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Abstract

I will tell two interrelated stories illustrating fruitful interactions between combinatorics
and Hodge theory. The first is that of Lorentzian polynomials, based on my joint work
with Petter Brändén. They link continuous convex analysis and discrete convex analysis via
tropical geometry, and they reveal subtle information on graphs, convex bodies, projective
varieties, Potts model partition functions, log-concave polynomials, and highest weight
representations of general linear groups. The second is that of intersection cohomology
of matroids, based on my joint work with Tom Braden, Jacob Matherne, Nick Proudfoot,
and Botong Wang. It shows a surprising parallel between the theory of convex polytopes,
Coxeter groups, and matroids. After giving an overview of the similarity, I will outline
proofs of two combinatorial conjectures on matroids, the nonnegativity conjecture for their
Kazhdan–Lusztig coefficients and the top-heavy conjecture for the lattice of flats.
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1. Introduction

One may seek unity in mathematics through the eyes of cohomology. Let X be a
mathematical object of “dimension” d . The object may be analytic, arithmetic, geometric,
or combinatorial, and the precise notion of dimension will depend on the context. Curiously,
often it is possible to construct from X in a natural way a graded real vector space

A.X/ D

dM
kD0

Ak.X/:

The new object A.X/, called the cohomology of X , often encodes essential information
on X . When two objects X and Y of the same kind are related in a particular way, the rela-
tionship is often reflected on their cohomologies A.X/ and A.Y /, and this property can
be exploited to extend our understanding. Primary consumers of this viewpoint so far were
topologists and geometers, and a great number of triumphs in topology and geometry are
based on a construction of A.X/ from X . Interestingly, sometimes, satisfactory and equally
useful cohomologies exist even when X does not have a geometric structure in the conven-
tional sense. In particular, when X is a matroid, the study of A.X/ led to proofs of a few
combinatorial conjectures that were beyond reach with traditional methods [1,6,13].

There are a few pieces of evidence for the unity in the above context. The list is short,
but the pattern is remarkable. For example, A.X/ can be the ring of algebraic cycles modulo
homological equivalence on a smooth projective variety [36], the combinatorial cohomology
of a convex polytope [45], the Soergel bimodule of a Coxeter group element [26], the Chow
ring of a matroid [1], the conormal Chow ring of a matroid [6], or the intersection cohomology
of a matroid [13]. In these cases, the cohomology comes equipped with a symmetric bilinear
pairing P W A�.X/ �Ad��.X/! R and a graded linear map L W A�.X/! A�C1.X/ that
are symmetric in the sense that

P.x; y/ D P.y; x/ and P.x; Ly/ D P.Lx; y/ for all x and y.

The linear map L is allowed to vary in a family K.X/, a convex cone in the space of linear
operators on A.X/. Here P is for Poincaré, L is for Lefschetz, and K is for Kähler, who
first emphasized the importance of the respective objects in topology and geometry. In good
cases, A0.X/ has a distinguished generator 1, and one expects the following properties to
hold for every nonnegative integer k � d

2
:

(1) The symmetric bilinear pairing

Ak.X/ � Ad�k.X/! R; .x1; x2/ 7! P.x1; x2/

is nondegenerate (Poincaré duality for X ).

(2) For any L1; : : : ; Ld�2k 2 K.X/, the linear map

Ak.X/! Ad�k.X/; x 7!

 
d�2kY
iD1

Li

!
x

is an isomorphism (hard Lefschetz property for X ).
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(3) For any L0; L1; : : : ; Ld�2k 2 K.X/, the symmetric bilinear form

Ak.X/ � Ak.X/! R; .x1; x2/ 7! .�1/k P

 
x1;

 
d�2kY
iD1

Li

!
x2

!
is positive definite on the kernel of the linear map

Ak.X/! Ad�kC1.X/; x 7!

 
d�2kY
iD0

Li

!
x

(Hodge–Riemann relations for X ).

In the classical setting, A.X/ is the cohomology of real .k; k/-forms on a compact Kähler
manifold, and the three statements are consequences of Hodge theory [43, Chapter 3].1 All
three statements are known to hold for A.X/ listed above except the first one, which is the
subject of Grothendieck’s standard conjectures on algebraic cycles [36]. In every case, the
three statements for A.X/ reveal a fundamental property of X : Weil conjectures on the
number of solutions to a system of polynomial equations over finite fields when X is a
smooth projective variety [36, 67], the generalized lower bound conjecture on the number
of faces when X is a convex polytope [45, 70], and Kazhdan–Lusztig’s nonnegativity con-
jecture when X is a Coxeter group element [26]. When X is a matroid, the hard Lefschetz
property and the Hodge–Riemann relations for different choices of A.X/ are used to settle
Rota’s conjecture on the characteristic polynomial [1], Brylawski’s and Dawson’s conjec-
tures on the h-vectors of the broken circuit complex and the independence complex [6], and
Dowling–Wilson’s top-heavy conjecture on the number of flats [13]. The known proofs of
the Poincaré duality, the hard Lefschetz property, and the Hodge–Riemann relations for the
objects listed above have certain structural similarities, but there is no known way of deduc-
ing one from the others. Could there be a Hodge-theoretic framework general enough to
explain this miraculous coincidence?

A related goal is to produce a flexible analytic theory that would reflect certain basic
features of the unified theory: If one postulates the existence of the satisfactory cohomology
A.X/, what can we say about X at an elementary and numerical level? This is a worthwhile
question because, depending on X , the construction and the study of A.X/ might be beyond
the reach of our current understanding. A step in this direction is taken in a joint work with
Petter Brändén on Lorentzian polynomials [17], where the difficult goal of finding A.X/ is
replaced by an easier goal of producing a Lorentzian polynomial from X . Such a Lorentzian
polynomial can be used to settle and generate conjectures on various X (Section 2) and,
sometimes, leads to a satisfactory theory of A.X/ (Section 3).

1 In [13, 26, 36, 43, 45], the hard Lefschetz property and the Hodge–Riemann relations are
considered only in the “unmixed” case where L D Li for all i . According to [18], this
special case implies the general case stated above.
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2. Lorentzian polynomials

Lorentzian polynomials link continuous convex analysis and discrete convex anal-
ysis via tropical geometry, and they reveal subtle information on graphs, convex bodies,
projective varieties, Potts model partition functions, log-concave polynomials, and highest
weight representations of general linear groups. Let H d

n be the space of degree d homoge-
neous polynomials in n variables with real coefficients. The members of H d

n will be written

f D
X

˛

c˛

w˛

˛Š
;

where the sum is over the nonnegative integral vectors ˛ 2 Zn
�0 with j˛j1 D d and

w˛

˛Š
´

w
˛1
1

˛1Š

w
˛2
2

˛2Š
� � �

w
˛n
n

˛nŠ
:

Note that a polynomial f can be viewed as a function in at least two different ways. The
continuous f is the function given by the evaluation

f W Rn
�0 ! R; w 7! f .w/;

and the discrete f is the function given by the coefficients

f W Zn
�0 ! R; ˛ 7! c˛:

Throughout we write supp.f / for the support of the discrete f , the set of monomials appear-
ing in f with nonzero coefficients. The theory of Lorentzian polynomials shows that the
log-concavity of the continuous f is related to the log-concavity of the discrete f in an inter-
esting way. Before defining Lorentzian polynomials in Definition 4, we list three applications
of the theory to demonstrate the usefulness and ubiquity of Lorentzian polynomials. Each
item below presents an elementary statement that is difficult to prove without the Lorentzian
point of view.

