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POSITIVITY OF CHERN CLASSES
OF SCHUBERT CELLS AND VARIETIES

JUNE HUH

Abstract

We show that the Chern-Schwartz-MacPherson class of a Schubert cell
in a Grassmannian is represented by a reduced and irreducible subva-
riety in each degree. This gives an affirmative answer to a positivity
conjecture of Aluffi and Mihalcea.

1. Introduction

The classical Schubert varieties in the Grassmannian of d-planes in a vector

space E are among the most studied singular varieties in algebraic geometry.

The subject of this paper is the study of Chern classes of Schubert cells and

varieties.

There is a good theory of Chern classes for singular or noncomplete complex

algebraic varieties. If X◦ is a locally closed subset of a complete variety X,

then the Chern-Schwartz-MacPherson class of X◦ is an element in the Chow

group

cSM (X◦) ∈ A∗(X),

which agrees with the total homology Chern class of the tangent bundle of X

if X is smooth and X = X◦. The Chern-Schwartz-MacPherson class satisfies

good functorial properties which, together with the normalization for smooth

and complete varieties, uniquely determine it. Basic properties of the Chern-

Schwartz-MacPherson class are recalled in Section 2.1.

If α = (α1 ≥ α2 ≥ · · · ≥ αd ≥ 0) is a partition, then there is a correspond-

ing Schubert variety S(α) in the Grassmannian of d-planes in E, parametrizing

d-planes which satisfy incidence conditions with a flag of subspaces determined

by α. See Section 2.2 for our notational conventions. The Schubert variety is
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2 JUNE HUH

a disjoint union of Schubert cells

S(α) =
∐
β≤α

S(β)◦,

where the union is over all β = (β1 ≥ β2 ≥ · · · ≥ βd ≥ 0) which satisfy βi ≤ αi

for all i. Since each Schubert cell S(β)◦ is isomorphic to an affine space, the

Chow group of S(α) is freely generated by the classes of the closures
[
S(β)

]
.

Therefore we may write

cSM

(
S(α)◦

)
=

∑
β≤α

γα,β
[
S(β)

]
∈ A∗

(
S(α)

)
for uniquely determined coefficients γα,β ∈ Z.

Various explicit formulas for these coefficients are obtained in [AM09]. One
of the formulas says that γα,β is the sum of the binomial determinants

γα,β =
∑
L

det

[( αi − li,i+1 − li,i+2 − · · · − li,d

βj + i− j + l1,i + l2,i + · · ·+ li−1,i − li,i+1 − li,i+2 − · · · − li,d

)]
1≤i,j≤d

where the sum is over all strictly upper triangular nonnegative integral ma-

trices L = [lp,q]1≤p<q≤d such that

0 ≤ lp,p+1 + lp,p+2 + · · ·+ lp,d ≤ αp+1 for 1 ≤ p < d.

For example, γ(3≥2≥1),(2≥0≥0) is the sum of the determinants of the matrices
⎛
⎝ 3 0 0

0 1 0
0 1 1

⎞
⎠ ,

⎛
⎝ 2 0 0

0 2 1
0 1 1

⎞
⎠ ,

⎛
⎝ 2 0 0

0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝ 1 0 0

0 1 2
0 1 1

⎞
⎠ ,

⎛
⎝ 1 0 0

0 2 1
0 0 1

⎞
⎠ ,

⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ ,

⎛
⎝ 3 0 0

0 0 0
0 0 1

⎞
⎠ ,

⎛
⎝ 2 0 0

0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝ 2 0 0

0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 1 0 0

0 1 1
0 0 1

⎞
⎠ ,

⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ ,

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ .

That is,

γ(3≥2≥1),(2≥0≥0) = 3 + 2 + 2 + (−1) + 2 + 0 + 0 + 2 + 0 + 1 + 0 + 0 = 11.

Based on substantial computer calculations, Aluffi and Mihalcea conjectured

that all γα,β are nonnegative [AM09, Conjecture 1].

Conjecture 1. For all β ≤ α, the coefficient γα,β is nonnegative.

When d = 2, the classical Lindström-Gessel-Viennot lemma shows that

γα,β is the number of certain nonintersecting lattice paths joining pairs of

points in the plane, and hence nonnegative [AM09, Theorem 4.5].

The following is the main result of this paper. Fix a nonnegative integer

k ≤ dim S(α), and write cSM

(
S(α)◦

)
k
for the k-dimensional component of

cSM

(
S(α)◦

)
in Ak

(
S(α)

)
.

Theorem 2. There is a nonempty reduced and irreducible k-dimensional

subvariety Z(α) of S(α) such that

cSM

(
S(α)◦

)
k
=

[
Z(α)

]
∈ Ak

(
S(α)

)
.
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CHERN CLASSES OF SCHUBERT CELLS AND VARIETIES 3

For an explicit description of the subvariety Z(α), see Theorem 15. The

proof of Theorem 2 is based on an explicit description of the Chern class of

a vector bundle at the level of cycles. This vector bundle lives on a carefully

chosen desingularization of S(α), and it is not globally generated in general.

