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MILNOR NUMBERS OF PROJECTIVE HYPERSURFACES

AND THE CHROMATIC POLYNOMIAL OF GRAPHS

JUNE HUH

1. Introduction

George Birkhoff introduced a function χG(q), defined for all positive integers q
and a finite graph G, which counts the number of proper colorings of G with q
colors. As it turns out, χG(q) is a polynomial in q with integer coefficients, called
the chromatic polynomial of G.

Recall that a sequence a0, a1, . . . , an of real numbers is said to be unimodal if
for some 0 ≤ i ≤ n,

a0 ≤ a1 ≤ · · · ≤ ai−1 ≤ ai ≥ ai+1 ≥ · · · ≥ an,

and is said to be log-concave if for all 0 < i < n,

ai−1ai+1 ≤ a2i .

We say that the sequence has no internal zeros if the indices of the nonzero elements
are consecutive integers. Then in fact a nonnegative log-concave sequence with no
internal zeros is unimodal. Like many other combinatorial invariants, the chromatic
polynomial shows a surprising log-concavity property. See [1, 3, 38, 40] for a survey
of known results and open problems on log-concave and unimodal sequences arising
in algebra, combinatorics, and geometry. The goal of this paper is to answer the
following question concerning the coefficients of chromatic polynomials.

Conjecture 1. Let χG(q) = anqn − an−1qn−1 + · · · + (−1)na0 be the chromatic
polynomial of a graph G. Then the sequence a0, a1, . . . , an is log-concave.

Read [31] conjectured in 1968 that the above sequence is unimodal. Soon after
Rota, Heron, and Welsh formulated the conjecture in a more general context of
matroids [33, 14, 48]. Let M be a matroid and L be the lattice of flats of M with
the minimum 0̂. The characteristic polynomial of M is defined to be

χM (q) =
∑

x∈L

µ(0̂, x)qrank(M)−rank(x),

where µ is the Möbius function of L . We refer to [27, 48] for general background
on matroids.
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Conjecture 2. Let χM (q) = anqn−an−1qn−1+ · · ·+(−1)na0 be the characteristic
polynomial of a matroid M . Then the sequence a0, a1, . . . , an is log-concave.

Recent work of Stanley [38, Conjecture 3] [40, Problem 25] has renewed interest
in the above conjectures. We will show in Corollary 27 that Conjecture 2 is valid
for matroids representable over a field of characteristic zero.

Theorem 3. If M is representable over a field of characteristic zero, then the co-
efficients of the characteristic polynomial of M form a sign-alternating log-concave
sequence of integers with no internal zeros.

If M is the cycle matroid of a simple graph G, then χG(q) = qcχM (q), where
c is the number of connected components of the graph. Since graphic matroids
are representable over every field, this implies the validity of Conjecture 1. The
approach of the present paper can be viewed as following two of Rota’s idea [20, 39]:
first, the idea that the values of the Möbius function should be interpreted as
an Euler characteristic; second, the idea that the log-concavity of such quantities
should come from their relation with quermassintegrals, or more generally, mixed
volumes of convex bodies.

One of the most important numerical invariants of a germ of an analytic function
f : Cn → C with an isolated singularity at the origin is the sequence

{
µi(f)

}n

i=0
introduced by Teissier [42]. Algebraically, writing Jf for the ideal generated by
the partial derivatives of f , the sequence

{
µi(f)

}n

i=0
is defined by saying that

dimC C{x1, . . . , xn}/muJv
f is equal to a polynomial

µ0(f)

n!
un + · · ·+ µi(f)

(n− i)i!
un−ivi + · · ·+ µn(f)

n!
vn + (lower degree terms)

for large enough u and v. Geometrically, µi(f) is the Milnor number of f |H , where
H is a general i-dimensional plane passing through the origin of Cn. Like any other
mixed multiplicities of a pair of m-primary ideals in a local ring,

{
µi(f)

}n

i=0
form

a log-convex sequence [43, Example 3].
Let h be any nonconstant homogeneous polynomial in C[z0, . . . , zn]. In analogy

with [42], we define a sequence
{
µi(h)

}n

i=0
by saying that dimC muJv

h/m
u+1Jv

h is
equal to a polynomial

µ0(h)

n!
un + · · ·+ µi(h)

(n− i)i!
un−ivi + · · ·+ µn(h)

n!
vn + (lower degree terms)

for large enough u and v. Theorem 9 identifies µi(h) with the number of i-cells in
a CW model of the complement D(h) of the hypersurface in Pn defined by h. This
CW model of D(h) is interesting in view of the following facts:

(1) The sequence µi(h) is related to the Chern-Schwartz-MacPherson class [23] of
the hypersurface via the formula

cSM

(
1D(h)

)
=

n∑

i=0

(−1)iµi(h)Hi(1 +H)n−i,

where Hi is the class of a codimension i linear subspace in the Chow ring
A∗(Pn). The above is a reformulation in terms of µi(h) of a formula due to
Aluffi [2, Theorem 2.1]. See Remark 10.
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(2) If h is a product of linear forms, then µi(h) are the Betti numbers of D(h). In
this case, the sequence µi(h) is determined by the expression

χM (q)/(q − 1) =
n∑

i=0

(−1)iµi(h)qn−i,

where M is the matroid corresponding to the central hyperplane arrangement
in Cn+1 defined by h. This CW model of D(h) is the one used by Dimca and
Papadima in [7] to show that D(h) is minimal. See Corollary 25.

Theorem 15 is an analogue of Kouchnirenko’s theorem [19] relating the Milnor
number with the Newton polytope. Let ∆ ⊂ Rn be the standard n-dimensional
simplex, and let ∆h ⊂ Rn be the convex hull of exponents of dehomogenized mono-
mials appearing in one of the partial derivatives of h. Then the numbers µi(h)
satisfy

bi
(
D(h)

)
≤ µi(h) ≤ MVn(∆, . . . ,∆︸ ︷︷ ︸

n−i

,∆h, . . . ,∆h︸ ︷︷ ︸
i

),

where MVn stands for the mixed volume of convex polytopes. Therefore, if h has
small Newton polytope under some choice of coordinates, then the Betti numbers
of D(h) cannot be large. Example 16 shows that for each n there is an h for which
the equalities hold simultaneously for all i.

Theorem 21 characterizes homology classes corresponding to subvarieties of Pn×
Pm, up to a positive integer multiple. Let ξ be an element of the Chow group,

ξ =
∑

i

ei
[
Pk−i × Pi

]
∈ Ak(Pn × Pm),

where the term containing ei is zero if n < k − i or m < i. Then some multiple of
ξ corresponds to an irreducible subvariety iff the ei form a log-concave sequence of
nonnegative integers with no internal zeros. In particular, the numbers µi(h) form
a log-concave sequence of nonnegative integers with no internal zeros for any h.
Combined with Corollary 25, this shows the validity of Conjecture 2 for matroids
representable over C.

