES

To each pair of convex bodies A and B in R4, we associate a vector of real numbers

A ^ B “ pp12, p13, p14, p23, p24, p34q P
Ź2 R4,

where the components pij are defined as the mixed volumes of the projections of A and B. With
this notation, the basic properties of mixed volumes read

A ^ B “ B ^ A and pλ1A1 ` λ2A2q ^ B “ λ1pA1 ^ Bq ` λ2pA2 ^ Bq for λ1, λ2 ě 0.
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The main contributions of this section are Theorems 3.6 and 3.7, which characterize real and
rational vectors of the form A^B. We also provide a proof of Theorem 1.4 when p is in ∆pT2q˝.
The proof of Theorem 1.4 when p is in B∆pT2q will be given in the next section.

These results have direct applications to realizability questions concerning pP1q4, as we demon-
strate in the following section.

The following reformulation of the Lorentzian condition for 4-by-4 matrices from [BHKL]
will play a critical role in the proofs of the above characterizations.

Proposition 3.1. A point p “ pp12, p13, p14, p23, p24, p34q P
Ź2 R4 is in ∆pT2q if and only if

Lppq –

¨

˚

˚

˚

˝

0 p12 p13 p14

p12 0 p23 p24

p13 p23 0 p34

p14 p24 p34 0

˛

‹

‹

‹

‚

is a Lorentzian matrix.

Proof. A direct computation reveals that

detLppq “ ´ p
?
p12p34 `

?
p13p24 `

?
p14p23q ¨ p´

?
p12p34 `

?
p13p24 `

?
p14p23q

¨ p
?
p12p34 ´

?
p13p24 `

?
p14p23q ¨ p

?
p12p34 `

?
p13p24 ´

?
p14p23q.

Note that any symmetric 3-by-3 matrix with nonnegative off-diagonal and zero diagonal entries
is Lorentzian. Therefore, by Cauchy’s interlacing theorem, Lppq is Lorentzian if and only if the
product

p´
?
p12p34 `

?
p13p24 `

?
p14p23qp

?
p12p34 ´

?
p13p24 `

?
p14p23qp

?
p12p34 `

?
p13p24 ´

?
p14p23q

is nonnegative. Since the sum of every two factors is nonnegative, the product is nonnegative if
and only if every factor is nonnegative. Such nonnegativity corresponds precisely to the triangle
condition defining ∆pT2q. □

For the remainder of this section, we write k for Q or R.

Definition 3.2. We define an action of the multiplicative group ką0 ˆ k4
ą0 on

Ź2 k4 by

pλ, c1, c2, c3, c4q¨pp12, p13, p14, p23, p24, p34q “ λpc1c2p12, c1c3p13, c1c4p14, c2c3p23, c2c4p24, c3c4p34q.

We say that p and q are equivalent over k if p and q are in the same orbit of ką0 ˆ k4
ą0 ¸ S4.

Note that the action of the diagonal ką0 is not subsummed by the action of k4
ą0 if k “ Q.

Clearly, the action of ką0 ˆ k4
ą0 ¸ S4 preserves the sets ∆pT2q and ∆˝pT2q. The next lemma

shows that it also preserves the set of vectors of the form A ^ B.

Lemma 3.3. Let A1, A2, and A be convex polytopes with vertices in k4, and let p P
Ź2 k4.

(1) If p is equivalent to A1 ^ A2 over k, then p “ B1 ^ B2 for some convex polytopes B1 and
B2 with vertices in k4.
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(2) If p is equivalent to A ^ A over R, then p “ B ^ B for some convex polytope B in R4.

Analogous statements hold for convex bodies A1, A2, and A in R4.

Proof. It is enough to consider the action of ką0 ˆ k4
ą0. For the first statement, suppose that

p “ pλ, c1, c2, c3, c4q ¨ A1 ^ A2. We take

B1 “ pc´1
1 , c´1

2 , c´1
3 , c´1

4 q ¨ A1 and B2 “ λc1c2c3c4pc´1
1 , c´1

2 , c´1
3 , c´1

4 q ¨ A2.

For the second statement, suppose that p “ pλ, c1, c2, c3, c4q ¨ A ^ A. We take

B “ λ1{2c
1{2
1 c

1{2
2 c

1{2
3 c

1{2
4 pc´1

1 , c´1
2 , c´1

3 , c´1
4 q ¨ A. □

The following lemma characterizes the points in ∆pT2q X
Ź2 k4 that have at least one zero

entry, up to equivalence over k.

Lemma 3.4. If p is a nonzero vector in ∆pT2q X
Ź2 k4 with a zero entry, then p is equivalent over

k to exactly one of the following six points:

p1, 1, 1, 1, 1, 0q, p1, 1, 0, 1, 0, 0q, p0, 1, 1, 1, 1, 0q, p1, 1, 1, 0, 0, 0q, p1, 1, 0, 0, 0, 0q, p1, 0, 0, 0, 0, 0q.

Each one of these points is of the form A ^ A for some lattice polytope A.

Proof. We prove the first statement. If p P ∆pT2q has a zero entry, then, either all three products
p12p34, p13p24, p14p23 are zero, or exactly one of them is zero. In the former case, it is straightfor-
ward to verify that p is equivalent over k to one of the following four points:

p1, 1, 0, 1, 0, 0q, p1, 1, 1, 0, 0, 0q, p1, 1, 0, 0, 0, 0q, p1, 0, 0, 0, 0, 0q.

In the latter case, we may assume without loss of generality that p34 “ 0 and thus p13p24 “

p14p23 is nonzero. Then p is equivalent over k to exactly one of the points

p0, 1, 1, 1, 1, 0q or p1, 1, 1, 1, 1, 0q,

depending on whether p12 is zero or nonzero, respectively. This proves the first statement.

The second statement is also a straightforward computation:

A2 ^ A2 “ p1, 1, 1, 1, 1, 0q when A2 “ convpe1 ` e2, e3, e4q,

A3 ^ A3 “ p1, 1, 0, 1, 0, 0q when A3 “ convp0, e1 ` e2 ` e3, e4q,

A4 ^ A4 “ p0, 1, 1, 1, 1, 0q when A4 “ convp0, e1 ` e2, e3 ` e4q,

A5 ^ A5 “ p1, 1, 1, 0, 0, 0q when A5 “ convpe2, e3, e4q,

A6 ^ A6 “ p1, 1, 0, 0, 0, 0q when A6 “ convp0, e2 ` e3, e4q,

A7 ^ A7 “ p1, 0, 0, 0, 0, 0q when A7 “ convp0, e3, e4q. □

We now proceed to prove Theorem 1.4. The first statement, the necessity of the condition
p P ∆pT2q, directly follows from Propositions 3.1 and Corollary 2.5. For the second statement,
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the sufficiency of the condition p P ∆pT2q˝, we construct a convex polytope A in R4 satisfying
p “ A ^ A. The construction relies on the following symmetrization lemma.

Lemma 3.5. For any vector of positive real numbers p “ pp12, p13, p14, p23, p24, p34q, there is a
point q “ pq12, q13, q14, q14, q13, q12q equivalent to p over R.

Proof. Let λ be the reciprocal of
?
p12p13p14p23p24p34, and take

c1 “
?
p23p24p34, c2 “

?
p13p14p34, c3 “

?
p12p14p24, c4 “

?
p12p13p23.

It is straightforward to check that pλ, c1, c2, c3, c4q ¨ p is equal to

p
?
p12p34,

?
p13p24,

?
p14p23,

?
p14p23,

?
p13p24,

?
p12p34q. □

There are exactly three ways to partition a set of four elements into two subsets of two ele-
ments each. The corresponding line segments in R4 will be the building blocks of A:

D12|34 – convpe1 `e2, e3 `e4q, D13|24 – convpe1 `e3, e2 `e4q, D14|23 – convpe1 `e4, e2 `e3q.

A straightforward computation shows:

D12|34 ^ D13|24 “ p2, 2, 0, 0, 2, 2q, D12|34 ^ D12|34 “ p0, 0, 0, 0, 0, 0q,

D12|34 ^ D14|23 “ p2, 0, 2, 2, 0, 2q, D13|24 ^ D13|24 “ p0, 0, 0, 0, 0, 0q,

D13|24 ^ D14|23 “ p0, 2, 2, 2, 2, 0q, D14|23 ^ D14|23 “ p0, 0, 0, 0, 0, 0q.

Proof of Theorem 1.4 when p is in ∆pT2q˝. We first construct a convex polytope with projection
areas given by p. By Lemmas 3.3 and 3.5, we may assume that the given point p in ∆pT2q˝

is of the form pp12, p13, p14, p14, p13, p12q. By permuting the coordinates, we may suppose that
p12 ě p13 ě p14, which gives

a – p12 ´ p13 ě 0, b – p13 ´ p14 ě 0, c – p13 ` p14 ´ p12 ą 0.

Note that c is positive because p is in the interior of ∆pT2q. From the computation above,
`

xD12|34 ` yD13|24 ` zD14|23

˘

^
`

xD12|34 ` yD13|24 ` zD14|23

˘

“
`

p12, p13, p14, p14, p13, p12
˘

for indeterminates x, y, z, translates into the system of equations

xy “ u – pa ` b ` dq{4, xz “ v – pa ` dq{4, yz “ w – d{4, where d “ c{2 ą 0.

This system has a unique positive solution

x “
a

uv{w, y “
a

uw{v, z “
a

vw{u.

This proves that there is a convex polytope A such that A ^ A “ p.

We now show that there is a smooth convex body A with A ^ A “ p. Choose smooth fam-
ilies of smooth convex bodies D12|34pϵq, D13|24pϵq, D14|23pϵq that converge to the line segments
D12|34, D13|24, D14|23 as ϵ goes to zero, and consider the Minkowski sum

A “ xD12|34pϵq ` yD13|24pϵq ` zD14|23pϵq.
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With u, v, w defined as above, the system of equations A ^ A “ p translates to

xy ` fpx, y, z, ϵq “ u, xz ` gpx, y, z, ϵq “ v, yz ` hpx, y, z, ϵq “ w,

where f , g, h are smooth functions satisfying

fpx, y, z, 0q “ gpx, y, z, 0q “ hpx, y, z, 0q “ 0 for all x, y, z ą 0.

