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Morphisms of matroids are combinatorial abstractions of lin-
ear maps and graph homomorphisms. We introduce the notion 
of a basis for morphisms of matroids, and show that its gener-
ating function is strongly log-concave. As a consequence, we 
obtain a generalization of Mason’s conjecture on the f -vectors 
of independent subsets of matroids to arbitrary morphisms 
of matroids. To establish this, we define multivariate Tutte 
polynomials of morphisms of matroids, and show that they 
are Lorentzian in the sense of [6] for sufficiently small positive 
parameters.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A matroid M on a finite set E is defined by its rank function rkM : 2E → N satisfying 
the following conditions:

(1) For any S ⊆ E, we have rkM(S) ≤ |S|.

(2) For any S1 ⊆ S2 ⊆ E, we have rkM(S1) ≤ rkM(S2).
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(3) For any S1 ⊆ E, S2 ⊆ E, we have rkM(S1∪S2) +rkM(S1∩S2) ≤ rkM(S1) +rkM(S2).

A subset S ⊆ E is an independent set of M if rkM(S) = |S|, and a spanning set of M if 
rkM(S) = rkM(E). A basis of M is a subset that is both independent and spanning, and 
a circuit of M is a subset that is minimal among those not in any basis of M.

Definition 1.1. Let M and N be matroids on ground sets E and F . A morphism f : M → N
is a function from E to F that satisfies

rkN(f(S2)) − rkN(f(S1)) ≤ rkM(S2) − rkM(S1) for any S1 ⊆ S2 ⊆ E.

A subset S ⊆ E is a basis of f if S is contained in a basis of M and f(S) contains a 
basis of N.

The category Mat consists of matroids with morphisms as defined above.1 The initial 
object of Mat is U0,0, the unique matroid on the empty set. The terminal object of Mat
is U0,1, the matroid on a singleton of rank zero.

We write B(f) for the set of bases of a morphism of matroids f . When f is the 
identity morphism of M, the set B(f) is the collection of bases B(M) of M. When f
is the morphism from M to the terminal object U0,1, the set B(f) is the collection of 
independent sets I(M) of M.

We prove the following log-concavity properties for the set of bases of a morphism. 
Let f : M → N be any morphism between matroids M and N on ground sets E and F . 
We write n for the cardinality of E and w = (wi)i∈E for the variables representing the 
coordinate functions on RE � Rn.

Theorem 1.2 (Continuous). The basis generating polynomial

Bf (w) :=
∑

S∈B(f)

∏
i∈S

wi

is either identically zero or its logarithm is concave on the positive orthant Rn
>0.

Theorem 1.3 (Discrete). Let bk(f) be the number of bases of f of cardinality k. For all 
k, we have

bk(f)2(
n
k

)2 ≥ bk−1(f)(
n

k−1
) bk+1(f)(

n
k+1

) .

One recovers the strongest form of Mason’s conjecture on independent sets of a ma-
troid from [26], proved in [2,5], by considering the morphism to U0,1 in Theorem 1.3.

1 Morphisms are closely related to strong maps [33, Chapter 17]: A strong map from M to N is a morphism 
from M ⊕ U0,1 to N ⊕ U0,1.
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Example 1.4. Let A1(F2) be any line in the four-dimensional affine space A4(F2) over the 
field F2, and let M be the matroid of affine dependencies on the 14 points A4(F2) \A1(F2). 
Projecting from the line gives a two-to-one map onto the projective plane

A4(F2) \A1(F2) −→ P 2(F2).

The projection defines a morphism f from M to the Fano matroid F7 with

(
b0(f),b1(f),b2(f),b3(f),b4(f),b5(f),b6(f), . . .

)
=

(
0, 0, 0, 224, 840, 1232, 0, . . .

)
.

See Remark 2.1 for a discussion of morphisms of matroids constructed from linear maps.

Example 1.5. A graph homomorphism is a function between the vertex sets of two graphs 
that maps adjacent vertices to adjacent vertices. For example, consider the following 
graph homomorphism G → H:

2 3

1

1 2
3

2 3

1

The induced map between the edges defines a morphism between the cycle matroids 
f : M(G) → M(H) with

(
b0(f),b1(f),b2(f),b3(f),b4(f),b5(f),b6(f), . . .

)
=

(
0, 0, 27, 79, 111, 75, 0, . . .

)
.

See Remark 2.2 for a discussion of morphisms of matroids constructed from graph ho-
momorphisms.

