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ABSTRACT. We study multiplicative inequalities among entries of Lorentzian matrices, referred to
as bounded ratios. These inequalities can be viewed as generalizations of the classical Alexandrov–
Fenchel inequalities for mixed volumes. Our main structural result identifies the cone of all bounded
ratios on Lorentzian matrices with the dual of the cut cone, a finitely generated integral polyhedral
cone extensively studied in metric geometry and graph theory. We examine in detail the pentagonal
ratio, which first appears for Lorentzian matrices of size at least five. For Lorentzian matrices of
size three, we determine the optimal bounding constants across the entire cone of bounded ratios,
obtaining an explicit entropy-like formula. We conjecture that any normalized bounded ratio is, in
fact, bounded by 2.

1. INTRODUCTION

A Lorentzian matrix is a symmetric matrix with nonnegative real entries that has at most one
positive eigenvalue. We denote by Ln the set of nˆn Lorentzian matrices. These matrices appear
prominently in space-time geometry and convex geometry. In this work, we study multiplicative
inequalities for Lorentzian matrices—inequalities of the form

ź

iďj

p
αij

ij ď c
ź

iďj

p
βij

ij for all ppijq P Ln,

where αij and βij are nonnegative integers, and c is a positive constant.

For a collection of convex bodies K “ pK1, . . . ,Kdq in Rd, the mixed volume of K is defined to
be the normalized coefficient of t1 ¨ ¨ ¨ td in the associated volume polynomial:

V pK1, . . . ,Kdq –
1

d!
B1 ¨ ¨ ¨ Bd Volnpt1K1 ` . . . tdKdq.

The celebrated Alexandrov–Fenchel inequality states that, for any collection of convex bodies

P1, . . . , Pn and K1, . . . ,Kd´2 in Rd,

the symmetric n ˆ n matrix of d-dimensional mixed volumes ppijq given by

pij “ V pPi, Pj ,K1, . . . ,Kd´2q

is a Lorentzian matrix [Sch14, Section 7.3]. In particular, any of its 2 ˆ 2 principal minor is
nonpositive, that is,

piipjj ď p2ij for all i and j.
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The Alexandrov–Fenchel inequality above is one of the first examples of bounded ratios on
Lorentzian matrices, which we now define. Let SymnpRą0q denote the set of n ˆ n symmetric
matrices with positive entries, and let X Ď SymnpRą0q be a nonempty subset. Given a real
vector α “ pαijq1ďiďjďn, we write

α “
ÿ

iďj

αijeij ,

where teijuiďj is the standard basis of the space of all such vectors.

Definition 1.1. The set of bounded ratios on X , denoted BRpXq, is the set of all real vectors
α “ pαijq1ďiďjďn that satisfy the following condition:

There is a positive constant c such that
ź

1ďiďjďn

p
αij

ij ď c for all matrices ppijq in X .

We define the optimal bounding constant of a bounded ratio α on X , denoted fpαq “ fXpαq, to be
the infimum of all possible constants c satisfying the displayed inequality for all ppijq in X .

It is straightforward to check that BRpXq is a convex cone in Rpn`1
2 q and fpαq is a log-convex

homogeneous function of degree 1 on the cone of bounded ratios. When X is the set of n ˆ n

positive semidefinite matrices with positive entries PSD`
n , Yu shows in [Yu15] that the cone of

bounded ratios on X is a finitely generated integral polyhedral cone with
`

n
2

˘

extremal rays
corresponding to the 2 ˆ 2 principal minors:

BRpPSD`
n q “ Conep´eii ´ ejj ` 2eijq1ďiăjďn.

In contrast, bounded ratios for Lorentzian matrices, as we will see, exhibit more intricate behav-
iors. For related notions of bounded ratios in the study of cluster algebras and total positivity,
see [FJ00, FGJ03, GGS, SG25].

Definition 1.2. A bounded ratio α is integral if all the entries αij are integers. An integral
bounded ratio on X is said to be primitive if it cannot be expressed as the sum of two nonzero
integral bounded ratios on X .

Let L`
n be the set of nˆn Lorentzian matrices with only positive entries. Since any Lorentzian

matrix is a limit of Lorentzian matrices with positive entries [BH20, Section 2], the multiplicative
inequalities for Ln are obtained by clearing the denominator in pα ď c for a bounded ratio α

on L`
n . Our main result, Theorem B below, implies that BRpL`

n q is a finitely generated integral
polyhedral cone.

Example 1.3. The bounded ratios on L`
2 are exactly the nonnegative multiples of

α12 – e11 ` e22 ´ 2e12.

In other words, BRpL`
2 q “ Conepα12q. The optimal bounding constants are determined by the

condition fpα12q “ 1. We refer to the bounded ratio α12 as the Alexandrov–Fenchel type.
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Example 1.4. Theorem B shows that there are precisely three primitive bounded ratios on L`
3 ,

corresponding to the inequalities

p23p11
p12p13

ď 2,
p13p22
p12p23

ď 2,
p12p33
p13p23

ď 2 for all ppijq P L`
3 .

The cone of bounded ratios BRpL`
3 q is the three-dimensional simplicial cone in R6 generated by

α23|1 – e23 ` e11 ´ e12 ´ e13, α13|2 – e13 ` e22 ´ e12 ´ e23, α12|3 – e12 ` e33 ´ e13 ´ e23.

We refer to the bounded ratios αij|k as the triangular ratios. The Alexandrov–Fenchel type ratios
can be expressed as the pairwise sums

α12 “ α23|1 ` α13|2, α13 “ α23|1 ` α12|3, α23 “ α13|2 ` α12|3,

which are bounded but not primitive on L`
3 . To see the validity of the displayed inequalities on

L`
3 , we use the implication

¨

˚

˝

p11 p12 p13

p12 p22 p23

p13 p23 p33

˛

‹

‚

is Lorentzian ùñ

¨

˚

˝

0 p12 p13

p12 0 p23

p13 p23 p33

˛

‹

‚

is Lorentzian.

The nonnegativity of the determinant of the latter matrix gives the optimal bounding constant
fpα12|3q “ 2, which is witnessed by the Lorentzian matrices

¨

˚

˝

ϵ 1 1

1 ϵ 1

1 1 1

˛

‹

‚

P L`
3 for sufficiently small ϵ ą 0.

Note that 0 “ log fpα12|3 ` α13|2q ď log fpα12|3q ` log fpα13|2q “ 2 log 2. In Theorem C, we
explicitly describe the function fpαq on BRpL`

3 q.

The inequalities for the primitive bounded ratios αij|k appear in the work of André Weil on
the proof of the Riemann hypothesis for algebraic curves over finite fields, where they are re-
ferred to as the Castelnuovo–Severi inequality [Mil16, Theorem 1.5]. This is the first special case of
the reverse Khovanskii–Teissier inequality [LX17, Theorem 5.7]. The inequalities for αij|k also ap-
pear in early works on Brunn–Minkowski theory; see [Fro15, Page 396] and [BF87, Section 51].1

It turns out that there are no essentially new bounded ratios on L`
4 :

BRpL`
4 q “ Conepαij|kq1ďi,j,kď4, where αij|k – eij ` ekk ´ eik ´ ejk.

