
MILNOR NUMBERS OF PROJECTIVE
HYPERSURFACES WITH ISOLATED SINGULARITIES

JUNE HUH

Abstract
Let V be a projective hypersurface of fixed degree and dimension which has only
isolated singular points. We show that, if the sum of the Milnor numbers at the sin-
gular points of V is large, then V cannot have a point of large multiplicity, unless V
is a cone. As an application, we give an affirmative answer to a conjecture of Dimca
and Papadima.

1. Main results

1.1
Let h be a nonzero homogeneous polynomial of degree d � 1 in the polynomial ring
CŒz0; : : : ; zn�. To avoid trivialities, we assume throughout that n� 2. We write V.h/
for the projective hypersurface ¹h D 0º � Pn. Associated to h is the gradient map
obtained from the partial derivatives

grad.h/ W Pn ��� Pn; z 7�!
� @h
@z0
W � � � W

@h

@zn

�
:

The polar degree of h is the degree of the gradient map of h. The polar degree of h
depends only on the set ¹hD 0º (see [9]). If V.h/ has only isolated singular points,
then the polar degree is given by the formula

deg
�
grad.h/

�
D .d � 1/n �

X
p2V.h/

�.n/.p/; (1.1)

where �.n/.p/ is the Milnor number of V.h/ at p (see [9, Section 3], and also [15],
[25]).

THEOREM 1
Suppose V.h/ has only isolated singular points, and let m be the multiplicity of V.h/
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at one of its points x. Then

deg
�
grad.h/

�
� .m� 1/n�1;

unless V.h/ is a cone with the apex x.

Equivalently, we have

.d � 1/n � .m� 1/n�1C
X

p2V.h/

�.n/.p/;

unless V.h/ is a cone with the apex x. Therefore, for projective hypersurfaces of
given degree and dimension, the existence of a point of large multiplicity should be
compensated for by a smaller sum of the Milnor numbers at the singular points, unless
the hypersurface is a cone.

It is interesting to observe how badly the inequality fails when V.h/ is a cone
over a smooth hypersurface in Pn�1 � Pn. In this case, the polar degree is zero, but
the apex of the cone has multiplicity d . Both the multiplicity and the sum of the
Milnor numbers are simultaneously as large as possible with respect to the degree
and the dimension.

The inequality also crucially depends on the assumption that V.h/ has only iso-
lated singular points. This can be most clearly seen from Gordan–Noether counterex-
amples to Hesse’s claim that the polar degree is zero if and only if the hypersurface is
a cone (see [18], [23], [24]). For example, consider the threefold in P4 defined by

hD zd�13 z0C z
d�2
3 z4z1C z

d�1
4 z2; d � 3:

In this case, the degree of the gradient map of h is zero, V.h/ has a point of multiplic-
ity of d � 1, but V.h/ is not a cone.

1.2
Let .V;0/ be the germ of an isolated hypersurface singularity at the origin of Cn.
Associated to the germ are the sectional Milnor numbers introduced by Teissier [34].
The i th sectional Milnor number of the germ, denoted �.i/, is the Milnor number of
the intersection of V with a general i -dimensional plane passing through zero.

We obtain Theorem 1 from the following refinement.

THEOREM 2
Suppose V.h/ has only isolated singular points, and let �.n�1/ be the .n� 1/th sec-
tional Milnor number of V.h/ at one of its points x. Then

deg
�
grad.h/

�
� �.n�1/;

unless V.h/ is a cone with the apex x.
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The Minkowski inequality for mixed multiplicities says that the sectional Milnor
numbers always form a log-convex sequence (see [35]). In other words, we have

�.n/

�.n�1/
�
�.n�1/

�.n�2/
� � � � �

�.i/

�.i�1/
� � � � �

�.1/

�.0/
:

Since �.0/ is one and �.1/ is one less than the multiplicity at the point, we see that
Theorem 2 indeed implies Theorem 1.

The inequality of Theorem 2 is tight relative to the degree and the dimension. In
Proposition 17 we show that, for each d � 3 and n� 2, there is a degree d hypersur-
face in Pn with one singular point, for which the equality holds in Theorem 2.

1.3
Our interest in Theorems 1 and 2 arose from the study of homaloidal polynomials.
A homaloidal polynomial is a homogeneous polynomial whose gradient map is a
birational transformation of Pn. A homaloidal hypersurface is the projective hyper-
surface defined by a homaloidal polynomial. See [4] for a motivated introduction.

Dolgachev showed in [10] that there are exactly three homaloidal plane curves,
up to a linear change of homogeneous coordinates:
(i) a nonsingular conic hD z20 C z

2
1 C z

2
2 D 0;

(ii) the union of three nonconcurrent lines hD z0z1z2 D 0;
(iii) the union of a conic and one of its tangent hD z0.z21 C z0z2/D 0.