Example 1.6. For any cellularly embedded graph G on a compact surface Σ, the bijection 
between the edges of G and its geometric dual G∗ on Σ defines a morphism of matroids

f : M(G)∗ −→ M(G∗),

where M(G)∗ is the cocycle matroid of G and M(G∗) is the cycle matroid of G∗, see 
[10, Theorem 4.3] for a proof. The difference between the ranks of the two matroids is 
2 −χ(Σ), so f is not an isomorphism unless the surface is a sphere. For example, consider 
the embedding of the complete graph K7 on the torus shown below; it is the 1-skeleton 
of the minimal triangulation of the torus.
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1 2 3

1

6 7 4

6
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1 2 3

The geometric dual K∗
7 is the Heawood graph, the point-line incidence graph of the 

projective plane P 2(F2). One can check that f : M(K7)∗ → M(K∗
7 ) is a morphism with

(
. . . ,b13(f),b14(f),b15(f), . . .

)
=

(
. . . , 50421, 47715, 16807, . . .

)
.

We point to https://github .com /chrisweur /matroidmap for a Macaulay2 code support-
ing the computations here.

We identify E with [n], and introduce a variable w0 different from the variables 
w1, . . . , wn. The homogeneous multivariate Tutte polynomial of f : M → N is the homo-
geneous polynomial of degree n in n + 1 variables

Zp,q,f (w0, w1, . . . , wn) :=
∑
S⊆[n]

p− rkM(S)q− rkN(f(S))w
n−|S|
0

∏
i∈S

wi,

where p and q are real parameters. We show that the homogeneous multivariate Tutte 
polynomials are Lorentzian in the sense of [6], and deduce Theorems 1.2 and 1.3 from 
the Lorentzian property.

Theorem 1.7. For any positive real numbers p ≤ 1 and q ≤ 1, the polynomial Zp,q,f is 
Lorentzian.

One recovers the Lorentzian property of the homogeneous multivariate Tutte polyno-
mial of a matroid M [6, Theorem 11.1] by considering the morphism from M to U0,1. We 
will establish Theorem 1.7 in the more general context of flag matroids.

After we review notions surrounding morphisms of matroids in Section 2, we turn 
to flag matroids, which are Coxeter matroids of type A in the sense of [4], and define 
homogeneous multivariate Tutte polynomials of flag matroids in Section 3. We show in 
Section 4 that these polynomials are Lorentzian in the sense of [6], and deduce the three 
main theorems stated above. We close the paper in Section 5 with a question and a 
conjecture.

https://github.com/chrisweur/matroidmap
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2. Morphisms of matroids

2.1. Let M and N be matroids on ground sets E and F . A morphism f : M → N is 
a function from E to F satisfying any one of the following equivalent conditions:

(1) For any S1 ⊆ S2 ⊆ E, we have rkN(f(S2)) − rkN(f(S1)) ≤ rkM(S2) − rkM(S1).

(2) If T ⊆ F is a cocircuit of N, then f−1(T ) ⊆ E is a union of cocircuits of M.

(3) If T ⊆ F is a flat of N, then f−1(T ) ⊆ E is a flat of M.

For all undefined terms in matroid theory, we refer to [28]. The equivalence of the three 
conditions readily follows from the properties of strong maps [17]. Basic properties of 
the category Mat with morphisms as defined above was studied in [14].

Remark 2.1 (Representable matroids). Let Mat(F) be the category whose objects are 
functions of the form

ϕ : E −→ W,

where E is a finite set and W is a vector space over a field F . We write M(ϕ) for the 
matroid on E defined by the rank function

rkM(ϕ)(S) = the dimension of the span of ϕ(S) over F .

The object ϕ is called a representation of M(ϕ) over F [33, Chapter 6]. A morphism from 
ϕ1 to ϕ2 in Mat(F) is a commutative diagram

E1
ϕ1

W1

E2
ϕ2

W2

where W1 → W2 is a linear map between the vector spaces. Using the description of 
morphisms of matroids in terms of flats, we see that the function E1 → E2 gives a 
morphism of matroids M(ϕ1) → M(ϕ2), defining a functor

RF : Mat(F) −→ Mat, ϕ 	−→ M(ϕ).

Remark 2.2 (Cycle matroids). Let Graph be the category of graphs, that is, functions of 
the form

ϕ : E −→ V (2),
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where E is a finite set and V (2) is the set of two-element multi-subsets of another finite 
set V . We write M(ϕ) for the matroid on E defined by the condition

S is independent in M(ϕ) ⇐⇒ S does not contain any cycle of the graph ϕ.