Example 1 (Analysis). Let f be a homogeneous polynomial of degree d in n variables with
nonnegative coefficients. Such a polynomial f is said to be strongly log-concave if, for all
˛ 2 Zn

�0, we have

@˛f is identically zero or log.@˛f / is concave on the positive orthant Rn
>0.

For bivariate polynomials, one can show that f D
Pd

kD0 ckwk
1 wd�k

2 is strongly log-concave
exactly when the sequence ¹ckº has no internal zeros and is ultra log-concave:

c2
k�

d
k

�2 � ck�1�
d

k�1

� ckC1�
d

kC1

� for all 0 < k < d .

In [17, Corollary 2.32], the theory of Lorentzian polynomials is used to prove the following
statement:

The product of strongly log-concave homogeneous polynomials is strongly log-
concave.
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This answers a question of Gurvits [37, Section 4.5] for homogeneous polynomials, and
extends the following theorem of Liggett [50, Theorem 2]:

The convolution product of two ultra log-concave sequences with no internal
zeros is an ultra log-concave sequence with no internal zeros.

The short proof in [17] is based on the following analytic characterization of Lorentzian
polynomials [17, Theorem 2.30]:

A homogeneous polynomial with nonnegative coefficients is Lorentzian if and only
if it is strongly log-concave.

It is interesting to compare the argument with the computational proof in [50] for bivariate
polynomials.

Example 2 (Combinatorics). Let A be a set of n vectors in a vector space. For any k, set

fk.A /´ the number of k element linearly independent subsets of A .

For example, if A is the set of all seven nonzero vectors in a three-dimensional vector space
over the field with two elements, then there are seven dependencies among the triples shown
below, and hence

f0.A / D 1; f1.A / D 7; f2.A / D 21; f3.A / D 28:

Mason’s conjecture from [52] predicts that, for any A and any positive integer k,

fk.A /2�
n
k

�2 �
fk�1.A /�

n
k�1

� fkC1.A /�
n

kC1

� :

The same statement was conjectured more generally for all matroids (Definition 9), and the
general statement is proved in [17, Theorem 4.14] using the theory of Lorentzian polynomi-
als.2 The proof is based on the Lorentzian property of the Potts model partition function for
matroids introduced in [68].

2 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant have independently
developed methods that partly overlap with [17] in a series of papers [2–4]. They study the
class of completely log-concave polynomials, which agrees with the class of Lorentzian
polynomials in the homogeneous case. The main overlap is an independent proof of
Mason’s conjecture in [4].
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Example 3 (Algebra). Schur polynomials are the characters of finite-dimensional irre-
ducible polynomial representations of the general linear group GLn.C/. Combinatorially,
the Schur polynomial of a partition � in n variables is

s�.w1; : : : ; wn/ D
X

˛

K�˛w˛;

where K�˛ is the Kostka number counting Young tableaux of given shape � and weight ˛.
Correspondingly, the irreducible representation V.�/ of the general linear group with the
highest weight � has the weight space decomposition

V.�/ D
M

˛

V.�/˛ with dim V.�/˛ D K�˛:

Schur polynomials were first studied by Cauchy, who defined them as ratios of alternants.
The connection to the representation theory of GLn.C/ was found by Schur. For a gentle
introduction to these remarkable polynomials, and for any undefined terms, we refer to [31].

In [40, Theorem 2], the authors use the Lorentzian property for normalized Schur
polynomials to show that the sequence of weight multiplicities of V.�/ one encounters is
always log-concave if one walks in the weight diagram along any root direction ei � ej . In
other words, for any ˛ 2 Zn

�0 and any i; j 2 Œn�,

K2
�˛ � K�˛�ei Cej

K�˛Cei �ej
:

This verifies a special case of Okounkov’s conjecture from [61, Conjecture 1].3

We now define Lorentzian polynomials. As before, we write H d
n for the space of

degree d homogeneous polynomials in n variables with real coefficients. Let VL2
n�H 2

n be the
open subset of quadratic forms with positive coefficients that have the Lorentzian signature
.C;�; : : : ;�/. For d larger than 2, we define an open subset VLd

n � H d
n by setting

VLd
n D

®
f 2 H d

n j @i f 2 VL
d�1
n for all i 2 Œn�

¯
;

where @i is the partial derivative with respect to the i th variable. Thus f belongs to VLd
n if

and only if all quadratic polynomials of the form @i1@i2 � � � @id�2
f belongs to VL2

n.

Definition 4 (Lorentzian polynomials). The polynomials in VLd
n are called strictly Lorentzian,

and the limits of strictly Lorentzian polynomials are called Lorentzian.

The prototypical examples of Lorentzian polynomials, which motivated Defini-
tion 4, are those obtained from the various examples of A.X/ in Section 1 in the following
way. For any linear operators L1; : : : ; Ld on A.X/, we set

deg

 
dY

iD1

Li

!
´ P

 
1;

dY
iD1

Li � 1

!
;

where 1 is the distinguished generator of A0.X/ defining P.1;�/ W Ad .X/ ' R.

3 The general conjecture is that the discrete function .�; �; �/ 7! log c�
��

is concave, where
c�

��
are the Littlewood–Richardson coefficients [61, Conjecture 1]. The conjecture holds

in the “classical limit” [61, Section 3], but the general case is refuted in [19].
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Proposition 5. Let L1; : : : ; Ln be members of the closure K.X/, and let f the polynomial

f .w1; : : : ; wn/ D
1

dŠ
deg.w1L1 C � � � C wnLn/d :

If A.X/ satisfies the Hodge–Riemann relations in degrees � 1, then f is Lorentzian.

Before deducing Proposition 5 from Theorem 12 below, we give two prominent
cases.

Example 6 (Volume polynomials of convex bodies). For any collection of convex bodies
C D .C1; : : : ; Cn/ in Rd , consider the function

volC W Rn
�0 ! R; w 7!

