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ABSTRACT. We prove that the Hessians of nonzero partial derivatives of the (homogenous) mul-
tivariate Tutte polynomial of any matroid have exactly one positive eigenvalue on the positive or-
thant when 0 ă q ď 1. Consequences are proofs of the strongest conjecture of Mason and negative
dependence properties for q-state Potts model partition functions.

1. INTRODUCTION

Several conjectures have been made regarding unimodality and log-concavity of sequences
arising in matroid theory. Only recently have some of these been solved using combinatorial
Hodge theory [AHK18, HSW18]. A conjecture that has resisted the approach of [AHK18] is the
strongest conjecture of Mason regarding independent sets in a matroid [Mas72]. The purpose
of this paper is to give a self-contained proof of the strongest conjecture avoiding, but inspired
by, Hodge theory. We prove that the Hessian of the homogenous multivariate Tutte polynomial
(or the q-state Potts model partition function) of a matroid has exactly one positive eigenvalue
on the positive orthant when 0 ă q ď 1. In a forthcoming paper we will take a more general
approach and see that the results proved in this paper fit into a wider context1.

Let n be an integer larger than 1, and let M be a matroid on rns “ t1, . . . , nu. Mason [Mas72]
offered the following three conjectures of increasing strength. Several authors studied corre-
lations in matroid theory partly in pursuit of these conjectures [SW75, Wag08, BBL09, KN10,
KN11].

Conjecture. For any n-element matroid M and any positive integer k,

(1) IkpMq2 ě Ik´1pMqIk`1pMq,

(2) IkpMq2 ě k`1
k Ik´1pMqIk`1pMq,

(3) IkpMq2 ě k`1
k

n´k`1
n´k Ik´1pMqIk`1pMq,

where IkpMq is the number of k-element independent sets of M.

1In related forthcoming papers, Anari, Liu, Gharan and Vinzant have independently developed methods that over-
lap with our work. In particular, they also prove Mason’s conjecture (3).
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Conjecture (1) was proved in [AHK18], and Conjecture (2) was proved in [HSW18]. Note that
Conjecture (3) may be written

IkpMq
2

`

n
k

˘2 ě
Ik`1pMq
`

n
k`1

˘

Ik´1pMq
`

n
k´1

˘ ,

and the equality holds when all pk ` 1q-subsets of rns are independent in M. Conjecture (3) is
known to hold when n is at most 11 or k is at most 5 [KN11]. We refer to [Sey75, Dow80, Mah85,
Zha85, HK12, HS89, Len13] for other partial results. We prove Conjecture (3) in Corollary 7 by
uncovering concavity properties of the multivariate Tutte polynomial of M.

Acknowledgements. Petter Brändén is a Wallenberg Academy Fellow supported by the Knut
and Alice Wallenberg Foundation and Vetenskapsrådet. June Huh was supported by NSF Grant
DMS-1638352 and the Ellentuck Fund.

2. THE HESSIAN OF THE MULTIVARIATE TUTTE POLYNOMIAL

Let rkM : 2rns Ñ Zě0 be the rank function of M. For a nonnegative integer k and a positive
real parameter q, consider the degree k homogeneous polynomial in n variables

ZkM “ ZkMpq, w1, . . . , wnq “
ÿ

A

q´rkMpAq
ź

iPA

wi,

where the sum is over all k-element subsets A of rns. We define the homogeneous multivariate
Tutte polynomial of M by

ZM “ ZMpq, wq “
n
ÿ

k“0

Zn´kM wk0 ,

which is a homogeneous polynomial of degree n in w “ pw0, w1, . . . , wnq. When w0 “ 1, the
funtion ZM agrees with the partition function of the q-state Potts model, or the random cluster
model [Pem00, Sok05, Gri06]. The Hessian of ZM is the matrix

HZM
pwq “

ˆ

B2ZM

BwiBwj

˙n

i,j“0

.

When w P Rn`1
ą0 , the largest eigenvalue of HZM

is simple and positive by the Perron-Frobenius
theorem. We prove the following analogue of the Hodge-Riemann relations for ZM.