We consider the function F : R4
ě0 Ñ R3 given by

F px, y, z, ϵq – pxy ` fpx, y, z, ϵq, xz ` gpx, y, z, ϵq, yz ` hpx, y, z, ϵqq.

By modifying the families D12|34pϵq, D13|24pϵq, D14|23pϵq if necessary, we may suppose that F

extends to a smooth function on a neighborhood of the point

p
a

uv{w,
a

uw{v,
a

vw{u, 0q P F´1pu, v, wq.

For example, we may take D12|34pϵq to be the ellipsoid of maximal volume inscribed in the ϵ-
neighborhood of D12|34. The leading maximal minor of the Jacobian of F at the point is ´2

?
uvw,

which is nonzero. Thus, by the implicit function theorem, there is a germ of a smooth curve
pxpϵq, ypϵq, zpϵqq passing through the point that satisfies, for all sufficiently small ϵ,

F pxpϵq, ypϵq, zpϵq, ϵq “ pu, v, wq.

This shows that there are positive numbers x, y, z and ϵ that satisfy A ^ A “ p. □

We now characterize vectors of mixed areas of coordinate projections of pairs of convex bod-
ies in R4:

Theorem 3.6. We have the equalities

∆pT2q “
␣

A ^ B
ˇ

ˇ A,B are convex bodies in R4
(

“
␣

A ^ B
ˇ

ˇ A,B are convex polytopes in R4
(

.

Proof. As previously noted, the necessity of the condition p P ∆pT2q follows from Proposi-
tion 3.1 and Corollary 2.5. We prove the sufficiency. By Theorem 1.4, we may suppose that
p P B∆pT2q. By Lemma 3.4, we may suppose that every entry of p is positive. By Lemma 3.5,
we may suppose that p “ pp12, p13, p14, p14, p13, p12q. By permuting coordinates, we may sup-
pose that p12 “ p13 ` p14. Under these assumptions, we find that

`

p13D13|24 ` p14D14|23

˘

^
`

2´1D12|34

˘

“
`

p12, p13, p14, p14, p13, p12
˘

. □

We now characterize vectors of mixed areas of coordinate projections of pairs of rational
polytopes in R4:

Theorem 3.7. We have the equality

∆pT2q X
Ź2 Q4 “

␣

A ^ B
ˇ

ˇ A,B are rational polytopes in R4
(

.

The main technical challenge is the absence of Lemma 3.5 for k “ Q. We begin by analyzing
the symmetric case.
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Lemma 3.8. If p “ pp12, p13, p14, p14, p13, p12q P ∆pT2q is a vector of nonnegative rational num-
bers satisfying p12 ě p13 ě p14, then there is a rational polytope A such that p “ A ^ D12|34.

Proof. We consider the lattice polytopes

P – D13|24 ` D14|23, Q – D13|24, R – convpe1, e2q ` convpe3, e4q.

These polytopes give the following projection mixed volumes

P ^ D12|34 “ p4, 2, 2, 2, 2, 4q, Q ^ D12|34 “ p2, 2, 0, 0, 2, 2q, R ^ D12|34 “ p2, 2, 2, 2, 2, 2q.

Therefore, x – pp12 ´ p13q{2 ě 0, y – pp13 ´ p14q{2 ě 0, z – pp13 ` p14 ´ p12q{2 ě 0 satisfy
`

xP ` yQ ` zR
˘

^ D12|34 “
`

p12, p13, p14, p14, p13, p12
˘

. □

We continue with an analysis of the boundary case.

Lemma 3.9. If p “ pp12, p13, p14, p23, p24, p34q P B∆pT2q is a vector of positive rational num-
bers, then there is a vector q “ pq12, q13, q14, q14, q13, q12q P B∆pT2q of positive rational numbers
equivalent to p over Q.

Proof. Without loss of generality, we may assume p14 “ p23 “ 1 and
?
p12p34 ` 1 “

?
p13p24.

Taking the square, we see that
?
p12p34 is rational, and hence, so is

?
p13p24. Take

c1 “
?
p12p34

?
p13p24, c2 “ p13

?
p12p34, c3 “ p12

?
p13p24, c4 “ p12p13.

It is straightforward to check that pc´1
1 c´1

4 , c1, c2, c3, c4q ¨ p is equal to

p
?
p12p34,

?
p13p24, 1, 1,

?
p13p24,

?
p12p34q. □

We conclude this section with the proof of Theorem 3.7.

Proof of Theorem 3.7. If p has at least one zero entry, the existence follows from Lemma 3.4. If
p has only positive entries and satisfies a degenerate triangle inequality, the existence follows
from Lemmas 3.8 and 3.9.

Suppose p has only positive entries and satisfies the nondegenerate triangle inequalities. By
Lemma 3.5, we have p is equivalent to q “ pq12, q13, q14, q14, q13, q12q over R, where

q12 “
?
p12p34, q13 “

?
p13p24, q14 “

?
p14p23.

Without loss of generality, we may suppose that q12 ě q13 ě q14.

Choose rational polytopes R12, R13, R14, R23, R24, R34 in R4 such that

R12 ^ D12|34 “ p0, 1, 1, 1, 1, 1q, R23 ^ D12|34 “ p1, 1, 1, 0, 1, 1q,

R13 ^ D12|34 “ p1, 0, 1, 1, 1, 1q, R24 ^ D12|34 “ p1, 1, 1, 1, 0, 1q,

R14 ^ D12|34 “ p1, 1, 0, 1, 1, 1q, R34 ^ D12|34 “ p1, 1, 1, 1, 1, 0q.
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For example, we may choose the convex polytopes

R12 “ convpe1 ` e2, e3 ` e4, e1,0q, R23 “ convpe1 ` e2, e3 ` e4, e3, e4q,

R13 “ convpe1 ` e2, e3 ` e4, e2, e4q, R24 “ convpe1 ` e2, e3 ` e4, e1, e3q,

R14 “ convpe1 ` e2, e3 ` e4, e2, e3q, R34 “ convpe1 ` e2, e3 ` e4, e3,0q.

For any point v P
Ź2 R4, we define a cone centered at v by

Cpvq “

#

v `
ÿ

ij

cijRij ^ D12|34

ˇ

ˇ

ˇ

ˇ

ˇ

cij ě 0

+

,

and denote its interior by C˝pvq. We write S for the subspace of
Ź2 R4 consisting of points

pa1, a2, a3, a3, a2, a1q for a1, a2, a3 P R.

Take q´ “ q ´ εp1, 1, 1, 1, 1, 1q, where ε ą 0 is chosen small enough so that q´ has positive
entries and satisfies the nondegenerate triangle inequalities. Clearly, q is in C˝pq´q.

Since Cpq´q is a full-dimensional cone whose interior intersects S, there is a rational point
arbitrarily close to q´ in the intersection C˝pq´q X S. Thus, there is a rational point

r “ pr12, r13, r14, r14, r13, r12q satisfying r12 ě r13 ě r14 and q P C˝
r .

By Lemma 3.8, we have r “ A ^ D12|34 for some rational polytope A. Thus, any rational point
in Cr is of the form

`

A ` c12R12 ` c13R13 ` c14R14 ` c23R23 ` c24R24 ` c34R34

˘

^ D12|34

for some nonnegative rational numbers cij . Since Q4
ą0 is dense in R4

ą0, there is a point arbitrarily
close to q that is equivalent to p over Q. Clearly, we may take this rational point to be in C˝

r . We
conclude by Lemma 3.3. □

4. REALIZING THE BOUNDARY OF ∆pT2q

In this section, we finish the proof of Theorem 1.4. We construct a family of convex bodies
A Ď R4 such that A ^ A sweeps out B∆pT2q » S4 and show that any such A necessarily has a
singular point in its boundary. By Lemma 3.4, we may suppose that the given vector in B∆pT2q

has all entries positive. By Lemmas 3.3 and 3.5, we may suppose that the given vector is of the
form ps ` 1, s, 1, 1, s, s ` 1q for some s ě 1. We will give an explicit description of the vertices of
a convex polytope A as a function of s.

Finding a convex polytope A satisfying A ^ A “ ps ` 1, s, 1, 1, s, s ` 1q is nontrivial. Nev-
ertheless, once the vertices of A are correctly guessed as a function of s, verifying that A has
the required property is straightforward, as demonstrated below. In the remainder of this sec-
tion, we show how recent breakthroughs on the equality conditions of the Alexandrov–Fenchel
inequality in [SvH22, SvH23] lead to a specific set of vertices of A.
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Proposition 4.1. For any s ě 1, there is a convex polytope A Ď R4 such that

A ^ A “ ps ` 1, s, 1, 1, s, s ` 1q.

Proof. Take c “
a

1 ´ 1{s, and consider the 4 ˆ 16 matrices

L –

»

—

—

—

–

0 ´1 0 ´1 ´1 0 0 0 1 1 1 0 0 ´1 1 0

0 ´1 0 1 1 0 0 0 1 1 ´1 0 0 ´1 ´1 0

1 0 ´1 0 0 ´1 ´1 1 0 0 0 1 ´1 0 0 1

1 0 ´1 0 0 1 1 1 0 0 0 ´1 ´1 0 0 ´1

fi

ffi

ffi

ffi

fl

,

M –

»

—

—

—

–

0 0 0 0 1 0 ´1 ´1 ´1 0 0 1 1 1 ´1 0

´2 0 0 ´2 ´1 0 ´1 ´1 ´1 ´2 0 ´1 ´1 ´1 ´1 ´2

0 0 0 0 ´1 0 1 ´1 ´1 0 0 ´1 1 1 1 0

´2 0 0 0 ´1 ´2 ´1 ´1 ´1 ´2 ´2 ´1 ´1 ´1 ´1 0

fi

ffi

ffi

ffi

fl

.