1

dŠ
vol.w1C1 C � � � C wnCn/;

where w1C1C � � �CwnCn is the Minkowski sum and vol is the Euclidean volume. Minkowski
showed that volC .w/ is a polynomial [66, Chapter 5]. One may approximate the convex bodies
with convex polytopes to prove that volC is Lorentzian. Using Proposition 5, where X is
the Minkowski sum of the approximating convex polytopes and A.X/ is the combinatorial
cohomology in [45], we get the following statement:

The polynomial volC .w/ is Lorentzian for any convex bodies C1; : : : ; Cn in Rd .

Alternatively, one can use Brunn–Minkowski theory to deduce the Lorentzian property of
the volume polynomial [17, Section 4.1].

Example 7 (Volume polynomials of projective varieties). Let X be a d -dimensional irre-
ducible projective variety over an algebraically closed field. A Cartier divisor on X is said
to be nef if it intersects every irreducible curve in X nonnegatively.4 For any collection of
nef divisors H D .H1; : : : ; Hn/ on X , consider the function

volH W Rn
�0 ! R; w 7!

1

dŠ
deg.w1H1 C � � � C wnHn/d ;

where deg is the degree map on the Chow group of 0-dimensional cycles on X . When X

admits a resolution of singularities Y , one can deduce the following statement from Propo-
sition 5 and the Hodge–Riemann relations in degree � 1 for the ring of algebraic cycles
A.Y /:

The polynomial volH .w/ is Lorentzian for any nef divisors H1; : : : ; Hn on X .

In general, one can use Bertini’s theorem to reduce the statement to the case of surfaces and
apply Hodge’s index theorem [17, Section 4.2].

Next we formulate the main structural results on Lorentzian polynomials. A central
definition is that of generalized permutohedra. Let E be a finite set, and let ¹eiºi2E be the
standard basis of RE .

4 By Kleiman’s theorem [47, Section 1.4], any nef divisor on a projective variety is a limit
of ample R-divisors, which form the convex cone K.X/ in this setting.
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Definition 8. A generalized permutohedron is a polytope in RE all of whose edges are in
the direction ei � ej for some i and j in E.

For example, the standard permutohedron in Rn, which is the convex hull of all
permutations of .1; 2; : : : ; n/, and the hyperoctahedron in Rn, which is the convex hull of all
permutations of .˙1; 0; : : : ; 0/, are generalized permutohedra. The following pictures show
the two polytopes in R4:

Generalized permutohedra are precisely the translates of the base polytopes of polymatroids
[24], and they are obtained from the standard permutohedron by moving the vertices so that
all the edge directions are preserved [63]. They lead to the central notion of M-convexity in
the study of discrete convex analysis [59].

Definition 9. A subset J � ZE
�0 is M-convex if it is the set of all lattice points of an integral

generalized permutohedron. A matroid on E is an M-convex subset of ZE
�0 consisting of

zero-one vectors. The vectors in a matroid J are called bases of J .

A subset J � ZE
�0 is M-convex exactly when it satisfies the symmetric basis

exchange property [24, 39]: For any ˛; ˇ 2 J and an index i satisfying ˛i > ˇi , there is
an index j that satisfies

j̨ < ǰ and ˛ � ei C ej 2 J and ˇ � ej C ei 2 J:

In [59, Chapter 4], one can find several other equivalent characterizations of M-convexity. The
above definition of matroids goes back to the study of moment map images of torus orbits
in Grassmannians by Gelfand, Goresky, MacPherson, and Serganova in [33]. For a general
introduction to matroids, and for any undefined matroid terms, we refer to [62]. Hereafter we
identify the subsets of E with the zero-one vectors in ZE

�0.

Example 10 (Graphic matroids). For any finite connected graph G with the edge set E,
consider the set of indicator vectors

B.G/´ ¹eB j B is a spanning tree of Gº � ZE
�0:

The subset B.G/ is M-convex for any G. Such matroids are said to be graphic.

Example 11 (Representable matroids). For any function ' W E ! W from a finite set E to
a vector space W over a field F , consider the set of indicator vectors

B.'/´ ¹eB j '.B/ is a bases of W º � ZE
�0:

The subset B.'/ is M-convex for any ' WE!W . Such matroids are said to be representable
over F , and the function ' is called a representation over F . One typically requires without
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loss of generality that the image of ' spans W . A graphic matroid is representable over every
field [62, Section 5.1]. In general, a matroid may or may not have a representation over F :

Among the three matroids pictured above, where the bases are given by all triples of points
not on a line, the first is representable over F if and only if the characteristic of F is 2, the
second is representable over F if and only if the characteristic of F is not 2, and the third is
not representable over any field.

Let L2
n �H 2

n be the closed subset of quadratic forms with nonnegative coefficients
that have at most one positive eigenvalue. For d larger than 2, we define Ld

n �H d
n by setting

Ld
n D

®
f 2 Md

n j @i f 2 Ld�1
n for all i

¯
;

where Md
n � H d

n is the set of polynomials with nonnegative coefficients whose supports
are M-convex. The following characterization in [17, Theorem 2.25] is central to the theory of
Lorentzian polynomials.

Theorem 12. Ld
n is the set of Lorentzian polynomials in H d

n .

In other words, Ld
n is the closure of VLd

n in H d
n . Theorem 12 makes it possible to

decide whether a given polynomial is Lorentzian or not. For example, the following polyno-
mials are not Lorentzian because their supports are not M-convex:

w3
1 C w3

2 ; w1w2
2 C w1w2

3 C w2w2
3 C w1w2w3; w2

1w3 C w3
2 :

One can also use Theorem 12 to show that a given polynomial is Lorentzian. For example,
the elementary symmetric polynomial of degree d in n variables is Lorentzian because its
support is M-convex and all its associated quadratic forms are0BBBBBB@

0 1 1 : : : 1

1 0 1 : : : 1

1 1 0 : : : 1
:::

:::
:::

: : :
:::

1 1 1 : : : 0

1CCCCCCA ;

which have exactly one positive eigenvalue n� d C 1. One can also use Theorem 12 and the
relevant Hodge–Riemann relations to show that the volume polynomials in Example 6 and
Example 7 are Lorentzian. In particular, the supports of these volume polynomials must be
M-convex for any collection of convex bodies and any collection of nef divisors.