Theorem 1. The Hessian of ZM has exactly one positive eigenvalue for all w P Rn`1
ą0 and 0 ă

q ď 1.

It follows that the Hessian of log ZM is negative semidefinite on Rn`1
ě0 , and hence log ZM is

concave on Rn`1
ě0 when 0 ă q ď 1 [AOV, Lemma 2.7]. We deduce Theorem 1 from the following

more precise statement. Let c “ pc0, c1, . . . , cnq be a sequence of n` 1 positive real numbers. We
say that c is strictly log-concave if

c2m ą cm´1cm`1 for 0 ă m ă n.
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For any strictly log-concave sequence c as above, set

ZM,c “

n
ÿ

k“0

cn´k Zn´kM wk0 .

For α P Zn`1
ě0 , we write Bi “ B

Bwi
and Bα “ Bα0

0 B
α1
1 ¨ ¨ ¨ Bαn

n .

Theorem 2. If BαZM,c is not identically zero, then

(i) the Hessian of BαZM,c is nonsingular for all w P Rn`1
ą0 and 0 ă q ď 1, and

(ii) the Hessian of BαZM,c has exactly one positive eigenvalue for all w P Rn`1
ą0 and 0 ă q ď 1.

Theorem 1 can be deduced from Theorem 2 forα “ 0 by approximating the constant sequence
1 by strictly log-concave sequences. Theorem 2 will be proved by induction on the degree of
BαZM,c. For undefined matroid terminologies, see [Oxl11].

Lemma 3. Let A “ paijqni,j“1 be a symmetric matrix with at least one positive eigenvalue. The
following statements are equivalent.

(1) A has exactly one positive eigenvalue.

(2) For any u, v P Rn with uTAu ą 0, puTAvq2 ě puTAuqpvTAvq.

(3) There is a vector u P Rn with uTAu ą 0, such that puTAvq2 ě puTAuqpvTAvq for all v P Rn.

Proof. Since A has a positive eigenvalue, (2) implies (3).

If (3) holds, then A is negative semidefinite on the hyperplane tv P Rn | uTAv “ 0u. Since A
has a positive eigenvalue, Cauchy’s interlacing theorem implies (1).

Assume (1), uTAu ą 0, and that u and v are linearly independent. Let Qpwq “ wTAw. The
discriminant ∆ of the polynomial t ÞÑ Qptu ` vq is puTAvq2 ´ puTAuqpvTAvq. If ∆ ă 0, then
Q is positive on the plane spanned by u and v. This contradicts the fact that A has exactly one
positive eigenvalue, by Cauchy’s interlacing theorem. Hence ∆ ě 0, and (2) follows. �

Lemma 4. Theorem 2 holds when the degree of BαZM,c is two.

Proof. It is enough to consider the case Bα “ Bn´2´k
0

ś

iPS Bi, where S is a k-element subset of
E “ rns. Note that BiZ`M “ q´rptiuqZ`´1

M{i , where M{i is the contraction of M by i. We need to
prove that the Hessian of the quadratic form

Q “
q
ř

iPS rptiuq

pn´ k ´ 2q!
BαZM,c “ ck

ˆ

n´ k

2

˙

w2
0 ` pn´ k ´ 1qck`1Z1

M{Spwqw0 ` ck`2Z2
M{Spwq

is nonsingular and has exactly one positive eigenvalue. By contraction, we may assume that
S “ H and k “ 0. Write Qpwq “ wTAw, where 2A “ HQ. We prove that the inequality in the
third statement of Lemma 3 is satisfied with strict inequality whenever u “ p1, 0, . . . , 0qT , and
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v P Rn`1 is not a multiple of u. From this follows that A is nonsingular and has exactly one
positive eigenvalue. In other words, we will prove,

Z1
Mpwq

2 ą 2t
n

n´ 1
Z2
Mpwq for all w P Rnzt0u, where t “

c0c2
c21

. (a)

Let E0 be the set of loops in E, and let E1, E2, . . . , E` be the parallel classes of M. By the change
of variables wj Ñ qwj for all non-loops j, we get Z1

M “ e1pEq and

Z2
M “ e2pEq ´ p1´ qqpe2pE1q ` ¨ ¨ ¨ ` e2pE`qq, (b)

where ekpUq denotes the degree k elementary symmetric polynomial in the variables indexed
by U Ď E.