The matroid M(ϕ) is called the cycle matroid of ϕ [28, Chapter 5]. A morphism from ϕ1

to ϕ2 in Graph is a commutative diagram

E1
ϕ1

V
(2)
1

E2
ϕ2

V
(2)
2

where V (2)
1 → V

(2)
2 is a map induced from a map V1 → V2. Using the description of 

morphisms of matroids in terms of flats, we see that the function E1 → E2 gives a 
morphism of matroids M(ϕ1) → M(ϕ2), defining a functor

C : Graph −→ Mat, ϕ 	−→ M(ϕ).

2.2. A matroid quotient is a morphism of matroids f : M → N whose underlying 
map between the ground sets is the identity function of a finite set. In this case, N is 
said to be a quotient of M, and we denote the morphism by M � N. Many equivalent 
descriptions of matroid quotients are given in [7, Proposition 7.4.7]. For later use, we 
record here two immediate but useful properties of matroid quotients. Recall that an 
element i is a loop of M if {i} is a circuit of M, and that distinct elements i, j are parallel
in M if {i, j} is a circuit of M.

Lemma 2.3. Let M � N be a matroid quotient on E, and let i, j be distinct elements of 
E.

(1) If i is a loop in M, then i is a loop in N.

(2) If i, j are parallel in M, then either i, j are parallel in N or both i, j are loops in N.

Proof. The first statement follows from rkN(i) ≤ rkM(i). For the second statement, note 
that

rkN(i, j) − rkN(i) ≤ rkM(i, j) − rkM(i) and rkN(i, j) − rkN(j) ≤ rkM(i, j) − rkM(j).

Thus rkM(i, j) = rkM(i) = rkM(j) implies rkN(i, j) = rkN(i) = rkN(j). �
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Questions on morphisms of matroids can often be reduced to those on matroid quo-
tients. Let M and N be matroids on ground sets E and F , and let f be a function from 
E to F . We write f−1(N) for the matroid on E defined by the rank function

rkf−1(N)(S) = rkN(f(S)) for S ⊆ E.

Informally, f−1(N) is the matroid obtained from the restriction N|f(E) by replacing each 
non-loop element e with a set of parallel elements f−1(e) and each loop e by a set of 
loops f−1(e). See [33, Chapter 8.2] for a more general construction of induced matroids.

Lemma 2.4. The function f defines a morphism M → N if and only if f−1(N) is a 
quotient of M. In this case, the set of bases B(M → N) is either empty or equal to 
B(M � f−1(N)).

Therefore, the basis generating polynomial of a morphism f : M → N is either iden-
tically zero or equal to the basis generating polynomial of the quotient M � f−1(N).

Proof. The first statement is obvious, given that f−1(N) is a matroid. For the second 
statement, note that B(M → N) is nonempty if and only if f(E) is a spanning set of N. 
In this case, S ⊆ E is a spanning set of f−1(N) if and only if f(S) ⊆ F is a spanning set 
of N, and hence

B(M → N) = B(M � f−1(N)). �
We remark that the collection of bases of a quotient is the collection of feasible sets 

of a saturated delta-matroid and conversely [32]. Such a nonempty collection F is char-
acterized by its properties

(1) for any S1, S2 ∈ F and any S3 containing S1 and contained in S2, we have S3 ∈ F, 
and

(2) for any S1, S2 ∈ F and any i ∈ S1S2, there is j ∈ S1S2 such that S1{i, j} ∈ F.

The collection of bases of M � N of a given cardinality k is, when nonempty, the set of 
bases of a matroid, the rank k Higgs lift of N toward M [7, Exercise 7.20].

3. The multivariate Tutte polynomial of a flag matroid

3.1. Let M be a matroid on E, and let w = (wi)i∈E . The multivariate Tutte poly-
nomial, also called the Potts model partition function, of M is the polynomial

Zq,M(w) :=
∑

q− rkM(S)
∏

wi,

S⊆E i∈S
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where q is a real parameter [31]. The polynomial satisfies the deletion-contraction relation

Zq,M = Zq,M\i + q− rkM(i) wi Zq,M/i for any i ∈ E.

It is related to the usual Tutte polynomial [33, Chapter 15], denoted TM(x, y), by the 
change of variables

q = (x− 1)(y − 1) and wi = (y − 1) for all i ∈ E.