Trung and Verma show in [47] that the mixed volumes of lattice polytopes in Rn

are the mixed multiplicities of certain monomial ideals, each generated by mono-
mials of the same degree. They then ask whether an analogue of the Alexandrov-
Fenchel inequality on mixed volumes of convex bodies holds for ideals of height n in
a local or standard graded ring of dimension n+ 1 [47, Question 2.7]. In Example
23, we show that the answer to their question is no in general.

As will be clear from below, the present work is heavily indebted to other works in
singularity theory, algebraic geometry, and convex geometry. Specifically, Theorem
9 depends on a theorem of Dimca and Papadima [7]. Theorem 21 is a small variation
of a theorem of Teissier and Khovanskii, combined with a result of Shephard [18,
37, 44].

2. Preliminaries

2.1. Mixed multiplicities of ideals. We give a quick introduction to mixed mul-
tiplicities of ideals. We refer to [46, 47] for a fuller account.
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Let S be a local or standard graded algebra, m be the maximal or the irrelevant
ideal, and J be an ideal of S. We define the standard bigraded algebra R by

R = R(m|J) =
⊕

(u,v)∈N2

muJv/mu+1Jv, where m0 = J0 = S.

Then R has a Hilbert polynomial, meaning that there is a polynomial HPR such
that

HPR(u, v) = dimS/m muJv/mu+1Jv for large u and large v.

We write

HPR(u, v) =
n∑

i=0

ei
(n− i)!i!

un−ivi + (lower degree terms),

where n is the degree of HPR. Then ei = ei(m|J) are nonnegative integers, called
the mixed multiplicities of m and J . If J is an ideal of positive height, then n =
dimS − 1 [47, Theorem 1.2].

Remark 4. Let S be the homogeneous coordinate ring of a projective varietyX ⊆ Pn

over a field K, J ⊂ S be an ideal generated by nonzero homogeneous elements of
the same degree h0, h1, . . . , hm, and ϕJ be the rational map

ϕJ : X !!" Pm

defined by the ratio (h0 : h1 : · · · : hm). By the graph of ϕJ we mean the closure ΓJ

in Pn×Pm of the graph of ϕJ |U , where U is an open subset ofX where ϕJ is defined.
Note that a bihomogeneous polynomial f in the variables {xi, yj}0≤i≤n,0≤j≤m van-
ishes on ΓJ iff it has zero image in R, that is, R is the bihomogeneous coordinate
ring of ΓJ . It follows from the standard relation between Hilbert polynomials and
intersection theory that

[
ΓJ

]
=

∑

i

ei
[
Pk−i × Pi

]
∈ Ak(Pn × Pm),

where k is the dimension of X. In other words, the mixed multiplicities of m and J
are the projective degrees of the rational map ϕJ [12, Example 19.4]. In particular,
ek is the degree of ϕJ times the degree of the image of ϕJ .

The notion of mixed multiplicities can be extended to a sequence of ideals
J1, . . . , Js. Consider the standard Ns+1-graded algebra

R = R(m|J1, . . . , Js) =
⊕

(u,v1,...,vs)∈Ns+1

muJv1
1 · · ·Jvs

s /mu+1Jv1
1 · · · Jvs

s .

The mixed multiplicities ei = ei(m|J1, . . . , Js) are defined by the expression

HPR(u, v1, . . . , vs) =
∑

|i|=n

ei
i0!i1! · · · is!

ui0vi11 · · · viss + (lower degree terms),

where the sum is over the sequences i = (i0, i1, . . . , is) of nonnegative integers
whose sum is n. Trung and Verma show in [47, Corollary 1.6] that positive mixed
multiplicities can be expressed as Hilbert-Samuel multiplicities. Let S be a local
ring with infinite residue field and J1, . . . , Js be ideals of S. Suppose that HPR

has the total degree n and let i = (i0, i1, . . . , is) be any sequence of nonnegative
integers whose sum is n.
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Theorem 5 (Trung-Verma). Let Q be an ideal generated by i1 general elements1

in J1, . . . , and is general elements in Js. Then

ei(m|J1, . . . , Js) > 0 iff dimS/(Q : J1 · · · J∞
s ) = i0 + 1.

In this case,
ei(m|J1, . . . , Js) = e

(
m, S/(Q : J1 · · · J∞

s )
)
.

One readily verifies that the analogous statement holds for a standard graded ring
S over an infinite field, the irrelevant ideal m, and homogeneous ideals J1, . . . , Js.
We refer to [46, 47] for details and more general statements.

2.2. Mixed multiplicities of ideals and mixed volumes of polytopes. The
n-dimensional volume Vn of a nonnegative linear combination v1∆1 + · · · + vn∆n

of convex bodies in Rn is a homogeneous polynomial in the coefficients v1, . . . , vn.
The mixed volume of ∆1, . . . ,∆n is defined to be the coefficient of the monomial
v1v2 · · · vn in the homogeneous polynomial. We follow the convention of [5, Chapter
7] and write MVn for the mixed volume of convex polytopes in Rn. For example,

MVn(∆, . . . ,∆) = 1

for the standard n-dimensional simplex ∆ ⊂ Rn. It follows from Ehrhart’s theorem
[4, Section 6.3] that the multiplicity of a toric algebra is the normalized volume
of the associated lattice polytope. Trung and Verma use this relation to show in
[47, Corollary 2.5] that mixed volumes of lattice convex polytopes in Rn are mixed
multiplicities of certain monomial ideals. Let K be a field.

Theorem 6 (Trung-Verma). Let ∆1, . . . ,∆n be lattice convex polytopes in Rn. Let
Ji be an ideal of K[z0, z1, . . . , zn] generated by a set of monomials of the same degree
such that ∆i is the convex hull of exponents of their dehomogenized monomials in
K[z1, . . . , zn]. Then

MVn(∆1, . . . ,∆n) = e(0,1,...,1)(m|J1, . . . , Jn).

Therefore, by the Alexandrov-Fenchel inequality on mixed volumes of convex
bodies [35, Theorem 6.3.1], if J is an ideal generated by monomials of the same
degree, then the mixed multiplicities of m and J form a log-concave sequence. In
this simple setting, a question of Trung and Verma can be stated as follows.

Question. Under what conditions on J do the ei form a log-concave sequence?