Let A be the convex hull of the 16 columns of L ` cM in R4. With patience, one can check that

|π12pAq| “ |π34pAq| “ 8 ´ 4c2, |π13pAq| “ |π24pAq| “ 4, |π14pAq| “ |π23pAq| “ 4 ´ 4c2,

where |πijpAq| is the normalized volume in R2. We have

A ^ A „

˜

2 ´ c2

1 ´ c2
,

1

1 ´ c2
, 1, 1,

1

1 ´ c2
,
2 ´ c2

1 ´ c2

¸

“ ps ` 1, s, 1, 1, s, s ` 1q. □

We now explain how we obtained the vertices of A. Let ∆i be the line segment joining 0 and
the standard basis vector ei. The main observation here is that A ^ A “ ps ` 1, s, 1, 1, s, s ` 1q

corresponds to the equality case

MVpA,A,∆1 ` ∆2,∆3 ` ∆4q2 “ MVpA,A,∆1 ` ∆2,∆1 ` ∆2qMVpA,A,∆3 ` ∆4,∆3 ` ∆4q,

because both sides are equal to 4ps ` 1q2. Unlike many classical geometric inequalities, which
typically admit simple equality characterizations, the Alexandrov–Fenchel inequality has a rich
family of equality cases that depends on the relative position of sigular boundary points on
the convex bodies [Sch14, Section 7.6]. Two recent breakthroughs of Shenfeld–van Handel in
[SvH22] and [SvH23] settled respectively the special case of Minkowski inequality for arbitrary
convex bodies and the general case of Alexandrov–Fenchel inequality for convex polytopes.

The statement we need is [SvH22, Theorem 1.3], which confirms Schneider’s conjecture from
[Sch85] in the setting of Minkowski’s quadratic inequality. Let P , Q, and A be convex bodies in
Rn. A nonzero vector u P Rn is called an r-extreme normal vector of A if there do not exist linearly
independent normal vectors u1, . . . ,ur`2 at a boundary point of A such that u “ u1`¨ ¨ ¨`ur`2.

Theorem 4.2 (Shenfeld–van Handel). Suppose that A is n-dimensional and MVpA, . . . , A,Q,Qq

is positive. In this case,

MVpA, . . . , A, P,Qq2 “ MVpA, . . . , A, P, P q MVpA, . . . , A,Q,Qq
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holds if and only if there are λ ě 0 and t P Rn such that P and λQ` t have the same supporting
hyperplanes in all 1-extreme normal directions of A.

When A is a polytope containing the origin in its interior, u is a 1-extreme normal direction
if and only if there exists c ą 0 such that cu lies on the 1-skeleton of the polar dual of A. The
support function of a convex body P Ď Rn is the convex function

hP puq – max
xPP

xx,uy.

In terms of the support functions, the equality condition in Theorem 4.2 is that, for some λ ě 0

and t P Rn, we have

hP puq “ λhQpuq ` xt,uy for every 1-extreme normal direction u of A.

Note that λ is necessarily equal to the ratio MVpA, . . . , A, P,Qq{MVpA, . . . , A,Q,Qq because

MVpA, . . . , A, P,Qq “ MVpA, . . . , A, λQ ` t, Qq “ λMVpA, . . . , A,Q,Qq.

When P “ ∆1 ` ∆2 and Q “ ∆3 ` ∆4, Theorem 4.2 says the following.

Corollary 4.3. If A is a 4-dimensional convex body such that A ^ A “ ps ` 1, s, 1, 1, s, s ` 1q for
s ě 1, then there exists t P R4 such that

maxpu1, 0q ` maxpu2, 0q ´ maxpu3, 0q ´ maxpu4, 0q “ xt,uy

holds for all 1-extreme directions u “ pu1, u2, u3, u4q of A.

Corollary 4.3 poses a strong constraint on the convex bodies corresponding to a point in
B∆pT2q. When A is smooth, every normal direction is 1-extreme, so no smooth convex body A

satisfies A ^ A “ ps ` 1, s, 1, 1, s, s ` 1q for s ě 1. When A is a convex polytope, we can use
Corollary 4.3 to determine the facet directions of A. We illustrate this for t “ p 1

2 ,
1
2 ,´ 1

2 ,´ 1
2 q.

Lemma 4.4. Let B be a convex polytope in R4 containing the origin in its interior. Suppose that
all of its vertices and edges are contained in the hypersurface

T –

!

u P R4z0 | maxpu1, 0q ` maxpu2, 0q ´ maxpu3, 0q ´ maxpu4, 0q “ 1
2 pu1 ` u2 ´ u3 ´ u4q

)

.

Then B has at most 16 vertices, each lying on a ray generated by a column of the matrix

N –

»

—

—

—

–

1 1 1 1 0 0 0 0 ´1 ´1 ´1 ´1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 ´1 ´1 ´1 ´1

1 0 ´1 0 1 0 ´1 0 1 0 ´1 0 1 0 ´1 0

0 1 0 ´1 0 1 0 ´1 0 1 0 ´1 0 1 0 ´1

fi

ffi

ffi

ffi

fl

.

The proof is straightforward, given the piecewise linear structure of T, shown below in Fig-
ure 1.

Applying Lemma 4.4 to the polar dual B of A, we see that A must be of the form

A “

16
č

i“1

!

x P R4 | xx,viy ě ai

)

,
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FIGURE 1. The hypersurface T in the affine chart pu1{u4, u2{u4, u3{u4q

where vi are the column vectors of the matrix N and a1, . . . , a16 are some undetermined num-
bers. The area of the projection πijpAq is a function of the 16 variables ai. The combinatorial
type of A subdivides R16 into a finite number of polyhedral regions, and in each region, the area
of πijpAq is a quadratic polynomial in the variables ai.

In principle, one can compute the subdivision of R16 and the corresponding piecewise qua-
dratic polynomial. For our purposes, it is enough to consider the following 1-parameter family
A “ Apcq given by the vector

pa1, . . . , a16q “ ´p1, 1, 1, 1, 1, 1 ` 2c, 1, 1 ´ 2c, 1, 1 ` 2c, 1 ` 2c, 1, 1, 1, 1 ´ 2c, 1 ´ 2cq, c P r0, 1s.

One can check that its vertices are given by the matrices L and M in Proposition 4.1, and

|π12pAq| “ |π34pAq| “ 8 ´ 4c2, |π13pAq| “ |π24pAq| “ 4, |π14pAq| “ |π23pAq| “ 4 ´ 4c2.

The method of finding A does not depend on the specific choice of t or on the assumption that
A is a convex polytope. This provides a way to classify all convex bodies A such that A^A “ p

for a fixed p P B∆pT2q.

5. REALIZABLE CLASSES IN pP1q4

For p “ pp12, p13, p14, p23, p24, p34q P
Ź2 Q4, we write ηppq for the homology class

p12rP1 ˆ P1 ˆ P0 ˆ P0s ` ¨ ¨ ¨ ` p34rP0 ˆ P0 ˆ P1 ˆ P1s P H4ppP1q4,Qq.

Theorem 1.6 states that ηppq is realizable over Q if and only if p P ∆pT2q.
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Proof of Theorem 1.6. We only need to collect the pieces we already have. The necessity of the
condition p P ∆pT2q follows from Corollary 2.2 and Proposition 3.1. The sufficiency of the
condition p P ∆pT2q follows from Theorem 2.4 Theorem 3.7. □

As noted before, p P ∆pT2q X
Ź2 Z4 does not imply that ηppq is realizable over Z.

Example 5.1. Consider the point p “ p1, 1, 1, 1, 1, 4q P B∆pT2q. Proposition 5.2 below shows that
η “ ηppq is not realizable over Z. On the other hand, consider the lattice polytope

P – convp2e1, 2e2, 2e1 ` 2e2, e3, e4, e3 ` e4q Ď R4,

which has projection areas p2, 2, 2, 2, 2, 8q. Therefore, by Theorem 2.4, 2η is realizable over Z. In
fact, by Theorem 6.13, the class pη is realizable over Z for any prime number p.

In Theorem 6.13, we prove a more precise version of Theorem 1.6: If p is a primitive integral
vector in ∆pT2q and p is a prime number, then ηppq is realizable over Z or pηppq is realizable
over Z.5

Proposition 5.2. If ηppq is realizable over Z and pij ą 0, then pkl ď pikpjl ` pilpjk.

Note that ?
pijpkl ď

?
pikpjl `

?
pilpjk implies pkl ď pikpjl ` pilpjk when pij ą 1. For i “ 1

and j “ 2, the points

p0, 0, 1, 0, 1, 1q, p0, 0, 0, 1, 1, 1q, p0, 0, 0, 0, 1, 1q, p0, 0, 0, 0, 0, 1q P B∆pT2q

fail to satisfy both the assumption and the conclusion of Proposition 5.2. The corresponding
homology classes are realizable over Z by Lemma 3.4 and Theorem 2.4. When p P ∆pT2q˝, we
know no other obstructions to the realizability of ηppq over Z than the ones from Theorem 1.6
and Proposition 5.2.

As before, for E Ď r4s, we write φE for the coordinate projection pP1q4 Ñ pP1q4´|E| that
forgets the coordinates labelled by E. Following the usual abuse of notation, we use the same
symbol rV s for the Poincaré dual of the homology fundamental class rV s.

Proof. Let S be an irreducible surface in pP1q4 with fundamental class ηppq. We show that p34 ď

p13p24 ` p14p23 when p12 ą 0. Since p12 ą 0, the coordinate projections φ3pSq and φ4pSq are
irreducible hypersurfaces in pP1q3, and their cohomology classes satisfy

d3rφ3pSqs “ p24H1 ` p14H2 ` p12H4, d4rφ4pSqs “ p23H1 ` p13H2 ` p12H3,

where di is the degree of the map S Ñ φipSq. The inverse images φ´1
3 φ3pSq and φ´1

4 φ4pSq

are irreducible hypersurfaces in pP1q4, and they are necessarily distinct because p12 ą 0. Thus

5An integral vector is said to be primitive if its entries are coprime, that is, when the greatest common divisor of the
entries is 1. In contrast to the other arguments in this paper, the proof of this statement requires the base field to have
characteristic zero.
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φ´1
3 φ3pSq and φ´1

4 φ4pSq intersect generically transversally, and

d3d4rφ´1
3 φ3pSq X φ´1

4 φ4pSqs “ pp24H1 ` p14H2 ` p12H4qpp23H1 ` p13H2 ` p12H3q

“ pp13p24 ` p14p23qH1H2 ` p12pp24H1H3 ` p23H1H4 ` p14H2H3 ` p13H2H4 ` p12H3H4q.