In contrast, there are abundant examples of homaloidal hypersurfaces in Pn when
n� 3.
(a) Any relative invariant of a regular prehomogeneous space is homaloidal (see

[13], [14]).
(b) Projective duals of certain scroll surfaces are homaloidal (see [4]).
(c) Determinants of generic sub-Hankel matrices are homaloidal (see [4]).
(d) The union of a cone over a homaloidal hypersurface in Pn�1 � Pn and a gen-

eral hyperplane is homaloidal (see [15]).
(e) There are infinitely many polytopes such that almost all polynomials having

any one of them as the Newton polytope are homaloidal (see [26]).
In particular, the last construction shows that there are irreducible homaloidal

hypersurfaces of any given degree d � 3 in the projective space of dimension n� 3.
Dimca and Papadima [9, Section 3] conjectured that none of them has only isolated
singular points.

CONJECTURE 3
There are no homaloidal hypersurfaces of degree d � 3 with only isolated singular
points in the projective space of dimension n� 3.
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We use Theorem 2 to give an affirmative answer to this conjecture.

THEOREM 4
A projective hypersurface with only isolated singular points has polar degree 1 if and
only if it is one of the following, after a linear change of homogeneous coordinates:
(i) .n� 2;d D 2/ a smooth quadric

hD z20 C � � � C z
2
n D 0:

(ii) .nD 2;d D 3/ the union of three nonconcurrent lines

hD z0z1z2 D 0:

(iii) .nD 2;d D 3/ the union of a smooth conic and one of its tangent

hD z0.z
2
1 C z0z2/D 0:

Theorem 4 shows that, for projective hypersurfaces of given degree and dimen-
sion, the sequence of possible values for the sum of the Milnor numbers necessarily
contains a gap, except for quadric hypersurfaces and cubic plane curves. Similar, but
stronger results concerning the sum of Tjurina numbers can be found in the works of
du Plessis and Wall [11], [12]. Other important evidence in support of Conjecture 3
was provided by [1], [4], and [8].

We close this introduction by posing the problem of finding other forbidden val-
ues for the sum of the Milnor numbers at the singular points of a degree d hypersur-
face in Pn, for general d and n (see Conjecture 20).

1.4
We now provide a brief overview of the paper.

In Section 2, we formulate and prove a Lefschetz hyperplane theorem with an
assigned base point for projective hypersurface complements. The main argument
involves
(i) a pencil of hyperplane sections which has only isolated singular points with

respect to a Whitney stratification (see [36], [37]), and
(ii) a generalized Zariski theorem on the fundamental groups of plane curve com-

plements (see [7, Section 4.3]).
In Section 3, we prove Theorem 2, using the Lefschetz hyperplane theorem of the

previous section. We provide an example showing that the inequality of Theorem 2 is
sharp.

In Section 4, we use Theorem 2 to show that all the singularities of a homaloidal
hypersurface with only isolated singular points are necessarily simple of type A. The
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proof of Conjecture 3 is then obtained from the results of du Plessis and Wall [12],
and Dimca [8]. We close with a brief discussion of projective hypersurfaces with polar
degree 2.

2. Lefschetz theorem with an assigned basepoint
Let D.h/ be the hypersurface complement ¹h¤ 0º � Pn. Hamm’s Lefschetz theory
shows that, if H is a general hyperplane in Pn, then

�i
�
D.h/;D.h/\H

�
D 0 for i < n:

See [19] and [20]. The purpose of this section is to refine this result by allowing
hyperplanes to have an assigned base point.

THEOREM 5
If Hx is a general hyperplane passing through a point x in Pn, then

�i
�
D.h/;D.h/\Hx

�
D 0 for i < n;

unless
(i) one of the components of V.h/ is a cone with the apex x, or
(ii) the singular locus of V.h/ contains a line passing through x.

Since D.h/ and D.h/ \Hx are homotopic to CW-complexes of dimensions n
and n� 1, respectively, the vanishing of the homotopy groups implies

Hi
�
D.h/;D.h/\Hx

�
D 0 for i ¤ n:

Example 6
Let V.h/ be the plane curve consisting of a nonsingular conic containing x, the tan-
gent line to the conic at x, and a general line passing through x. Then

H1
�
D.h/;D.h/\Hx

�
'H1.S

1 � S1; S1/' Z:

Example 7
Let V.h/ be the cone over a smooth hypersurface of degree d in Pn�1 � Pn with the
apex x. Then

Hn�1
�
D.h/;D.h/\Hx

�
'Hn�1

�
D.h/\ Pn�1;D.h/\Hx \ Pn�1

�
' Z.d�1/

n�1

:

It seems reasonable to expect that the condition on the singular locus of V.h/ is
also necessary. However, the author does not know this.

The rest of this section is devoted to the proof of Theorem 5.
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2.1
We start with a characterization of the apex of irreducible cones in Pn.