Exactly one new type of bounded ratios appear for L`
5 , which we refer to as the pentagonal ratios:

αijk|lm – eij ` eik ` ejk ` ell ` elm ` emm ´ eil ´ ejl ´ ekl ´ eim ´ ejm ´ ekm.

1We thank Ramon van Handel for pointing out these references.
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Theorem A. The pentagonal inequality holds for any ppijq P Ln:

pijpikpjkpllplmpmm ď 4pilpjlpklpimpjmpkm for any i, j, k, l,m.

The constant 4 is optimal when all five indices are distinct, and

BRpL`
5 q “ Conepαijk|lmq1ďi,j,k,l,mď5.

Note that the triangular ratios appear as degenerate cases of the pentagonal ratios:

αijk|kk “ αij|k for any i, j, k.

The Alexandrov–Fenchel type ratio αij appears as a degenerate triangular ratio αii|j , which is
bounded but not extremal in BRpL`

5 q. The cone of bounded ratios BRpL`
5 q has forty extremal

rays, corresponding to the ten nondegenerate pentagonal ratios and the thirty nondegenerate
triangular ratios. We have a factorization of the pentagonal ratio into a product of three trian-
gular ratios and one reciprocal:

p12p13p23p44p45p55
p14p15p24p25p34p35

“
p12p44
p14p24

¨
p13p55
p15p35

¨
p22p45
p24p25

¨

ˆ

p22p34
p23p24

˙´1

.

Even though the reciprocal on the right-hand side is unbounded on its own, the pentagonal
ratio on the left-hand side is bounded on L`

n . Factorizations of this type are not unique.

In general, we show that BRpL`
n q is a finitely generated polyhedral cone whose extremal rays

are generated by the primitive bounded ratios. Up to Sn-symmetry, the numbers of primitive
bounded ratios for n “ 3, 4, 5, 6, 7, 8 are 1, 1, 2, 4, 36, and 2169, respectively. The two new types
of primitive bounded ratios for L`

6 correspond to the inequalities of the form
p11p12p12p13p13p23p44p45p46p55p56p66
p14p14p15p15p16p16p24p25p26p34p35p36

ď c,
p11p11p11p12p12p22p34p35p36p45p46p56
p13p13p14p14p15p15p16p16p23p24p25p26

ď c,

although we do not know the optimal bounding constants for these inequalities; see Conjec-
ture 1.9. To prove the general statement, we relate BRpL`

n q to the cut cone, a finitely generated
integral polyhedral cone extensively studied in metric geometry and graph theory. For a com-
prehensive introduction to the geometry and combinatorics of the cut cone, we refer to the book
[DL10].

Definition 1.5. For any subset S Ď rns, define the cut vector δpSq “ pδpSqijq1ďiăjďn by

δpSqij “

$

&

%

1, if S contains exactly one of i and j,

0, if otherwise.

The cut cone Cutn is the polyhedral cone in Rpn
2q generated by all the cut vectors δpSq for S Ď rns.

The extremal rays of Cutn are generated by the cut vectors of nonempty proper subsets of rns.
The cut cone can be identified with the space of semimetrics on n points that are isometrically
embeddable in ℓ1-space [DL10, Section 1.1].
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We consider the scaling action of pRą0qn on SymnpRą0q defined by the formula

pc1, . . . , cnq ¨ ppijq :“ pcicjpijq.

If X Ď SymnpRą0q is stable under the scaling action, then the orbit space of X can be identified
with the set X of symmetric matrices in X with diagonal entries 1. We say that such matrices in
X Ď X are normalized, and define the cone of reduced bounded ratios on X by

BRpXq :“

#

pαijq1ďiăjďn

ˇ

ˇ

ˇ

ˇ

ˇ

there is c ą 0 such that
ź

1ďiăjďn

p
αij

ij ď c for all ppijq P X

+

.

As before, the optimal bounding constants fpαq for reduced bounded ratios are defined to be
the infimum of all possible constants c satisfying the displayed inequality for all ppijq in X .
It is straightforward to check that BRpXq is a convex cone in Rpn

2q and fpαq is a log-convex
homogeneous function of degree 1 on the cone of reduced bounded ratios.

If α is a bounded ratio on X , then the corresponding monomial pα must be invariant under
the scaling action of pRą0qn. In other words, if α P BRpXq, then

2αii “ ´
ÿ

j‰i

αij for all i.

Therefore, the projection π : Rpn`1
2 q Ñ Rpn

2q that omits the diagonal entries restricts to a bijection
between BRpXq and BRpXq. Moreover, we have fpαq “ fpπpαqq for any bounded ratio α.

Theorem B. The cone of reduced bounded ratios on L`
n is dual of the cut cone:

BRpL`
n q “

#

pαijq1ďiăjďn

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďiăjďn

αijβij ď 0 for all pβijq1ďiăjďn P Cutn

+

Ď Rpn
2q.

In particular, the cone of bounded ratios on L`
n is a finitely generated integral polyhedral cone.

Thus, the primitive bounded ratios on L`
n is in bijection with the facets of Cutn. Karp and

Papadimitriou showed in [KP82] that there is no computationally tractable description of all
facets of the cut cone unless NP “ coNP. Consequently, obtaining a complete and explicit
description of the primitive bounded ratios on L`

n is likely to be a challenging problem.

Nevertheless, several interesting classes of facets of Cutn are known, the first among which is
given by the hypermetric inequalities [DL10, Chapter 28]: For any vector h “ phiq1ďiďn satisfying
řn

i“1 hi “ 1, we have
ÿ

1ďiăjďn

hihjβij ď 0 for all pβijq1ďiăjďn in Cutn.

Thus, we may deduce the following statement from Theorem B.

Corollary 1.6. If
řn

i“1 hi “ 1, the vector phihjq1ďiăjďn is a reduced bounded ratio on L`
n .
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Bounded ratios of this type are called hypermetric. Determining the optimal bounding con-
stants for hypermetric bounded ratios as a function of h is an interesting and challenging prob-
lem. The hypermetric inequality for h “ e1 ` e2 ´ e3 gives the triangular ratio α12|3, and the
hypermetric inequality for h “ e1 ` e2 ` e3 ´ e4 ´ e5 gives the pentagonal ratio α123|45. Up to
Sn-symmetry, two additional hypermetric inequalities are needed to describe all facets of Cut6
[DL10, Remark 15.2.11]. These hypermetric inequalities correspond to

h “ 2e1 ` e2 ` e3 ´ e4 ´ e5 ´ e6 and h “ ´2e1 ´ e2 ` e3 ` e4 ` e5 ` e6.