Since S is an irreducible component of the intersection of φ´1
3 φ3pSq and φ´1

4 φ4pSq,

deg
´

φ12 : S Ñ pP1q2
¯

ď deg
´

φ12 : φ´1
3 φ3pSq X φ´1

4 φ4pSq Ñ pP1q2
¯

.

Thus, by Poincaré duality, the above computation gives

p34 ď d3d4p34 ď p13p24 ` p14p23. □

Remark 5.3. A complete characterization of the classes in H4pP2ˆP2,Zq realizable over Z is given
in [Huh13].

Consider now the homology classes of surfaces in pP1q4 obtained by intersecting classes of
hypersurfaces. We refer to these as complete intersection classes.

Definition 5.4. Let ∆pT1q be the set of pp12, p13, p14, p23, p24, p34q P
Ź2 R4 such that

pij ě 0 and pijpkl ` pikpjl ě pilpjk for any i, j, k, l.

We use ∆pT1q to characterize the complete intersection classes in pP1q4, up to a positive ra-
tional multiple:

Theorem 5.5. For any nonzero p P
Ź2 Q4, some positive rational multiple of ηppq is a complete

intersection class if and only if p P ∆pT1q.

It is not true that ηppq is alwyas a complete intersection class for any p P ∆pT1q X
Ź2 Z4. For

example, ηp1, 1, 1, 1, 1, 1q is not a complete intersection class, while ηp2, 2, 2, 2, 2, 2q is a complete
intersection class.

Proof. It will be useful to work with H‚ppP1q4,Qq instead of H‚ppP1q4,Qq. We set

pq34, q24, q23, q14, q13, q12q – pp12, p13, p14, p23, p24, p34q,

and, for any distinct indices i, j, k, l, define

qij|kl – qikqjl ` qilqjk ´ qijqkl “ pikpjl ` pilpjk ´ pijpkl.

Suppose S is a complete intersection surface in pP1q4 obtained by intersecting hypersurfaces
A and B. There are nonnegative integers ai and bi such that

rAs “ a1H1 ` a2H2 ` a3H3 ` a4H4, rBs “ b1H1 ` b2H2 ` b3H3 ` b4H4,

If rSs is equal to ηppq, then

rSs “
ÿ

iăj

qijHiHj “
ÿ

iăj

paibj ` ajbiqHiHj .
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Therefore, we obtain, for example,

p14p23 ` p13p24 ´ p12p34 “ q14q23 ` q13q24 ´ q12q34 “ 2pa1a2b3b4 ` b1b2a3a4q ě 0.

This proves the necessity of the condition p P ∆pT1q.

For the converse, suppose that p is an integral point in ∆pT1q. We use the following factor-
ization in H4ppP1q4,Qq:

p2q14q24q34q ¨ pq12H1H2 ` q13H1H3 ` q14H1H4 ` q23H2H3 ` q24H2H4 ` q34H3H4q “

pq14H1 ` q24H2 ` q34H3q ¨
`

q14|23q14H1 ` q13|24q24H2 ` q12|34q34H3 ` 2q14q24q34H4

˘

.

The coefficients qij and qij|kl are nonnegative because p P ∆pT1q. Therefore, if q14q24q34 is
nonzero, then 2q14q24q34 ηppq is a complete intersection class.

It remains to consider the cases when qilqjlqkl “ 0 for all i, j, k, l. Up to symmetry, the analysis
reduces to two cases: The case when q14 “ q24 “ q34 “ 0 and the case when q12 “ q34 “ 0.

In the first case, we may assume without loss of generality that q12 ą 0. We have

q12 ¨ pq12H1H2 ` q13H1H3 ` q23H2H3q “ pq12H1 ` q23H3q ¨ pq12H2 ` q13H3q,

so q12 ηppq is a complete intersection class.

In the second case, we have q13q24 “ q14p23. Thus, we may assume that q13, q24, q23, q14 are
nonzero, since otherwise we reduce to the previous case. We have

q13 ¨ pq13H1H3 ` q14H1H4 ` q23H2H3 ` q24H2H4q “ pq13H1 ` q23H2q ¨ pq13H3 ` q14H4q,

so q13 ηppq is a complete intersection class. □

Remark 5.6. Characterizing complete intersection classes in H2kpPm,Qq or H2kpPm,Rq is an ele-
mentary but challenging problem. For example, we do not know how to characterize complete
intersection classes up to a positive multiple in H4ppP2q3,Rq. If η is a complete intersection
surface class in pP2q3, then

p12p13p23 ě 4p11p22p33 and pjkpik ě pijpkk and p2ij ě 2piipjj ,

where pij “
ş

S
HiHj for all i, j. Which other inequalities hold for complete intersection classes?

Remark 5.7. Let A1, A2, A3, A4 be lattice polygons in R2. If fi and gi are general Laurent polyno-
mials with Newton polygon Ai, then the closure of the image of the map

pf1, g1q ˆ pf2, g2q ˆ pf3, g3q ˆ pf4, g4q : pC˚q2 ÝÑ pP1q4

has the homology class given by λ´1pp12, p13, p14, p23, p24, p34q P
Ź2Z4 for some λ ą 0, where

pij “ MVpAi, Ajq for all i ă j.

In [AS23, Theorem 3.2], Averkov and Soprunov show that

∆pT1q “
␣

p P
Ź2R4

ˇ

ˇ pij “ MVpAi, Ajq for convex bodies A1, A2, A3, A4 Ď R2
(

.

This gives an additional geometric interpretation of the locus ∆pT1q.



22 DAOJI HUANG, JUNE HUH, MATEUSZ MICHAŁEK, BOTONG WANG, AND SHOUDA WANG

6. REALIZABLE CLASSES IN PRODUCTS OF PROJECTIVE SPACES

As before, let m be a vector of positive integers pm1, . . . ,mnq, and let Pm be the product of
projective spaces

śn
i“1 Pmi . In this section, we prove Theorem 1.8: A class η P H4pPm,Qq is

realizable over Q if and only if Lpηq is Lorentzian, where Lpηq is the n ˆ n symmetric matrix
with entries

Lpηqij “

ż

η

HiHj for 1 ď i ď j ď n.

In [CFS25], the set of traceless Lorentzian matrices was identified with a massless Mandelstam
region and parametrized by the future timelike cone in Minkowski space. To adapt this obser-
vation to the setting of Theorem 1.8, we construct in Theorem 6.3 a smooth projective surface
of given Picard rank that contains no negative curves, and on which every nonzero nef divisor
is numerically equivalent to a semiample divisor.6 In Theorem 6.13, we prove a more precise
version of Theorem 1.8 for pP1qn with 2 ď n ď 11: If Lpηq is an integral Lorentzian matrix with
coprime entries and p is a prime number, then η is realizable over Z or pη is realizable over Z.

6.1. Prolific surfaces. Consider the vector space R1`d with coordinate functions x0, x1, . . . , xd

equipped with the nondegenerate symmetric bilinear pairing

x ¨ y “ px0, x1, . . . , xdq ¨ py0, y1, . . . , ydq “ x0y0 ´ x1y1 ´ ¨ ¨ ¨ ´ xdyd.

The future timelike cone C is the subset of vectors x satisfying x ¨ x ě 0 and x0 ě 0. The future
timelike cone is a self-dual convex cone:

C “
␣

x P R1`d
ˇ

ˇ x ¨ y ě 0 for all y P C
(

.

Thus, C consists of x satisfying x ¨ x ě 0 and x ¨ y ě 0 for any given y in the interior of C.

We consider the analogous cone for a smooth projective surface Y . For any unexplained
terms, we refer to [Laz04]. The intersection product defines a nondegenerate symmetric bilin-
ear pairing on the real Néron–Severi space NSpY qR with exactly one positive eigenvalue. We
consider the future timelike cone

CpY q –

"

D P NSpY qR

ˇ

ˇ

ˇ

ˇ

ż

Y

D2 ě 0 and
ż

Y

DH ě 0

*

,

where H is the class of a fixed ample divisor on Y . The cone CpY q contains the ample cone, and
it is independent of the choice of H .

In general, determining the cone of nef divisors on a smooth projective surface with large
Picard number can be challenging. An important exception occurs when the surface does not
contain any negative curve, that is, a reduced and irreducible curve with negative self-intersection
number.

6A Cartier divisor on X is said to be nef if it intersects every irreducible curve in X nonnegatively, and semiample if
some positive multiple of it is basepoint-free.
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Lemma 6.1. If Y does not contain any negative curve, then the cone of nef divisors on Y is equal
to CpY q.

Proof. In any case, the nef cone is contained in CpY q. If Y does not contain any negative curve,
then the nef cone is self-dual with respect to the intersection pairing [Laz04, Example 1.4.33], so
it must be equal to the self-dual cone CpY q. □

Definition 6.2. We say that a smooth projective surface Y is prolific if Y does not contain any
negative curve and every nef divisor on Y is numerically equivalent to a semiample divisor.

Let Pm be a product of n projective spaces, and let Y be a prolific surface of Picard rank at
least n ` 3. We will show in the next subsection that every realizable class in H4pPm,Qq is a
rational multiple of φ˚rY s for some φ : Y Ñ Pm.

Theorem 6.3. For any positive integer k, there is a prolific surface Y with Picard rank k.

It is enough to consider the case k ě 3. We write k “ n ` 2 for a positive integer n. For the
remainder of this subsection, fix an elliptic curve pE, eq with EndpEq » Z and an integer d ě 3.
Let H0, H1, . . . ,Hn be the inverse images of e under the coordinate projections En`1 Ñ E.
The 0-th coordinate will play a distinguished role, and we will occasionally emphasize this by
writing En`1 “ E ˆ En. We set

Y –

˜

the intersection of pn ´ 1q general members in the linear system of
n
ÿ

i“1

dHi

¸

.