Proof of Proposition 5. We may suppose that L1; : : : ; Ln are members of K.X/. Under
this assumption, all the coefficients of f are positive by the Hodge–Riemann relations in
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degree 0, so the support of f is M-convex. Choose any d � 2 among the linear operators,
say L1; : : : ; Ld�2, and observe that

@1 : : : @d�2f .w1; : : : ; wn/ D deg L1 � � �Ld�2 .w1L1 C � � � C wnLn/2:

Thus, by Theorem 12, it is enough to observe that the symmetric bilinear pairing

B1.X/ � B1.X/! R; .x1; x2/ 7! P.x1; L1 � � �Ld�2 � x2/

has the Lorentzian signature, where B1.X/ is the span of L1 � 1; : : : ; Ln � 1 in A1.X/. This
follows from the Hodge–Riemann relations in degrees � 1: For any L in K.X/, the pairing
is positive on L � 1 by the Hodge–Riemann relations in degree 0, and it is negative definite
on the orthogonal complement of L � 1 by the Hodge–Riemann relations in degree 1.

Example 13. Not all Lorentzian polynomials are volume polynomials of convex bodies.
In fact, the basis generating polynomial of a matroid on Œn� is the volume polynomial of n

convex bodies precisely when the matroid is representable over every field [17, Remark 4.3].
For example, the elementary symmetric polynomial

w1w2 C w1w3 C w1w4 C w2w3 C w2w4 C w3w4

is not the volume polynomial of four convex bodies in R2 because its support is not repre-
sentable over the field F2.

Example 14. Not all Lorentzian polynomials are volume polynomials of nef divisors on a
projective variety. For example, consider the cubic polynomial

f D 14w3
1 C 6w2

1w2 C 24w2
1w3 C 12w1w2w3 C 6w1w2

3 C 3w2w2
3 :

One can use Theorem 12 to check that f is Lorentzian. To see that f is not the volume
polynomial of nef divisors, one can use the reverse Khovanskii–Teissier inequality [49, The-

orem 5.7]: For any nef divisors L1; L2; L3 on a d -dimensional projective variety and any
k � d ,  

d

k

!�
Lk

2 � L
d�k
1

��
Lk

1 � L
d�k
3

�
�
�
Ld

1

��
Lk

2 � L
d�k
3

�
:

The complex analytic proof of the inequality in [49] relies on the Calabi–Yau theorem [74].
The algebraic proof of the inequality in [44] using Okounkov bodies works over any alge-
braically closed field.

The theory of toric varieties shows that the volume polynomial of any set of convex
bodies is the limit of a sequence of volume polynomials of nef divisors on projective vari-
eties [30, Section 5.4]. Thus, the Lorentzian cubic f provides a counterexample to Gurvits’
conjecture that a strongly log-concave homogeneous polynomial in three variables with non-
negative coefficients is the volume polynomial of three convex bodies [37, Conjecture 4.1].

The space of Lorentzian polynomials has numerous surprising properties. For exam-
ple, writing PL for the image of L n 0�H d

n in the real projective space PH d
n , one can show

that
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PLd
n is compact contractible subset with contractible interior P VLd

n .

The contractibility follows from the following semigroup action [17, Theorem 2.10]:

Any nonnegative linear change of coordinates preserves Ld
n . More generally,

when f .w/ 2 Ld
n , then f .Av/ 2 Ld

m for any n � m matrix A with nonnegative
entries.

In fact, Brändén showed in [16] that PLd
n is homeomorphic to a closed Euclidean ball, veri-

fying a conjecture posed in [17, Conjecture 2.29]. The main feature of this Lorentzian ball is
the following stratification labeled by M-convex sets [17, Theorem 3.10 and Proposition 3.25]:

The set LJ of Lorentzian polynomials with support J is nonempty if and only if J

is M-convex. In this case, PLJ deformation retracts to the exponential generating
function

P
˛2J

1
˛Š

w˛ .

This supports the opinion that matroid theory provides the correct level of generality. Leav-
ing out any one matroid, say not representable over any field, will make the Lorentzian ball
noncompact.5

The connection between discrete convex analysis and Lorentzian polynomials can
be strengthened as follows. For a function � W Zn

�0!R[ ¹1º, we write dom.�/� Zn
�0 for

the subset on which � is finite, called the effective domain of �. For a positive real parame-
ter q, consider the exponential generating function

f �
q .w/ D

X
˛2dom.�/

q�.˛/

˛Š
w˛:

By [17, Theorem 3.14], the polynomial f �
q is Lorentzian for all sufficiently small q if and only

if the function � is M-convex in the sense of discrete convex analysis [59]: For any index i

and any ˛; ˇ 2 dom.�/ whose i th coordinates satisfy ˛i > ˇi , there is an index j satisfying

j̨ < ǰ and �.˛/C �.ˇ/ � �.˛ � ei C ej /C �.ˇ � ej C ei /:

Considering the special case when � takes values in ¹0;1º, we see that J is an M-convex
set if and only if its exponential generating function

P
˛2J

1
˛Š

w˛ is a Lorentzian polynomial
[17, Theorem 3.10]. Another corollary is that a homogeneous polynomial with nonnegative
coefficients is Lorentzian if the natural logarithms of its normalized coefficients form an M-
concave function [17, Corollary 3.16]. Working over the field of real Puiseux series K, we
see that the tropicalization of any Lorentzian polynomial over K is an M-convex function,
and that all M-convex functions are limits of tropicalizations of Lorentzian polynomials

5 Almost all matroids are not representable over any field. More precisely, the portion of
matroids in Zn

�0 that are representable over some field goes to zero as n goes to infinity
[60]. For logical discussions of the “missing axiom” of matroid theory, see [53,54,73].
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over K [17, Corollary 3.28]. This generalizes a result of Brändén [15], who showed that the
tropicalization of any homogeneous stable polynomial over K is M-convex. In particular,
for any matroid M with the set of bases B, the Dressian of all valuated matroids on M can
be identified with the tropicalization of the space of Lorentzian polynomials over K with
support B. For example, the tropicalization of the space of multiaffine Lorentzian quadrics
in five variables is the tropical Grassmannian trop Gr.2; 5/, a cone over the Petersen graph
in R10=R1:

The figure shows a shadow of the Lorentzian ball PL2
5 over K, highlighting its nonconvexity.

We refer to [51, Chapter 4] for a friendly introduction to Dressians and tropical Grassmanni-
ans.

The theory of Lorentzian polynomials is not only useful for proving conjectures
but also for generating them. Once one has identified a combinatorial polynomial f that is
either provably or conjecturally Lorentzian, it is natural to look for an algebraic object A.X/

satisfying the Hodge–Riemann relations that explains the Lorentzian property of f . In good
cases, one can further speculate that there is a projective variety X that produces f as a
volume polynomial for some choices of nef divisors on X .

One such speculation concerns the basis generating polynomial for a morphism of
matroids. Let M and N be matroids on finite sets E and F . The rank function of M is the
function defined by

rkM W 2
E
! Z; rkM.S/ D max

B2B
jB \ S j;

where the maximum is taken over the set of bases of M. A morphism g WM!N is a function
E ! F that satisfies the rank inequalities

rkN
�
g.S2/

�
� rkN

�
g.S1/

�
� rkM.S2/ � rkM.S1/ for any S1 � S2 � E.