For n ě 7, the cut cone has facets that do not correspond to any hypermetric inequality; see
[DL10, Section 30.6] for a complete list of facets of Cut7. For a comprehensive discussion of the
facets of the cut cone, we refer the reader to Deza and Laurent’s monograph [DL10, Part V].

We begin by outlining the proof techniques for our main theorem and situating them within
a broader context. Brändén and the second author introduced Lorentzian polynomials [BH20],
a class of homogeneous polynomials that unify and extend various notions of log-concavity
arising in combinatorics and geometry. A quadratic Lorentzian polynomial is, by definition, a
quadratic form whose Hessian matrix is Lorentzian. Meanwhile, Baker and Bowler developed a
unifying algebraic framework for matroids over tracts [BB19], which simultaneously generalized
many variants of matroids. Building on this framework, the authors of [BHKL] identified the
space of Lorentzian polynomials with given support with the corresponding thin Schubert cell
in the Grassmannian over the triangular hyperfield, up to homeomorphism. This enabled the
authors to use Gromov’s theorem on δ-hyperbolic spaces in [BHKL25] to derive new results on
Lorentzian polynomials. Our proof is inspired by this perspective, which we now explain in
concrete terms.

Let SymnpRě0q denote the set of n ˆ n symmetric matrices with nonnegative entries.

Definition 1.7. Let ∆npT0q be the set of matrices ppijq P SymnpRě0q such that

the maximum among pijpkl, pikpjl, pilpjk is achieved at least twice for any i, j, k, l P rns.

For a positive real number p, let ∆npTpq be the set of matrices ppijq P SymnpRě0q such that

ppijpklq
1{p ď ppikpjlq

1{p ` ppilpjkq1{p for any i, j, k, l P rns.

For any nonnegative real number p, let ∆`
n pTpq denote the intersection ∆npTpq X SymnpRą0q.

Note that ∆`
n pTpq is invariant under the scaling action of pRą0qn. As before, we identify the

orbit space with the set ∆`
n pTpq of matrices in ∆`

n pTpq with diagonal entries 1. A key observation
from [BHKL] is that

∆`
n pT0q Ď L`

n Ď ∆`
n pT2q,

where L`
n is the set of nˆn Lorentzian matrices with diagonal entries 1 and off-diagonal entries

positive. By taking the coordinatewise logarithm and omitting the diagonal coordinates, we
have

log∆`
n pT0q Ď logL`

n Ď log∆`
n pT2q in Rpn

2q.
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We observe in Section 3 that log∆`
n pT2q parametrizes Gromov’s δ-hyperbolic metrics on n points

for δ “ log 2, while log∆`
n pT0q parametrizes 0-hyperbolic metrics on n points, which are pre-

cisely the tree metrics. It follows from Gromov’s tree approximation theorem [Gro87, Section
6.1] that the two spaces are within finite Hausdorff distance of one another. Consequently,

BRp∆`
n pT0qq “ BRpL`

n q “ BRp∆`
n pTpqq.

Since Cutn is the convex hull of the space of tree metrics on n points, we conclude that BRpL`
n q

and Cutn are dual to each other; see Section 3 for further details.

Having understood the cone of bounded ratios for Lorentzian matrices, it is natural to ask
how the optimal bounding constants fpαq behave as a function on this cone. As mentioned
before,

log fpα ` βq ď log fpαq ` log fpβq and log fpcαq “ c log fpαq.

In Theorem C below, we give an explicit description of the function fpαq when n “ 3.

Recall that the cone of bounded ratios BRpL`
3 q has three extremal rays α23|1, α13|2, α12|3 cor-

responding to the optimal inequalities

p23p11
p12p13

ď 2,
p13p22
p12p23

ď 2,
p12p33
p13p23

ď 2.

Since log f is a homogeneous function of degree 1, it is enough to determine

fpa, b, cq – fpa ¨ α23|1 ` b ¨ α13|2 ` c ¨ α12|3q when a ` b ` c “ 1 and a, b, c ě 0.

Theorem C. Let a, b, c be nonnegative numbers such that a ` b ` c “ 1.

(1) If a2 ` b2 ` c2 ´ 2ab ´ 2ac ´ 2bc ď 0, then fpa, b, cq “ 1.

(2) If a2 ` b2 ` c2 ´ 2ab ´ 2ac ´ 2bc ě 0, a ě b, a ě c, then

fpa, b, cq “ 2 ¨ aa ¨ bb ¨ cc ¨ p2a ´ 1q2a´1 ¨ p1 ´ 2bq2b´1 ¨ p1 ´ 2cq2c´1.

See Figure 1 for an illustration.

We conclude with a general conjecture on the optimal bounding constant fpαq.

Definition 1.8. We say that a reduced bounded ratio on L`
n is normalized if the sum of its coor-

dinate is ´1.

For example, reduced bounded ratios of the form πpαij|kq “ eij ´ eik ´ ejk are normalized.
Since the set of Lorentzian matrices is preserved when a diagonal entry is replaced by 0, the
coordinate sum of any nonzero reduced bounded ratio is negative. Thus, any nonzero reduced
bounded ratio is uniquely a positive multiple of a normalized reduced bounded ratio.

Conjecture 1.9. The optimal bounding constant for any normalized reduced bounded ratio on
L`
n is at most 2.
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FIGURE 1. Optimal bounding constants for an equilateral triangle cross section
of BRpL`

3 q. The midpoints of the three edges correspond to the Alexandrov–
Fenchel type inequalities. Inside the inscribed circle, the optimal bounding con-
stant is 1. Outside of the inscribed circle, the optimal bounding constants are
given by an entropy-like function.

Using log-convexity of the optimal bounding constants, Conjecture 1.9 can be reduced to the
case of extremal bounded ratios. Thus, by Theorem A, we know that Conjecture 1.9 holds for
n ď 5. See Section 5 for a closely related conjecture for rank 2 Lorentzian matrices.

Acknowledgements. The authors gratefully acknowledge the Institute for Advanced Study for
providing an inspiring research environment and thank Matt Baker, Chayim Lowen, and Ra-
mon van Handel for insightful and stimulating discussions. Daoji Huang is supported by the
Charles Simonyi Endowment and NSF-DMS2202900. June Huh is partially supported by the Si-
mons Investigator Grant. Botong Wang is partially supported by the NSF grant DMS-1926686.

2. THE PENTAGONAL INEQUALITY

We prove Theorem A. The primary difficulty in proving this theorem lies in determining
the optimal bounding constant for the pentagonal inequality. The statement that BRpL`

5 q is
generated by the pentagonal ratios follows from Theorem B and the fact that the facets of Cut5
are defined by the pentagonal ratios [DL10, Section 30.6].
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We begin by observing that the constant 4 in the pentagonal inequality is, if valid, best possi-
ble. Let t be a nonnegative real number, and consider the matrix

Mptq –

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 t 2 ` t

1 0 1 2 2

1 1 0 2 ` t t

t 2 2 ` t 4t 4 ` 4t

2 ` t 2 t 4 ` 4t 4t

˛

‹

‹

‹

‹

‹

‹

‚

.