The surface Y is of the form E ˆC, where C is a complete intersection curve in En. By Bertini’s
theorem, C is smooth and irreducible. We show that Y has the required properties.

Lemma 6.4. The surface Y does not contain any negative curve.

Proof. Since the elliptic curve E acts on Y by addition on the first factor, the only possible rigid
curves are fibers of the projection Y Ñ C. However, any such curve moves in an algebraic
family over C, so Y does not contain any rigid curve. □

Lemma 6.5. For distinct indices i and j, consider the divisor

∆ij –
␣

px0, x1, . . . , xnq P En`1
ˇ

ˇ xi “ xj

(

.

Then rHis for all i and r∆ijs for all distinct i and j form a basis of NSpEn`1qQ.

Proof. Let p1 and p2 be the projections from E ˆ En to E and En, and let q1 and q2 be the
inclusions from E » E ˆ en and En » e ˆ En to E ˆ En. By [Sch94, Theorem 3.9], we have

NSpE ˆ EnqQ{pp˚
1NSpEqQ ` p˚

2NSpEnqQq » HompE,Enq b Q.

The pullbacks p˚
1 , p

˚
2 , q

˚
1 , q

˚
2 define and split the short exact sequence

0 ÝÑ NSpEqQ ‘ NSpEnqQ ÝÑ NSpE ˆ EnqQ ÝÑ HompE,Enq b Q ÝÑ 0.
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Since dimHompE,Enq b Q “ n by the assumption on E, by induction, we see that

dimNSpE ˆ EnqQ “ 1 ` n `
1

2
npn ` 1q “

1

2
pn ` 1qpn ` 2q.

To see the linear independence of rHis and r∆ijs, we intersect the divisor classes against the
coordinate elliptic curves Ek » E and the diagonal elliptic curves Ekl » E in En`1 for all k ‰ l:

ż

Ek

Hi “

$

&

%

1 if i “ k,

0 otherwise,

ż

Ekl

Hi “

$

&

%

1 if there are exactly two distinct elements in i, k, l,

0 otherwise,

ż

Ek

∆ij “

$

&

%

1 if there are exactly two distinct elements in i, j, k,

0 otherwise,

ż

Ekl

∆ij “

$

&

%

1 if there are exactly three distinct elements in i, j, k, l

0 otherwise.

For any rational numbers ai and bij , we see that the conditions

ż

Ek

˜

ÿ

i

aiHi `
ÿ

iăj

bij∆ij

¸

“ ak `
ÿ

j‰k

bjk “ 0,

ż

El

˜

ÿ

i

aiHi `
ÿ

iăj

bij∆ij

¸

“ al `
ÿ

j‰l

bjl “ 0,

ż

Ekl

˜

ÿ

i

aiHi `
ÿ

iăj

bij∆ij

¸

“ ak ` al `

˜

´ bkl `
ÿ

j‰k

bjk

¸

`

˜

´ bkl `
ÿ

j‰l

bjl

¸

“ 0

together imply bkl “ 0 for all distinct k and l, which in turn implies ak “ 0 for all k. □

For the remainder of this subsection, we set γ – dn´1pn ´ 1q! and ∆i – ∆0i for i ‰ 0.

Lemma 6.6. For distinct indices i ‰ 0 and j ‰ 0, we have

ż

Y

∆i∆j “ 2γ,

ż

Y

∆iH0 “

ż

Y

∆iH1 “ γ,

ż

Y

H0H1 “ γ.

Proof. Since H0, Hi, and ∆i intersect transversely, we have

rHisr∆is “ rH0sr∆is “ rHisrH0s and r∆isr∆is “ rHisrHis “ rH0srH0s “ 0.
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Thus, for example, we have
ż

Y

∆1∆2 “ dn´1

ż

En`1

∆1∆2pH1 ` ¨ ¨ ¨ ` Hnqn´1

“ γ

„
ż

En`1

∆1∆2H1pH3 ¨ ¨ ¨Hnq `

ż

En`1

∆1∆2H2pH3 ¨ ¨ ¨Hnq

ȷ

“ γ

„
ż

En`1

∆2H0H1pH3 ¨ ¨ ¨Hnq `

ż

En`1

∆1H0H2pH3 ¨ ¨ ¨Hnq

ȷ

“ γ

„
ż

En`1

H0H1H2pH3 ¨ ¨ ¨Hnq `

ż

En`1

H0H1H2pH3 ¨ ¨ ¨Hnq

ȷ

“ 2γ.

The other computations are similar and simpler. For example, we have
ż

Y

∆iH0 “ dn´1

ż

En`1

H0HipH1 ` ¨ ¨ ¨ ` Hnqn´1 “ γ

ż

En`1

H0H1H2 ¨ ¨ ¨Hn “ γ,

ż

Y

∆iH1 “ dn´1

ż

En`1

∆iH1pH1 ` ¨ ¨ ¨ ` Hnqn´1 “ γ

ż

En`1

∆iH1H2 ¨ ¨ ¨Hn “ γ. □

We use the computation in Lemma 6.6 to obtain an explicit basis of NSpY qQ. We write ι˚ for
the pullback map NSpE ˆ EnqQ Ñ NSpY qQ.

Lemma 6.7. The Néron–Severi space NSpY qQ has basis

rD1s – ι˚r∆1s, . . . , rDns – ι˚r∆ns, rDn`1s – ι˚rH0s, rDn`2s – ι˚rH1s.

Proof. Recall that Y “ E ˆ C for C Ď En. Arguing as before for distinct i ‰ 0 and j ‰ 0,
ż

C

∆ij “

ż

C

2Hi “ 2γ, and hence ι˚r∆ijs “ 2ι˚rHis “ 2rDn`2s.

Lemma 6.5 thus implies that rD1s, . . . , rDn`2s span impι˚q.

Each rDis is either a pullback of the diagonal in E ˆ E or a pullback of a divisor on E, so its
self-intersection is zero. Therefore, by Lemma 6.6, the intersections between

rDis ´ rDn`1s ´ rDn`2s rDn`1s ´ rDn`2s, rDn`1s ` rDn`2s, i “ 1, . . . , n,

are given by the diagonal matrix with diagonal entries ´2γ, . . . ,´2γ, 2γ. For example,
´

rD1s ´ rDn`1s ´ rDn`2s

¯´

rD2s ´ rDn`1s ´ rDn`2s

¯

“ 0,
´

rD1s ´ rDn`1s ´ rDn`2s

¯´

rDn`1s ´ rDn`2s

¯

“ 0,
´

rD1s ´ rDn`1s ´ rDn`2s

¯´

rDn`1s ` rDn`2s

¯

“ 0.

Since this matrix is nondegenerate, rD1s, . . . , rDn`2s form a basis of impι˚q.

It remains to show that impι˚q “ NSpY qQ. The key step in the proof is the following classical
result, going back to Severi7:

7Severi’s original arguments in [Sev13] and [Sev27] were incomplete. A complete proof was later provided by
Ciliberto and van der Geer in [CvdG92]. The same statement was generalized to arbitrary uncountable algebraically
closed ground fields in [Ban17]. When the ground field is Q, the existence of the curve C was established in [Koc18].
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Let S be a smooth projective surface. If C is a very general curve in the linear system of
a very ample divisor, then the kernel of the natural map JacpCq Ñ AlbpSq is a simple
abelian variety.

Let S be the intersection of pn ´ 2q general members in the linear system of
řn

i“1 dHi in En. By
the Lefschetz hyperplane theorem, the Albanese variety of S is isomorphic to En,8 and hence
the Jacobian of C is isogenous to A ˆ En for some simple abelian variety A of large dimension.
Therefore, by [Sch94, Theorem 3.9], the surface Y “ E ˆ C satisfies

NSpY qQ{pNSpEqQ ` NSpCqQq » HompE, JacpCqq b Q » HompE,Enq b Q.

It follows that the dimension of NSpY qQ is equal to that of impι˚q. □

Proof of Theorem 6.3. It remains to show that any nef divisor D is numerically equivalent to a
semiample divisor. By replacing D with a positive multiple if necessary, we may write

rDs “ d1rD1s ` ¨ ¨ ¨ ` dn`1rDn`1s ` dn`2rDn`2s for di P Z.

By Lemma 6.6, the integers di are determined by the intersection numbers

1

γ

ż

Y

DDi “

$

’

’

&

’

’

%

2s0 ´ 2di ` dn`1 ` dn`2 when 1 ď i ď n,

s0 ` dn`2 when i “ n ` 1,

s0 ` dn`1 when i “ n ` 2,

where s0 – d1 ` ¨ ¨ ¨ `dn. If the self-intersection of D is positive, then D is ample by Lemma 6.1.
Thus, we may and will assume that the self-intersection of D is zero:

1

2γ

ż

Y

D2 “

´

s0 ` dn`1

¯´

s0 ` dn`2

¯

´

´

n
ÿ

j“1

d2j

¯

“ 0.

Since D is nef, the integer s0 ` dn`1 is nonnegative. If it is zero, then d1 “ ¨ ¨ ¨ “ dn “ 0 by the
displayed formula, so D is numerically equivalent to a nonnegative multiple of the semiample
divisor Dn`2. Thus, without loss of generality, we may suppose that s0 ` dn`1 is positive.

We use the group structure of E to define a map

Ψ : E ˆ En ÝÑ E, px0, x1, . . . , xnq ÞÝÑ ps0 ` dn`1qx0 ´ d1x1 ` ¨ ¨ ¨ ´ dnxn.

We gather some intersection-theoretic information on the fiber F of Ψ over e:

(1) When i is an element of t1, . . . , nu, the intersection product of F and pH1 ¨ ¨ ¨Hi´1q∆ipHi`1 ¨ ¨ ¨Hnq

counts the number of points x0 in E such that ps0 ` dn`1 ´ diqx0 is a given general point.
Since there are ps0 ` dn`1 ´ diq

2 such points, we have
ż

En`1

F pH1 ¨ ¨ ¨Hi´1q∆ipHi`1 ¨ ¨ ¨Hnq “ ps0 ` dn`1 ´ diq
2.