A function between the ground sets is a morphism if and only if the preimage of a flat is a
flat (Definition 22). A subset S � E is a basis of g if S is contained in a basis of M and
g.S/ contains a basis of N. For a general discussion of morphisms of matroids, we refer to
[46].

In [27, Corollary 4.6], the authors show that the homogenous basis generating poly-
nomial

fg.w0; wi /i2E ´

X
S2B.g/

w
jE j�jS j

0

Y
i2S

wi

is Lorentzian for any morphism of matroids ' W M ! N, where B.g/ is the set of bases
of g. When N is the rank-zero matroid on one element, one recovers the Lorentzian property
of the homogenous independent set generating polynomial of M in [17, Section 4.3]. Setting
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the variables .wi /i2E equal to each other, we get a bivariate Lorentzian polynomial wit-
nessing the validity of Mason’s conjecture in Example 2. When g is the identity morphism,
one recovers the Lorentzian property of the basis generating polynomial of a matroid [17,

Section 3.2].

Example 15 (Continued from Example 10). A homomorphism from a graph G1 to a
graph G2 is a function from the vertex set of G1 to the vertex set of G2 that maps adja-
cent vertices to adjacent vertices. The induced map from the edge set of G1 to the edge set
of G2 is a morphism from the graphic matroid B.G1/ to the graphic matroid B.G2/. Such
morphisms of matroids are said to be graphic.

2 3

1

1 2

3

2 3

1

The graphic morphism of matroids depicted above has 27 bases of cardinality two, 79 bases
of cardinality three, 111 bases of cardinality four, and 75 bases of cardinality five.

Example 16 (Continued from Example 11). Let Mi be matroids on Ei with representations
'i W Ei ! Wi over a field F . A function g from E1 to E2 is a morphism from M1 to M2 if
it fits into a commutative diagram

E1
'1 //

��

W1

��

E2
'2 // W2;

where W1 ! W2 is a linear map between the vector spaces. Such morphisms of matroids
are said to be representable over F . A graphic morphism of matroids is representable over
every field.

Continuing Example 7, we say that a degree d Lorentzian polynomial f in variables
w1; : : : ; wn is a volume polynomial over F if there are nef divisors H1; : : : ; Hn on a d -
dimensional irreducible projective variety X over F that satisfy

f D
1

dŠ
deg.w1H1 C � � � C wnHn/d :

The following existence conjecture was made in [27, Conjecture 5.6]. It strengthens the
Lorentzian property of the homogeneous basis generating polynomial of g when g is repre-
sentable over F .

Conjecture 17. If g is a morphism of matroids that is representable over F , then the homoge-
nous basis generating polynomial of g is a volume polynomial over F .
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Let M be a matroid on E that is representable over F . In [5], the authors construct a
collection of nef divisors .Li /i2E on an irreducible projective variety Y over F such thatX

B2B

Y
i2B

wi D
1

dŠ
deg

�X
i2E

wi Li

�dim X

;

where the first sum is over the set of bases B of M. This verifies Conjecture 17 when g is
the identity morphism. A detailed study of this Y and its resolution of singularities in [41],
in turn, was used to define the matroid intersection cohomology in [13]. It plays a central role
in the resolution of two combinatorial conjectures on matroids, the top-heavy conjecture for
the lattice of flats and the nonnegativity conjecture for the Kazhdan–Lusztig coefficients. We
outline their proofs in Section 3.

Another speculation on Lorentzian polynomials is based on the Lorentzian property
of the normalized Schur polynomial

N
�
s�.w1; : : : ; wn/

�
D

X
˛

K�˛

w˛

˛Š
:

Here, as in Example 3, � is a partition and K�˛ are the Kostka coefficients.

Definition 18. The normalization operator is the linear operator N defined on the space of
Laurent generating functions defined by

N
�X

˛2Zn

c˛w˛

�
D

X
˛2Zn

�0

c˛

w˛

˛Š
:

For example, we have N. 1
z.1�z/

/ D ez .

In [17, Proposition 4.4], it was observed that the Alexandrov–Fenchel inequality for
volume polynomials of convex bodies holds more generally for any Lorentzian polynomial
in n variables:

If
P

˛ c˛
w˛

˛Š
is Lorentzian, then c2

˛ � c˛�ei Cej
c˛Cei �ej

for any ˛ and any i; j 2

Œn�.

Since the Kostka coefficients are the weight multiplicities of the finite-dimensional irre-
ducible representation V.�/ of GLn.C/, the Lorentzian property of N.s�/ thus implies�

dim V.�/˛

�2
� dim V.�/˛�ei Cej

dim V.�/˛�ej Cei
for any i; j 2 Œn�.

Could this be a special case of a more general discrete log-concavity for weight multiplici-
ties?

Let ƒ be the integral weight lattice of the Lie algebra sln.C/. For � 2ƒ, write V.�/

for the irreducible sln.C/-module with the highest weight � and consider its decomposition
into finite-dimensional weight spaces

V.�/ D
M

˛

V.�/˛:
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Figure 1

The figure shows some of the weight multiplicities of the irreducible sl4.C/-module with the highest weight
�2$1 � 3$2. We start from the highlighted vertex $1 � 6$2 � 3$3 and walk along negative root directions in
the hyperplane spanned by e2 � e1 and e3 � e2. In the shown region, the sequence of weight multiplicities along
any line is log-concave, as predicted by Conjecture 19.

We point to [42] for background on the representation theory of semisimple Lie algebras.
The following conjecture was proposed in [40, Section 3.1].

Conjecture 19. For any � 2 ƒ and any ˛ 2 ƒ, we have�
dim V.�/˛

�2
� dim V.�/˛�ei Cej

dim V.�/˛�ej Cei
for any i; j 2 Œn�.

When � is dominant, the dimension of the weight space V.�/˛ is the Kostka number
K�˛ , and the Lorentzian property of the normalized Schur polynomial N.s�/ implies that
Conjecture 19 holds in this case. When � is antidominant, V.�/ is the Verma module M.�/,
the universal highest weight module of highest weight �. Using the connection between
the Kostant partition function and the volumes of flow polytopes in [8], one can produce
Lorentzian polynomials that witness the validity of the conjecture in this case [40, Proposi-

tion 11]. Figure 1 illustrates some cases of Conjecture 19 when � is neither dominant nor
antidominant.

Conjecture 19 suggests the following existence statements of increasing strength.

There is a Lorentzian polynomial f that implies the discrete log-concavity in
Conjecture 19 for given � and ˛.

There is a cohomology A satisfying the Hodge–Riemann relations that implies the
Lorentzian property of f for given � and ˛.