We prove (a) for t “ 1 withą replaced byě. Moreover, we prove that if Z1
Mpwq “ 0 for w ‰ 0,

then Z2
Mpwq ă 0. The inequality (a) for t “ c0c2

c21
then follows since 0 ă c0c2

c21
ă 1. Note that for

q “ 1 the desired inequality is an instance of the Cauchy-Schwarz inequality:

pw1 ` ¨ ¨ ¨ ` wnq
2 ď n

`

w2
1 ` ¨ ¨ ¨ ` w

2
n

˘

, w P Rn. (c)

By (b), the inequality therefore reduces to the case when e2pE1q ` ¨ ¨ ¨ ` e2pE`q ă 0. By mono-
tonicity in q it suffices to consider the case q “ 0. Then the inequality reduces to

e1pEq
2 ď n

ÿ̀

i“1

e1pEiq
2 ` n

ÿ

jPE0

w2
j ,

which follows from (c). Suppose Z1
Mpwq “ 0 for w ‰ 0. It remains to prove Z2

Mpwq ă 0. Since
e1pEq “ 0 and w ‰ 0, it follows from the identity e1pEq2 “ 2e2pEq `

řn
i“1 w

2
i that e2pEq ă 0.

Again the proof reduces to the case when e2pE1q ` ¨ ¨ ¨ ` e2pE`q ă 0, by (b). We have already
proved that Z2

Mpwq ď 0 when q “ 0. But then Z2
Mpwq ă 0 when 0 ă q ď 1, by (b). This completes

the proof of the lemma. �

We prepare the proof of Theorem 2 with a lemma.

Lemma 5. Let F be a degree d homogeneous polynomial in Rrw0, w1, . . . , wns. If w P Rn`1
ą0 and

HBiF pwq has exactly one positive eigenvalue for each i “ 0, 1, . . . , n, then

kerHF pwq “
n
č

i“0

kerHBiF pwq.

Proof. We fix w P Rn`1
ą0 and write HF for HF pwq. We may suppose d ě 3. By Euler’s formula

for homogeneous functions,

pd´ 2qHF “

n
ÿ

i“0

wiHBiF ,

and hence the kernel of HF contains the intersection of the kernels of HBiF .

For the other inclusion, let z be a vector in the kernel of HF . By Euler’s formula again,

pd´ 2q eTi HF “ wTHBiF ,
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where ei is the i-th standard basis vector in Rn`1, and hencewTHBiF z “ 0. We havewTHBiFw ą
0 because w P Rn`1

ą0 and BiF has nonnegative coefficients. It follows that HBiF is negative
semidefinite on the kernel of wTHBiF , by e.g. Lemma 3. In particular,

zTHBiF z ď 0, with equality if and only if HBiF z “ 0.

To conclude, we write zero as the positive linear combination

0 “ pd´ 2q
´

zTHF z
¯

“

n
ÿ

i“0

yi

´

zTHBiF z
¯

.

Since every summand in the right-hand side is non-positive by the previous analysis, we must
have zTHBiF z “ 0 for every i, and hence HBiF z “ 0 for each i. �

Proof of Theorem 2. The proof is by induction on the degree m of F “ BαZM,c. The case when
m “ 2 is Lemma 4. By relabeling the variables we may assume that w0, w1, . . . , wn are the active
variables in F . Suppose the theorem is true when the degree of F is at most m, where m ě 2.

Suppose F has degree m ` 1. We first prove (i). By induction, the Hessian of any derivative
of F is non-singular and has exactly one positive eigenvalue. Hence (i) for F follows from
Lemma 5.