In [47, Question 2.7], Trung and Verma suggest the condition ht(J) = n. Corol-
lary 22 says that when J is generated by elements of the same degree, the mixed
multiplicities of m and J form a log-concave sequence. Example 23 shows that the
answer to the question in its original formulation is no in general.

Remark 7. The question is interesting in view of a theorem of Teissier [43] and Rees-
Sharp [32] on mixed multiplicities. The theorem says that if J is an m-primary ideal
in a local ring, then the mixed multiplicities of m and J form a log-convex sequence.
See [21, Remark 1.6.8] for a Hodge-theoretic explanation.

1We say that a property holds for a general element f of an ideal (f1, . . . , fm) in a local ring
with infinite residue field κ if there exists a nonempty Zariski-open subset U ⊆ κm such that
whenever f =

∑m
k=1 ckfk and the image of (c1, . . . , cm) in κm belongs to U , the property holds

for f .



6 JUNE HUH

3. The main results

3.1. Milnor numbers of projective hypersurfaces. Let h be a nonconstant
homogeneous polynomial in C[z0, . . . , zn] and Jh be the Jacobian ideal of h. Denote

V (h) =
{
p ∈ Pn | h(p) = 0

}
,

D(h) =
{
p ∈ Pn | h(p) )= 0

}
,

where Pn is the n-dimensional complex projective space.

Definition 8. We define µi(h) to be the i-th mixed multiplicity of m and Jh.

Theorem 9 relates the numbers µi(h) to the topology of D(h) by repeatedly
applying a theorem of Dimca-Papadima [7, Theorem 1]. In view of Conjecture 2,
the main technical point is Lemma 31, which asserts that the process of taking
derivatives and taking a general hyperplane section is compatible in an asymptotic
sense. Let us fix a sufficiently general flag of linear subspaces

P0 ⊂ P1 ⊂ · · · ⊂ Pn−1 ⊂ Pn.

For i = 0, . . . , n, set V (h)i = V (h) ∩ Pi and D(h)i = D(h) ∩ Pi.

Theorem 9. For i = 0, . . . , n, the following hold. Read D(h)−1 = ∅.

(1) D(h)i is homotopy equivalent to a CW-complex obtained from D(h)i−1 by
attaching µi(h) cells of dimension i. In particular,

µi(h) = (−1)iχ
(
D(h)i \D(h)i−1

)
.

(2) V (h)i \ V (h)i−1 is homotopy equivalent to a bouquet of µi(h) spheres of
dimension i− 1. In particular,

µi(h) = b̃i−1

(
V (h)i \ V (h)i−1

)
.

As a corollary, we obtain a formula for the topological Euler characteristic of the
complement D(h) in terms of mixed multiplicities:

χ
(
D(h)

)
=

n∑

i=0

(−1)iµi(h).

The point of the above formula is that the numbers µi(h) are effectively calculable in
most computer algebra systems. Since χ is additive on complex algebraic varieties
[8, p.141], the formula provides a way of computing topological Euler characteristics
of arbitrary complex projective varieties and affine varieties.

Remark 10. µi(h) are the projective degrees of the Gauss map

grad(h) : Pn !!" Pn, p +−→
(

∂h

∂z0
(p) : · · · : ∂h

∂zn
(p)

)
.

See Remark 4 above. With this identification, a theorem of Aluffi [2, Theorem 2.1]
says that the push-forward of the Chern-Schwartz-MacPherson class [23] of the
hypersurface is given by the formula

cSM

(
1D(h)

)
=

n∑

i=0

(−1)iµi(h)Hi(1 +H)n−i,
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where 1D(h) is the characteristic function of the complement and Hi is the class of
a codimension i linear subspace in the Chow ring A∗(Pn). Therefore Theorem 9
provides an alternative explanation of the formula of [2],

χ
(
D(h)

)
=

∫
cSM

(
1D(h)

)
=

n∑

i=0

(−1)iµi(h),

where it is first proposed as an effective way of computing χ of arbitrary complex
projective and affine varieties.

Example 11. Let h be a nonconstant homogeneous polynomial in S = C[z0, . . . ,
zn]. Write h =

∏k
i=1 g

mi
i , where the gi are distinct irreducible factors of h and

mi ≥ 1. Let
√
h be the radical

∏k
i=1 gi and d be the degree of

√
h. Applying

Theorem 5, we see that

µ0(h) = e(m, S) = 1

and, for sufficiently general constants c0, c1, . . . , cn ∈ C,

µ1(h) = e
(
m, S

/ n∑

j=0

cj

k∑

i=1

mig
m1
1 · · · gmi−1

i · · · gmk
k

∂gi
∂zj

: J∞
h

)

= e
(
m, S

/ n∑

j=0

cj

k∑

i=1

mig1 · · · ĝi · · · gk
∂gi
∂zj

: J∞
h

)

= e
(
m, S

/ n∑

j=0

cj

k∑

i=1

mig1 · · · ĝi · · · gk
∂gi
∂zj

)

= d− 1,

where ˆ indicates an omission of the corresponding factor. This agrees with the
fact that D(h)0 is a point and D(h)1 is homotopic to a bouquet of d− 1 circles.

Example 12. Suppose h ∈ C[z0, . . . , zn] is reduced of degree d and V (h) has only
isolated singular points, say at p1, . . . , pm. Since Jh has height n, sufficiently general
linear combinations a1, . . . , an of its generators form a regular sequence. Therefore,
for 0 ≤ i < n,

µi(h) = e
(
m, S/(a1, . . . , ai) : J

∞
h

)

= e
(
m, S/(a1, . . . , ai)

)

= (d− 1)i.

From the same formula, we see that µn(h) equals the sum of the degrees of the
components of Proj

(
S/(a1, . . . , an)

)
whose support is not contained in the singular

locus of V (h). Since the degree of a component of Proj
(
S/(a1, . . . , an)

)
supported

on pi is the Milnor number µ(h, pi) at pi, we have

µn(h) = (d− 1)n −
m∑

i=1

µ(h, pi).

Compare [6, Corollary 5.4.4].

The numbers µi(h) satisfy a version of Kouchnirenko’s theorem [19] relating the
Milnor number with the Newton polytope.
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Definition 13. For any nonzero homogeneous h ∈ C[z0, z1, . . . , zn], we define ∆h ⊂
Rn to be the convex hull of exponents of dehomogenized monomials of C[z1, . . . , zn]
appearing in one of the partial derivatives of h.

Note that ∆h is determined by the Newton polytope of h.