Since any 0-dimensional subvariety is a point, the assertion of Theorem 2

when k = 0 is just

χ
(
S(α)◦

)
=

∫
S(α)

cSM

(
S(α)◦

)
= 1.

In general, homology classes representable by a reduced and irreducible sub-

variety have significantly stronger properties than those representable by an

effective cycle. These stronger properties are sometimes of interest in ap-

plications [Huh12a, Huh15]. Unfortunately, little seems to be known about

homology classes of subvarieties of a Grassmannian. For the case of curves

and multiples of Schubert varieties, however, see [Bry10,Cos11,CR13,Hon05,

Hon07,Per02].

It is known that the cone of effective cycles in Ak

(
S(α)

)
⊗Q is a polyhedral

cone generated by the classes of k-dimensional S(β) with β ≤ α [FMSS95].

Therefore Theorem 2 gives an affirmative answer to Conjecture 1.

Corollary 3. For all β ≤ α, the coefficient γα,β is nonnegative.

Corollary 3 was previously known for all α when d = 2 [AM09] or d = 3

[Mih07], and for all β ≤ α such that the codimension of S(β) in S(α) is at

most 4 [Str11].

It also follows from Theorem 2 that the Chern-Schwartz-MacPherson class

of the Schubert variety

cSM

(
S(α)

)
=

∑
β≤α

cSM

(
S(β)◦

)

is represented by an effective cycle. This weaker version of positivity was

obtained in [Jon10, Theorem 6.5] for a certain infinite class of partitions α

using Zelevinsky’s small resolution.

Finding a positive combinatorial formula for γα,β remains a very interesting

problem. As mentioned before, γα,β is the number of certain nonintersecting

lattice paths joining pairs of points in the plane when d = 2. A similar

positive combinatorial formula is known for d = 3 [Mih07, Corollary 3.10].

The reader will find useful discussions and numerical tables of γα,β in [AM09,

Mih07,Jon07,Jon10,Str11,Web12].
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4 JUNE HUH

2. Preliminaries

2.1. Here we briefly recall the basic properties of the Chern-Schwartz-

MacPherson class. More details can be found in [Alu05,Ken90,Mac74,Sch05].

Let X be a complete complex algebraic variety. The group of constructible

functions on X is the free abelian group C(X) generated by functions of the

form

1W =

{
1, x ∈ W,

0, x /∈ W,

where W is a closed subvariety of X. If f : X −→ Y is a morphism between

complete varieties, then the push-forward f∗ is defined to be the homomor-

phism

f∗ : C(X) −→ C(Y ), 1W �−→
(
y �−→ χ

(
f−1(y) ∩W

))
where χ stands for the topological Euler characteristic. This defines a functor

C from the category of complete varieties to the category of abelian groups.

Definition 4. The Chern-Schwartz-MacPherson class is the unique natu-

ral transformation

cSM : C −→ A∗

such that

cSM (1X) = c(TX) ∩ [X] ∈ A∗(X)

if X is a smooth and complete variety with the tangent bundle TX . When

X◦ is a locally closed subset of X, we write

cSM (X◦) := cSM (1X◦).

The functoriality of cSM says that, for any f : X −→ Y as above, we have

the commutative diagram

C(X)

f∗

��

cSM �� A∗(X)

f∗

��

C(Y )
cSM

�� A∗(Y ).

The uniqueness of cSM follows from the functoriality, the resolution of singu-

larities, and the normalization for smooth and complete varieties. The exis-

tence of cSM , which was once a conjecture of Deligne and Grothendieck, was

proved by MacPherson in [Mac74]. The Chern-Schwartz-MacPherson class

satisfies the inclusion-exclusion formula

cSM (1U1∪U2
) = cSM (1U1

) + cSM (1U2
)− cSM (1U1∩U2

)
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CHERN CLASSES OF SCHUBERT CELLS AND VARIETIES 5

and captures the topological Euler characteristic as its degree

χ(U) =

∫
cSM (1U ).

Here U,U1, U2 can be any constructible subset of a complete variety. For a

construction of cSM with an emphasis on noncomplete varieties, see [Alu06a,

Alu06b].

2.2. We define the Schubert variety S(α) corresponding to a partition α

in the Grassmannian of d-planes Grd(E). Schubert varieties will only appear

in the last section of this paper.

Our notation for Schubert varieties is consistent with that of [AM09]. In the

study of homology Chern classes, this ‘homological’ notation has advantages

over the more common ‘cohomological’ notation.

Let E be a complex vector space with an ordered basis e1, . . . , en+d, and

take Fk to be the subspace spanned by the first k vectors in this basis.

Definition 5. Let α = (α1 ≥ α2 ≥ · · · ≥ αd ≥ 0) be a partition with

n ≥ α1.

(1) The Schubert variety corresponding to α is the subvariety

S(α) :=
{
V | dim(V ∩ Fαd+1−i+i) ≥ i for i = 1, . . . , d

}
⊆ Grd(E).

(2) The Schubert cell corresponding to α is the open subset of S(α)

S(α)◦ :=
{
V | dim(V ∩ Fαd+1−i+i) = i,

dim(V ∩ Fαd+1−i+i−1) = i− 1 for i = 1, . . . , d
}
.