It is straightforward to check that Mptq has rank 3 for t ě 0. Since the leading 3 ˆ 3 principal
submatrix of M is nondegenerate and Lorentzian, we see that Mptq is Lorentzian for any t ě 0.
We have

lim
tÑ0

p12p13p23p44p45p55
p14p15p24p25p34p35

“ lim
tÑ0

p4tq2p4 ` 4tq

4t2p2 ` tq2
“ 4.

Since any Lorentzian matrix is a limit of Lorentzian matrices with positive entries [BH20, Sec-
tion 2], there is a family in L`

5 on which the evaluation of the pentagonal ratio limits to 4.

We prepare the proof of the pentagonal inequality with a few auxiliary lemmas.

Lemma 2.1. Suppose that A is a symmetric matrix of the form

A “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 p14 p15

1 0 1 p24 p25

1 1 0 p34 p35

p14 p24 p34 p44 p45

p15 p25 p35 p45 p55

˛

‹

‹

‹

‹

‹

‹

‚

.

Then there exist unique matrices B and C such that A “ BCBT , where

BCBT “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

b14 b24 b34 1 0

b15 b25 b35 0 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 0 c44 c45

0 0 0 c45 c55

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 b14 b15

0 1 0 b24 b25

0 0 1 b34 b35

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

Proof. For any p14, p15, p24, p25, p34, p35, there exist unique b14, b15, b24, b25, b34, b35 such that

˜

b14 b24 b34

b15 b25 b35

¸

¨

˚

˝

0 1 1

1 0 1

1 1 0

˛

‹

‚

“

˜

´p14 ´p24 ´p34

´p15 ´p25 ´p35

¸

.

This defines the invertible lower triangular matrix B. The matrix C is uniquely determined by
the condition C “ B´1ApBT q´1, and it is straightforward to check that C has the required block
diagonal shape. □
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Lemma 2.2. Consider the symmetric 2 ˆ 2 matrices

M1 “

˜

µ ν

ν ξ

¸

and M2 “

˜

α β

β γ

¸

.

If M1 is Lorentzian, M2 is negative semidefinite, and M1 ` M2 has nonnegative entries, then

pµ ` αqpν ` βqpξ ` γq ď µνξ.

Proof. It suffices to show that pµ ` tαqpν ` tβqpξ ` tγq is a decreasing function for 0 ď t ď 1.
Since M1 ` tM2is a Lorentzian matrix for any 0 ď t ď 1, it suffices to show that

d

dt
pµ ` tαqpν ` tβqpξ ` tγq

ˇ

ˇ

ˇ

ˇ

t“0

ď 0.

By taking limits, we may reduce to the case when M2 is negative definite. Since the claimed in-
equality is invariant under the symmetric scaling of rows and columns, we may further suppose
that α “ γ “ ´1. Then β ď 1, and hence

d

dt
pµ ` tαqpν ` tβqpξ ` tγq

ˇ

ˇ

ˇ

ˇ

t“0

“ µνγ ` µξβ ` νξα ď ´µν ` µξ ´ νξ.

Since M1 is Lorentzian, µξ ď ν2, so the right-hand side satisfies

´µν ` µξ ´ νξ ď ´2ν
a

µξ ` µξ ď ´µξ ď 0. □

Lemma 2.3. For positive numbers x1, x2, x3, y1, y2, y3, set

X – 2x1x2 ` 2x1x3 ` 2x2x3 ´ x2
1 ´ x2

2 ´ x2
3,

Y – 2y1y2 ` 2y1y3 ` 2y2y3 ´ y21 ´ y22 ´ y23 ,

Z – x1py2 ` y3 ´ y1q ` x2py1 ` y3 ´ y2q ` x3py1 ` y2 ´ y3q.

If X,Y, Z are nonnegative, then XY Z ă 32x1x2x3y1y2y3.

We note that the final inequality may fail without the assumption that X,Y, Z are nonnega-
tive, for example, when px1, x2, x3, y1, y2, y3q “ p6, 1, 1, 1, 1, 6q.

Proof. First suppose that px1, x2, x3q and py1, y2, y3q satisfy the triangle inequalities. Setting ui –

xj ` xk ´ xi ą 0 and vi – yj ` yk ´ yi ą 0, we have

X “ u1u2 `u1u3 `u2u3, Y “ v1v2 ` v1v3 ` v2v3, 2Z “ pu2 `u3qv1 ` pu1 `u3qv2 ` pu1 `u2qv3.

The goal is to show that

pu1u2 ` u1u3 ` u2u3qpv1v2 ` v1v3 ` v2v3qppu2 ` u3qv1 ` pu1 ` u3qv2 ` pu1 ` u2qv3q

ă pu1 ` u2qpu1 ` u3qpu2 ` u3qpv1 ` v2qpv1 ` v3qpv2 ` v3q.
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The right-hand side minus the left-hand side can be simplified to

u2
1u2v

2
1v2 ` u2

1u3v
2
1v2 ` u2

1u2v
2
1v3 ` u2

1u3v
2
1v3 ` u1u

2
2v1v

2
2 ` u2

2u3v1v
2
2 ` u1u

2
2v

2
2v3 ` u2

2u3v
2
2v3

` u1u
2
3v2v

2
3 ` u2u

2
3v2v

2
3 ` u1u

2
3v1v

2
3 ` u2u

2
3v1v

2
3 ´ 2u1u2u3v1v2v3.

Notice that at most one of the nonnegative numbers u1, u2, u3 is zero, and similarly for v1, v2, v3.
Thus, the sum of the positive coefficient terms is strictly positive. If any of the ui is zero, then the
difference is positive. If u1, u2, u3 are all positive, then the only negative term ´2u1u2u3v1v2v3

can be grouped with the terms u2
1u2v

2
1v2 and u2u

2
3v2v

2
3 to form a square, and the remaining sum

is positive.

Thus, without loss of generality, it is sufficient to justify the inequality under the assumption
that x1 ą x2 ` x3 and x2 ě x3. If y3 ă y2, then py1 ` y3 ´ y2q ă py1 ` y2 ´ y3q. In this case,

x2py1 ` y3 ´ y2q ` x3py1 ` y2 ´ y3q ă x2py1 ` y2 ´ y3q ` x3py1 ` y3 ´ y2q and

x1py2`y3´y1q`x2py1`y3´y2q`x3py1`y2´y3q ă x1py2`y3´y1q`x2py1`y2´y3q`x3py1`y3´y2q.

Thus, swapping y2 and y3 makes Z larger without changing X , Y , and x1x2x3y1y2y3. Therefore,
it is enough to consider the case when x1 ą x2 ` x3 and x2 ě x3 and y3 ě y2.