Example 14. Let h be the degree d homogeneous polynomial in C[z0, z1],

h =
b∑

i=a

ciz
d−i
0 zi1 = zd−b

0 za1

(
b∑

i=a

ciz
b−i
0 zi−a

1

)
,

with 0 ≤ a ≤ b ≤ d and nonzero ca, cb ∈ C. Then ∆h is the closed interval

∆h =






[a− 1, b] if a )= 0 and b )= d,
[a− 1, b− 1] if a )= 0 and b = d,
[a, b] if a = 0 and b )= d,
[a, b− 1] if a = 0 and b = d.

Note that the number of distinct solutions N of h = 0 in P1 is at most

N ≤






b− a+ 2 if a )= 0 and b )= d,
b− a+ 1 if a )= 0 and b = d,
b− a+ 1 if a = 0 and b )= d,
b− a if a = 0 and b = d

and that the equality is obtained in each case if the coefficients ci are chosen in a
sufficiently general way. Since D(h) is homotopic to the wedge of N − 1 circles, the
above inequalities may be written as

b1
(
D(h)

)
≤ MV1(∆h).

Theorem 15. Let h be any homogeneous polynomial in C[z0, . . . , zn]. For i =
0, . . . , n, we have

bi
(
D(h)

)
≤ µi(h) ≤ MVn(∆, . . . ,∆︸ ︷︷ ︸

n−i

,∆h, . . . ,∆h︸ ︷︷ ︸
i

),

where ∆ is the standard n-dimensional simplex in Rn.

Therefore, if h has a small Newton polytope under some choice of coordinates,
then the Betti numbers of D(h) cannot be large.

Example 16. Let h be the product of variables z0z1 · · · zn ∈ C[z0, . . . , zn]. Then
D(h) is the complex torus (C∗)n, so the Betti numbers are the binomial coefficients(n
i

)
. We compare the Betti numbers with the mixed volumes of ∆ and ∆h. Since

∆h is a translation of −∆, we may replace ∆h by −∆ when computing the mixed
volumes. For I ⊆ [n] = {1, . . . , n}, write Rn

I for the orthant

Rn
I =

⋂

p,q

{
xp ≥ 0, xq ≤ 0

}
,
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where the intersection is over all p ∈ [n] \ I and q ∈ I. Then, for any nonnegative
a and b,

a∆+ (−b∆) =
⋃

I⊆[n]

(
a∆+ (−b∆)

)
∩ Rn

I

=
⋃

I⊆[n]

conv
{
0, aep,−beq, aep − beq

}
p∈[n]\I,q∈I

=
⋃

I⊆[n]

(
a∆|[n]\I| × b∆|I|

)
,

where ei are the standard unit vectors of Rn and ∆k is the standard k-dimensional
simplex. Therefore we have

Vn

(
a∆+ (−b∆)

)
=

∑

I⊆[n]

a|[n]\I|b|I|

|[n] \ I|!|I|! =
n∑

i=0

(
n

i

)
an−ibi

(n− i)!i!

and hence

MVn(∆, . . . ,∆︸ ︷︷ ︸
n−i

,∆h, . . . ,∆h︸ ︷︷ ︸
i

) =

(
n

i

)
.

We note that equality holds throughout in Theorem 15, for all i = 0, . . . , n and any
n ≥ 1.

Example 17. There are polytopes in Rn+1 such that the second inequality of
Theorem 15 is strict for some i for all h having the given polytope as the Newton
polytope. For example, consider the homogeneous polynomial in C[z0, z1, z2],

h = z1(cz0z1 − c′z22),

where c, c′ ∈ C are any nonzero constants. Then the inequalities of Theorem 15 for
i = 2 read

0 ≤ 1 ≤ 2.

One can show that almost all homogeneous polynomials with a given Newton poly-
tope share the numbers µi(h). An explicit formula for the numbers will appear
elsewhere.

3.2. Representable homology classes of Pn × Pm. An algebraic variety is a
reduced and irreducible scheme of finite type over an algebraically closed field.
Given an algebraic variety X, we pose the following question: which homology
classes of X can be represented by a subvariety? See [13, Question 1.3] for a
related discussion.

Definition 18. We say that ξ ∈ A∗(X) is representable if there is a subvariety Z
of X with ξ = [Z].

Theorem 21 asserts that representable homology classes of Pn × Pm correspond
to log-concave sequences of nonnegative numbers with no internal zero. We start
by giving two examples illustrating cases of exceptional nature.

Example 19. Let X be the projective space Pn. Write ξ ∈ Ak(Pn) as a multiple

ξ = e
[
Pk

]

for some e ∈ Z.
1. If k = 0 or k = n, then ξ is representable iff e = 1.
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2. If otherwise, then ξ is representable iff e ≥ 1.

In the latter case, one may use an irreducible hypersurface of degree e in Pk+1 ⊆ Pn

to represent ξ.

Example 20. Let X be the surface P1 × P1. Write ξ ∈ A1(P1 × P1) as a linear
combination

ξ = e0
[
P1 × P0

]
+ e1

[
P0 × P1

]

for some e0, e1 ∈ Z.
1. If one of the ei is zero, then ξ is representable iff the other ei is 1.
2. If otherwise, then ξ is representable iff both ei are positive.

Note that in the former case, by the fundamental theorem of algebra, a nonconstant
bihomogeneous polynomial of degree (e0, e1) is reducible if one of the ei is zero,
unless the other ei is 1.

We characterize representable homology classes of Pn × Pm up to a positive
integer multiple.

Theorem 21. Write ξ ∈ Ak(Pn × Pm) as an integral linear combination

ξ =
∑

i

ei
[
Pk−i × Pi

]
,

where the term containing ei is zero if n < k − i or m < i.

1. If ξ is an integer multiple of either
[
Pn × Pm

]
,
[
Pn × P0

]
,
[
P0 × Pm

]
,
[
P0 × P0

]
,

then ξ is representable iff the integer is 1.
2. If otherwise, some positive integer multiple of ξ is representable iff the ei form

a nonzero log-concave sequence of nonnegative integers with no internal zeros.

Combined with Remark 4, Theorem 21 implies the following.

Corollary 22. If J is an ideal of a standard graded domain over an algebraically
closed field generated by elements of the same degree, then the mixed multiplicities
of m and J form a log-concave sequence of nonnegative integers with no internal
zeros.

Example 23. We show by example that the anwer to the following question of
Trung and Verma [47, Question 2.7] is no in general.

Let A be a local ring of dimension n + 1 ≥ 3, J1, . . . , Jn be ideals of height n,
and i = (0, 1, . . . , 1). Is it true that

ei(m|J1, J1, J3, . . . , Jn)ei(m|J2, J2, J3, . . . , Jn) ≤ ei(m|J1, J2, J3, . . . , Jn)2?