We summarize the main properties of Schubert cells and varieties:

• Writing β ≤ α for the ordering βi ≤ αi for all i, we have

S(α)◦ = S(α) \
⋃
β<α

S(β).

• The Schubert cell S(α)◦ is isomorphic to the affine space Cα1+···+αd .

• The Schubert cell S(α)◦ is an orbit under the natural action of B on

Grd(E).

Here B is the subgroup of the general linear group of E which consists of

all invertible upper triangular matrices with respect to the ordered basis

e1, . . . , en+d. The reader will find details in [AM09,Bri05,Ful97].
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6 JUNE HUH

3. Chern classes of almost homogeneous varieties

In this section, B is a connected affine algebraic group with the Lie algebra

b.

3.1. Suppose B acts on an irreducible projective variety Y with an open

dense orbit Y ◦. We say that Y is almost homogeneous with respect to the

action of B. For example, Y can be the Schubert variety S(α) of the previous

section.

Definition 6. A B-finite log-resolution of Y is a proper B-equivariant map

π : X −→ Y such that

(1) X is smooth and has finitely many B-orbits,

(2) π−1(Y ◦) −→ Y ◦ is an isomorphism, and

(3) the complement of π−1(Y ◦) in X is a divisor with normal crossings.

The main result of this section is the following sufficient condition for the

Chern-Schwartz-MacPherson class of an almost homogeneous B-variety to be

effective.

Theorem 7. Suppose Y has a B-finite log-resolution. Then there are

subvarieties Z1, . . . , Zp of Y and nonnegative integers n1, . . . , np such that

cSM (Y ◦) =

p∑
i=1

ni[Zi] ∈ A∗(Y ).

In short, the Chern-Schwartz-MacPherson class of Y ◦ is represented by an

effective cycle on Y if Y has a B-finite resolution. An explicit description of

the subvarieties Zi can be found in Corollary 13.

When Y is the Schubert variety S(α), the conclusion of Theorem 7 is much

weaker than that of Theorem 2. However, the main construction which leads

to the proof of Theorem 7 will be essential in the proof of Theorem 2.

The rest of this section is devoted to the proof of Theorem 7.

3.2. As preparation, we recall the basic results on algebraic group actions

and algebraic vector fields. General references are [MO67] and [Ram64].

Suppose B acts on a smooth and irreducible projective variety X. There

is an algebraic group homomorphism from B to the connected automorphism

group

L : B −→ Aut◦(X), b �−→
(
x �−→ b · x

)
.

The differential of L at the identity is the Lie homomorphism between the

Lie algebras

b −→ Γ(X,TX).
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CHERN CLASSES OF SCHUBERT CELLS AND VARIETIES 7

Explicitly, the Lie homomorphism maps ξ ∈ b to the corresponding funda-

mental vector field

x �−→ d

dt

∣∣∣∣
t=0

(
exp(−tξ) · x

)
.

If we define the B-action on the vector fields on X by(
x �−→ v(x)

)
�−→

(
x �−→ d(b · −)v(b−1 · x)

)
,

then the Lie homomorphism isB-equivariant with respect to the adjoint action

of B on b. Evaluating the Lie homomorphism, we have the homomorphism

between the B-linearized vector bundles

LX : bX −→ TX ,

where bX is the trivial vector bundle on X modeled on b.

3.3. Let S be an orbit of the B-action on X, and write ι for the inclusion

S −→ X. A choice of a base point x0 ∈ S defines the orbit map

B −→ S, b �−→ b · x0.

This identifies S with B/H, where H is the isotropy group Bx0
. The Lie

homomorphism

b −→ Γ(S, TS)

gives the B-linearized vector bundle homomorphism

LS : bS −→ TS ,

and LS fits into the commutative diagram

bS
LS ��

LX |S
��

TS

ι∗
����
��
��
��

TX |S .

Over the base point x0, LS can be identified with the surjective linear map

b −→ b/h,

where h is the Lie algebra of H. Since S is homogeneous, LS is surjective

over every point of S, and ker(LS) is a vector bundle over S.

Definition 8. The bundle of isotropy Lie algebras over S is the locally

closed subset

ΣS := P
(
ker(LS)

)
⊆ X × P(b).
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8 JUNE HUH

Note that ΣS is a smooth and irreducible closed subset of S × P(b). We

denote the two projections by

ΣS

pr1,S

����
��
��
�� pr2,S

���
��

��
��

�

S P(b).

If we write bx for the Lie algebra of the isotropy group Bx, then

ΣS =
{
(x, ξ) | x ∈ S and ξ ∈ bx

}
.

The dimension of ΣS is equal to the dimension of P(b), independently of the

dimension of S.

3.4. Let D be a simple normal crossing divisor on X. The logarithmic

tangent sheaf of (X,D) is the subsheaf of the tangent sheaf

TX(− logD) ⊆ TX

consisting of those derivations which preserve the ideal sheaf OX(−D). Since

D is a divisor with simple normal crossings, the logarithmic tangent sheaf

is locally free of rank equal to the dimension of X. General references on

logarithmic tangent sheaves are [Del70] and [Sai80].