8For the case over an arbitrary algebraically closed ground field, see [Gro05, Corollaire XII.3.6].
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(2) When j is an element of t1, . . . , nu, the intersection product of F and pH1 ¨ ¨ ¨Hj´1qH0pHj`1 ¨ ¨ ¨Hnq

counts the number of points xj in E such that ´djxj is a given general point. Since there are
d2j such points, we have

ż

En`1

F pH1 ¨ ¨ ¨Hj´1qH0pHj`1 ¨ ¨ ¨Hnq “ d2j .

(3) When i and j are distinct elements of t1, . . . , nu, the intersection product of F and
pH1 ¨ ¨ ¨Hj´1q∆ipHj`1 ¨ ¨ ¨Hnq counts the number of points xj in E such that ´djxj is a given
general point. Since there are d2j such points, we have

ż

En`1

F pH1 ¨ ¨ ¨Hj´1q∆ipHj`1 ¨ ¨ ¨Hnq “ d2j .

Thus, for 1 ď i ď n, we have

1

γ

ż

Y

ι˚pF qDi “
1

pn ´ 1q!

ż

En`1

F∆ipH1 ` ¨ ¨ ¨ ` Hnqn´1 “ ps0 ` dn`1 ` diq
2 ´ d2i `

n
ÿ

j“1

d2j ,

1

γ

ż

Y

ι˚pF qDn`1 “
1

pn ´ 1q!

ż

En`1

FH0pH1 ` ¨ ¨ ¨ ` Hnqn´1 “

n
ÿ

j“1

d2j ,

1

γ

ż

Y

ι˚pF qDn`2 “
1

pn ´ 1q!

ż

En`1

FH1pH1 ` ¨ ¨ ¨ ` Hnqn´1 “ ps0 ` dn`1q2.

Comparing the intersection numbers for ι˚pF q with the intersection numbers for D, we see that

1

γ

ż

Y

ι˚pF qDi “
1

γ

ż

Y

ps0 ` dn`1qDDi for 1 ď i ď n ` 2.

Since the intersection pairing is nondegenerate, ps0`dn`1qD is numerically equivalent to ι˚pF q,
which is semiample. □

Remark 6.8. The proof of Lemma 6.7, and hence the proof of Theorem 6.3, is valid if the ground
field to be uncountable or of characteristic 0. Is there a prolific surface Y over Fp of any given
Picard rank?

6.2. Classes realizable over Q. We use a prolific surface Y of large Picard rank to prove The-
orem 1.8. The key remaining tool is Meyer’s theorem on indefinite rational quadratic forms
[Cas78, Chapter 6]:

If a homogeneous quadratic equation Qpx1, . . . , xnq “ 0 with rational coefficients in
five or more variables has a nonzero real solution, then it has a nonzero rational solution.

For a rational quadratic form Q, we write ps`pQq, s´pQq, s0pQqq for the signature of Q.

Lemma 6.9. Let P be a rational quadratic form on Qm, and let Q be a rational quadratic form
on Qn such that

s`pP q ď s`pQq, s´pP q ď s´pQq, and s`pP q ` s´pP q ` 3 ď s`pQq ` s´pQq.

Then there is a Q-linear map f : Qm Ñ Qn such that P pxq “ Qpfpxqq for all x P Qm.
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Proof. By taking a complement of the kernel of Q in Qn, we can reduce to the case when Q is
nondegenerate. We prove the statement by induction on m under this assumption, the case
m “ 0 being trivial.

Suppose P is not identically zero, since otherwise the assertion is trivial. In this case, n ě 4,
and there is x0 P Qm such that P px0q is nonzero. We introduce a new variable z, and apply
Meyer’s theorem to the quadratic equation

Rpy, zq – Qpyq ´ P px0qz2 “ 0.

Since Q is nondegenerate, R is nondegenerate, so the existence of a rational solution for R “ 0

implies the existence of a dense set of rational solutions for R “ 0. We choose a nonzero q P Q
and y0 P Qn such that

Qpy0q “ P px0qq2 “ P pqx0q.

Let xK
0 be the orthogonal complement to x0 in Qm, and let yK

0 be the orthogonal complement
to y0 in Qn. Since Qpy0q and P px0q have the same sign, the induction hypothesis applies to
the restrictions of P and Q to these orthogonal complements. The outcome is that there is a Q-
linear map f : xK

0 Ñ yK
0 such that P pxq “ Qpfpxqq for all x P xK

0 . The unique Q-linear extension
f : Qm Ñ Qn satisfying fpqx0q “ y0 has the desired property. □

Proof of Theorem 1.8. Let m “ pm1, . . . ,mnq be a vector of positive integers, and let η P H4pPm,Qq

be a class with Lpηq Lorentzian. We show that some rational multiple of η is realizable over Z.

By Theorem 6.3, there is a prolific surface Y of Picard rank n ` 3. By Lemma 6.9, we can find
rA1s, . . . , rAns P NSpY qQ such that Lpηqij “

ş

Y
AiAj for all i and j. Choose an ample divisor H

on Y such that
ş

Y
AiH is nonzero for all i, and set

rBis –

$

&

%

`rAis if
ş

Y
AiH is positive,

´rAis if
ş

Y
AiH is negative.

Since Y does not contain any negative curve, Lemma 6.1 determines the nef cone of Y . We
deduce that rBis is nef for every i because

ş

Y
BiH and

ş

Y
B2

i are nonnegative. Since the inter-
section between any nef divisors is nonnegative, we have Lpηqij “

ş

Y
BiBj for all i and j.

Since Y is prolific, we may suppose that Bi are semiample Q-divisors satisfying Lpηqij “
ş

Y
BiBj for all i and j. Choose a positive integer ℓ such that each ℓBi is the pullback of a

hyperplane under the map

φi : Y ÝÑ PH0pY,OY pℓBiqq_.

The image of φi is a curve if and only if Lpηqii “ 0.

If the dimension of the target projective space is at most mi, we replace φi by the composition
of φi with a linear inclusion into Pmi . If the dimension of the target projective space is larger
than mi, we replace φi by the composition of φi with a general linear projection onto Pmi . Since
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the image of φi is a curve whenever mi “ 1, such compositions do not change the class of the
pullback of a hyperplane. Combining all the maps, we get

φ –

n
ź

i“1

φi : Y ÝÑ Pm.

By construction, rφpY qs “ ℓ2

λ η, where λ is the degree of the map Y Ñ φpY q. □

Remark 6.10. As noted before, Theorem 6.3 remains valid over any uncountable algebraically
closed field. From this, one can deduce that Theorem 1.8 remains valid over any algebraically
closed field if we replace H4pPm,Qq by the Chow group CH2pPm,Qq. To see this, let k1 be an
algebraically closed field, and let k2 be an uncountable algebraically closed field extension of
k1. Suppose that Z2 is an irreducible subvariety of Pm over k2. Fixing an ample divisor of Pm,
the subvariety Z2 defines a k2-point of the Hilbert scheme HilbP pPmq, where P is the Hilbert
polynomial of Z2 with respect to the fixed ample divisor [Gro95]. The field extension k1 Ď k2

induces an injective map HilbP pPmqpk1q Ñ HilbP pPmqpk2q whose image is Zariski dense. Since
being geometrically integral is an open condition [Gro65, Théorème 12.2.1], there is a k1-point
of HilbP pPmq such that the corresponding k1-subscheme Z1 is integral and rZ1s “ rZ2s.

Let X be a d-dimensional irreducible projective variety over an algebraically closed field k.
For any collection of nef Q-divisors D “ pD1, . . . , Dnq on X , consider the polynomial

fHpx1, . . . , xnq “
1

d!

ż

X

px1D1 ` ¨ ¨ ¨ ` xnDnqd.

A volume polynomial over k is any limit of such polynomials. A volume polynomial over k is
a Lorentzian polynomial in the sense of [BH20]. Theorem 1.8 implies that the converse holds
when d “ 2.

Corollary 6.11. For a quadratic polynomial f , the following conditions are equivalent:

(1) f is a volume polynomial over some k.

(2) f is a volume polynomial over any k.

(3) f is a Lorentzian polynomial.

Remark 6.12. When d ě 3, it is not known if the set of volume polynomials over K depends
on k. Not every cubic Lorentzian polynomial is a volume polynomial over k for some k. The
following example was given in [Huh23, Example 14]:

f “ 14x3
1 ` 6x2

1x2 ` 24x2
1x3 ` 12x1x2x3 ` 6x1x

2
3 ` 3x2x

2
3.

This example highlights the subtlety involved in formulating a reasonable conjecture that char-
acterizes, for example, the realizable classes in H6ppP3q3,Rq.
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6.3. Classes realizable over Z. Let n be an integer satisfying 2 ď n ď 11. This will be the stand-
ing assumption in this subsection. We use K3 surfaces to construct many classes in H4ppP1qn,Zq

that are realizable over Z. An integral matrix is said to be primitive if its entries are coprime, that
is, when the greatest common divisor of the entries is 1.

Theorem 6.13. Let η be a class in H4ppP1qn,Zq. If Lpηq is a primitive Lorentzian matrix and p is
a prime number, then η is realizable over Z or pη is realizable over Z.

Unlike the other arguments in this paper, our proof of Theorem 6.13 essentially relies on the
fact that we are working over a field of characteristic 0. We do not know if Theorem 6.13 remains
valid if we work over any algebraically closed field or if we drop the assumption that n ď 11.

We deduce Theorem 6.13 from the following existence result.

Proposition 6.14. Let L be a nondegenerate rank n integral Lorentzian matrix with zero diago-
nal entries. If the quadratic form xLxT does not take the value ´2 on Zn, then there is a complex
K3 surface Y and divisors D1, . . . , Dn on Y satisfying the following conditions:

(1) The intersection product
ş

Y
DiDj is equal to Lij for all i and j.

(2) The classes rD1s, . . . , rDns form a Z-basis of the Néron–Severi group NSpY qZ.

(3) The surface Y does not contain any negative curve.

(4) The divisors D1, . . . , Dn are basepoint-free.