There is a projective variety X that implies the Hodge–Riemann relations of A for
given � and ˛.
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We give a precise formulation of the first prediction. For � 2 ƒ, consider the Laurent gen-
erating function

ch�.w1; : : : ; wn/´
X
˛2ƒ

dim V.�/˛w˛��:

Note that every monomial appearing in ch� is a product of degree zero monomials of the
form wi w

�1
j .

Conjecture 20. N.wıch�.w1; : : : ; wn// is Lorentzian for any � 2 ƒ and ı 2 Zn
�0.

Conjecture 20 holds for any ı when � is either dominant or antidominant. In general,
the homogeneous polynomial N.wıch�/ can be computed using the Kazhdan–Lusztig theory
[42, Chapter 8]. The authors of [40] tested Conjecture 20 for �D���� � and ı D .1; : : : ; 1/,
where � is the sum of all the fundamental weights, for all permutations � in Sn for n � 6.
Conjecture 19 for � and ˛ follows from Conjecture 20 for � and any sufficiently large ı.

Similar conjectures can be made for various other polynomials appearing in rep-
resentation theory and symmetric function theory. For relevant definitions, we refer to [40,

Section 3] and references therein.

Conjecture 21. The following polynomials are Lorentzian [40, Conjectures 15,19,20,22,23]:

(1) The normalized Schubert polynomial N.S� / for any permutation � .

(2) The normalized skew Schur polynomial N.s�=�/ for any skew partition �=�.

(3) The normalized Schur P-polynomial N.P�/ for any strict partition �.

(4) The normalized key polynomial N.��/ for any composition �.

(5) The normalized homogeneous Grothendieck polynomial N. QG� / for any permu-
tation � .

The M-convexity of the support is known for the Schubert polynomial [29, Corol-

lary 8], the skew Schur polynomial [56, Proposition 2.9], the Schur P-polynomial [56, Propo-
sition 3.5], and the key polynomial [29, Corollary 8]. The potential validity of each of these
conjectures suggests the existence of certain Hodge–Riemann relations, or perhaps more
strongly, projective varieties.

3. Intersection cohomology of matroids

The set of bases of a matroid M on a finite set E is a subset B � 2E that satisfies
the symmetric basis exchange property: For any B1; B2 2 B and any i 2 B1 n B2, there is
j 2 B2 n B1 such that

.B1 n i/ [ j 2 B and .B2 n j / [ i 2 B:

Any two bases of M have the same cardinality d D rk M, called the rank of M. When M has
a representation ' W E ! W over a field F , the authors of [5] construct a collection of nef
divisors .Li /i2E on a d -dimensional irreducible projective variety Y over F whose volume
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polynomial is the basis generating polynomial of M:

1

dŠ
deg

�X
i2E

wi Li

�d

D

X
B2B

Y
i2B

wi :

The projective variety Y , called the matroid Schubert variety of ', is the closure of the
image of the dual map '_ W W _ ! FE in the product of projective lines .P 1/E . In view
of Proposition 5, one can say that Y is a geometric source of the Lorentzian property of
the basis generating polynomial. A detailed study of this Y and its resolution of singu-
larities in [41] was used to define the intersection cohomology IH.M/ of M in [13]. When
M is not representable over any field, there is no known projective variety that explains
the Lorentzian property of the basis generating polynomial of M. However, for any M,
one can construct IH.M/ as a graded Q-vector space equipped with a symmetric pairing
P W IH�.M/ � IHd��.M/! Q and graded linear operators Li W IH�.M/! IH�C1.M/ for
each i in E. The main result of [13] is that IH.M/ satisfies the Poincaré duality, the hard
Lefschetz theorem, and the Hodge–Riemann relations with respect to any positive linear
combination of .Li /i2E . When M is representable over the complex numbers, the intersec-
tion cohomology of M is the intersection cohomology of Y with Q-coefficients. When M is
representable over a finite field, the intersection cohomology of M is a rational form of the
`-adic étale intersection cohomology of Y for which the Hodge–Riemann relations hold.6

The existence of IH.M/ plays a central role in the resolution of two combinatorial conjectures
on M, the top-heavy conjecture for the lattice of flats and the nonnegativity conjecture for
the Kazhdan–Lusztig coefficients. Below we outline the construction of IH.M/ and explain
its relation to the two conjectures.

The top-heavy conjecture was proposed by Dowling and Wilson in [22,23]. It origi-
nates from the following theorem of de Bruijn and Erdős [20]:

Every finite set of points E in a projective plane determines at least jEj lines,
unless E is contained in a line.

In other words, if E is not contained in a line, then the number of lines in the plane con-
taining at least two points in E is at least jEj. The result is valid for any projective plane,
not necessarily Desarguesian, and in this sense the statement is purely combinatorial. The
figures below depict the two possibilities when jEj D 4.

.4 points determining 6 lines/ .4 points determining 4 lines/

6 Since Q` is not ordered, there are no Hodge–Riemann relations for the `-adic intersection
cohomology. When M is representable over some field, we suspect that IH.M/ is a Chow
analogue of the intersection cohomology of X .
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The following more general statement, conjectured by Motzkin in [57], was subse-
quently proved by many in various settings:

Every finite set of points E in a projective space determines at least jEj hyper-
planes, unless E is contained in a hyperplane.

Motzkin proved the above for E in real projective spaces in [58]. Basterfield and Kelly [9]

showed the statement in general, and Greene [35] strengthened the result by showing that
there is an order-matching from E to the set of hyperplanes determined by E, unless E is
contained in a hyperplane:

For every point in E one can choose a hyperplane containing the point in such a
way that no hyperplane is chosen twice.

Mason [52] and Heron [38] obtained similar results by different methods.
Based on these and other known results, Dowling and Wilson formulated the top-

heavy conjecture in the generality of matroids, in terms of their flats.

Definition 22. A flat of a matroid M on a finite set E is a subset of E that is maximal for
its rank.

In other words, a subset of E is a flat of M if the addition of any other element to the
set increases its rank in M. Since the intersection of flats of M is a flat of M, the collection
of all flats of M form a lattice L DL .M/, the lattice of flats of M. The lattice L is graded,
and the rank of a subset S of E in M is the height of the smallest flat of M containing S

in the graded lattice L . Thus, one can recover the rank function of M, and hence the set of
bases B of M, from the lattice of flats L of M.

We write L k for the set of rank k flats of M. When M has a representation ' W E!

W over a field F , we have

L k
D
®
'�1.V / j V is a k-dimensional subspace of W

¯
:

When ' injects E into the projective space PV , there are bijections

L 1
' the set of points in E and L 2

' the set of lines joining points in E:

The top-heavy conjecture extends the relation between jL 1j and jL 2j in de Bruijn–Erdős
theorem as follows.