We write TX(− logD) for the logarithmic tangent bundle, the vector bun-

dle corresponding to the logarithmic tangent sheaf. The following equality

follows from a construction of the Chern-Schwartz-MacPherson class [Alu06a,

Alu06b].

Theorem 9. We have

cSM (1X\D) = c
(
TX(− logD)

)
∩

[
X

]
∈ A∗(X).

For precursors, see [Alu99,GP02] and also Schwartz’s construction of the

Chern-Schwartz-MacPherson class [BSS09, Sch65a, Sch65b]. Our goal is to

show that X has enough logarithmic vector fields to make the right-hand

side of Theorem 9 effective when D is B-invariant and X has finitely many

B-orbits.

Suppose from now on that D is invariant under the action of B. This

implies that the Lie homomorphism of Section 3.2 factors through

L : b −→ Γ
(
X,TX(− logD)

)
.

Evaluating the sections, we have the homomorphism between B-linearized

vector bundles

LX,D : bX −→ TX(− logD).
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CHERN CLASSES OF SCHUBERT CELLS AND VARIETIES 9

We denote the induced linear map between the fibers over x ∈ X by

LX,D,x : b −→ TX,x(− logD).

Definition 10. The variety of critical points of (X,D) is the closed subset

X :=
{
(x, ξ) | LX,D,x(ξ) = 0

}
⊆ X × P(b).

We denote the two projections by

X

pr1

����
��
��
�� pr2

���
��

��
��

�

X P(b).

The first projection, pr1 : X −→ X, may not be a projective bundle, but

the restriction pr−1
1 (S) −→ S is a projective bundle for each B-orbit S in X.

These projective bundles have different ranks in general.

Remark 11. When LX,D is surjective, the pair (X,D) is said to be log-

homogeneous under the action of B [Bri07]. In this case, X is the projectiviza-

tion of the vector bundle denoted by RX in [Bri09, Section 2].

For log-homogeneous varieties, the conclusion of Theorem 7 is a standard

fact [Ful98, Example 12.1.7]. However, in our main case of interest, (X,D) is

rarely log-homogeneous under B. In fact, if (X,D) is log-homogeneous under

a solvable affine algebraic group B, then X should be a toric variety of a

maximal torus T ⊆ B [Bri07, Theorem 3.2.1].

We refer to [BJ08, BK05,Kir06,Kir07] for studies of Chern classes of the

logarithmic tangent bundle of log-homogeneous varieties.

3.5. Define X0 := X, X1 := D, and a sequence of closed subsets

X0 � X1 � X2 � X3 � · · · where Xi+1 := Sing(Xi) for i ≥ 1.

We introduce two decompositions of X into smooth locally closed subsets, the

orbit decomposition Sorb and the singular decomposition Ssing:

Sorb :=
{
S | S is a B-orbit in X

}
,

Ssing :=
{
S | S is a connected component of some Xi \Xi+1

}
.

Since B is connected and D is invariant under the action of B, the orbit

decomposition refines the singular decomposition. We write the variety of

critical points as a disjoint union by taking inverse images over the B-orbits

in X:

X =
∐

S∈Sorb

XS where XS := pr−1
1 (S).

As in Section 3.3, we denote the bundle of isotropy Lie algebras over S by ΣS .

Lemma 12. XS is a closed subset of ΣS for each B-orbit S in X.
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10 JUNE HUH

Proof. Let S′ be the unique element of Ssing containing S. Any section of

TX(− logD) preserves the ideal sheaf of S′ and defines a derivation of OS′ .

Denote the corresponding vector bundle homomorphism over S′ by

ϕ : TX(− logD)|S′ −→ TS′ .

Note that the restriction of ϕ to S fits into the commutative diagram

0

��

bS

LX,D|S
��

LS �� TS

ι∗

��

TX(− logD)|S
ϕ|S

�� TS′ |S .

Here LS is the vector bundle homomorphism of Section 3.3, LX,D|S is the

restriction to S of the vector bundle homomorphism of Section 3.4, and ι∗ is

the differential of the inclusion ι : S → S′. Since ι∗ is injective, LX,D,x(ξ) = 0

implies LS,x(ξ) = 0 for any x ∈ S and ξ ∈ b. �
3.6.

Proof of Theorem 7. Choose a B-finite log-resolution π : X −→ Y and de-

fine X◦ := π−1(Y ◦). By the functoriality of the Chern-Schwartz-MacPherson

class, we have

π∗cSM (X◦) = cSM (Y ◦) ∈ A∗(Y ).

Since any effective cycle pushes forward to an effective cycle, it is enough to

prove that cSM (X◦) is represented by an effective cycle on X.

Let D be the boundary divisor X \X◦, and let k be a nonnegative integer

less than dimX. Our aim is to show that the k-th Chern class

cSM (X◦)k = cdimX−k

(
TX(− logD)

)
∩ [X] ∈ Ak(X)

is represented by an effective k-cycle.

We recall from Section 3.4 the variety of critical points X and the two

projections

X

pr1

����
��
��
�� pr2

���
��

��
��

�

X P(b).