Proof. The main ingredient is [Mor84, Corollary 2.9, Remark 2.11]:

If n ď 11, then every even lattice of signature p1, n ´ 1q occurs as the Néron–Severi
group of some complex algebraic K3 surface equipped with the intersection pairing.

Its proof relies on the global surjectivity of the period mapping for K3 surfaces [Huy16, Section
7.4] and Nikulin’s lattice embedding theorem [Nik79, Theorem 1.10.1].

Since the diagonal entries of L are zero, the quadratic form xLxT is even. We thus get a
complex K3 surface Y and divisors D1, . . . , Dn satisfying conditions (1) and (2). Any negative
curve on a K3 surface must have self-intersection ´2 [Huy16, Section 2.1.3], so the surface Y

must also satisfy condition (3).

Choose an ample divisor H on Y such that
ş

Y
DiH is nonzero for all i. Since Y does not

contain any negative curve, Lemma 6.1 determines the nef cone of Y . We deduce that either
Di is nef or ´Di is nef for each i, because the self-intersections are zero. By replacing every
Di by ´Di if necessary, we may suppose without loss of generality that D1 is nef. We show
in this case that Di is nef for every i. This gives condition (4), because every nef divisor D of
self-intersection zero on a K3 surface is basepoint-free [Huy16, Chapter 2, Proposition 3.10].

Suppose D1, . . . , Dk and ´Dk`1, . . . ,´Dn are nef divisors. If Di is chosen from the first
group and Dj is chosen from the second group, then Lij “

ş

Y
DiDj is nonpositive, so Lij must
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be zero. This means that L is a symmetric block-diagonal matrix with nonnegative entries, so L

has at least two positive eigenvalues if the decomposition is nontrivial. Since L is Lorentzian,
the block decomposition is trivial, so every Di is nef. □

Remark 6.15. By [Huy16, Remark 17.2.16], we may find such a K3 surface over Q. This shows
that Theorem 6.13 remains valid over any algebraically closed field of characteristic 0.

Proof of Theorem 6.13. We prove the following more precise statement:

If Lpηq is a nonzero integral Lorentzian matrix and the quadratic form xLpηqxT does
not take the value ´2 on Zn, then λ´1η is realizable over Z for some positive integer λ.

Applying this statement to pη when Lpηq is primitive, we see that λ´1η is realizable over Z for
some positive integer λ, where λ is necessarily 1 or p.

We first consider the case when Lpηq is nondegenerate. By Proposition 6.14, there is a complex
K3 surface Y and divisors D1, . . . , Dn with the stated properties. We choose a pencil in the linear
system of Di for each i to define a map

φ : Y ÝÑ pP1qn.

By construction, rφpY qs “ λ´1η, where λ is the degree of the map Y Ñ φpY q.

When Lpηq is degenerate, consider the nondegenerate quadratic form Mpηq on Zn{ kerLpηq

induced by Lpηq. By [Mor84, Corollary 2.9, Remark 2.11], there is a K3 surface Y and an isometry

Zn{ kerLpηq » NSpY qZ.

Let rD1s, . . . , rDns be the divisor classes on Y corresponding to the image of the standard basis
vectors of Zn, so that the intersection matrix of D1, . . . , Dn is equal to Lpηq. As in the proof of
Proposition 6.14, replacing every Di by ´Di if necessary, we may assume that each Di is a nef
divisor. By [Huy16, Chapter 2, Proposition 3.10], each Di is basepoint-free, and we can apply
the same construction as in the nondegenerate case. □

7. REALIZABILITY IN GRASSMANNIAN AND OTHER VARIETIES

Let BkpXq Ď H2kpX,Rq be the subspace spanned by the k-dimensional algebraic cycles on X

with real coefficients. We consider the closed subset

RkpXq – tk-dimensional classes on X that are realizable over Ru Ď BkpXq.

We write RkpXq for Rd´kpXq, where d is the dimension of X . In general, RkpXq may exhibit
sporadic structures in that it may be different from the closure of its interior in BkpXq.

Proposition 7.1. For any smooth projective variety X , we have

R1pXq˝ “ Mov1pXq˝,
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where Mov1pXq˝ denotes the interior of the movable cone of divisors in NSpXqR.9

In particular, when X is a surface, the interior of R1pXq is precisely the ample cone of X , and
every ray in R1pXqzR1pXq˝ is isolated.

Proof. Notice that when rDs is in the interior of either Mov1pXq or R1pXq, then rDs is in the
interior of the pseudoeffective cone, and hence D is big [Laz04, Theorem 2.2.26].

Suppose that D is an irreducible divisor whose class is in R1pXq˝. Since D is big, there is a
smallest integer m such that mD is linearly equivalent to E for some effective divisor E different
from mD. By the minimality of m, no component of E is equal to D. Thus, the base locus of the
linear system |D| must have codimension at least 2, and hence D is movable.

Suppose that D is an effective divisor whose class is in Mov1pXq˝. Since D is big, there
is a positive integer r such that the base locus of the linear system |rD| has codimension at
least 2 and the induced rational map φ : X 99K Pn is generically injective. Let U be the open
subset of X where φ is well-defined, and let H be a general hyperplane of Pn. Then, by Bertini’s
irreducibility theorem, the closure of U Xφ´1H is an irreducible divisor of X linearly equivalent
to rD, so rDs is realizable over Q. □

It follows that the interior of R1pXq is convex for any smooth projective variety X . On the
other hand, the interior of R2pXq is typically not convex, as we have seen in the case when
X “ pP1q4.

In the following example, we observe that the interior of R1pXq need not be connected.

Example 7.2. A general quintic threefold Y in P4 contains a line L with the normal bundle

NL{Y – Op´1q ‘ Op´1q.

See, for example, [EH16, Proposition 6.30]. Let X be the blow up of Y along L, and denote the
pullback of the hyperplane class by H and the exceptional divisor by E, so that

E » P1 ˆ P1 and NE{Y » OP1p´1q b OP1p´1q.

The Chow ring of X is determined by the relations
ż

Y

H3 “ 5,

ż

Y

H2E “ 0,

ż

Y

HE2 “ ´1,

ż

Y

E3 “ 2, and H2 ` 10HE ` 5E2 “ 0.

The effective cone of divisors on X is generated by H ´ E and E, and its dual cone of movable
curves on X is given by

Mov1pXq “ cone

˜

H2

5
,
H2

5
´ HE

¸

Ď R1pXq.

9Recall that the movable cone of divisors is the closure of the cone generated by classes of effective Cartier divisors
L such that the base locus of the complete linear system |L| has codimension at least 2. We thank Chenyang Xu for
suggesting this statement.
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It is easy to check that the class of any irreducible curve in X not contained in E is in this cone. In
general, the cone of movable curves is the closure of the pushforwards of complete intersection
of ample divisors under projective birational mappings [BDPP13]. In this case, one can check
that any class in this cone can be approximated by the classes of complete intersections of ample
divisors on X . This gives one component of R1pXq˝. The other component of R1pXq˝ is given
by the curves contained in E » P1 ˆ P1:

ι˚Mov1pEq “ cone

˜

HE,
H2

5
` HE

¸

Ď R1pXq.

Together they generate the effective cone of curves in X . The shaded region in Figure 2 shows
the classes of irreducible curves C in X :

C Ď E

C Ę E

HE

H2{5 ` HE

H2{5

H2{5 ´ HE

FIGURE 2. The classes of irreducible curves in X

The pseudoeffective cone in BkpXq is the closure of the cone generated by the k-dimensional
effective cycles on X , and the elements of this cone are called pseudoeffective. An element η P

BkpXq is called universally pseudoeffective if π˚η is pseudoeffective for any morphism π : Y Ñ X

from a smooth projective variety Y . The cone of k-dimensional universally pseudoeffective
classes on X is a higher-codimension analogue of the cone of nef divisors.10 In [FL17], Ful-
ger and Lehmann show several desirable properties of the cone of universally pseudoeffective
classes. A divisor class is universally pseudoeffective if and only if it is nef, and a curve class is
universally pseudoeffective if and only if it is in the closure of the cone of movable curves.

We propose a general conjecture concerning 2-dimensional realizable classes on a smooth
complex projective variety X . The idea is that R2pXq has a predictable shape within the cone of
universally pseudoeffective cycles. Set H1,1pXqR – H2pX,Rq X H1,1pXq.

Conjecture 7.3. The following are equivalent for any universally pseudoeffective η P B2pXq.

(1) The class η is realizable over R.

10A k-dimensional universally pseudoeffective class is nef : Its intersection with any codimension k subvariety of X
is nonnegative. Grothendieck asked whether nef classes are always pseudoeffective (and thus universally pseudoeffec-
tive). Debarre, Ein, Lazarsfeld, and Voisin provided a negative answer to this question in [DELV11] when k “ 2.
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(2) The matrix representation of the bilinear form

H1,1pXqR ˆ H1,1pXqR ÝÑ R, pα, βq ÞÝÑ

ż

η

α ^ β

has at most one positive eigenvalue.

That (1) implies (2) follows from the Hodge–Riemann relations for H1,1pSq, where S Ñ X is
any map from a smooth projective surface. Since every Lorentzian matrix is a limit of Lorentzian
matrices with rational entries, Theorem 1.8 confirms Conjecture 7.3 when X is a product of
projective spaces.

The following example demonstrates that, in Conjecture 7.3, it is essential to require that η is
universally pseudoeffective rather than merely pseudoeffective.

Example 7.4. Let π : X Ñ P3 be the blowup of P3 along a line L, and consider the class

ηpa, bq “ arHs ` brEs P H4pX,Zq,

where H is the pullback of a hyperplane and E is the exceptional divisor. The Chow ring of X
is determined by the relations

ż

X

H3 “ 1,

ż

X

H2E “ 0,

ż

X

HE2 “ ´1,

ż

X

E3 “ ´2, and pH ´ Eq2 “ 0.

Using these, it is straightforward to check that the bilinear form of ηpa, bq has at most one pos-
itive eigenvalue on H2pX,Rq for any a and b. On the other hand, ηpa, bq is realizable over Z if
and only if

´

a ą 0 and b ď 0 and a ` b ą 0
¯

or pa, bq “ p1,´1q or pa, bq “ p0, 1q.