More precisely, with the above values of q and w, we have

(x− 1)− rkM(E) TM(x, y) = Zq,M(w).

We refer to [31] for more combinatorial properties of the multivariate Tutte polynomial 
and its connection to statistical physics. Two notable limits are

lim
q→0

qrkM(E) Zq,M(w) =
∑

S∈S(M)

∏
i∈S

wi and lim
q→0

Zq,M(qw) =
∑

S∈I(M)

∏
i∈S

wi,

where S(M) is the collection of spanning sets of M and I(M) is the collection of indepen-
dent sets of M.

In [19], Las Vergnas introduced Tutte polynomials of matroid quotients and showed 
that the bases of a matroid quotient serve the same role as the bases of a matroid in 
defining the Tutte polynomial via internal-external activities. We refer to the series of 
papers [20–22,11,23,24] for properties and applications.

Definition 3.1. The Tutte polynomial of a matroid quotient M � N on E is the trivariate 
polynomial

TM�N(x, y, z) :=
∑
S⊆E

(x− 1)crkN(S)(y − 1)|S|−rkM(S)zcrkM(S)−crkN(S),

where crkM(S) = rkM(E) − rkM(S) and crkN(S) = rkN(E) − rkN(S).

The usual Tutte polynomial of a matroid is recovered by setting M = N. We define 
the multivariate Tutte polynomial of M � N by

Zp,q,M�N(w) :=
∑
S⊆E

p− rkM(S)q− rkN(S)
∏
i∈S

wi,

where p and q are real parameters. The Tutte polynomial of M � N and the multivariate 
Tutte polynomial of M � N are related by the change of variables

p = z(y − 1), pq = (x− 1)(y − 1) and wi = (y − 1) for all i ∈ E.



C. Eur, J. Huh / Advances in Mathematics 367 (2020) 107094 9
More precisely, with the above values of p, q and w, we have

(x− 1)− rkN(E)zrkN(E)−rkM(E) TM�N(x, y, z) = Zp,q,M�N(w).

Theorem 1.7 implies that the multivariate Tutte polynomial is log-concave on the positive 
orthant RE

>0 for any positive real numbers p ≤ 1 and q ≤ 1.

3.2. According to [4], flag matroids are precisely the Coxeter matroids of type A. 
For our purposes, it is most natural to work with flag matroids and their multivariate 
Tutte polynomials.

Definition 3.2. A flag matroid M is a sequence of matroids (M1, . . . , M�) of matroids on 
a common ground set E satisfying the condition

the matroid Mk is a quotient of Mk+1 for all 0 < k < �.

The matroids M1, . . . , M� are constituents of the flag matroid M.

Our definition of flag matroids, which agrees with [8, Definition 6.2], differs slightly 
from the one in [4, Section 1.7] in that we allow Mk = Mk+1. It is necessary to work with 
Definition 3.2 to construct deletion M \ i and contraction M/i by respective operations 
on the constituents of M.

Definition 3.3. Let M = (M1, . . . , M�) be a flag matroid on E, and let i be any element 
of E.

(1) The deletion M \ i of M is the flag matroid

M \ i = (M1 \ i, . . . ,M� \ i)

where Mk \ i is the matroid on E \ i defined by the rank function

rkMk\i(S) = rkMk
(S).

(2) The contraction M/i of M is the flag matroid

M/i = (M1/i, . . . ,M�/i),

where Mk/i is the matroid on E \ i defined by the rank function

rkMk/i(S) = rkMk
(S ∪ i) − rkMk

(i).
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It is straightforward to check that M \ i and M/i are flag matroids on E \ i. For the 
rest of this paper, we identify the ground set E with [n] and write w0 for a variable 
different from the variables w1, . . . , wn.

Definition 3.4. The homogenous multivariate Tutte polynomial of a flag matroid M =
(M1, . . . , M�) is the homogenous polynomial of degree n in n + 1 variables

Zq,M(w0, w1, . . . , wn) :=
∑
S⊆[n]

q
− rkM1 (S)
1 q

− rkM2 (S)
2 · · · q− rkM�

(S)
� w

n−|S|
0

∏
i∈S

wi,

where q stands for the sequence of real parameters (q1, . . . , q�).