Let A be the power series ring C{x, y, z}, J1 = (xy2, y3z, xz) and J2 = (xy2, y3z,
xz2) ideals of A. Then ht(J1) = ht(J2) = 2. However, using Theorem 5 one
computes

e(0,1,1)(m|J1, J1) = 1,

e(0,1,1)(m|J1, J2) = 1,

e(0,1,1)(m|J2, J2) = 2.
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More precisely, writing # for sufficiently general nonzero constants in C,

e(0,1,1)(m|J1, J1) = e
(
m, A/(#xy2 +#y3z +#xz,#xy2 +#y3z +#xz) : J∞

1

)

= e
(
m, A/(#xy2 +#xz,#y3z +#xz) : J∞

1

)

= e
(
m, A/(#y2 +#z,#y3 +#x) : J∞

1

)

= e
(
m, A/(#y2 +#z,#y3 +#x)

)

= 1,

e(0,1,1)(m|J1, J2) = e
(
m, A/(#xy2 +#y3z +#xz,#xy2 +#y3z +#xz2) : J1J

∞
2

)

= e
(
m, A/(#xy2 +#xz +#xz2,#y3z +#xz2 +#xz) : J1J

∞
2

)

= e
(
m, A/(#y2 +#z +#z2,#y3 +#xz +#x) : J1J

∞
2

)

= e
(
m, A/(#y2 +#z +#z2,#y3 +#xz +#x)

)

= 1,

e(0,1,1)(m|J2, J2) = e
(
m, A/(#xy2 +#y3z +#xz2,#xy2 +#y3z +#xz2) : J∞

2

)

= e
(
m, A/(#xy2 +#xz2,#y3z +#xz2) : J∞

2

)

= e
(
m, A/(#y2 +#z2,#y3 +#xz) : J∞

2

)

= e
(
m, A/(#y2 +#z2,#yz2 +#xz) : J∞

2

)

= e
(
m, A/(#y2 +#z2,#yz +#x) : J∞

2

)

= e
(
m, A/(#y2 +#z2,#yz +#x)

)

= 2.

In each of the three computations above, the first equality is an application of The-
orem 5, the second is a Gaussian elimination, and the third is a result of saturation.
The same technique is used twice in the computation of e(0,1,1)(m|J2, J2).

3.3. Log-concavity of characteristic polynomials. Suppose h ∈ C[z0, . . . , zn]
is a product of linear forms. Let Ã ⊂ Cn+1 be the central hyperplane arrangement
defined by h and A ⊂ Pn be the corresponding projective arrangement.

Definition 24. Let H be a hyperplane in A. The decone of A is an affine arrange-
ment

A = AH ⊂ Cn

obtained from A by declaring H to be the hyperplane at infinity.

The lattice of flats LA is isomorphic to the sublattice of LÃ consisting of all
the flats not contained in the hyperplane H. It follows from the modular element
factorization [41, Corollary 4.8] that

χA(q) = χÃ(q)/(q − 1).

Corollary 25. We have

χA(q) =
n∑

i=0

(−1)ibi
(
D(h)

)
qn−i =

n∑

i=0

(−1)iµi(h)qn−i.

Proof. The first equality is a theorem of Orlik and Solomon applied to the affine
arrangement A ⊂ Cn [28]. We adapt an argument of Randell [30] to prove the
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second equality. Fix a sufficiently general flag of linear subspaces

P0 ⊂ P1 ⊂ · · · ⊂ Pn−1 ⊂ Pn

and a nonnegative integer k < n. If Pk is a transversal to all the flats of A of
relevant dimensions, then the lattice of flats LA|Pk

is isomorphic to the sublattice

of LA consisting of all the flats of codimension ≤ k. It follows that χA|Pk
(q) is a

truncation of χA(q). Combined with the first equality, we have

χA|Pk
(q) =

k∑

i=0

(−1)ibi
(
D(h)

)
qk−i.

In particular, bk
(
D(h) ∩ Pk

)
= bk

(
D(h)

)
. If furthermore Pk is chosen so that it

satisfies the genericity assumption of Theorem 9, then D(h)∩Pk+1 is obtained from
D(h) ∩ Pk by attaching µk+1(h) cells of dimension k + 1. Since the attaching does
not alter the k-th Betti number, this attaching map should be homologically trivial.
Therefore

bk+1

(
D(h)

)
= bk+1

(
D(h) ∩ Pk+1

)
= µk+1(h).

#

Remark 26. Using additivity of the Chern-Schwartz-MacPherson class [23], it is
possible to prove the equality

χA(q) =
n∑

i=0

(−1)iµi(h)qn−i

without using Theorem 9 nor the theorem of Orlik and Solomon. Example 11 shows
that the equality holds when n = 1. Therefore, by induction on the dimension,
it suffices to show that both polynomials satisfy the same recursive formula for
a triple of affine arrangements (A,A′

,A′′
) [29, Definition 1.14]. Let h, h′, h′′ be

homogeneous polynomials corresponding to the triple. Then by the additivity of
the Chern-Schwartz-MacPherson class,

cSM

(
1D(h)

)
= cSM

(
1D(h′) − ι∗1D(h′′)

)

= cSM

(
1D(h′)

)
− cSM

(
ι∗1D(h′′)

)

= cSM

(
1D(h′)

)
− ι∗cSM

(
1D(h′′)

)
,

where 1 stands for the characteristic function and ι is the inclusion of the distin-
guished hyperplane into Pn. Using the formula of Remark 10, this implies that

µi(h) = µi(h′) + µi−1(h′′)

for 0 < i ≤ n, which exactly corresponds to the inductive formula of Brylawski and
Zaslavsky for the characteristic polynomial of triples [29, Theorem 2.56].

Corollary 27. If M is representable over a field of characteristic zero, then the
coefficients of χM (q) form a sign-alternating log-concave sequence of integers with
no internal zeros.

Proof. Suppose M is representable over C. Let A ⊂ Pn and Ã ⊂ Cn+1 be the
projective and the central arrangements, respectively, representing M . If A is a
decone of A, then

χM (q) = χÃ(q) = (q − 1)χA(q).
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Corollary 22 together with Corollary 25 says that the absolute values of the coeffi-
cients of χA(q) form a log-concave sequence of nonnegative integers with no internal
zeros, and hence the same for χM (q). (In general, the convolution product of two
log-concave sequences is again log-concave. It is easy to check this directly in our
case.) This shows that the assertion holds for matroids representable over C.