By Lemma 12, we have

X =
∐

S∈Sorb

XS ⊆
∐

S∈Sorb

ΣS .
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CHERN CLASSES OF SCHUBERT CELLS AND VARIETIES 11

Note that each ΣS is irreducible of dimension equal to that of P(b). Since X

has finitely many B-orbits, this shows that each irreducible component of X

has dimension at most dimP(b).

Let Λ be a (k+1)-dimensional subspace of b. If Λ is spanned by ξ0, . . . , ξk,

then the (dimX − k)-th Chern class of TX(− logD) is represented by a cycle

supported on the locus

Dk(Λ) :=
{
x ∈ X | L (ξ0), . . . ,L (ξk) are linearly dependent at x

}
,

where L : b −→ Γ
(
X,TX(− logD)

)
is the Lie homomorphism. See [Ful98,

Chapter 14]. As a scheme, Dk(Λ) is defined by (k+1)-minors of the matrices

for the vector bundle homomorphism

ΛX −→ TX(− logD)

obtained by restricting LX,D. Set-theoretically,

Dk(Λ) = pr1

(
pr−1

2

(
P(Λ)

))
.

We recall the following facts on degeneracy loci from [Ful98, Theorem 14.4]:

(1) Each irreducible component of Dk(Λ) has dimension at least k.

(2) If all the irreducible components of Dk(Λ) have dimension k, then the

Chern class

cdimX−k

(
TX(− logD)

)
∩ [X] ∈ Ak(X)

is represented by a positive cycle supported on Dk(Λ).

Therefore it is enough to show that all the irreducible components of Dk(Λ)

have dimension at most k for a suitable choice of Λ.

In fact, all the irreducible components of pr−1
2

(
P(Λ)

)
have dimension at

most k for a sufficiently general choice of Λ. This is a general fact on maps of

the form

X −→ Pn,

where all the irreducible components of X have dimension ≤ n. One may argue

by induction on n, where in the induction step one chooses a hyperplane of

Pn which does not contain the image of any irreducible component of X. �
Since each irreducible component of the degeneracy locus Dk(Λ) has di-

mension at least k, the above argument shows that each component of Dk(Λ)

has dimension exactly k for a sufficiently general Λ. Each of these compo-

nents of Dk(Λ) is projected from an irreducible component of X of maximum

possible dimension, and this component of X is the closure of XS for some
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12 JUNE HUH

B-orbit S such that XS = ΣS and dimS ≥ k. For later use, we record here

this refined conclusion of our analysis on the diagram

X

pr1

����
��
��
�� pr2

���
��

��
��

�

X P(b).

Corollary 13. For a (k + 1)-dimensional subspace Λ ⊆ b, let Dk(Λ) be

the degeneracy locus

Dk(Λ) = pr1

(
pr−1

2

(
P(Λ)

))
.

Then the following hold for a sufficiently general subspace Λ ⊆ b :

(1) Each irreducible component of Dk(Λ) has the expected dimension k.

(2) Each irreducible component of Dk(Λ) is the closure of a subvariety of

a B-orbit S such that XS = ΣS and dimS ≥ k.

(3) The k-th Chern class of X◦ can be written as a nonnegative linear

combination

cSM (X◦)k =
∑
i

mi[Zi] ∈ Ak(X),

where the Zi are the irreducible components of Dk(Λ).

We express (2) by saying that the irreducible component of Dk(Λ) is generi-

cally supported on S.

Applying Corollary 13 to the B-finite resolution π : X −→ Y , we see that

the k-th Chern class of Y ◦ can be written as a nonnegative linear combination

cSM (Y ◦)k =
∑
i

ni[Zi] ∈ Ak(Y ),

where the Zi are the k-dimensional irreducible components of π
(
Dk(Λ)

)
.

Note that there is at least one B-orbit S with XS = ΣS and dimS ≥ k, the

open dense orbit S = X◦. Any irreducible component of Dk(Λ) generically

supported on X◦ will be called standard. All the other irreducible components

are exceptional.

4. Irreducibility

In this section, we specialize to the case when B is a Borel subgroup of a

connected reductive group G. We make use of the following consequence of

the strengthened assumption:

• The centralizer of a maximal torus in B is the maximal torus.
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Since the union of Cartan subgroups of B contains an open dense subset, it

follows that

• the set of semisimple elements of B contains an open dense subset of

B and

• the set of semisimple elements of b contains an open dense subset of b.

We will use [Bor91] as a general reference. For Cartan subgroups and Cartan

subalgebras, see [TY05, Chapter 29].

Let P be a parabolic subgroup of G containing B, and let Y be the closure

of a B-orbit Y ◦ in G/P .

4.1. An element ξ ∈ b is said to be regular if its centralizer is a Cartan

subalgebra of b. The set of regular elements is open and dense in b.

Definition 14. A regular log-resolution of Y is a proper map π : X −→ Y

such that

(1) π : X −→ Y is a B-finite log-resolution of Y and

(2) the isotropy Lie algebra bx contains a regular element of b for each

x ∈ X.

Of course, it is enough to require the second condition for any one point

from each B-orbit of X.