When � = 2 and w0 = 1, we recover the multivariate Tutte polynomial of a ma-
troid quotient. In general, the homogeneous multivariate Tutte polynomial satisfies the 
deletion-contraction relation

Zq,M = w0 Zq,M\i + wi q
− rkM1 (i)
1 q

− rkM2 (i)
2 · · · q− rkM�

(i)
� Zq,M/i for any i ∈ E.

From the deletion-contraction relation, we see that the i-th partial derivative of Zq,M is

∂

∂wi
Zq,M = q

− rkM1 (i)
1 q

− rkM2 (i)
2 · · · q− rkM�

(i)
� Zq,M/i for any i ∈ E.

The above formula will play a central role in the inductive proof of Theorem 4.4.

Remark 3.5. The homogeneous multivariate Tutte polynomials are the reduced multi-
variate Tutte characters for the minor system of flag matroids with � constituents in the 
sense of [9]. See [16] for an equivalent theory of canonical Tutte polynomials of minor 
systems.

4. The Lorentzian property

4.1. In [6], the authors introduce Lorentzian polynomials as a generalization of vol-
ume polynomials in algebraic geometry and stable polynomials in optimization theory. 
These polynomials capture the essence of many log-concavity phenomena in combina-
torics. Here we briefly summarize the relevant results. We write ei for the i-th standard 
unit vector of Nn and ∂i for the differential operator ∂

∂wi
on the polynomial ring 

R[w1, . . . , wn].

Definition 4.1. [6, Definition 2.1] A homogeneous polynomial h ∈ R[w1, . . . , wn] of 
degree d is strictly Lorentzian if all of its coefficients are positive and, for any in-
dices i1, . . . , id−2 ∈ [n], the quadratic form ∂i1 · · · ∂id−2h has the Lorentzian signature 
(+, −, . . . , −). Lorentzian polynomials are polynomials that can be obtained as a limit of 
strictly Lorentzian polynomials.
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A subset J ⊆ Nn is M-convex if, for any index i ∈ [n] and any vectors α ∈ J and 
β ∈ J whose i-th coordinates satisfy αi > βi, there is an index j ∈ [n] satisfying

αj < βj and α− ei + ej ∈ J and β − ej + ei ∈ J.

The notion of M-convexity forms the basis of discrete convex analysis [27]. The support
of h is the set of monomials appearing in h, viewed as a subset of Nn.

Theorem 4.2. [6, Theorem 5.1] A homogeneous polynomial h ∈ R[w1, . . . , wn] of degree d
is Lorentzian if and only if all of its coefficients are nonnegative, its support is M-convex, 
and, for any indices i1, . . . , id−2 ∈ [n], the quadratic form ∂i1 · · · ∂id−2h has at most one 
positive eigenvalue.

For example, a bivariate polynomial 
∑d

k=0 akw
k
1w

d−k
2 with nonnegative coefficients 

is Lorentzian if and only if the sequence a0, . . . , ad has no internal zeros2 and, for all 
0 < k < d, we have

a2
k(

d
k

)2 ≥ ak−1(
d

k−1
) ak+1(

d
k+1

) .
Applications to log-concavity phenomena in combinatorics arise from the following 

properties of Lorentzian polynomials. Following [13], we say that a polynomial h ∈
R[w1, . . . , wn] with nonnegative coefficients is strongly log-concave if, for any sequence 
of indices i1, i2, . . . ∈ [n] and any positive integer k, the functions h and ∂i1 · · · ∂ikh are 
either identically zero or log-concave on the positive orthant Rn

>0.

Theorem 4.3. Let h and g be homogeneous polynomials in R[w1, . . . , wn] with nonnegative 
coefficients.

(1) [6, Theorem 5.3] The polynomial h is Lorentzian if and only if h is strongly log-
concave.

(2) [6, Theorem 2.10] If h(w) is Lorentzian, then h(Av) is Lorentzian for any vector of 
variables v = (v1, . . . , vm) and any n ×m matrix A with nonnegative entries.

(3) [6, Corollary 5.5] If h and g are Lorentzian, then the product hg is Lorentzian.

4.2. We now prove the main result of this paper. Let M = (M1, . . . , M�) be a flag 
matroid on the ground set [n] with n ≥ 2 and � ≥ 1.

Theorem 4.4. The homogeneous multivariate Tutte polynomial Zq,M(w0, w1, . . . , wn) is 
Lorentzian for any positive real numbers q1, . . . , q� ≤ 1.