We claim that simple matroids representable over a field of characteristic zero
are in fact representable over C. For this we check that matroid representability
can be expressed in a first-order sentence in the language of fields and appeal to
the completeness of ACF0 [24, Corollary 3.2.3]. If M is a simple matroid of rank r
on a set E of cardinality n, then M is representable over a field K if and only if the
following formula is valid over K [48, Section 9.1]: There are n column vectors of
length r labelled by the elements of E, where a subset of E is independent if and
only if the corresponding set of vectors is linearly independent. #

4. Milnor numbers of projective hypersurfaces

4.1. Proof of Theorem 9. Let h be a nonconstant homogeneous polynomial in
C[z0, . . . , zn] and Jh be the Jacobian ideal of h. Associated to h is the gradient
map

grad(h) : Pn !!" Pn, p +−→
(

∂h

∂z0
(p) : · · · : ∂h

∂zn
(p)

)
.

We write deg(h) to denote the degree of the rational map grad(h). Theorem 9
depends on a theorem of Dimca and Papadima [7, Theorem 1] expressing deg(h) as
the number of n-cells that have to be added to obtain a hypersurface complement
from its general hyperplane section.

Theorem 28 (Dimca-Papadima). Let H ⊂ Pn be a general hyperplane.

1. D(h) is homotopy equivalent to a CW complex obtained from D(h) ∩ H by at-
taching deg(h) cells of dimension n.

2. V (h) \H is homotopic to a bouquet of deg(h) spheres of dimension n− 1.

In particular, deg(h) depends only on the set V (h). Our goal is to identify
the mixed multiplicity µi(h) with the degree of the gradient map of a general i-
dimensional section of V (h).

Lemma 29. Let J be a homogeneous ideal of a standard graded algebra S over a
field. Then, for a sufficiently general linear form x in S, S = S/xS,

HPR(mS,JS)(u, v) = HPR(m|J)(u, v)−HPR(m|J)(u− 1, v).

It follows that

ei(mS|JS) = ei(m|J) for 0 ≤ i < degHPR(m|J).

Proof. See [47, Lemma 1.3]. #

Recall that a subideal I ⊆ J is said to be a reduction of J if there exists a
nonnegative integer k such that Jk+1 = IJk. If J is finitely generated, then I is a
reduction of J if and only if the integral closures of I and J coincide [15, Corollary
1.2.5]. We refer to [15] for general background on the reduction and the integral
closure of ideals.
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Lemma 30. If I is a reduction of J , then

ei(m|I) = ei(m|J) for 0 ≤ i ≤ degHPR(m|J).

Proof. See [46, Corollary 3.8]. #

The following lemma is a version of Teissier’s idealistic Bertini theorem on fam-
ilies of singular complex spaces [45, Section 2.2]. We give a simple proof in our
simple setting. For more results of this type, and for the proof of the general
case, we refer the reader to [9, 10, 42, 45]. Let h be a nonconstant homogeneous
polynomial in S = C[z0, . . . , zn].

Lemma 31. Let x be a nonzero linear form in S, S = S/xS, and Jh be the Jacobian
ideal of the class of h in S. Then, for a sufficiently general x, Jh is a reduction of
JhS.

Proof. It suffices to prove when the partial derivatives of h are linearly independent.
Let V be the vector space of linear forms in S and letW be the vector space spanned
by the partial derivatives of h. If x is a linear form c0z0 + · · ·+ cnzn with cn )= 0,
then S is the polynomial ring generated by the classes of z0, . . . , zn−1. By the chain
rule, Jh is generated by the restrictions of the polynomials

cn
∂h

∂zi
− ci

∂h

∂zn
, 0 ≤ i < n.

This identifies an affine piece of the projective space of lines in V with an affine
piece of the projective space of hyperplanes in W . We claim that the image in S
of a general hyperplane in W generates a reduction of JhS.

In general, let R =
⊕

k∈NRk be a standard graded ring of dimension n over an
infinite field and J be an ideal generated by a subspace L of dimension ≥ n in some
Rk. Then a sufficiently general subspace of dimension n in L generates a reduction
I of J . To see this, consider the graded map between the fiber rings

FI =
⊕

k∈N

Ik

mIk
−→ FJ =

⊕

k∈N

Jk

mJk
.

One shows that J is integral over I in the ideal-theoretic sense iff FJ is integral over
FI in the ring-theoretic sense [15, Proposition 8.2.4]. The conclusion follows from
the graded Noether normalization theorem applied to FJ because the dimension of
FJ is at most n [15, Proposition 5.1.6]. This technique is due to Samuel [34] and
Northcott-Rees [25]. #

Proof of Theorem 9. We induct on the dimension n. The case n = 1 is dealt with
in Example 11. For general n, let x ∈ m be a sufficiently general linear form,
S = S/xS, and h be the image of h in S. The induction hypothesis applied to h
says that the assertions for i < n hold with µi(h) in place of µi(h). However, for
i < n, we have

µi(h) = ei
(
mS|Jh

)
by definition,

= ei
(
mS|JhS

)
by Lemma 30 and Lemma 31,

= ei
(
m|Jh

)
by Lemma 29,

= µi(h) by definition.
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This proves the assertions for i < n. For i = n, we recall from Remark 4 that µn(h)
is the n-th projective degree of grad(h). Since the target of grad(h) is Pn, the n-th
projective degree equals deg(h), the degree of the rational map grad(h). With this
identification, Theorem 28 says that the assertions hold for i = n. #
4.2. Proof of Theorem 15.

Lemma 32. Let S be a standard graded ring of dimension n + 1 over a field, m
the irrelevant ideal of S.

1. Suppose I and J are ideals of positive height, both generated by elements of the
same degree r ≥ 0. If I ⊆ J , then

ei(m|I) ≤ ei(m|J) for i = 0, . . . , n.

2. Suppose I and J are m-primary ideals. If I ⊆ J , then

ei(m|I) ≥ ei(m|J) for i = 0, . . . , n.

Proof. If I and J are ideals of positive height, then degHPR(m|I) = degHPR(m|J) =
n [47, Theorem 1.2]. We prove the first part by induction on n. Since I and J are
generated by elements of the same degree,

dimS/m
muIv

mu+1Iv
≤ dimS/m

muJv

mu+1Jv
for u, v ≥ 0

because the former vector space is contained in the latter. If n = 1, then the above
condition implies that

e0(m|I)u+ e1(m|I)v ≤ e0(m|J)u+ e1(m|J)v for all large u and large v

and hence
ei(m|I) ≤ ei(m|J) for i = 0, 1.

Now suppose n > 1 and assume the induction hypothesis. We know that
n∑

i=0

ei(m|I)
(n− i)!i!

un−ivi ≤
n∑

i=0

ei(m|J)
(n− i)!i!

un−ivi for all large u and large v.