The following is the main result of this section. Fix a nonnegative integer

k ≤ dimY , and write cSM (Y ◦)k for the k-dimensional component of cSM (Y ◦).

Theorem 15. Suppose Y has a regular log-resolution. Then there is a

nonempty reduced and irreducible k-dimensional subvariety Z of Y such that

cSM (1Y ◦)k = [Z] ∈ Ak(Y ).

The subvariety Z can be chosen to be the closure in Y of the locus

Z◦(Λ) =
{
y ∈ Y ◦ | Λ ∩ by 
= 0

}
,

where Λ is a sufficiently general (k + 1)-dimensional subspace of b.

We will see in Section 5 that the classical Schubert variety S(α) has a

regular log-resolution. The rest of this section is devoted to the proof of

Theorem 15.

4.2. Let S be a homogeneous B-space. Recall from Section 3.3 the bundle

of isotropy Lie algebras

ΣS =
{
(x, ξ) | ξ ∈ bx

}
⊆ S × P(b).

We choose a base point x0 and identify S with B/H, where H is the isotropy

group Bx0
with the Lie algebra h. The rank of an affine algebraic group is

the dimension of a maximal torus.
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Lemma 16. If rank(B) = rank(H), then

pr2,S : ΣS −→ P(b), (x, ξ) �−→ ξ

is a dominant morphism.

Proof. The set of semisimple elements in b contains an open dense subset

of b in our setting. We find a point in ΣS which maps to the class of a given

nonzero semisimple element ξ in P(b).

Since ξ is semisimple, ξ is tangent to a torus [Bor91, Proposition 11.8]. We

may assume that this torus T1 is a maximal torus of B.

Let T2 be a maximal torus of H. Then T2 is a maximal torus of B because

rank(B) = rank(H). Since any two maximal tori of B are conjugate, there is

an element b ∈ B such that T1 = bT2b
−1. We have

ξ ∈ t1 = Ad(b) · t2 ⊆ Ad(b) · h = bb·x0
.

Therefore b · x0 gives a point in the fiber of ξ. �
4.3.

Remark 17. The results of this subsection are not needed for the proof

of Theorem 15 if Y is the classical Schubert variety S(α).

Let Λ be a (k + 1)-dimensional subspace of b, and let Λr be the set of

regular elements of b in Λ. Define

Dk(Λ) :=
{
x ∈ S | Λ ∩ bx 
= 0

}
and Dk(Λr) :=

{
x ∈ S | Λr ∩ bx 
= 0

}
.

In terms of the diagram

ΣS

pr1,S

����
��
��
�� pr2,S

���
��

��
��

�

S P(b),

we have

Dk(Λ) = pr1,S

(
pr−1

2,S

(
P(Λ)

))
and Dk(Λr) = pr1,S

(
pr−1

2,S

(
P(Λr)

))
.

Since dimΣS = dimP(b), Dk(Λ) is either empty or of pure dimension k for a

sufficiently general Λ.

Lemma 18. Suppose h contains a regular element of b. Then Dk(Λr)

contains an open dense subset of Dk(Λ) for a sufficiently general Λ ⊆ b.

Proof. Note that

pr2,S(ΣS) =
⋃
x∈S

P(bx).

The closure of this set is an irreducible subvariety of P(b), say V . Let U ⊆ V

be the open subset of (the classes of) regular elements in V . This set U is

nonempty by our assumption on h, and hence U is dense in V .
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(1) dimV ≤ codim(Λ ⊆ b): In this case, for a sufficiently general Λ,

V ∩ P(Λ) = U ∩ P(Λ).

Therefore pr−1
2,S

(
U ∩ P(Λ)

)
= pr−1

2,S

(
P(Λ)

)
.

(2) dimV > codim(Λ ⊆ b): In this case, pr−1
2,S

(
P(Λ)

)
is irreducible for

a sufficiently general Λ by Bertini’s theorem [Laz04, Theorem 3.3.1].

Therefore pr−1
2,S

(
U ∩ P(Λ)

)
is open and dense in pr−1

2,S

(
P(Λ)

)
.

In either case, we see thatDk(Λr) contains an open dense subset ofDk(Λ). �
Let p be a B-equivariant morphism between homogeneous B-spaces

p : S � B/H −→ B/K, H ⊆ K ⊆ B.

The following lemma can be found in [Kir07, Lemma 3.1].

Lemma 19. If h contains a regular element of b and rank(H) < rank(K),

then

dimDk(Λ) > dim p
(
Dk(Λ)

)
for a sufficiently general Λ ⊆ b.

Proof. By Lemma 18, Dk(Λr) contains an open dense subset D◦ of Dk(Λ).

It is enough to show that

dim
(
Dk(Λ) ∩ p−1

(
p(x)

))
> 0 for all x ∈ D◦.

Let x be a point in D◦. Since regular elements are semisimple in our setting,

there is a nonzero semisimple element ξ in Λ∩ bx ⊆ bp(x). Choose a maximal

torus T of Bp(x) tangent to ξ [Bor91, Proposition 11.8].

The maximal torus T is contained in the centralizer of ξ because global

and infinitesimal centralizers correspond [Bor91, Section 9.1]. Therefore, for

any t ∈ T ,

ξ = Ad(t) · ξ ∈ Λ ∩ bt·x 
= 0.