LEMMA 8
Let V be a subvariety of positive dimension kC1 in Pn. Then the following conditions
are equivalent for a point x in Pn.
(i) V is a cone with the apex x.
(ii) For any point y of V different from x, the line joining x and y is contained

in V .
(iii) If Ex is a general codimension k linear subspace in Pn containing x, then

every irreducible component of V \Ex is a line containing x.
(iv) If Ex is a general codimension k linear subspace in Pn containing x, then

some irreducible component of V \Ex is a line containing x.

The irreducibility assumption is clearly necessary in order to deduce (iii)
from (iv).

Proof
The equivalence of the first three conditions is standard, and (iii) implies (iv). We
show that (iv) implies (ii), using a pointed version of the Fano variety of lines in V .

Consider the Grassmannians

G1 WD ¹Lx j Lx is a line in Pn containing xº 'Gr.1; n/;

G2 WD ¹Ex j Ex is a codimension k linear subspace in Pn containing xº

'Gr.n� k;n/;

and consider the incidence correspondence

I WD
®
.Lx ;Ex/

ˇ̌
Lx � V \Ex

¯
�G1 �G2:

Let pr1;pr2 be the projections from I

I

pr1 pr2

G1 G2

We compute the dimension of the image of pr1, the variety of lines through x
contained in V . Our assumption (iv) says that pr2 is generically surjective. Since pr2
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is generically finite in general, it follows that the dimension of I is equal to that of
G2. Note also that

pr�11 .Lx/'

´
Gr.n� k � 1;n� 1/ if Lx � V ;

∅ if Lx � V :

Therefore

dim Im.pr1/D dim Gr.n� k;n/� dim Gr.n� k � 1;n� 1/D k:

Next, consider the incidence correspondence

I WD
®
.Lx ; p/

ˇ̌
p 2Lx

¯
� Im.pr1/� V;

and the associated projections

I

�1 �2

Im.pr1/ V

Here, �1 is a bundle of projective lines, and therefore the dimension of I is kC 1;
�2 is injective over the open subset ¹p ¤ xº, because there is at most one line con-
taining p and x which is contained in V . Since V is assumed to be irreducible, the
previous two sentences imply that �2 is surjective. In other words, for any point y of
V different from x, the line joining x and y is contained in V .

2.2
Let X be a smooth projective variety of dimension n, and let A be a general codimen-
sion 2 linear subspace of a fixed ambient projective space of X . One of the conclu-
sions of the classical Lefschetz theory is the isomorphism

HiC1.X;Xc/'Hi�1.Xc ;Xc \A/; i < n� 1;

where Xc is a general member of the pencil of hyperplane sections of X associated
to A (see [27, Section 3.6]). By induction, one has the vanishing

Hi .X;Xc/D 0; i < n:

The aim of this subsection is to state a generalization due to Tibăr [36], [37]. We
state these results in the generality that we need, not necessarily in the generality of
the original papers (see also [38, Section 10.1]).

We work in the following setting:
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(a) V is a closed subset of a projective variety Y .
(b) X is the quasiprojective variety Y n V .
(c) W is a Whitney stratification of Y such that V is a union of strata.
(d) A is a codimension 2 linear subspace of a fixed ambient projective space of Y .
(e) W jY nA is the Whitney stratification of Y nA obtained by restricting W .
(f) PA is the pencil of hyperplanes containing the axis A. We write

� W Y nA�!PA

for the map sending p to the member of PA containing p.
(g) Y is the blowup of Y along Y \A. We write

p WY�!PA

for the map which agrees with � on Y nA.
(h) S is a Whitney stratification of Y which extends W jY nA.

By a Whitney stratification we mean a complex analytic partition which satis-
fies the Whitney regularity conditions and the frontier condition. For generalities on
Whitney stratifications we refer to [17] and [30] and references therein.

Definition 9
The singular locus of p with respect to S is the following closed subset of Y:

SingS p WD
[
S2S

SingpjS :

We say that PA has only isolated singular points with respect to S if
dim SingS p � 0.

The singular locus of p is a closed subset of Y because S is a Whitney stratifi-
cation. The notion of isolated singular points in this generalized sense has proved its
value, for example, in the works of Lê [28] and [29].

We are now ready to introduce the theorem of Tibăr. We maintain the notations
introduced above.

THEOREM 10 ([36, Theorem 1.1])
Let Xc be a general member of the pencil on X . Suppose that
(i) the axis A is not contained in V ,
(ii) the rectified homotopical depth of X is � n for some n� 2,
(iii) the pencil PA has only isolated singular points with respect to S , and
(iv) the pair .Xc ;Xc \A/ is .n� 2/-connected.
Then the pair .X;Xc/ is .n� 1/-connected.



MILNOR NUMBERS OF PROJECTIVE HYPERSURFACES 1533

The rectified homotopical depth of X is an integer which measures the local
connectedness X (see [21, Definition 1.1]). If X is locally a complete intersection
variety, it is equal to the complex dimension of X (see [21, Corollary 3.2.2]).

2.3
Let S be a smooth and irreducible algebraic subset of Pn, and let A be a codimension
2 linear subspace of Pn. We write PA for the pencil of hyperplanes containing A,
and

�A W S nA�!PA

for the map sending p to the member of PA containing p.