2 The sequence a0, . . . , ad has no internal zeros if ak1ak3 �= 0 =⇒ ak2 �= 0 for all 0 ≤ k1 < k2 < k3 ≤ d.
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For any element k of [�] and distinct elements i, j of [n], we set

dk(i, j) := rkMk
(i) + rkMk

(j) − rkMk
(i, j) =

{
1 if i and j are parallel in Mk,
0 if i and j are not parallel in Mk.

In other words, dk is the indicator function for the two-element circuits of Mk. We write 
PM for the multi-affine polynomial

PM(q, w) :=
∑

1≤i<j≤n

q
d1(i,j)
1 q

d2(i,j)
2 · · · qd�(i,j)

� wiwj ,

where q = (q1, . . . , q�) and w = (w1, . . . , wn). Note that PM depends only on the rank 2
truncations of the constituents of M.

Lemma 4.5. For any real numbers w1, . . . , wn and any nonnegative real numbers 
q1, . . . , q� ≤ 1,

1
2

(
1 − 1

n

)
(w1 + · · · + wn)2 ≥ PM(q, w).

Proof. We prove the statement by induction on (n, �). The case (2, �) is straightforward:

1
4(w1 + w2)2 ≥ 1

4q
d1(1,2)
1 . . . q

d�(1,2)
� (w1 + w2)2 ≥ q

d1(1,2)
1 . . . q

d�(1,2)
� w1w2.

Since PM is a linear in the parameter q�, we may suppose that q� is 0 or 1.3 Therefore, 
the following five special cases imply the general case:

(1) when q� = 1 and � = 1;

(2) when q� = 1 and � > 1;

(3) when q� = 0 and M� has a pair of parallel elements, say 1 and 2;

(4) when M� has no pair of parallel elements and � = 1;

(5) when M� has no pair of parallel elements and � > 1.

In cases (1) and (4), we need to show

1
2

(
1 − 1

n

)
(w1 + · · · + wn)2 ≥

∑
1≤i<j≤n

wiwj .

The above displayed inequality is equivalent to the statement

3 Of course, in this context, 00 = 1.
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n(w2
1 + · · · + w2

n) ≥ (w1 + · · · + wn)2,

which is the Cauchy-Schwarz inequality for the vectors (1, ..., 1) and (w1, ..., wn).
In cases (2) and (5), we have

PM(q, w) = PN(q1, . . . , q�−1, w1, . . . , wn),

where N is the flag matroid with constituents M1, . . . , M�−1. We use induction on �.
In case (3), where d�(1, 2) = 1, Lemma 2.3 implies that

dk(1, i) = dk(2, i) for all i �= 1, 2 and all k �= �.

Since q� = 0, the support of PM does not contain w1w2, and hence the above shows

PM(q, w) = PM\1(q1, . . . , q�, w1 + w2, w3, . . . , wn).

Therefore, by induction on n, we have

1
2

(
1 − 1

n

)
(w1 + · · · + wn)2 ≥ 1

2

(
1 − 1

n− 1

)
(w1 + · · · + wn)2 ≥ PM(q, w). �

Proof of Theorem 4.4. We prove the statement by induction on n, using Theorem 4.2. 
It is straightforward to check directly that the support of the homogeneous multivariate 
Tutte polynomial is M-convex whenever q1, . . . , q� are positive.4

As before, we write w = (w1, . . . , wn). We first show that the quadratic form

∂n−2

∂wn−2
0

Zq,M = n!
2 w2

0 + (n− 1)!Z(1)
q,M(w) w0 + (n− 2)!Z(2)

q,M(w)

has at most one positive eigenvalue for positive parameters q1, . . . , q� ≤ 1. For this, 
it suffices to show that the Schur complement of the first principal minor is negative 
semidefinite. In other words, the discriminant of the displayed quadratic form with re-
spect to w0 is nonnegative:

1
2

(
1 − 1

n

)
Z(1)
q,M(w)2 ≥ Z(2)

q,M(w) for all w ∈ Rn.

We prove the discriminant inequality after making the invertible change of variables

wi 	−→ q
rkM1 (i)
1 · · · qrkM�

(i)
� wi for all i ∈ [n].

The inequality then becomes that of Lemma 4.5:

4 Alternatively, we may use that Z1,M =
∏n

i=1(w0 + wi) is a Lorentzian polynomial by Theorem 4.3 (3).
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1
2

(
1 − 1

n

)
(w1 + · · · + wn)2 ≥ PM(q, w).