This shows that

T · x ⊆ Dk(Λ).

Since T is contained in Bp(x), we have

T · x ⊆ Dk(Λ) ∩ p
(
p−1(x)

)
.

We check that T · x has a positive dimension. If otherwise, T · x = x because

T · x is connected. Therefore T ⊆ Bx, and this contradicts the assumption

that rank(H) < rank(K). �
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4.4. We begin the proof of Theorem 15. Choose a regular log-resolution

π : X −→ Y and set

X◦ := π−1(Y ◦), D := X \X◦.

By the functoriality, we have

π∗cSM (X◦) = cSM (Y ◦) ∈ A∗(Y ).

Let Λ ⊆ b be a (k + 1)-dimensional subspace, and let Dk(Λ) be the degen-

eracy locus constructed in Section 3.6. The main properties of Dk(Λ) are

summarized in Corollary 13.

Recall that an irreducible component of Dk(Λ) is said to be standard if

it is generically supported on X◦. All the other irreducible components are

exceptional.

Lemma 20. For a sufficiently general Λ and a positive k, there is exactly

one standard component of Dk(Λ), and this component is generically reduced.

Proof. Over the open subset X◦, the logarithmic tangent bundle agrees

with the usual tangent bundle. Therefore

XX◦ = ΣX◦ .

First we show that Dk(Λ) ∩X◦ is irreducible. Since X◦ has a point fixed

by a maximal torus of B, Lemma 16 says that

pr2,X◦ : ΣX◦ −→ P(b)

is a dominant morphism. Therefore Bertini’s theorem applies to pr2,X◦ and

positive-dimensional linear subspaces of P(b) [Laz04, Theorem 3.3.1]. It fol-

lows that

Dk(Λ) ∩X◦ = pr1,X◦

(
pr−1

2,X◦

(
P(Λ)

))
is irreducible for a sufficiently general Λ.

Next we show that Dk(Λ) ∩ X◦ is reduced. The tangent bundle of X◦ is

generated by global sections from b, and hence there is a morphism to the

Grassmannian

Ψ : X◦ −→ Grd(b), x �−→ bx where d = dimB − dimX.

As a scheme, Dk(Λ) ∩X◦ is the pull-back of the Schubert variety{
a | a is a d-dimensional subspace of b such that a ∩ Λ 
= 0

}
⊆ Grd(b).

Therefore Dk(Λ) ∩ X◦ is reduced for a sufficiently general Λ by Kleiman’s

transversality theorem [Kle74, Remark 7]. �
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In fact, Dk(Λ) has no embedded components for a sufficiently general Λ

(being a degeneracy locus of the expected dimension k), but we will not need

this. When Y is the Schubert variety S(α), the reduced image in S(α) of the

unique standard component of Dk(Λ) will be the subvariety Z(α) of Theo-

rem 2.

Proof of Theorem 15. When k is positive, there is exactly one standard

component by Lemma 20. Write π∗ for the push-forward

π∗ : A∗(X) −→ A∗(Y ).

Our goal is to show that π∗[E] = 0 for all exceptional components E of Dk(Λ),

for a sufficiently general Λ.

For this we consider the case when k = 0. Recall from Corollary 13 that

D0(Λ) consists of a finite set of points, each contained in a B-orbit S such

that XS = ΣS , for a sufficiently general Λ. By the last assertion of Corollary

13, the number of points in D0(Λ) should be equal to

χ(X◦) =

∫
X

cSM (X◦) =
∑
S

deg
(
pr2,S : ΣS −→ P(b)

)
= 1,

where the sum is over all orbits such that XS = ΣS . Together with Lemma 16,

the formula shows that every such orbit, except one, is of the form

S � B/H, rank(B) > rank(H).

This one exception should be X◦ because X◦ contains a point fixed by a

maximal torus of B.

Return to the case when k is positive. Let S be an orbit with XS = ΣS ,

and suppose that S is different from X◦. Consider the B-equivariant map

π|S : S � B/H −→ π(S), rank(B) > rank(H).

The image of S contains a point fixed by a maximal torus of B because it is

a B-orbit in G/P . Therefore π(S) is of the form

π(S) � B/K, rank(B) = rank(K).

Since π is a regular log-resolution, this shows that Lemma 19 applies to π|S .
The degeneracy locus Dk(Λ) of Lemma 19 is precisely the intersection S ∩
Dk(Λ) in our case because XS = ΣS . The conclusion is that

dimE > dimπ(E)

for any irreducible component E of Dk(Λ) generically supported on S.

Therefore π∗[E] = 0 for all exceptional components E, for a sufficiently

general Λ. �
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5. A regular resolution of a classical Schubert variety

In this section, E is a vector space with an ordered basis e1, . . . , en+d, G

is the general linear group of E, and B is the subgroup of G which consists

of all invertible upper triangular matrices with respect to the ordered basis

of E.

5.1. We recall the known resolution of singularities of the classical Schubert

variety S(α) which is regular in the sense of Definition 14. Theorem 2 therefore

can be deduced from Theorem 15.