Taking the limit u/v → 0 while keeping u and v sufficiently large, we have

en(m|I) ≤ en(m|J).
For the remaining cases, choose sufficiently general x ∈ S1 \ {0}. Using Lemma 29
and the induction hypothesis for the triple S = S/xS, IS, JS, we have

ei(m|I) = ei(mS|IS) ≤ ei(mS|JS) = ei(m|I) for i = 0, . . . , n− 1.

The second part can be proved in the same way except that one starts from

dimS/m S/muIv ≥ dimS/m S/muJv for u, v ≥ 0.

#
Proof of Theorem 15. The first inequality is clear in view of Theorem 9. For the
second inequality, note that Jh is contained in the ideal generated by all the mono-
mials appearing in one of the partial derivatives of h. Let us denote this latter
ideal by Kh. By Lemma 32, ei(m|Jh) ≤ ei(m|Kh) holds for 0 ≤ i ≤ n. Computing
ei(m|Kh) from the function

dimC mpKq
h/m

p+1Kq
h, p = u+

n−i∑

j=1

vj , q =
i∑

k=1

vn−i+k
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shows that

ei(m|Kh) = e(0,1,...,1)(m|m, . . . ,m︸ ︷︷ ︸
n−i

,Kh, . . . ,Kh︸ ︷︷ ︸
i

) for 0 ≤ i ≤ n.

Using Theorem 6 to identify the right-hand side with the mixed volume of interest,
we have

µi(h) ≤ MVn(∆, . . . ,∆︸ ︷︷ ︸
n−i

,∆h, . . . ,∆h︸ ︷︷ ︸
i

) for 0 ≤ i ≤ n.

#

5. Representable homology classes of Pn × Pm

5.1. Proof of Theorem 21. The main ingredient of Theorem 21 is the Hodge-
Teissier-Khovanskii inequality [18, 44]. See also the presentations [11] and [21,
Section 1.6]. We introduce another proof using Okounkov bodies, blind to the
characteristic and to the singularities, which is more akin to the convex geometric
viewpoint of this paper. The proof closely follows the argument of [17]. First we
recall the necessary facts on Okounkov bodies from [22]. Let D be a divisor on an
n-dimensional algebraic variety X. The Okounkov body of D, denoted ∆(D), is a
compact convex subset of Rn with the following properties.

A. If H is an ample2 divisor on X, then

n! Vn

(
∆(H)

)
= lim

k→∞

h0
(
X,OX(kH)

)

kn/n!
=

∫

X
H ·H · . . . ·H︸ ︷︷ ︸

n

.

B. For any divisors D1 and D2 on X,

∆(D1) + ∆(D2) ⊆ ∆(D1 +D2).

Lemma 33 (Teissier-Khovanskii). Let H1, . . . , Hn be nef divisors on an n-dimen-
sional variety X. Then
(∫

X
H1 ·H1 ·H3 · . . . ·Hn

)(∫

X
H2 ·H2 ·H3 · . . . ·Hn

)
≤

(∫

X
H1 ·H2 ·H3 · . . . ·Hn

)2
.

Proof. The proof is by induction on n. By Kleiman’s theorem [21, Theorem 1.4.23],
Hi are the limits of rational ample divisor classes in the Néron-Severi space of
X. Therefore it suffices to prove the inequality for rational ample divisor classes.
Because of the homogeneity of the stated inequality, we may further assume that the
Hi are very ample integral divisors. If n ≥ 3, then Bertini’s theorem [16, Corollary
6.11] allows us to apply the inductive hypothesis to Hn, which is a subvariety of X.
Therefore we are reduced to the case of surfaces.

When X is a surface and H1, H2 are ample divisors on X, by the Brunn-
Minkowski inequality [35, Theorem 6.1.1] and Property B above, we have

V2

(
∆(H1)

)1/2
+V2

(
∆(H2)

)1/2 ≤ V2

(
∆(H1) + ∆(H2)

)1/2 ≤ V2

(
∆(H1 +H2)

)1/2
.

Now Property A says that the square of the above inequality simplifies to
(∫

X
H1 ·H1

)(∫

X
H2 ·H2

)
≤

(∫

X
H1 ·H2

)2
.

#
2The first equality holds more generally for big divisors [22, Theorem 2.3].
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Lemma 34. Let C ⊂ Rn+1 be the set of all log-concave sequences of positive real
numbers, and let C ′ ⊂ Rn+1 be the set of all log-concave sequences of nonnegative
real numbers with no internal zeros. Then C = C ′.

Proof. We first show that a sequence (e0, e1, . . . , en) ∈ C satisfies

ek−j
i ej−i

k ≤ ek−i
j for 0 ≤ i < j < k ≤ n.

This can be shown by induction on k − i. By the induction hypothesis, we have

ek−j−1
i ej−i

k−1 ≤ ek−i−1
j and eje

k−j−1
k ≤ ek−j

k−1.

Eliminating ek−1 in the first inequality using the second inequality, and using the
assumption that ej is positive, we have what we want. The proved inequality shows
that

C ⊆ C ′.

The reverse inclusion is easy to see. A log-concave sequence of nonnegative numbers
with no internal zeros can be written as

. . . , 0, 0, 0, a1, a2, . . . , ak, 0, 0, 0, . . .

for some positive numbers ai. This sequence is the limit of sequences in C of the
form

. . . , ε5, ε3, ε, a1, a2, . . . , ak, ε, ε
3, ε5, . . .

for sufficiently small positive ε. #
We deal with the four exceptional cases in a separate lemma.

Lemma 35. If ξ ∈ A∗(Pn × Pm) is an integer multiple of either [Pn × Pm], [Pn ×
P0], [P0 × Pm], or [P0 × P0], then ξ is representable iff the integer is 1.

Proof. The interesting part is to prove the necessity when ξ is an integer multiple
of [Pn × P0] or [P0 × Pm]. It is enough to consider the first case. If ξ is represented
by a subvariety Z, then a general hypersurface H of the form Pn×Pm−1 ⊂ Pn×Pm

is disjoint from Z, since otherwise the intersection H ∩ Z defines a nonzero class
in An−1(Pn × Pm−1). Therefore Z is in fact a subvariety of Pn × Cm. Since
Z is a projective variety, the map Z → Cm induced by the second projection
Pn × Cm → Cm is constant [36, Corollary 5.2.2, Chapter I]. It follows that Z is of
the form Pn × P0. #

Lastly, we need the following mixed volume computation of Shephard [37, pp.
134–136].