LEMMA 11
If Ax is a general codimension 2 linear subspace passing through a point x in Pn,
then

�Ax W S nAx �!PAx

has only isolated singular points, unless the closure of S in Pn is a cone with the
apex x.

Note that �Ax necessarily has nonisolated singularities if, for example, the clo-
sure of S in Pn is the cone over a smooth hypersurface in Pn�1 � Pn with the apex x.

Proof
Let V be the closure of S in Pn, and let A be a codimension 2 linear subspace of Pn

containing x. Denote the conormal variety of V by I , and denote the dual variety of
V by LV . Consider the projections pr1, pr2 from I to V , LV respectively:

I

pr1 pr2

V LV LPn PA

Choosing a line in Pn disjoint from A identifies �A with the projection from A to the
chosen line. Therefore the singular points of �A are precisely those points at which
the projective tangent space of S is contained in a member of the pencil PA. In other
words,

¹singular points of �Aº D pr1
�
pr�12 .PA \ LV /

�
\ S:
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Suppose from now on that V is not a cone with the apex x. Equivalently, we
assume that LV is not contained in Lx, where Lx is a hyperplane in LPn corresponding
to x (see [16, Proposition 4.4]).

First consider the case when LV is not a hypersurface in LPn. In this case, since LV
is irreducible and not contained in Lx,

dim. LV \ Lx/� n� 3:

Therefore a general line contained in Lx is disjoint from LV . In other words, �A has no
singular points for a general A containing x.

Next consider the case when LV is a hypersurface in LPn. In this case, the biduality
theorem shows that pr2 is generically a projective bundle with zero-dimensional fibers
(see [16, Theorem 1.1]). Since I is irreducible, the previous sentence implies that

dim
�
D WD ¹y 2 LV j pr2 has positive-dimensional fiber over yº

�
� n� 3:

Therefore a general line contained in Lx is disjoint from D. In other words, �A has
only isolated singular points for a general A containing x.

2.4
Let S be a smooth and irreducible algebraic subset of Pn, and let k be a positive
integer.

LEMMA 12
If Ex is a general linear subspace of codimension k passing through a point x in Pn,
then Ex intersects S n ¹xº transversely in Pn.

Proof
Repeated application of Bertini’s theorem shows thatEx\S is smooth outside x (see
[31, Theorem 4.1]). In other words, for any p in Ex \ S different from x,

codim.TpEx \ TpS � TpS/D codim.TpEx � TpP
n/D k:

The conclusion follows from the isomorphism

TpS=.TpEx \ TpS/' .TpEx C TpS/=TpEx :

2.5
We employ the notation introduced in Section 2.2. Set Y D Pn, V D V.h/, X D
D.h/, and suppose that
(a) no component of V is a cone over a smooth variety with the apex x, and
(b) the singular locus of V does not contain a line passing through x.
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Then we can find a Whitney stratification W of Y such that
(a) ¹xº is a stratum of W ,
(b) V is a union of strata of W , and
(c) the closure of a stratum of W n ¹¹xºº is not a cone with the apex x.
Let A be a codimension 2 linear subspace of Y containing x, and let Y� Y � P1 be
the blowup of Y along A. The projection from Y onto P1 can be identified with the
map

p WY�!PA:

The statement below follows, and can be replaced by, the proof of [36, Proposi-
tion 2.4].

LEMMA 13
Let S be the stratification of Y with strata
(1) .S � P1/\ .Y nA� P1/ for S 2W n ¹¹xºº,
(2) .S � P1/\ .A� P1/ for S 2W n ¹¹xºº,
(3) ¹xº � P1 nE and E ,
where E is the set of points at which one of the strata from (1) and (2) fails to be
Whitney regular over ¹xº � P1. If Lemma 11 and Lemma 12 hold for A and each
stratum of W , then
(i) S is a Whitney stratification, and
(ii) PA has only isolated singular points with respect to S .

Proof
Let S1 be the Whitney stratification of Y n ¹xº � P1 with strata

Y nA� P1 and A� P1 n ¹xº � P1;

and let S2 be the product Whitney stratification of Y � P1 n ¹xº � P1 with strata

S � P1 for S 2W n ¹¹xºº:

Lemma 12 shows that any pair of strata from S1 and S2 intersect transversely in
Y � P1. It follows that S1 \S2 is a Whitney stratification of Y n ¹xº � P1 (see [17,
1.1.3]). Now Whitney’s fundamental lemma says that E is finite, and all the strata of
S1 \S2 are Whitney regular over E (see [40, Lemma 19.3]). This proves that S is
a Whitney stratification of Y.

For a stratum S 2S of the first type, pjS has only isolated singular points by
Lemma 11. For a stratum S 2S of the second type, pjS is clearly a submersion and
has no singular points, and the same is true for the stratum ¹xº � P1 nE . Therefore
PA has only isolated singular points with respect to S .
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2.6
As a final preparation for the proof of Theorem 5, we recall a Zariski theorem on the
fundamental group of plane curve complements (see [8, Section 4.3]).