Since X “ ´px1´x2´x3q2`4x2x3, replacing x1 by x2`x3 makes X larger without changing
Y . We check that the same replacement makes the ratio Z{x1 larger:

py2 ` y3 ´ y1q ` px2py1 ` y3 ´ y2q ` x3py1 ` y2 ´ y3qqx´1
1

ă py2 ` y3 ´ y1q ` px2py1 ` y3 ´ y2q ` x3py1 ` y2 ´ y3qqpx2 ` x3q´1.

In fact, we have x1 ą x2 ` x3 and

x2py1 ` y3 ´ y2q ` x3py1 ` y2 ´ y3q “ px2 ` x3qy1 ` px2 ´ x3qpy3 ´ y2q ě px2 ` x3qy1 ą 0.

Since
Z “ y1px2 ` x3 ´ x1q ` y2px1 ` x3 ´ x2q ` y3px1 ` x2 ´ x3q,

replacing x1 by x2 ` x3 preserves the nonnegativity of Z, this reduces the problem to the case
when px1, x2, x3q satisfies the triangle inequalities. Repeating the argument for py1, y2, y3q, we
reduce the problem to the case where both px1, x2, x3q and py1, y2, y3q satisfy the triangle in-
equalities, which was considered before. □

Proof of Theorem A. To show the pentagonal ratio is at most 4, it suffices to consider Lorentzian
matrices of the form

A “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 p14 p15

1 0 1 p24 p25

1 1 0 p34 p35

p14 p24 p34 p44 p45

p15 p25 p35 p45 p55

˛

‹

‹

‹

‹

‹

‹

‚

.

Indeed, we can set the first three diagonal entries to be zero, since decreasing diagonal entries
only decreases eigenvalues. We can then rescale rows and columns using the scaling action to
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obtain matrix A. Both operations do not affect the value of the pentagonal ratio. We need to
show that

p44p45p55
p14p24p34p15p25p35

ď 4.

By Lemma 2.1, there is a unique factorization

A “ B ¨ C ¨ BT “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

b14 b24 b34 1 0

b15 b25 b35 0 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 0 c44 c45

0 0 0 c45 c55

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 b14 b15

0 1 0 b24 b25

0 0 1 b34 b35

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

Since A is Lorentzian, C has at most one positive eigenvalue. The upper-left block of C has ex-
actly one positive eigenvalue, it follows that the lower-right block of C is negative semidefinite.
For 0 ď t ď 1, we consider the matrices Aptq and Cptq defined by

Aptq “ B ¨ Cptq ¨ BT “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

b14 b24 b34 1 0

b15 b25 b35 0 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 0 tc44 tc45

0 0 0 tc45 tc55

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 b14 b15

0 1 0 b24 b25

0 0 1 b34 b35

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

Matrices B and BT correspond to sequences of row and column operations respectively, so

Aptq “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 1 p14 p15

1 0 1 p24 p25

1 1 0 p34 p35

p14 p24 p34 X ` tc44 Y ` tc45

p15 p25 p35 Y ` tc45 Z ` tc55

˛

‹

‹

‹

‹

‹

‹

‚

for some X,Y, Z independent of t. The rank of Cp0q is 3, and hence the rank of Ap0q is 3. Thus,
all the 4 ˆ 4 minors of Ap0q are zero, which implies that

X “
2p14p24 ` 2p14p34 ` 2p24p34 ´ p214 ´ p224 ´ p234

2
,

Z “
2p15p25 ` 2p15p35 ` 2p25p35 ´ p215 ´ p225 ´ p235

2
,

Y “
p14p25 ` p14p35 ` p24p15 ` p24p35 ` p34p15 ` p34p25 ´ p14p15 ´ p24p25 ´ p34p35

2
.

Since c44 and c55 are nonpositive and p44 “ X ` c44 and p55 “ Z ` c55 are nonnegative,

X ` tc44 ě 0 and Z ` tc55 ě 0 for all 0 ď t ď 1.

In particular, X and Z are nonnegative.
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We now reduce to the case when Y is nonnegative as well. Since Cptq has at most one positive
eigenvalue for all 0 ď t ď 1, the same holds for the matrix Aptq, and hence

det

˜

X ` tc44 Y ` tc45

Y ` tc45 Z ` tc55

¸

ď 0.

Suppose Y is negative. Since Y ` c45 ě 0, we must have c45 ą 0 and there is a unique positive
t1 ď 1 such that Y ` t1c45 “ 0. The determinantal inequality above says that

X ` t1c44 “ 0 or Z ` t1c55 “ 0.

If t1 ă 1, this implies that c44 “ 0 or c55 “ 0, and hence c45 “ 0 by the negative semidefiniteness
of the lower-right block of C, reaching a contradiction. Thus

p45 “ Y ` c45 “ 0,

in which case the pentagonal inequality holds trivially.

The remaining case to consider is when X,Y, Z ě 0, that is, when the matrix Ap0q is Lorentzian.
We apply Lemma 2.2 to the sum

˜

X Y

Y Z

¸

`

˜

c44 c45

c45 c55

¸

“

˜

p44 p45

p45 p55

¸

,

and conclude that p44p45p55 ď XY Z. Thus, the pentagonal ratio of Ap0q is greater or equal to
the pentagonal ratio of A. Thus, it is enough to show the pentagonal inequality for Ap0q, which
reads

XY Z ď 4p14p24p34p15p25p35.

This is precisely the content of Lemma 2.3. □

It is interesting to compare the above analysis with that for the pentagonal ratio on ∆`
n pTpq,

which is much simpler.

Proposition 2.4. Let nonnegative p and any matrix ppijq P ∆`
n pTpq, we have

p12p13p23p45p44p55
p14p15p24p25p34p35

ď 8p.

The equality is achieved by the matrix
¨

˚

˚

˚

˚

˚

˚

˝

0 2
p
2 2

p
2 1 1

2
p
2 0 2

p
2 1 1

2
p
2 2

p
2 0 1 1

1 1 1 2
p
2 2

p
2

1 1 1 2
p
2 2

p
2

˛

‹

‹

‹

‹

‹

‹

‚

P ∆npTpq.

Proof. We first consider the case when p is positive. We have

pp44p13q1{p ď 2pp14p34q1{p, pp55p23q1{p ď 2pp25p35q1{p, so pp44p55p13p23q1{p ď 4pp14p34p25p35q1{p.
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Similarly, we have

pp44p23q1{p ď 2pp24p34q1{p, pp55p13q1{p ď 2pp15p35q1{p, so pp44p55p13p23q1{p ď 4pp24p34p15p35q1{p.

Using the triangle inequality pp12p45q1{p ď pp14p25q1{p ` pp15p24q1{p, we get

pp12p13p23p44p55p45q1{p ď pp44p55p13p23p14p25q1{p ` pp44p55p13p23p15p24q1{p

ď 8pp14p15p24p25p34p35q1{p.