Conjecture 23 (Top-heavy conjecture). Let L be the lattice of flats of a rank d matroid.

(1) For every nonnegative integer k less than d
2

,ˇ̌
L k

ˇ̌
�
ˇ̌
L d�k

ˇ̌
:

In fact, there is an injective map � WL k !L d�k satisfying x � �.x/ for all x.
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(2) For every nonnegative integer k less than d
2

,ˇ̌
L k

ˇ̌
�
ˇ̌
L kC1

ˇ̌
:

In fact, there is an injective map � WL k !L kC1 satisfying x � �.x/ for all x.

When L is a finite Boolean lattice or a finite projective geometry, Conjecture 23
is a classical result; see, for example, [72, Corollary 4.8 and Exercise 4.4]. In these self-dual
cases, the second statement of Conjecture 23 says that L admits order-matchings

L 0 ,�! L 1 ,�! � � � ,�! L b d
2 c
$ L d d

2 e
 �- � � �  �- L d�1

 �- L d :

These order-matchings partition L into jL b d
2 cj disjoint chains, and hence L has the

Sperner property:

The maximal number of pairwise incomparable subsets of Œn� is the maximum
among the binomial coefficients

�
n
k

�
. Similarly, the maximal number of pairwise

incomparable subspaces of Fn
q is the maximum among the q-binomial coeffi-

cients
�

n
k

�
q
.

Let M be a rank d matroid on a finite set E. The proof of Conjecture 23 in [13] is
based on a detailed analysis of the graded Möbius algebra

H.M/´
M

F 2L .M/

QyF :

The grading is defined by declaring the degree of the element yF to be rk F , the rank of F

in M. The multiplication is defined by the formula

yF yG ´

8<:yF _G if rk F C rk G D rk.F _G/,

0 if rk F C rk G > rk.F _G/,

where_ stands for the join in the lattice of flats of M. Unlike its ungraded counterpart, which
is isomorphic to the product of Q’s as a Q-algebra [69, Theorem 1], the graded Möbius algebra
has a nontrivial algebra structure.

There is a straightforward relation between the basis generating polynomial of M
and the graded Möbius algebra of M. For each i in E, we associate a degree 1 element

Li ´

8<:yi if the smallest flat i containing i has rank 1,

0 if the smallest flat i containing i has rank 0.

Writing deg for the isomorphism Hd .M/ ' Q with deg.yE / D 1, we have

1

dŠ
deg

�X
i2E

wi Li

�d

D

X
B2B

Y
i2B

wi :

For the top-heavy conjecture, of central importance is the element L´
P

i2E Li . The fol-
lowing elementary statement on H.M/, proposed in [41, Conjecture 7], is one of the main
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conclusions of [13]. Its analogue for Weyl groups and for general Coxeter groups can be
found in [11] and [55].

Theorem 24. For every nonnegative integer k � d
2

, the multiplication map

Hk.M/! Hd�k.M/; x 7! Ld�2kx

is injective (the injective hard Lefschetz property for M).

To deduce Conjecture 23 from Theorem 24, consider the matrix of the multiplication
map with respect to the standard bases of the source and the target. Entries of this matrix are
labeled by pairs of elements of L , and all the entries corresponding to incomparable pairs
are zero. The matrix has full rank by Theorem 24, so there is a maximal square submatrix
with a nonzero determinant. In the standard expansion of this determinant, there must be a
nonzero term, and the permutation corresponding to this term produces the injective map �

in Conjecture 23.
It seems difficult to prove Theorem 24 directly. One possible reason for this is the

lack of Poincaré duality for H.M/: Typically, for small k, a matroid has much more corank k

flats than rank k flats. In known settings where the hard Lefschetz property is the main
statement needed for applications [13,26,45], it was necessary to prove Poincaré duality, the
hard Lefschetz property, and the Hodge–Riemann relations together as a single package.

The intersection cohomology IH.M/ is an H.M/-module that repairs the failure of
Poincaré duality of H.M/ in an efficient way. The construction of IH.M/ is inspired by the
Kazhdan–Lusztig theory of matroids developed in [25]. For any flat F of M, we define the
localization of M at F to be the matroid MF on the ground set F whose flats are the flats
of M contained in F . Similarly, we define the contraction of M at F to be the matroid MF

on the ground set E n F whose flats are G n F for flats G of M containing F .7 According
to [14, Theorem 2.2], there is a unique way to assign a polynomial PM.t/ to each matroid M,
called the Kazhdan–Lusztig polynomial of M, subject to the following three conditions:

(1) If rk M D 0, then PM.t/ is the constant polynomial 1.

(2) If rk M > 0, then the degree of PM.t/ is strictly less than rk M=2.

(3) We have ZM.t/ D t rk MZM.t�1/, where ZM.t/´
X

F 2L .M/

t rkM F PMF
.t/.

The polynomial ZM.t/, called the Z-polynomial of M, was introduced in [65] using a differ-
ent but equivalent definition of PM.t/.

Example 25. It is straightforward to check that the Kazhdan–Lusztig polynomial is 1 for
matroids of rank at most two. Thus, when the rank of M is three, we should have

PM.t/C
ˇ̌
L 1

ˇ̌
t C

ˇ̌
L 2

ˇ̌
t2
C t3

D t3PM
�
t�1

�
C
ˇ̌
L 1

ˇ̌
t2
C
ˇ̌
L 2

ˇ̌
t C 1:

Since the degree of PM.t/ is at most 1, it follows that PM.t/ D 1C jL 2jt � jL 1jt .

7 In [25], as well as several other references on Kazhdan–Lusztig polynomials of matroids,
the localization is denoted MF and the contraction is denoted MF . Our notational choice
here is consistent with [1] and [12,13].
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Example 26. When the rank of M is four, computing as in Example 25, we get
PM.t/ D 1C jL 3jt � jL 1jt . When the rank of M is five [25, Proposition 2.16], we have

PM.t/ D 1C
ˇ̌
L 4

ˇ̌
t �

ˇ̌
L 1

ˇ̌
t C

ˇ̌
L 3

ˇ̌
t2
�
ˇ̌
L 2

ˇ̌
t2
C
ˇ̌
L 1;2

ˇ̌
t2
�
ˇ̌
L 1;4

ˇ̌
t2
C
ˇ̌
L 2;4

ˇ̌
t2

�
ˇ̌
L 2;3

ˇ̌
t2;

where jL i;j j is the number of incidences between the flats of rank i and rank j . For example,
if M is the uniform matroid of rank 5 on 6 elements, PM.t/ D 1C 9t C 5t2.

The following nonnegativity conjecture was proposed in [25, Conjecture 2.8], where
it was proved for matroids representable over some field using `-adic étale intersection coho-
mology theory of [10]. For sparse paving matroids, a combinatorial proof of the nonnegativity
was given in [48]. The general case of the conjecture is proved in [13, Theorem 1.3] using the
intersection cohomology of matroids.