It is now enough to show that the i-th partial derivative of the homogeneous multi-
variate Tutte polynomial is Lorentzian for any i ∈ [n] and any positive q1, . . . , q� ≤ 1. 
This follows from the induction hypothesis on n and the identity

∂iZq,M = q
− rkM1 (i)
1 q

− rkM2 (i)
2 · · · q− rkM�

(i)
� Zq,M/i. �

Notice that the proof of Theorem 4.4 entirely consists of, apart from the routine 
induction on n, analysis of rank 2 matroids in Lemma 4.5.

Proof of Theorem 1.7. Apply Theorem 4.4 to the flag matroid (f−1(N), M). �
Let M be a matroid on [n], and let N be a matroid on [m].

Corollary 4.6. The homogeneous basis generating polynomial

Bf (w0, w1, . . . , wn) :=
∑

S∈B(f)

w
n−|S|
0

∏
i∈S

wi

is a Lorentzian polynomial for any morphism of matroids f : M → N.

One recovers the Lorentzian property of the basis generating polynomial of M [6, Sec-
tion 7] from the case f = idM by taking the partial derivative 

(
∂

∂w0

)n−rkM[n]. One recovers 
the Lorentzian property of the homogeneous independent set generating polynomial of 
M [6, Section 11] from the case N = U0,1.5

Proof. By Theorem 1.7, the homogeneous multivariate Tutte polynomial

Zp,q,f (w0, w1, . . . , wn) =
∑
S⊆[n]

p− rkM(S)q− rkN(f(S))w
n−|S|
0

∏
i∈S

wi,

is a Lorentzian polynomial for any positive real numbers p ≤ 1 and q ≤ 1. Therefore, 
the limit

lim
p→0

lim
q→0

qrkN f [n] Zp,q,f (w0, pw1, . . . , pwn) =
∑

S∈B(f)

w
n−|S|
0

∏
i∈S

wi

is a Lorentzian polynomial. �
Proofs of Theorems 1.2 and 1.3. Theorem 4.3 (1) and Corollary 4.6 show that

the polynomial Bf (1, w1, . . . , wn) = Bf (w1, . . . , wn) is strongly log-concave.

5 These important special cases were obtained independently in [3,2]. See [3,1] for algorithmic applications.
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Theorem 4.3 (2) and Corollary 4.6 show that

the polynomial Bf (w0, w1, . . . , w1) =
n∑

k=0

bk(f)wn−k
0 wk

1 is Lorentzian,

which, by Theorem 4.2, is equivalent to the condition

b0(f)(
n
0
) ,

b1(f)(
n
1
) , . . . ,

bn(f)(
n
n

) is a log-concave sequence with no internal zeros.

This proves Theorems 1.2 and 1.3. �
5. Problems

5.1. We may define the homogeneous multivariate Tutte polynomial of r : 2[n] → R

by

Zp,r(w0, w1, . . . , wn) :=
∑
S⊆[n]

p− r(S)w
n−|S|
0

∏
i∈S

wi,

where p is a real parameter.6 We consider the set of functions on 2[n] with the Lorentzian 
property

Ln :=
{

r : 2[n] → R | Zp,r is Lorentzian for any positive p ≤ 1
}
.

Which functions r : 2[n] → R belong to the set Ln?

Proposition 5.1. Let M = (M1, . . . , M�) be a flag matroid on [n]. For any real number c0
and nonnegative real numbers c1, . . . , c�, we have

c0 + c1 rkM1 + · · · + c� rkM�
∈ Ln.

Proof. Theorem 4.4 proves the statement when c0 is zero. For the general case, note that 
the homogeneous multivariate Tutte polynomial of c0 + r is a positive multiple of Zp,r
for any positive p and r : 2[n] → R. �
Remark 5.2. A polymatroid on [n] is a function rk : 2[n] → R satisfying the following 
conditions [33, Chapter 18]:

– When S = ∅, we have rk(S) = 0.

6 Compare the notion of universal Tutte character for submodular functions [9, Section 8.2] and its mul-
tivariate version [9, Section 4.3].



16 C. Eur, J. Huh / Advances in Mathematics 367 (2020) 107094
– When S1 ⊆ S2 ⊆ [n], we have rk(S1) ≤ rk(S2).

– When S1 ⊆ [n], S2 ⊆ [n], we have rk(S1 ∪ S2) + rk(S1 ∩ S2) ≤ rk(S1) + rk(S2).

For example, nonnegative linear combinations of the rank functions of the constituents 
of a flag matroid are polymatroids. However, a polymatroid on [n] need not be in Ln.