Since ∆npT0q Ď ∆npTpq for all p ą 0, the case of p “ 0 follows from taking the limit p Ñ 0. □

3. LORENTZIAN MATRICES AND δ-HYPERBOLIC SPACES

We give a detailed proof of Theorem B outlined in the introduction.

Proposition 3.1. For any n ą 0, we have ∆npT0q Ď Ln Ď ∆npT2q.

In the language of [BKH`], the proposition states that every rank 2 polymatroid over T0 is
Lorentzian, and every Lorentzian matrix is a rank 2 polymatroid over T2.

Proof. The first inclusion is a special case of [BH20, Corollary 3.16] for quadratic polynomials.
The second inclusion follows from [BHKL25], whose proof we reproduce here.

Suppose ppijq is a Lorentzian matrix. If i, j, k, l are distinct indices, we consider the matrix
¨

˚

˚

˚

˝

0 pij pik pil

pij 0 pjk pjl

pik pjk 0 pkl

pil pjl pkl 0

˛

‹

‹

‹

‚

obtained from replacing the diagonal entries of a principal submatrix of ppijq by zero. This
matrix is Lorentzian with

det “ ´
`?

pijpkl `
?
pikpjl `

?
pilpjk

˘

¨ p´
?
pijpkl `

?
pikpjl `

?
pilpjkq

¨ p
?
pijpjl ´

?
pikpjl `

?
pilpjkq ¨ p

?
pijpkl `

?
pikpjl ´

?
pilpjkq ď 0,

so ?
pijpkl,

?
pikpjl,

?
pilpjk form three sides of a triangle [HHM`, Proposition 3.1].

If there are exactly three distinct indices among i, j, k, l, we may suppose k “ l. We need to
show that ?

pijpkk, ?
pikpjk, ?

pikpjk form sides of a triangle, that is, ?
pijpkk ď 2

?
pikpjk. This

follows from the Lorentzian condition for ppijq because

det

¨

˚

˝

0 pij pik

pij 0 pjk

pik pjk pkk

˛

‹

‚

“ pijp2pikpjk ´ pijpkkq ě 0.
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If three of i, j, k, l are equal, then the statement is trivial. Thus, the only remaining nontrivial
case is when i “ k and j “ l. We need to check that ?

piipjj ď 2pij , and this follows from

det

˜

pii pij

pij pjj

¸

“ piipjj ´ p2ij ď 0. □

We now recall the definition of tree metric in terms of phylogenetic trees, following [MS15,
Section 4.3]. A phylogenetic tree on n leaves is a tree with n labeled leaves and no vertices of
degree 2. We say that pdijq1ďiăjďn is a tree metric if there is a phylogenetic tree τ with n leaves
and nonnegative edge lengths ℓ on τ such that

dij “
`

the sum of all ℓpeq over all edges e in the unique path from i to j in τ
˘

.2

Every tree metric uniquely determines a phylogenetic tree together with the assignment of edge
lengths.

Lemma 3.2. The following statements hold for ∆`
n pT0q.

(1) The set of coordinatewise logarithms log∆`
n pT0q Ď Rpn

2q is equal to the space of tree metrics
on n leaves.

(2) The convex hull of log∆`
n pT0q in Rpn

2q is equal to the cut cone Cutn.

(3) The cone of reduced bounded ratios BRp∆`
n pT0qq is the dual of the cut cone Cutn.

Proof. Note that the points in log∆`
n pT0q are of the form pqijq “ plog pijq, where

qii “ log pii “ 0 and qij “ log pij ě log
?
piipjj “ 0,

and in addition, for distinct indices i, j, k, l, we have

qij ` qkl “ log pijpkl ď logmaxppikpjl, pilpjkq “ maxpqik ` qjl, qil ` qjkq.

Thus, the first statement is the characterization of tree metrics by the “four-point condition”,
which is exactly the logarithm of the condition defining ∆`

n pT0q [MS15, Lemma 4.3.6].

For the second statement, observe that the cut vector δpSq is the tree metric corresponding
to the phylogenetic tree that consists of a single edge of length 1 that connects the leaves in S

with the leaves not in S. Therefore, the extremal rays of Cutn are in log∆`
n pT0q. For the other

inclusion, consider a tree metric d given by a phylogenetic tree τ and a length function ℓ. For
each edge e of τ , let Speq be the set of leaves that remain connected to the distinguished leaf 1
after removing e from τ . Then d admits the decomposition

d “
ÿ

e

ℓpeqδpSpeqq,

showing that d is in the cut cone. This proves the second statement.

2In [MS15, Section 4.3], edge lengths are allowed to be non-positive. A vector d is a tree metric in this sense if and
only if the sum of d and a constant vector of large positive value is a tree metric in the more restrictive sense above.
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For the third statement, notice that

BR
`

∆`
n pT0q

˘

“

#

α P Rpn
2q

ˇ

ˇ

ˇ

ˇ

ˇ

Dc ą 0 such that
ÿ

1ďiăjďn

αijqij ď log c for all q P log∆`
n pT0q

+

“

#

α P Rpn
2q

ˇ

ˇ

ˇ

ˇ

ˇ

Dc ą 0 such that
ÿ

1ďiăjďn

αijqij ď log c for all q P Cutn

+

“

#

α P Rpn
2q

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďiăjďn

αijqij ď 0 for all q P Cutn

+

.

The first equality is the definition of BR, the second follows from the fact that Cutn is the convex
hull of log∆`

n pT0q, and the third follows from the fact that Cutn is a cone. □

We now review Gromov’s tree approximation theorem for δ-hyperbolic spaces. Let δ be a
nonnegative real number. A metric d on rns is called δ-hyperbolic if

dij ` dkl ď max
`

dik ` djl ` 2δ, dil ` djk ` 2δ
˘

for all i, j, k, l P rns.

As noted above, when δ “ 0, the condition is equivalent to d being a tree metric. We will use the
following corollary of the tree approximation theorem; see [Gro87, Section 6.1] and [GdlH90,
Chapitre 2].

Proposition 3.3. For any positive real number δ and a positive integer n, there is a constant c
such that any δ-hyperbolic metric d on rns can be approximated by a 0-hyperbolic metric d1:

dij ´ c ď d1
ij ď dij for all i, j P rns.

Corollary 3.4. For any positive integer n, there is a constant ec such that for any ppijq P ∆`
n pT2q,

there is pp1
ijq P ∆`

n pT0q satisfying the condition

e´cpij ď p1
ij ď pij for all i, j P rns.

Proof. We reformulate the statement in terms of log coordinates, where qij “ log pij . Since
ppijq P ∆`

n pT2q, we have

(1) qii “ 0 for all i P rns;

(2) qij ď qik ` qjk ` 2 log 2 for all distinct i, j, k P rns;

(3) qij ` qkl ď maxpqik ` qjl ` 2 log 2, qil ` qjk ` 2 log 2q for all distinct i, j, k, l P rns,

where the last condition follows from
?
pijpkl ď

?
pikpjl `

?
pilpjk ď maxp2

?
pikpjl, 2

?
pilpjkq.