Let x be a point in P2, and let C be a curve in P2. We say that a line Lx passing
through x is exceptional with respect to C if
� Lx is tangent to the curve C , or
� Lx passes through a singular point of the curve C different from x.

THEOREM 14 ([8, Corollary 4.3.6])
Suppose that no line containing x is a component of the curve C . Then for any line
Lx passing through x which is not exceptional, there is an epimorphism

�1.Lx nC/�! �1.P
2 nC/

induced by the inclusion.

Theorem 14 is the base case of the induction for Theorem 5.

2.7

Proof of Theorem 5
We prove by induction on n, the base case being Theorem 14. Suppose that
(a) no component of V.h/ is a cone with the apex x, and
(b) the singular locus of V.h/ does not contain a line passing through x.
For the induction step we check that the two conditions on V.h/ are also satisfied by
V.h/\Hx . For condition (a), this is the content of Lemma 8. Condition (b) follows
from Bertini’s theorem that

Sing
�
V.h/\Hx

�
n ¹xº D

�
Sing

�
V.h/

�
\Hx

�
n ¹xº:

Now consider the Whitney stratifications W and S of Section 2.5. We also
employ other notations introduced in that section. When n � 3, we choose linear
subspaces A � H containing x, of codimension 2 and 1, respectively, sufficiently
general so that
(i) A is not contained in V ,
(ii) (a) and (b) are satisfied by V \H ,
(iii) Lemma 11 and Lemma 12 hold for A and each stratum of W , and
(iv) the induction hypothesis applies to the pair .X \H;X \A/.
Then, by Lemma 13, all the assumptions of Theorem 10 are satisfied. Therefore the
pair .X;X \H/ is .n� 1/-connected.
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2.8
For the interested reader we record here a version of what we proved in the generality
of Section 2.2. Let Y be a projective variety of dimension n� 2 in PN , and let V be
a closed algebraic subset of Y .

THEOREM 15
Let Ex � Fx be a general pair of linear subspaces containing a point x in PN , of
codimensions n� 1 and n� 2, respectively. Suppose that
(i) the quasiprojective variety X WD Y n V is locally a complete intersection,
(ii) no component of V (and of Y ) is a cone with the apex x,
(iii) the singular locus of V (and of Y ) does not contain a line passing through x,

and
(iv) there is an epimorphism induced by the inclusion

�1.X \Ex/�! �1.X \Fx/:

Then, for a sufficiently general hyperplane Hx passing through x,

�i .X;X \H/D 0 for i < n:

3. Proof of Theorem 2

3.1
We deduce Theorem 2 from Theorem 5 when n � 3. A separate argument will be
given for plane curves.

Proof of Theorem 2 when n� 3
It follows from [9, Theorem 1] that the Euler characteristic of the complement D.h/
is determined by the degree and the polar degree of h:

�
�
D.h/

�
D .�1/n deg

�
grad.h/

�
C

n�1X
iD0

.�1/i .d � 1/i : (3.1)

If V.h/ is not a cone with the apex x, then there is a sufficiently general hyperplane
Hx containing x such that
(i) Theorem 5 applies to Hx ,
(ii) V.h/\Hx is smooth outside x, and
(iii) the Milnor number of V.h/\Hx at x is the sectional Milnor number �.n�1/

of V.h/ at x.



1538 JUNE HUH

We apply (3.1) and (1.1) to the hyperplane section V.h/\Hx to obtain

�
�
D.h/\Hx

�
D .�1/n�1

�
.d � 1/n�1 ��.n�1/

�
C

n�2X
iD0

.�1/i .d � 1/i : (3.2)

Now Theorem 5 implies that

rankHn
�
D.h/;D.h/\Hx

�
D .�1/n

�
�
�
D.h/

�
� �

�
D.h/\Hx

��
:

Computing the right-hand side using (3.1) and (3.2), we have

rankHn
�
D.h/;D.h/\Hx

�
D deg

�
grad.h/

�
��.n�1/ � 0:

3.2
We prove Theorem 2 for plane curves. The main ingredient in this case is Milnor’s
formula for the double point number

2ıx D �x C rx � 1;

where �x is the Milnor number at x, and rx is the number of branches at x (see [32,
Theorem 10.5]).

LEMMA 16
(i) Suppose V.h/ is a reduced and irreducible plane curve of degree d containing

x. Then

deg
�
grad.h/

�
� .d � 1/C .rx � 1/;

where rx is the number of branches of V.h/ at x.
(ii) Suppose V.h1/ and V.h2/ are plane curves with no common components.

Then

deg
�
grad.h1h2/

�
D deg

�
grad.h1/

�
C deg

�
grad.h2/

�
C #

�
V.h1/\V.h2/

�
� 1:

Proof
The first inequality is obtained from [32, Theorem 10.5] and the fact that g � 0, where
g is the genus of the normalization of V.h/.