Let α = (α1 ≥ α2 ≥ · · · ≥ αd ≥ 0), and let S(α) ⊆ Grd(E) be the Schubert

variety defined with respect to the complete flag

F• =
(
F0 � F1 � · · · � Fn+d

)
where Fk := span(e1, . . . , ek).

Definition 21. V(α) is the subvariety

V(α) :=
{
V1 � V2 � · · · � Vd | Vi ⊆ Fαd+1−i+i

}
⊆ Gr1(E)×Gr2(E)× · · · ×Grd(E).

The restriction to V(α) of the projection to Grd(E) will be written

πα : V(α) −→ S(α).

The projection πα maps V(α) into S(α) because Vi ⊆ Vd ∩Fαd+1−i+i for all i.

We note that πα is the resolution used in [KL74] to obtain the determinantal

formula for the classes of Schubert schemes. This resolution was also used in

[AM09] to compute the Chern-Schwartz-MacPherson class of S(α)◦. All the

properties of πα we need can be found in [AM09, Section 2]. However, one

simple but important point for us was not emphasized in the nonembedded

description of V(α) in [AM09] as a tower of projective bundles: V(α) is a

subvariety of the partial flag variety

Fl1,...,d(E) ⊆ Gr1(E)×Gr2(E)× · · · ×Grd(E),

and V(α) is invariant under the diagonal action of B. It follows that

(1) V(α) has finitely many B-orbits and

(2) every B-orbit of V(α) contains a point fixed by a maximal torus of B.

The above properties imply that πα is a regular log-resolution of S(α) in the

sense of Definition 14.

Remark 22. We note that the Bott-Samelson variety of [Dem74,Han73]

will not have finitely many B-orbits in general. It would be interesting to

know which Schubert varieties in flag varieties (do not) admit a regular or

B-finite log-resolution.
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5.2. For the sake of completeness, we give an argument here that πα is a

regular log-resolution of singularities of S(α).

Proposition 23. πα is a regular log-resolution of S(α). That is,

(1) πα is proper and B-equivariant,

(2) π−1
α

(
S(α)◦

)
−→ S(α)◦ is an isomorphism,

(3) V(α) is smooth and has finitely many B-orbits,

(4) the complement of π−1
α

(
S(α)◦

)
in V(α) is a divisor with normal cross-

ings, and

(5) the isotropy Lie algebra bx contains a regular element of b for each

x ∈ V(α).

Proof. We start by justifying (2). Note that πα has a section over the

Schubert cell

sα : S(α)◦ −→ π−1
α

(
S(α)◦

)
, V �−→ V ∩

(
Fαd+1 � Fαd−1+2 � · · · � Fα1+d

)
.

The statement

sα ◦ πα|
π−1
α

(
S(α)◦

) = id
π−1
α

(
S(α)◦

)
is equivalent to the assertion that

Vi = Vd ∩ Fαd+1−i+i

for all i and for all V• ∈ V(α) with Vd ∈ S(α). This is clear because Vi is

contained in the right-hand side and the dimensions of both sides are the

same. Therefore

π−1
α

(
S(α)◦

)
−→ S(α)◦

is an isomorphism, proving (2).

We prove (3) by induction on the number of entries of α. Define

α̃ := (α2 ≥ α3 ≥ · · · ≥ αd ≥ 0)

and consider the corresponding subvariety

V(α̃) ⊆ Gr1(E)×Gr2(E)× · · · ×Grd−1(E).

Restricting the projection map which forgets the last coordinate, we have

prd̂ : V(α) −→ V(α̃).

Let F• be the flag of trivial vector bundles over V(α̃) modeled on the flag of

subspaces F•. Then we may identify prd̂ with the projective bundle

P(Fα1+d/Vd−1) −→ V(α̃),

where Vd−1 is the pull-back of the tautological bundle from the projection

V(α̃) −→ Grd−1(E). This shows by induction that V(α) is smooth. The fact

that V(α) has finitely many B-orbits is implied by the Bruhat decomposition

of G.
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Item (4) can also be proved by the same induction. Let α̃ be as above, and

set

Dold := V(α̃) \ π−1
α̃

(
S(α̃)◦

)
.

We may suppose that Dold is a divisor in V(α̃) with normal crossings. The

key observation is that

V(α) \ π−1
α

(
S(α)◦

)
= pr−1

d̂
(Dold) ∪Dnew,

where Dnew is the smooth and irreducible divisor

Dnew := P(Fα1+d−1/Vd−1) ⊆ P(Fα1+d/Vd−1) = V(α).

The assertion that pr−1

d̂
(Dold) ∪ Dnew has normal crossings can be checked

locally. Covering V(α) with open subsets of the form pr−1

d̂
(U), where U is an

open subset of V(α̃) over which the vector bundle Vd−1 is trivial, the assertion

becomes clear.

Item (5) is a consequence of the fact that each B-orbit of V(α) contains a

point fixed by a maximal torus of B. It follows that every point of V(α) is

fixed by a maximal torus of B. Therefore all the isotropy Lie algebras contain

a Cartan subalgebra of b, whose general member is a regular element of b. �
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