Thus any such pqijq is a δ-hyperbolic metric on rns for δ “ log 2. The conclusion follows from
Lemma 3.2 and Proposition 3.3. □

For the following lemma, let X Ď Y be arbitrary subsets of n ˆ n symmetric matrices with
positive entries.
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Lemma 3.5. Suppose that there is a constant ec such that, for any ppijq P Y , there is pp1
ijq P X

satisfying e´cpij ď p1
ij ď pij for all i, j P rns. Then BRpXq “ BRpY q.

Proof. Since X Ď Y , we have BRpY q Ď BRpXq. We prove the reverse inclusion. Given ppijq P Y ,
our assumption says that there is pp1

ijq P X such that

e´cpij ď p1
ij ď pij for all i, j P rns.

If
ś

iďj p
1
ij

αij is bounded above by a constant, then the same is true for
ś

iďj pij
αij . □

Proof of Theorem B. Proposition 3.1, Corollary 3.4, and Lemma 3.5, we have

BRp∆`
n pT0qq “ BRpL`

n q “ BRp∆`
n pT2qq.

Lemma 3.2 says that this cone is dual to the cut cone Cutn. □

4. OPTIMAL BOUNDING CONSTANTS FOR L`
3

We determine the optimal bounding constants on BRpL`
3 q.

Proof of Theorem C. We consider the triangular section of the cone of reduced bounded ratios
!

a ¨ α23|1 ` b ¨ α13|2 ` c ¨ α12|3
ˇ

ˇ

ˇ
a, b, c are nonnegative numbers that sum to 1

)

Ď BRpL`
3 q.

The condition a2 ` b2 ` c2 ´ 2ab´ 2ac´ 2bc “ 0 defines an inscribed circle in the given triangle,
where the three tangent points are given by

pa, b, cq “ p1{2, 1{2, 0q, p1{2, 0, 1{2q, p0, 1{2, 1{2q.

These points are the midpoints of the sides of the triangle, corresponding to the Alexandrov–
Fenchel inequalities.

The inscribed circle splits the triangle in four regions. The part within the circle is defined by

a2 ` b2 ` c2 ´ 2ab ´ 2ac ´ 2bc ď 0.

Outside the circle, the connected component containing the vertex α23|1 is defined by

a2 ` b2 ` c2 ´ 2ab ´ 2ac ´ 2bc ą 0, a ě b, a ě c.

The other two regions outside of the inscribed circle are described similarly.

We may reformulate the objective as the problem of finding the global maximum of

Rpp12, p13, p23q :“ pp12qc´b´app13qb´c´app23qa´b´c,

subject to certain constrains on p12, p13, p23. More precisely, we want to find the global maximum
of Rpp12, p13, p23q in terms of the parameters a, b, c when p12, p13, p23 ě 1 and

det

¨

˚

˝

1 p12 p13

p12 1 p23

p13 p23 1

˛

‹

‚

“ 1 ` 2p12p13p23 ´ p212 ´ p213 ´ p223 ě 0.
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These inequalities are equivalent to the condition that 3 ˆ 3 matrix ppijq being Lorentzian.

We apply Lagrange’s method to Rpp12, p13, p23q separately on the three regions outside the
inscribed circle. On the region containing α23|1, one finds that the interior of the domain has no
critical points, and thus the maximum is attained on the boundary. The interesting case is when

1 ` 2p12p13p23 ´ p212 ´ p213 ´ p223 “ 0.

Since p12, p13, p23 ě 1, the condition is equivalent to

p23 “ p12p13 `
a

pp12 ´ 1qpp13 ´ 1q.

Thus, setting x “ p´2
12 and y “ p´2

13 , the question reduces to finding the global maximum of

rpx, yq – xbyc
´

1 `
a

p1 ´ xqp1 ´ yq

¯a´b´c

when 0 ď x, y ď 1.

The unique critical point of rpx, yq has coordinates

x0 “ 4ab{pa ` b ´ cq2 and y0 “ 4ac{pa ´ b ` cq2,

and they satisfy 0 ď x0, y0 ď 1 because a2 ` b2 ` c2 ´ 2ab ´ 2ac ´ 2bc ą 0. Evaluating, we get

rpx0, y0q “ 2 ¨ aa ¨ bb ¨ cc ¨ p2a ´ 1q2a´1 ¨ p1 ´ 2bq2b´1 ¨ p1 ´ 2cq2c´1.

When a2 ` b2 ` c2 ´2ab´2ac´2bc “ 0, we have pa` b´ cq2 “ 4ab and pa´ b` cq2 “ 4ac. In this
case, the critical point is p1, 1q and rpx, yq has value 1 at the critical point. Thus, when pa, b, cq

lies in the the boundary of the inscribed circle, fpa, b, cq “ 1. By the log-convexity of fpa, b, cq,
we conclude that fpa, b, cq ď 1 inside the circle. On the other hand, the matrix with all entries 1
is Lorentzian, and any ratio for this matrix equals 1. Thus, fpa, b, cq “ 1 inside the circle. □

We compare the optimal bounding constants fpa, b, cq for L`
3 with the corresponding con-

stants fppa, b, cq for ∆`
3 pTpq, which is piecewise log-linear.

Proposition 4.1. Consider the reduced bounded ratio α “ a ¨α23|1`b ¨α13|2`c ¨α12|3 on ∆`
n pTpq,

where a, b, c are nonnegative numbers. The optimal bounding constant for α is given by

fppa, b, cq “

$

’

’

’

’

’

&

’

’

’

’

’

%

2ap if a ą b ` c,

2bp if b ą a ` c,

2cp if c ą a ` b,

2
ppa`b`cq

2 if otherwise.

Proof. Let qij “ log2ppijq, where i, j are any two distinct indices from t1, 2, 3u. In log coordinates,
the problem reduces to the maximization of the linear function

ℓpa, b, cq – apq23 ´ q12 ´ q13q ` bpq13 ´ q12 ´ q23q ` cpq12 ´ q13 ´ q23q,

where the domain given by the linear inequalities

q23 ď p ` q12 ` q13, q13 ď p ` q12 ` q23, q12 ď p ` q13 ` q23,

0 ď p ` q12 ` q12, 0 ď p ` q13 ` q13, 0 ď p ` q23 ` q23.
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The maximum of ℓpa, b, cq is attained at one of the vertices of the domain. The solution to the
system contains four vertices

p0,´p{2,´p{2q, p´p{2, 0,´p{2q, p´p{2,´p{2, 0q, and p´p{2,´p{2,´p{2q,

corresponding to the four cases in the displayed equation for fppa, b, cq. □

5. RANK 2 LORENTZIAN MATRICES

We show that the cone of bounded ratios on Lorentzian matrices is equal to the cone of
bounded ratios on rank 2 Lorentzian matrices. The space of rank 2 Lorentzian matrices admits a
natural parametrization, which allows us to formulate a stronger notion of positivity called the
subtraction-freeness. Throughout, we work with n ˆ n symmetric matrix M with real entries.