The second assertion is equivalent to the inclusion-exclusion formula for the
topological Euler characteristic.

We refer to [10, Section 3] and [15, Theorem 3.1] for details.

Proof of Theorem 2 when nD 2
Let V be a reduced plane curve of degree d which is not a cone with the apex x.
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Lemma 16 proves the assertion when V is irreducible. We divide the remaining prob-
lem into two cases:
(1) V has at least two components which are not cones with the apex with x.
(2) V has exactly one component which is not a cone with the apex with x.

In case (1), we induct on the number of irreducible components. Write V D V1[
V2, where V1 is not a cone with the apex x, V2 is irreducible and not a cone with
the apex x, and V1 \ V2 is finite. Let h1; h2 be reduced equations of degree d1; d2
defining V1; V2, respectively. Then, by Lemma 16 and the induction hypothesis,

deg
�
grad.h1h2/

�
D deg

�
grad.h1/

�
C deg

�
grad.h2/

�
C
�
#.V1 \ V2/� 1

�
�
�
mx.V1/� 1

�
C .d2 � 1/C

�
#.V1 \ V2/� 1

�
:

In other words,

deg
�
grad.h1h2/

�
�
�
mx.V /� 1

�
C
�
d2 �mx.V2/� 1

�
C
�
#.V1 \ V2/� 1

�
:

The second term in the last expression is nonnegative because V2 is not a cone with
the apex x. The third term is also nonnegative, and this gives the desired inequality.

In case (2), we write V D V1 [V2, where V1 is a cone with the apex x, and V2 is
irreducible. Then, by Lemma 16,

deg
�
grad.h1h2/

�
D deg

�
grad.h2/

�
C
�
#.V1 \ V2/� 1

�
� .d2 � 1/C

�
rx.V2/� 1

�
C
�
#.V1 \ V2/� 1

�
:

In other words,

deg
�
grad.h1h2/

�
�
�
mx.V /� 1

�
C
�
d2 �mx.V2/� 1

�
C
�
rx.V2/�mx.V1/C #.V1 \ V2/� 1

�
:

The second term in the last expression is nonnegative because V2 is not a cone with
the apex x. We claim that the third term is also nonnegative.

Let tx.V2/ be the number of lines in the tangent cone of V2 at x. It follows from
Hensel’s lemma that

rx.V2/� tx.V2/:

See for example [5, Corollary 2.2.6]. A local computation shows that a line containing
x intersects V2 in at least one point other than x, unless the line is contained in the
tangent cone of V2 at x. Since there are at least mx.V1/ � tx.V1/ lines in V1 not
contained in the tangent cone of V2 at x, we have

tx.V2/�mx.V1/C #
�
V.h1/\ V.h2/

�
� 1� 0:

This completes the proof.
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3.3
We show that, for each d � 3 and n� 2, there is a degree d hypersurface in Pn with
one singular point, at which the equality holds in Theorem 2.

PROPOSITION 17
Let V.h/ be the degree d hypersurface in Pn defined by the equation

hD z0z
d�1
1 C z1z

d�1
2 C .zd3 C � � � C z

d
n /; d � 3:

Then the unique singular point x of V.h/ satisfies

�.n/ D .d � 1/n � .d � 1/n�1C .d � 1/n�2

and

�.n�1/ D .d � 1/n�1 � .d � 1/n�2:

Proof of Proposition 17 when n� 3
Locally at x, the hypersurface is defined by

f D xd�11 C x1x
d�1
2 C xd3 C � � � C x

d
n :

Note that f is weighted homogeneous with weights wi , where

d � 1

w1
D

1

w1
C
d � 1

w2
D

d

w3
D � � � D

d

wn
D 1:

It follows from [33, Theorem 1] that

�.n/ D

nY
iD1

.wi � 1/D .d � 1/
n � .d � 1/n�1C .d � 1/n�2:

Now consider the hyperplane H passing through x defined by

xn D c1x1C � � � C cn�1xn�1; c D .c1; : : : ; cn�1/ 2 .C
�/n�1:

Locally at x, V.h/\H is isomorphic to the hypersurface defined by

gD xd�11 C x1x
d�1
2 C xd3 C � � � C x

d
n�1C .c1x1C � � � C cn�1xn�1/

d :

The principal part of g with respect to the Newton diagram is

g0 D x
d�1
1 C xd3 C � � � C x

d
n�1C .c2x2C � � � C cn�1xn�1/

d :
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Since g0 defines an isolated singular point at the origin, g is semiquasihomogeneous.
This shows that the singular points defined by g and g0 have the same Milnor num-
ber

�.n�1/ D .d � 1/n�1 � .d � 1/n�2:

See [2, Chapter 12].

Proposition 17 remains valid for nD 2.