Remark 5.3. Let M and N be matroids on [n]. The identity function of [n] is said to be 
a weak map from M to N if any one of the following equivalent conditions hold [18]:

– For any S ⊆ [n], we have rkN(S) ≤ rkM(S).

– Every independent set of N is an independent set of M.

– Every circuit of M contains a circuit of N.

For example, the identity function of [n] is a weak map from M to N when (N, M) is a 
flag matroid. However, nonnegative linear combinations of the rank functions of M and 
N need not be in Ln when the identity function of [n] is a weak map from M to N.

Example 5.4. Let M and N be matroids on [3] with the sets of bases

B(M) = {{1, 2}, {1, 3}} and B(N) = {{1}, {2}}.

The function r := rkM + rkN is a polymatroid and the identity function of [3] is a weak 
map from M to N. The homogeneous multivariate Tutte polynomial of r satisfies

lim
p→0

Zp,r(1, p2w1, p
2w2, pw3) = 1 + w1 + w2 + w3 + w1w3.

The right-hand side is not log-concave around (w1, w2, w3) = (1, 1, 1), and hence r is not 
in L3.

The notion of M�-concavity, which equivalent to the gross substitutes property in 
mathematical economics [29], plays a central role in discrete convex analysis [27, Chapter 
6]. According to the characterization in [12], a function r : 2[n] → R is M�-concave if and 
only if the following conditions are satisfied:

(1) For any S ⊆ [n] and any distinct i, j ∈ [n], we have

r(S ∪ i ∪ j) + r(S) ≤ r(S ∪ i) + r(S ∪ j).

(2) For any S ⊆ [n] and any distinct i, j, k ∈ [n], the maximum among the three values

r(S ∪ j ∪ k) + r(S ∪ i), r(S ∪ i ∪ k) + r(S ∪ j), r(S ∪ i ∪ j) + r(S ∪ k)

is attained by at least two of them.
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For example, the function r in Example 5.4 is M�-concave.

Proposition 5.5. Any function in Ln is M�-concave. In particular, Ln is contained in the 
cone of submodular functions on 2[n].

Propositions 5.1 and 5.5 together imply that nonnegative linear combinations of the 
rank functions of the constituents of a flag matroid are M�-concave. This recovers a 
theorem of Shioura [30, Theorem 3].

Proof. A function r : 2[n] → R is M�-concave if and only if its homogenization is an 
M-concave function on Nn [27, Chapter 6]. Therefore, by [6, Section 8], the function r
is M�-concave if and only if

∑
S⊆E

1
|n− |S||! p− r(S)w

n−|S|
0

∏
i∈S

wi is Lorentzian for any positive p ≤ 1.

By [6, Section 6], we know that the linear operator

wk
0
∏
i∈S

wi 	−→
1
k! wk

0
∏
i∈S

wi

preserves the Lorentzian property. Therefore, the M�-concavity of r follows from the 
condition

∑
S⊆E

p− r(S)w
n−|S|
0

∏
i∈S

wi is Lorentzian for any positive p ≤ 1. �

5.2. Let F be an algebraically close field, and let h ∈ R[w0, w1, . . . , wn] be a homo-
geneous polynomial of degree d. We say that h is a volume polynomial over F if there 
are nef divisors H0, H1, . . . , Hn on a d-dimensional irreducible projective variety Y over 
F that satisfy

h = (w0H0 + w1H1 + · · · + wnHn)d,

where the intersection product of Y is used to expand the right-hand side.7 Volume 
polynomials over F are prototypical examples of Lorentzian polynomials [6, Section 10].

Let RF : Mat(F) → Mat be the functor in Remark 2.1, and let f be any morphism 
in Mat(F). Corollary 4.6 shows that the homogeneous basis generating polynomial of 
RF (f) is a Lorentzian polynomial.

Conjecture 5.6. The homogeneous basis generating polynomial of RF(f) is a volume poly-
nomial over F .

7 For nef divisors and intersection products, see [25, Chapter 1].
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Let ϕ : E → W be any object in Mat(F). In [15, Section 4], the authors construct a 
collection of nef divisors (Hi)i∈E on an irreducible projective variety Y such that

∑
S∈B(M(ϕ))

∏
i∈S

wi =
(∑

i∈E

wiHi

)dimY

.

The construction can be used to verify Conjecture 5.6 when f is the identity morphism 
of ϕ.
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