Lemma 5.1. The quadratic form Qpxq “ xTMx factors into a product of two linear forms if and
only if there is a rank 1 matrix B such that M “ 1

2 pB ` BT q.

Proof. If the quadratic form Qpxq factors into linear forms, we can rewrite

Qpxq “ xTMx “ pxTaqpbTxq “ xT pabT qx “ xT pbaT qx,

where a and b are column vectors. Then B “ abT is a rank 1 matrix and Qpxq “ xT
´

B`BT

2

¯

x.

Conversely, if M “ 1
2 pB ` BT q for a rank 1 matrix B, then

Qpxq “ xTMx “ xT

ˆ

B ` BT

2

˙

x “ xTBx.

Since B has rank 1, there are real vectors a and b such that xTBx “ xT pabT qx “ pxTaqpbTxq. □

Lemma 5.2. There is a rank 1 matrix B such that M “ 1
2 pB ` BT q if and only if M has rank at

most 2 and all 2 ˆ 2 principal minors of M are nonpositive.

Proof. If M “ 1
2 pB ` BT q for a rank 1 matrix B, then, by Lemma 5.1, there is a factorization

xTMx “

˜

ÿ

1ďiďn

aixi

¸ ˜

ÿ

1ďiďn

bixi

¸

.

Thus, M has rank at most 2 and any 2 ˆ 2 principal minor of M is nonpositive:

p2aibiqp2ajbjq ´ paibj ` ajbiq
2 “ ´a2i b

2
j ` 2aiajbibj ´ a2jb

2
i ď 0.

For the converse, suppose that M has rank at most 2 and that all 2 ˆ 2 principal minors
of M are nonpositive. We want to find a matrix B “ abT for some real vectors a, b such that
M “ 1

2 pB ` BT q. By rescaling, we may suppose a1 “ b1 “ 1 and m11 “ 1. The problem then is
to find ai and bi such that

m1i “
ai ` bi

2
and mii “ aibi

Since the 2 ˆ 2 principal minors are nonpositive, the above system has a solution

ai “ a1i ˘

b

a21i ´ aii and bi “ a1i ¯

b

a21i ´ aii.
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Since M is of rank at most 2, any 3 ˆ 3 principal minor is zero, which gives

ai “ a1i `

b

a21i ´ aii and bi “ a1i ´

b

a21i ´ aii,

where the choice of signs is unique up to swapping B and BT . □

Proposition 5.3. For any nonnegative vector paiq1ďiďn, pbiq1ďiďn, the Hessian of the quadratic
form

`
ř

1ďiďn aixi

˘ `
ř

1ďiďn bixi

˘

is Lorentzian, and every Lorentzian matrix of rank at most 2
is of this form.

Proof. Let M be the Hessian of the quadratic form Q “
`
ř

1ďiďn aixi

˘ `
ř

1ďiďn bixi

˘

, where a, b

are nonnegative real vectors. By Lemma 5.1 and Lemma 5.2, we know that M is of rank at most
2 and all 2 ˆ 2 principal minors of M are nonpositive. Since a, b are nonnegative, the entries of
M are nonnegative. Thus, the symmetric matrix M is a Lorentzian matrix of rank at most 2.

Conversely, for any nonzero Lorentzian matrix M of rank at most 2, by Lemma 5.1 and
Lemma 5.2, the corresponding quadratic form xTMx factors into a product

xTMx “

˜

ÿ

1ďiďn

aixi

¸ ˜

ÿ

1ďiďn

bixi

¸

for some real vectors a, b.

It remains to show that vectors a, b can be chosen nonnegative. Since the entries of M are non-
negative, aibi ě 0 for all 1 ď i ď n.

First, consider the case when aibi “ 0 for 1 ď i ď n. Since M is nonzero, replacing all ai and
bi by its negative and permuting the indices if necessary, we may suppose that a1 ą 0, which
in turn implies that b1 “ 0. For any bi ‰ 0, since a1bi ` aib1 ě 0, we have bi ą 0. Thus, all
nonzero bi are positive. Since M is nonzero, one of the bi must be positive. Then we apply the
same argument to conclude that all nonzero ai are positive.

When aibi ą 0 for some i, without loss of generality, we may assume that a1 ą 0 and b1 ą 0.
Since a1bi ` aib1 is nonnegative as well as aibi ě 0 for any i, we conclude that all ai and bi are
nonnegative. □

Let L`
n p2q denote the set of n ˆ n Lorentzian matrices of rank at most 2. Since L`

n p2q Ď L`
n ,

we have BR
`

L`
n

˘

Ď BR
`

L`
n p2q

˘

. We show that these cones coincide and they are dual to the cut
cone Cutn.

Proposition 5.4. We have BR
`

L`
n

˘

“ BR
`

L`
n p2q

˘

.

Proof. Theorem B says that Cutn is dual to BR
`

L`
n

˘

. Thus, the dual of Cutn is contained in
BR

`

L`
n p2q

˘

. We show the opposite inclusion.

Let E be the set of entry-wise exponentials of extremal rays of Cutn, viewed as nˆn symmet-
ric matrices with diagonal entries 1. Since every element of E is the tree metric of a star tree, it
follows that E Ď ∆`

n pT0q Ď L`
n . Since every matrix in E has rank at most 2, we have E Ď L`

n p2q.
Thus, any reduced bounded ratio α on L`

n p2q satisfies α ¨ β ď 0 for all β P logE, and hence for
all β P Cutn. □
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We close with a statement that strengthens Conjecture 1.9 for rank 2 Lorentzian matrices.

Conjecture 5.5. Let α P BRpL`
n q be any integral bounded ratio and ppijq1ďiďjďn be the Hessian

matrix of the quadratic form
`
ř

1ďiďn aixi

˘ `
ř

1ďiďn bixi

˘

. Then

2
řn

i“1 αii

˜

ź

αijă0

p
´αij

ij

¸

´

˜

ź

αiją0

p
αij

ij

¸

is a polynomial with nonnegative coefficients in ai and bi.

For example, for pa1x1 ` a2x2 ` a3x3qpb1x1 ` b2x2 ` b3x3q with ai, bi ě 0, we have

p11p23
p12p13

“
p2a1b1qpa2b3 ` a3b2q

pa1b2 ` a2b1qpa1b3 ` a3b1q
ď 2,

and, in fact, the difference 2p12p13 ´ p11p23 “ 2a21b2b3 ` 2a2a3b
2
1 has nonnegative coefficients.

Computations show that Conjecture 5.5 holds for all primitive bounded ratios up to n ď 7. For
a similar subtraction-free phenomenon for bounded ratios of Plücker coordinates over totally
positive Grassmannians was observed in [BF08, Conjecture 37]. For a connection to cluster
algebras, see [GGS].
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