4. Projective hypersurfaces with small polar degree

4.1
A reduced homogeneous polynomial h is homaloidal if and only if n general first
polar hypersurfaces of V.h/ intersect at exactly one point outside the singular locus of
V.h/. However, Conjecture 3 cannot be proved by a Cayley–Bacharach type theorem
alone.

Example 18
For each d � 2 and n� 2, there is a birational transformation

' W Pn ��� Pn; z 7�! .h0 W � � � W hn/;

where h0; : : : ; h1 are homogeneous polynomials of the same degree d � 1, with a
zero-dimensional base locus. For example, one may take

hn D z
d�1
0 ; hn�1 D 2z

d�2
0 z1; hn�i D 2z

d�2
0 zi C z

d�1
i�1 ; i D 2; : : : ; n:

When nD 2 and d D 3, this is the gradient map of the homaloidal polynomial

hD z0.z
2
1 C z0z2/:

Conjecture 3 asserts that no birational transformation with a zero-dimensional base
locus is a gradient map when d � 3 and n� 3.

4.2
A plane curve singularity of multiplicity 2 is locally defined by an equation of the
form

f D x21 C x
kC1
2 ;

where k is the Milnor number at the singular point (see [22, Exercise 1.5.14]). Similar
statements remain valid in all dimensions.
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LEMMA 19
Let .V;0/ be the germ of an isolated hypersurface singularity at the origin of Cn.
(i) If �.n�1/ of the germ is equal to 1, then the singularity is of type Ak for some

k � 1.
(ii) If �.n�1/ of the germ is equal to 2, then the singularity is of type E6r , E6rC1,

E6rC2, or Jr;i , for some r � 1 and i � 0.

For the normal form of the above singularities, we refer to [2, Chapter 15]. We set
J1;i DD4Ci in the second case so that the singularity is simple if and only if r D 1.

Proof
We prove the first statement. The second statement can be justified in the same way.

Choose any hyperplane H passing through the origin such that .V \H;0/ has
Milnor number 1. Let f be an equation defining V , and let yn be an equation defin-
ing H . The Morse lemma shows that there is a local coordinate system y1; : : : ; yn�1

of .H;0/ such that

f jH D y
2
1 C � � � C y

2
n�2C y

2
n�1:

Therefore, we may write

f D y21 C � � �C y
2
n�1Cyn.c1y1C � � �C cnyn/C .terms of degree � 3 in y1; : : : ; yn/

for some c1; : : : ; cn 2 C. This shows that the Hessian of f at 0 relative to y1; : : : ; yn
is

H.f /D

0
BBBBBB@

1 0 � � � 0 c1

0 1 � � � 0 c2
:::

:::
:::

:::

0 0 � � � 1 cn�1

c1 c2 � � � cn�1 cn

1
CCCCCCA
:

In particular, the corank of the Hessian is at most 1. Now the classification of corank
� 1 isolated singularities says that there is a local coordinate system x1; : : : ; xn of
.Cn;0/ with

f D x21 C � � � C x
2
n�1C x

kC1
n ;

where k is the Milnor number of V at the origin. See [2, Chapter 11].
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4.3
Dimca proves Conjecture 3 in [8, Theorem 9] when all the singular points of V.h/ are
weighted homogeneous. The proof is based on the work of du Plessis and Wall [12].
We use Theorem 2 to reduce the problem to this case.

Proof of Theorem 4
Let V.h/ be a homaloidal hypersurface of degree d in Pn with only isolated singular
points. Theorem 2 implies that all the singular points of V.h/ have sectional Milnor
number �.n�1/ D 1. It follows from Lemma 19 that all the singular points of V.h/
are locally defined by an equation of the form

f D x21 C � � � C x
2
n�1C x

kC1
n ;

where k is the Milnor number of V.h/ at the singular point. In particular, all the
singular points of V.h/ are weighted homogeneous. Therefore, by [8, Theorem 9],
either n� 2 or d � 2. If d � 2, the hypersurface should be smooth quadric, and any
smooth quadric is defined by

hD z20 C � � � C z
2
n;

after a linear change of coordinates. When n� 2, the assertion is [10, Theorem 4].

4.4
What can be said about projective hypersurfaces which have polar degree 2 and only
isolated singular points? We propose the following conjecture.

CONJECTURE 20
A projective hypersurface with only isolated singular points has polar degree 2 if and
only if it is one of the following, after a linear change of homogeneous coordinates:
(a) .nD 3;d D 3/ a normal cubic surface containing a single line

hD z0z
2
1 C z1z

2
2 C z1z

2
3 C z

3
2 D 0; .E6/I

(b) .nD 3;d D 3/ a normal cubic surface containing two lines

hD z0z1z2C z0z
2
3 C z

3
1 D 0; .A5;A1/I

(c) .n D 3;d D 3/ a normal cubic surface containing three lines and three bi-
nodes

hD z0z1z2C z
3
3 D 0; .A2;A2;A2/I
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(d) .nD 2;d D 5/ two smooth conics meeting at a single point and the common
tangent