Indeed, if b ą 0, any fiber over a point in L intersects ηpa, bq negatively, so an effective cycle with
class ηpa, bq should contain E as a component.

The following example demonstrates that a universally pseudoeffective η P H4pX,Zq satisfy-
ing the condition (2) in Conjecture 7.3 need not be realizable over Q.

Example 7.5 (Mumford’s example). Take a smooth projective surface Y and a divisor D on Y

with self-intersection zero such that the intersection of D and any irreducible curve in Y is
positive [Laz04, Example 1.5.2]. Let Z be a smooth projective curve, and take the nef class η on
X – Y ˆ Z given by π˚pDq, where π is the projection X Ñ Y . As any nef class is a limit of
ample classes [Laz04, Section 1.4], the class η is realizable over R.

We check that η is not realizable over Q. Suppose λπ˚pDq is the class of an irreducible surface
S for some positive rational number λ. By the projection formula, the intersection of S with a
fiber of π has degree zero, so S must be of the form π´1pCq for some irreducible curve C in Y .
Since the intersection of D and C in Y is positive, the intersection of π˚pDq and S is homologous
to a positive sum of fibers of π, contradicting that the self-intersection of D is zero.
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We give an explicit universally pseudoeffective η P H4pX,Zq for a 6-dimensional smooth
projective toric variety X for which the validity of Conjecture 7.3 is unknown. See [Huh18] for
background and unexplained terms. We recall that, if X is a toric variety, or more generally a
spherical variety, then a class is universally pseudoeffective if and only if it is nef [FL17, Example
4.5].

Example 7.6 (Matroid classes). Let Xn be the complex smooth projective toric variety of the
n-dimensional permutohedron. The Bergman fan of any simple rank 3 matroid M on n ` 1 ele-
ments defines a class ∆M P H4pXn,Zq that is nef and effective [Huh18, Section 5]. The Hodge–
Riemann relations for M in [AHK17, Theorem 1.4] shows that ∆M satisfies the condition (2) of
Conjecture 7.3. If the matroid M is realizable over C, then ∆M is realizable over Z [Huh18, Sec-
tion 6]. Yu observes in [Yu17] that, if the matroid M is not realizable over C, then ∆M is not
realizable over Q. Take any M that is not realizable over C. For example, take the matroid of the
Fano plane P2pF2q on seven elements. Is ∆M realizable over R?

When X is a homogeneous space G{P of Picard rank 1, then every effective class is uni-
versally pseudoeffective, and the condition (2) of Conjecture 7.3 is automatically satisfied for
all effective classes. We verify Conjecture 7.3 for Grassmannians by showing that any effective
class in H4pGrpk, nq,Zq is realizable over Z, unless it is a multiple of some Schubert class.

We suppose 2 ď k ď n ´ 2, since otherwise the assertion is trivial. Fix subspaces

Fi – spanpe1, e2, . . . , eiq Ď Cn and Gi – spanpen, en´1, . . . , ei`1q Ď Cn,

and consider the corresponding Schubert varieties in Grpk, nq:

S1 – tk-dimensional subspaces V Ď Cn such that Fk´2 Ď V Ď Fk`1u,

S2 – tk-dimensional subspaces V Ď Cn such that Fk´1 Ď V Ď Fk`2u,

T1 – tk-dimensional subspaces V Ď Cn such that dimV X Gk´1 ě 2u,

T2 – tk-dimensional subspaces V Ď Cn such that dimV X Gk`1 ě 1u.

The classes of S1 and S2 form a Z-basis of H4pGrpk, nq,Zq. For integers a1 and a2, we set

ηpa1, a2q – a1 rS1s ` a2 rS2s.

The intersections between cycles of dimension 2 and codimension 2 are given by

rS1s ¨ rT1s “ rS2s ¨ rT2s “ rpoints and rS1s ¨ rT2s “ rS2s ¨ rT1s “ 0.

Theorem 7.7. The class ηpa1, a2q is realizable over Z if and only if one of the following holds:

(1) a1 ą 0 and a2 ą 0, or pa1, a2q “ p1, 0q or pa1, a2q “ p0, 1q, when k “ 2 and n “ 4.

(2) a1 ě 0 and a2 ą 0, or pa1, a2q “ p1, 0q, when k “ 2 and n ą 4.

(3) a2 ě 0 and a1 ą 0, or pa1, a2q “ p0, 1q, when k “ n ´ 2 and n ą 4.

(4) a1, a2 ě 0 and pa1, a2q ‰ p0, 0q, when n ´ 2 ą k ą 2.
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Compare Theorem 7.7 with the conjectural bound a1 ď 3a2 for homology classes of smooth
surfaces in Grp2, 4q with a1, a2 ą 0 in [DR91]. In [Gro92], Gross proves that the following holds
for the class ηpa1, a2q of any smooth surface S Ď Grp2, 4q with a1, a2 ą 0: If S is not of general
type or a2 ď 19, then a1 ď 3a2.

Proof. Suppose that ηpa1, a2q is realizable over Z. We must have a1, a2 ě 0 and pa1, a2q ‰ p0, 0q

because the effective cone of Grpk, nq is generated by rS1s and rS2s.

We first show that ηpa1, 0q is realizable over Z in Grp2, nq only if a1 “ 1. By Grassmannian
duality, this implies that ηp0, a2q is realizable over Z in Grpn ´ 2, nq only if a2 “ 1. These results
follow from, for example, the characterisation of Schur rigid classes in [RT12]. For the sake of
completeness, we provide a direct argument. Suppose Y is an irreducible surface in Grp2, nq

with rY s “ ηpa1, 0q. Consider the union of projective lines

Z “
ď

V PY

PpV q Ď PpCnq.

Since Z is the image of a projective bundle over Y , it is irreducible. We use Kleiman’s generic
transversality [Kle74] to extract information on Z from rY s:

(1) The intersection of Y and a general translate of T2 is empty. Thus, there is a codimension 3

linear subspace of PpCnq that does not intersect Z. Therefore, Z is a surface.

(2) The intersection of Y and a general translate of T1 consists of a1 distinct points. Thus, the
intersection of Z with a general hyperplane of PpCnq contains a1 distinct lines.

By Bertini’s theorem [Jou83, Theorem 7.1], this general hyperplane section of Z is an irreducible
curve, so a1 is necessarily 1.

We next show that ηpa1, 0q is realizable over Z in Grpk, nq for all a1 ą 0 when k ą 2. By
Grassmannian duality, this implies that ηp0, a2q is realizable over Z in Grpk, nq for all a2 ą 0

when n ´ 2 ą k. Suppose k ą 2, and consider the Schubert variety

Pk » tk-dimensional subspaces V Ď Cn with V Ď Fk`1u Ď Grpk, nq.

Since k ą 2, there is an irreducible surface Y of degree a1 in this Pk. Clearly, rY s “ ηpa1, 0q.

When a1, a2 ą 0, the realizability can be reduced to the case when n “ 4 and k “ 2: We have

Grp2, 4q » tk-dimensional subspaces V Ď Cn with Fk´2 Ď V Ď Fk`2u Ď Grpk, nq,

and the pushforward map of the inclusion sends ηpa1, a2q to ηpa1, a2q.

We construct an explicit irreducible surface Y in Grp2, 4q whose homology class is ηpa1, a2q

for given positive integers a1, a2. By Grassmannian duality, we may assume that a1 ě a2.
Consider the subspace

V px, yq – span
´

e1 ` xa1e3 ` xa2e4, e2 ` ye3 ` xe4

¯

Ď C4,
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and let Y be the closure in Grp2, 4q of the subset
!

V px, yq, x, y P C
)

Ď Grp2, 4q.

By Poincaré duality, it is enough to show that rT1s ¨ rY s “ a1 and rT2s ¨ rY s “ a2.

We compute the intersection of Y with T1. This amounts to counting the number of sub-
spaces V px, yq that are perpendicular to a given general vector pc1, c2, c3, c4q, that is, counting
the number of solutions of the system of equations

c1 ` c3x
a1 ` c4x

a2 “ 0 and c2 ` c3y ` c4x “ 0.

Since a1 ě a2 ą 0, the first equation has a1 solutions, and the second equation uniquely deter-
mines y given x. This gives rT1s ¨ rY s “ a1.

We compute the intersection product of Y with T2. This amounts to counting the number of
subspaces V px, yq that contain a given general vector pc1, c2, c3, c4q, that is, counting the number
of solutions of the system of equations

c1x
a1 ` c2y “ c3 and c1x

a2 ` c2x “ c4.

Since a2 ą 0, the second equation has a2 solutions, and the first equation uniquely determines
y given x. This gives rT2s ¨ rY s “ a2. □
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MR 61823 3
[Yu17] Josephine Yu, Algebraic matroids and set-theoretic realizability of tropical varieties, J. Combin. Theory Ser. A 147

(2017), 41–45. MR 3589888 35

https://stacks.math.columbia.edu


40 DAOJI HUANG, JUNE HUH, MATEUSZ MICHAŁEK, BOTONG WANG, AND SHOUDA WANG

INSTITUTE FOR ADVANCED STUDY AND UNIVERSITY OF MASSACHUSETTS AMHERST

Email address: daojihuang@umass.edu

PRINCETON UNIVERSITY AND KOREA INSTITUTE FOR ADVANCED STUDY

Email address: huh@princeton.edu

UNIVERSITY OF KONSTANZ

Email address: mateusz.michalek@uni-konstanz.de

UNIVERSITY OF WISCONSIN–MADISON

Email address: wang@math.wisc.edu

PRINCETON UNIVERSITY

Email address: shoudawang@princeton.edu


	1. Introduction
	Notations
	Acknowledgements

	2. Homology classes and volumes
	3. Projections and mixed volumes of four-dimensional bodies
	4. Realizing the boundary of (T2)
	5. Realizable classes in (P1)4
	6. Realizable classes in products of projective spaces
	6.1. Prolific surfaces
	6.2. Classes realizable over Q
	6.3. Classes realizable over Z

	7. Realizability in Grassmannian and other varieties
	References