Lemma 36 (Shephard). For positive numbers λ1 ≥ λ2 ≥ · · · ≥ λn, define the
polytope

∆λ = conv
{
0, λ1e1, λ2e2, . . . , λnen

}
⊂ Rn.

If ∆ ⊂ Rn is the standard n-dimensional simplex, then

MVn(∆, . . . ,∆︸ ︷︷ ︸
n−i

,∆λ, . . . ,∆λ︸ ︷︷ ︸
i

) = λ1λ2 · · ·λi for 0 ≤ i ≤ n.

Proof of Theorem 21. The case when ξ ∈ A∗(Pn × Pm) is an integer multiple of
either [Pn × Pm], [Pn × P0], [P0 × Pm], or [P0 × P0] is dealt with in Lemma 35.
Hereafter we assume that this is not the case. Let ξ be the homology class

ξ =
∑

i

ei
[
Pk−i × Pi

]
∈ Ak(Pn × Pm),
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where the term containing ei is zero if n < k − i or m < i. We write H1 and H2

for divisors on Pn × Pm obtained by pulling back a hyperplane from the first and
the second factor respectively.
1. Suppose ξ is represented by a subvariety Z. Then

∫

Z
H1 · . . . ·H1︸ ︷︷ ︸

k−i

·H2 · . . . ·H2︸ ︷︷ ︸
i

= ei.

Since H1 and H2 are nef, Lemma 33 says that the ei form a log-concave sequence.
2. We continue to assume that ξ is represented by a subvariety Z. By Kleiman’s
theorem, H1|Z and H2|Z are limits of ample classes in the Néron-Severi space of Z
over R [21, Theorem 1.4.23]. Therefore the sequence {ei} is a limit of a log-concave
sequence of positive real numbers. It follows from Lemma 34 that {ei} is a log-
concave sequence of nonnegative numbers with no internal zeros. {ei} cannot be
identically zero because, for example,

∑
i

(k
i

)
ei is the degree of Z inside the Segre

embedding Pn × Pm ⊂ Pnm+n+m [12, Exercise 19.2].
3. Now we show that the condition on the sequence is sufficient for the repre-
sentability of a multiple of the corresponding homology class. First we represent
a multiple of ξ ∈ An(Pn × Pn), n > 0, corresponding to a log-concave sequence of
positive integers ei. Write

ξ =
n∑

i=0

ei
[
Pn−i × Pi

]
∈ An(Pn × Pn).

Let e be a common multiple of e0, . . . , en−1 and define positive integers

λi = e(ei/ei−1) for i = 1, . . . , n.

The log-concavity of ei now reads λ1 ≥ λ2 ≥ · · · ≥ λn. Let Γλ be the graph of the
rational map

ϕλ : Pn !!" Pn, (z0 : · · · : zn) +−→ (zλ1
0 : zλ1

1 : zλ1−λ2
0 zλ2

2 : · · · : zλ1−λn
0 zλn

n ).

The projective degrees of ϕλ are the mixed multiplicities of the irrelevant ideal
m and the monomial ideal Jλ generated by the components of ϕλ. Combining
Theorem 6 and Lemma 36, we have

ei(m|Jλ) = MVn(∆, . . . ,∆︸ ︷︷ ︸
n−i

,∆λ, . . . ,∆λ︸ ︷︷ ︸
i

) = λ1λ2 · · ·λi = ei(ei/e0),

where ∆λ is the polytope of Lemma 36. In other words,
∫

Γλ

H1 · . . . ·H1︸ ︷︷ ︸
n−i

·H2 · . . . ·H2︸ ︷︷ ︸
i

= ei(ei/e0).

Now consider a regular map ψ : Pn → Pn defined by homogeneous polynomials
h0, . . . , hn of degree e with no common zeros. If the hi are chosen in a sufficiently
general way, then the product ψ× IdPn : Pn×Pn → Pn×Pn restricts to a birational
morphism Γλ → Im(Γλ). From the projection formula we have
∫

Im(Γλ)
H1 · . . . ·H1︸ ︷︷ ︸

n−i

·H2 · . . . ·H2︸ ︷︷ ︸
i

=

∫

Γλ

eH1 · . . . · eH1︸ ︷︷ ︸
n−i

·H2 · . . . ·H2︸ ︷︷ ︸
i

= en(ei/e0).
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In sum, Im(Γλ) ⊂ Pn × Pn is irreducible and

[
Im(Γλ)

]
= (en/e0)

n∑

i=0

ei
[
Pn−i × Pi

]
∈ An(Pn × Pn).

4. Finally, we represent a positive integer multiple of ξ ∈ Ak(Pn×Pm) corresponding
to a nonzero log-concave sequence of nonnegative integers with no internal zeros. ξ
can be uniquely written as an integral linear combination

ξ =
q∑

i=p

ei
[
Pk−i × Pi

]
∈ Ak(Pn × Pm),

where 0 ≤ p ≤ q ≤ k, k − p ≤ n, q ≤ m, and ep, eq are positive.
If p = q, then either 0 < p < m or 0 < k − p < n, since we are excluding the

four exceptional cases. If 0 < p < m, take a hypersurface Z in Pk−p ×Pp+1 defined
by an irreducible bihomogeneous polynomial of degree (0, ep). Then the image of
Z under an embedding of Pk−p × Pp+1 into Pn × Pm represents ξ. Here 0 < p
guarantees the existence of the irreducible polynomial and p < m guarantees the
existence of the embedding. Similarly, if 0 < k−p < n, we take a hypersurface Z in
Pk−p+1 ×Pp defined by an irreducible bihomogeneous polynomial of degree (ep, 0).
The image of Z under an embedding of Pk−p+1 × Pp into Pn × Pm represents ξ.

If p < q, then we can use the result of the previous step to choose a (q − p)-
dimensional subvariety Z ⊂ Pq−p × Pq−p representing a multiple of

q∑

i=p

ei
[
Pq−i × Pi−p

]
∈ Aq−p(Pq−p × Pq−p).

Embed Pq−p×Pq−p into Pk−p×Pq and take the cone Z̃ of Z in Pk−p×Pq. The cone
Z̃ is defined by the same bihomogeneous polynomials defining Z, hence irreducible,
and represents a multiple of

q∑

i=p

ei
[
Pk−i × Pi

]
∈ Ak(Pk−p × Pq).

The image of Z̃ under an embedding of Pk−p×Pq into Pn×Pm represents a multiple
of ξ. #
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theorem relating the Milnor number with the Newton polytope; we also char-
acterize homology classes of Pn×Pm corresponding to subvarieties and answer
a question posed by Trung-Verma.
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