hD z0.z
2
1 C z0z2/.z

2
1 C z0z2C z

2
0/D 0; .J2;4/I

(e) .nD 2;d D 4/ two smooth conics meeting at a single point

hD .z21 C z0z2/.z
2
1 C z0z2C z

2
0/D 0; .A7/I

(f) .n D 2;d D 4/ a smooth conic, a tangent, and a line passing through the
tangency point

hD z0.z0C z1/.z
2
1 C z0z2/D 0; .D6;A1/I

(g) .nD 2;d D 4/ a smooth conic and two tangent lines

hD z0z2.z
2
1 C z0z2/D 0; .A1;A3;A3/I

(h) .nD 2;d D 4/ three concurrent lines and a line not meeting the center point

hD z0z1z2.z0C z1/D 0; .D4;A1;A1;A1/I

(i) .nD 2;d D 4/ a cuspidal cubic and its tangent at the cusp

hD z0.z
3
1 C z

2
0z2/D 0; .E7/I

(j) .nD 2;d D 4/ a cuspidal cubic and its tangent at the smooth flex point

hD z2.z
3
1 C z

2
0z2/D 0; .A2;A5/I

(k) .nD 2;d D 3/ a cuspidal cubic

hD z31 C z
2
0z2 D 0; .A2/I

(l) .nD 2;d D 3/ a smooth conic and a secant line

hD z1.z
2
1 C z0z2/D 0; .A1;A1/:

Less precisely but more generally, we conjecture that for any positive integer k,
there is no projective hypersurface of polar degree k which has only isolated singular
points, for sufficiently large n and d .

PROPOSITION 21
Conjecture 20 is valid for plane curves, cubic surfaces, and quartic surfaces.
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Radu Laza informed us that Conjecture 20 is valid also for cubic threefolds. We
note that there is a cubic threefold with only isolated singular points which has polar
degree 3. Explicitly, there is

hD z0z1z4C z
3
0 C z

3
1 C z0z

2
2 C z1z

2
3 D 0; .T2;6;6/:

Proof
The proof is a combination of [3], [6], [8], [12], [15], and [39].

The assertion for cubic surfaces is classical and can be deduced from the classifi-
cation (see [3]). The list of plane curves is obtained in [15]. Any reduced plane curve
with polar degree 2 should be projectively equivalent to one on the list.

For the remaining case of quartic surfaces, we start with two general remarks. We
assume throughout that projective hypersurfaces have only isolated singular points.
(i) If V.h/ is a projective hypersurface with only weighted homogeneous singular

points, then

deg
�
grad.h/

�
�min

®
.d � 1/n�2; 2.nC 1/

¯
;

unless V.h/ is a cone. This follows from the proof of [8, Theorem 9]. We note
from the above example of a cubic threefold with T2;6;6 singularity that the
assumption of weighted homogeneity is necessary for the inequality.

(ii) Each nonsimple singular point of a projective hypersurface of polar degree 2
should belong to one of the types E6r , E6rC1, E6rC2, or Jr;i for some r � 2
and i � 0. This follows from Theorem 2 and Lemma 19.

Let V be a quartic surface of polar degree 2. The first remark above shows that
it is enough to consider the case when V has a singular point p which is not simple.
The second remark shows that the singularity of V at p is of type J or E. Let C be
the discriminant of the projection V n ¹pº ! P2 from p. Under our assumptions, C
is a reduced sextic curve.

Suppose V is not stable in the sense of geometric invariant theory. In this case,
there is a bijection between the singular points of V and of C , which preserves the
type (see [39, Section 11]). In particular,X

x2V

�.3/.x;V /D
X
x2C

�.2/.x;C /:

Since V has polar degree 2, the sum of the Milnor numbers of C should be 33 � 2D
52. From Theorem 1 it follows that C is a cone. This contradicts the fact that C has a
singular point of type J or E. In Degtyarëv’s classification of quartic surfaces having
a nonsimple singular points, this case is called exceptional (see [6, Theorem 1.9]).

Suppose V is stable in the sense of geometric invariant theory. In this case, there
is a point q such that the blowup of the singularity of V � P3 at p has the same type
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as the singularity of C � P2 at q. Moreover, there is a bijection between the singular
points of V n ¹pº and of C n ¹qº, which preserves the type (see [39, Section 12]).
A case-by-case analysis of the blowup of suspensions of singularities of type J and E
shows that X

x2V

�.3/.x;V /D 1C
X
x2C

�.2/.x;C /:

Since V has polar degree 2, the sum of the Milnor numbers of C should be 33 � 3D
52 � 1. This means that the sextic plane curve C is homaloidal, which is impossible.
In Degtyarëv’s classification of quartic surfaces having a nonsimple singular points,
this case is called nonexceptional (see [6, Theorem 1.7]).

Acknowledgments. The author thanks Nero Budur, Igor Dolgachev, Anatoly Libgober,
and Mircea Mustaţă for helpful discussions. He thanks Radu Laza for providing the
proof of Conjecture 20 for cubic threefolds.
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