When q “ 1, F has the form

F “ p`´ 1q!c`´1em`1prnsq ` `!c`emprnsqw0 `
1

2
p`` 1q!c``1em´1prnsqw

2
0 ` ¨ ¨ ¨ .

If we choose c so that ci “ 0 unless i P t` ´ 1, `u, c`´1 “ 1{p` ´ 1q! and c` “ 1{`!, then F is
equal to the degree m ` 1 elementary symmetric polynomial in w0, w1, . . . , wn. The Hessian of
F evaluated at the all ones vector is equal to a constant multiple of the matrix Jn`1, which has all
diagonal entries equal to zero and all off-diagonal entries equal to 1. Clearly Jn`1 is nonsingular
and has exactly one positive eigenvalue. We may approximate c with a strictly log-concave
positive sequence. This implies that that there is a strictly log-concave sequence c for which the
Hessian of F is nonsingular and has exactly one positive eigenvalue when w “ p1, . . . , 1qT and
q “ 1. Since (i) holds for all 0 ă q ď 1 and w P Rn`1

ą0 , and (ii) holds for at least one choice of the
parameters, by continuity of the eigenvalues, (ii) holds for all 0 ă q ď 1 and w P Rn`1

ą0 . �

Theorems 1 and 2 suggest that there is an algebraic structure satisfying the Poincaré duality
and the hard Lefschetz theorem whose degree 1 Hodge-Riemann form is given by the Hessian
of ZM. We refer to [Huh18] for a discussion of the one positive eigenvalue condition and the
Hodge-Riemann relations.

3. CONSEQUENCES

We collect some corollaries of Theorem 2. It has been conjectured that the q-state Potts model
should exhibit negative dependence properties when 0 ă q ď 1, see [Pem00, Sok05, Gri06,
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Wag08]. However, no substantial results on negative dependence have been proved so far. By
the next theorem we see that q-state Potts models are ultra log-concave for 0 ă q ď 1.

Corollary 6. For any 0 ă m ă n and any 0 ă q ď 1, we have

ZmMpq, wq
2

`

n
m

˘2 ě
Zm`1
M pq, wq
`

n
m`1

˘

Zm´1
M pq, wq
`

n
m´1

˘ , for all w P Rně0.

Proof. Let H denote the Hessian of Bn´m´1
0 ZM atw P Rn`1

ą0 . Then pwTHe0q2 ě pwTHwqpeT0 He0q,
where e0 “ p1, 0, 0, . . .qT , by Theorem 2 and the second statement of Lemma 3. By Euler’s
formula for homogeneous functions,

wTHe0 “ mBn´m0 ZMpwq, w
THw “ pm` 1qmBn´m´1

0 ZMpwq, and eT0 He0 “ B
n´m`1
0 ZMpwq.

The proof follows by continuity, letting w0 “ 0. �

Let ImM be the collection of independent sets of M of size m. The m-th generating function of M

is the homogeneous polynomial in n variables

fmM pwq “
ÿ

IPImM

ź

iPI

wi, w “ pw1, . . . , wnq.

Note that fmM p1, . . . , 1q is the number of independent sets of M of size m.

Corollary 7. For every 0 ă m ă n and every w P Rně0, we have

fmM pwq
2

`

n
m

˘2 ě
fm`1
M pwq
`

n
m`1

˘

fm´1
M pwq
`

n
m´1

˘ .

Proof. The proof is immediate from Corollary 6 and the identity fmM pwq “ limqÑ0 ZmMpq, qwq. �

Let ` be the number of rank one flats of M. The simplification M of M is a matroid on r`s
whose lattice of flats is isomorphic to that of M [Oxl11, Section 1.7]. Applying Corollary 7 to the
simplification M, we get the stronger inequality

fmM pwq
2

fm`1
M pwqfm´1

M pwq
ě

`

`
m

˘2

`

`
m`1

˘`

`
m´1

˘ ě

`

n
m

˘2

`

n
m`1

˘`

n
m´1

˘ for all w P Rně0,
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