Conjecture 27 (Nonnegativity conjecture). PM.t/ has nonnegative coefficients for any M.

Kazhdan–Lusztig polynomials of matroids are special cases of Kazhdan–Lusztig–
Stanley polynomials [64, 71]. Several important families of Kazhdan–Lusztig–Stanley poly-
nomials turn out to have nonnegative coefficients, including classical Kazhdan–Lusztig poly-
nomials associated with Bruhat intervals [26] and g-polynomials of convex polytopes [45].
Each of the known proofs of the nonnegativity of the three Kazhdan–Lusztig–Stanley poly-
nomials involves numerous details that are unique to that specific case.

The following existence result of [13] implies Conjecture 23 and Conjecture 27. Let
K.M/ be the open convex cone of degree 1 elements

K.M/ D

² X
F 2L 1

cF yF j cF is positive
³
� H1.M/:

The elements of K.M/ act as linear operators by multiplication on any H.M/-module.

Theorem 28. There is a graded H.M/-module IH.M/ and a symmetric bilinear pairing

P W IH�.M/ � IHd��.M/! Q

that satisfies the following properties for any nonnegative integer k � d
2

:

(1) The symmetric bilinear pairing

IHk.M/ � IHd�k.M/! Q; .x1; x2/ 7! P.x1; x2/

is nondegenerate (Poincaré duality theorem for M).

(2) For any L1; : : : ; Ld�2k 2 K.M/, the multiplication map

IHk.M/! IHd�k.M/; x 7!

 
d�2kY
iD1

Li

!
x

is an isomorphism (hard Lefschetz theorem for M).
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(3) For any L0; L1; : : : ; Ld�2k 2 K.X/, the symmetric bilinear form

IHk.M/ � IHk.M/! Q; .x1; x2/ 7! .�1/kP

 
x1;

 
d�2kY
iD1

Li

!
x2

!
is positive definite on the kernel of the linear map

IHk.M/! IHd�kC1.M/; x 7!

 
d�2kY
iD0

Li

!
x

(Hodge–Riemann relations for M).

(4) Writing IH¿ for the graded vector space IH.M/˝H.M/ Q, we have

PM.t/ D
X
k�0

dim
�
IHk

¿

�
tk and ZM.t/ D

X
k�0

dim
�
IHk.M/

�
tk

(Kazhdan–Lusztig identities for M).

(5) IH0.M/ generates a submodule isomorphic to H.M/ (Purity for M).

Since injective maps restrict to injective maps, the injective hard Lefschetz property
for M in Theorem 24, and hence the top-heavy conjecture for M, follows from the hard
Lefschetz theorem and the purity for M. The nonnegativity conjecture for M follows from the
Kazhdan–Lusztig identities for M. More generally, when a finite group � acts on M, one can
define the equivariant Kazhdan–Lusztig polynomial P �

M .t/ as in [32]. This is a polynomial
with coefficients in the ring of virtual representations of � , with the property that taking
dimensions recovers the ordinary polynomial PM.t/. The authors of [13] show that � acts
naturally on IH.M/ and that

P �
M .t/ D

X
k�0

�
� Õ IHk

¿

�
tk
2 VRep.�/Œt �:

This proves the equivariant nonnegativity conjecture proposed in [32, Conjecture 2.13]. Con-
jecture 27 is the special case when � is trivial.

The construction of IH.M/ is inspired by geometry in the representable case. Con-
sider the case when M has a representation ' W E ! W over C, and recall that the matroid
Schubert variety Y of ' is the closure of W _ in the product of projective lines .P 1/E . The
additive group W _ acts on Y with finitely many orbits, each of which is isomorphic to an
affine space. The poset of cells in this stratification of Y is isomorphic to the poset of cells
is isomorphic to the lattice of flats of M, and, in fact, the singular cohomology H2�.Y; Q/ is
isomorphic to the graded Möbius algebra H�.M/ [41, Theorem 14].8

The Schubert variety admits a distinguished resolution of singularities f W X ! Y

obtained by blowing up all the strata in the order of increasing dimension. The resulting
smooth projective variety X is the augmented wonderful variety of ' studied in [12]. Adopting

8 All the cohomology rings and intersection cohomology groups of varieties in this paper
vanish in odd degrees, and our isomorphisms double degrees.
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the computations in [21,28], one can show that its singular cohomology and Chow rings are
isomorphic to the augmented Chow ring

CH.M/´ QŒyi ; xF j i is an element of E and F is a proper flat of M�=.IM C JM/;

where IM is the ideal generated by the linear forms

yi �

X
i…F

xF ; for every element i of E;

and JM is the ideal generated by the quadratic monomials

xF1xF2 ; for every pair of incomparable proper flats F1 and F2 of M, and

yi xF ; for every element i of E and every proper flat F of M not containing i .

As expected from the identification with H2�.X; Q/ in the representable case, for any M,
the augmented Chow ring of M vanishes in degrees larger than d . Furthermore, there is a
unique linear map

degWCHd .M/! Q;
Y

F 2F

xF 7! 1;

where F is any complete flag of proper flats of M, defining a symmetric pairing on CH.M/.
The main observation is that the pullback homomorphism in singular cohomology

f �
W H�.Y; Q/! H�.X; Q/

only depends on M and not on '. In terms of the graded Möbius algebra and the augmented
Chow ring of M, the pullback homomorphism is given by

f �
W H.M/! CH.M/; Li 7! yi :

Applying the decomposition theorem of Beilinson–Bernstein–Deligne–Gabber [10] to f , we
find that the intersection cohomology IH�.Y / is isomorphic as a graded H�.Y /-module to a
direct summand of H�.X/. Furthermore, a slight extension of an argument of Ginzburg [34]

shows that IH�.Y / is indecomposable as an H�.Y /-module. This motivates the following
definition.

Definition 29. The intersection cohomology IH.M/ of a matroid M is the unique indecom-
posable graded H.M/-module direct summand of CH.M/ that is nonzero in degree zero.

The above defines the intersection cohomology of M up to isomorphism of graded
H.M/-modules, where the uniqueness is given by the general Krull–Schmidt theorem
[7, Theorem 1]. The intersection cohomology inherits a symmetric pairing P from CH.M/.
In [13], the authors construct a canonical submodule IH.M/ � CH.M/ that is preserved by
all the symmetries of M. The construction of IH.M/ as an explicit submodule of CH.M/,
or more generally the construction of the canonical decomposition of CH.M/ as a graded
H.M/-module, is essential in inductively proving Poincaré duality, the hard Lefschetz theo-
rem, and the Hodge–Riemann relations for IH.M/.
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