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BOUNDED RATIOS FOR LORENTZIAN MATRICES

DAOJI HUANG, JUNE HUH, DANIEL SOSKIN, AND BOTONG WANG

ABSTRACT. We study multiplicative inequalities among entries of Lorentzian matrices, referred to
as bounded ratios. These inequalities can be viewed as generalizations of the classical Alexandrov—
Fenchel inequalities for mixed volumes. Our main structural result identifies the cone of all bounded
ratios on Lorentzian matrices with the dual of the cut cone, a finitely generated integral polyhedral
cone extensively studied in metric geometry and graph theory. We examine in detail the pentagonal
ratio, which first appears for Lorentzian matrices of size at least five. For Lorentzian matrices of
size three, we determine the optimal bounding constants across the entire cone of bounded ratios,
obtaining an explicit entropy-like formula. We conjecture that any normalized bounded ratio is, in
fact, bounded by 2.

1. INTRODUCTION

A Lorentzian matrix is a symmetric matrix with nonnegative real entries that has at most one
positive eigenvalue. We denote by L,, the set of n xn Lorentzian matrices. These matrices appear
prominently in space-time geometry and convex geometry. In this work, we study multiplicative
inequalities for Lorentzian matrices—inequalities of the form

Qg Bij
Hpij] < chijJ for all (p;;) € Ly,
i<j i<j
where o;; and f;; are nonnegative integers, and c is a positive constant.

For a collection of convex bodies K = (K7, ..., K;) in R, the mixed volume of K is defined to
be the normalized coefficient of ¢ - - - t4 in the associated volume polynomial:

V(Ky,... Kq) = %al e 0g Vol (K1 + .. taKy).
The celebrated Alexandrov—Fenchel inequality states that, for any collection of convex bodies
P,,...,P, and K;,..., K, o inRY,
the symmetric n x n matrix of d-dimensional mixed volumes (p;;) given by

pij = V(HapjaKla"'aKd—Q)

is a Lorentzian matrix [Sch14, Section 7.3]. In particular, any of its 2 x 2 principal minor is
nonpositive, that is,

DiiDjj < p?j for all i and j.
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The Alexandrov-Fenchel inequality above is one of the first examples of bounded ratios on
Lorentzian matrices, which we now define. Let Sym,, (R~() denote the set of n x n symmetric
matrices with positive entries, and let X < Sym,(R-() be a nonempty subset. Given a real

a = Z Qij€ij,

i<j

vector o = (a;;)1<i<j<n, W€ Write

where {e;;}i<; is the standard basis of the space of all such vectors.

Definition 1.1. The set of bounded ratios on X, denoted BR(X), is the set of all real vectors
a = (ay5)1<i<j<n that satisfy the following condition:

There is a positive constant ¢ such that H p;;” < cfor all matrices (p;;) in X.
1<i<j<n
We define the optimal bounding constant of a bounded ratio « on X, denoted f(a) = fx(a), to be
the infimum of all possible constants c satisfying the displayed inequality for all (p;;) in X.

It is straightforward to check that BR(X) is a convex cone in R("2") and f(a) is a log-convex
homogeneous function of degree 1 on the cone of bounded ratios. When X is the set of n x n
positive semidefinite matrices with positive entries PSD;,’, Yu shows in [Yu15] that the cone of
bounded ratios on X is a finitely generated integral polyhedral cone with (}) extremal rays
corresponding to the 2 x 2 principal minors:

BR(PSD;") = Cone(—e;; — €j; +2€;j)i<i<j<n-

In contrast, bounded ratios for Lorentzian matrices, as we will see, exhibit more intricate behav-
iors. For related notions of bounded ratios in the study of cluster algebras and total positivity,
see [FJ00, FGJ03, GGS, SG25].

Definition 1.2. A bounded ratio « is integral if all the entries a;; are integers. An integral
bounded ratio on X is said to be primitive if it cannot be expressed as the sum of two nonzero
integral bounded ratios on X.

Let L;} be the set of n x n Lorentzian matrices with only positive entries. Since any Lorentzian
matrix is a limit of Lorentzian matrices with positive entries [BH20, Section 2], the multiplicative
inequalities for L,, are obtained by clearing the denominator in p* < ¢ for a bounded ratio o
on L. Our main result, Theorem B below, implies that BR(L;) is a finitely generated integral
polyhedral cone.

Example 1.3. The bounded ratios on L] are exactly the nonnegative multiples of

12
= ej1 + ey — 2e1s.

In other words, BR(LLJ) = Cone(a'?). The optimal bounding constants are determined by the
condition f(a'?) = 1. We refer to the bounded ratio «'? as the Alexandrov—Fenchel type.
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Example 1.4. Theorem B shows that there are precisely three primitive bounded ratios on L,
corresponding to the inequalities

P23P11 <92, 10131722<27 P12P33
Pi2p13 P12p23 P13p23

<2 forall (p;;) eLj.

The cone of bounded ratios BR(Lj ) is the three-dimensional simplicial cone in R® generated by

23|11 ._ 1312 _ 12|13 _
o ‘= e€g3 + €] —€j2 —€j3, « | ‘=e€j3 + e —€12 —€23, « ! = €12 + €33 — €13 — €23.

We refer to the bounded ratios /| as the triangular ratios. The Alexandrov—Fenchel type ratios

can be expressed as the pairwise sums

(0% (&%

12 _ 0423‘1 +O(13|2, a

13 _ o201 1213 023 1312 4 1203,
which are bounded but not primitive on L7 . To see the validity of the displayed inequalities on

L3, we use the implication

P11 P12 P13 0 pi2 pi13
P12 pa2o  pog |is Lorentzian = | p15 0  po3 | is Lorentzian.
P13 P23 P33 P13 P23 P33

The nonnegativity of the determinant of the latter matrix gives the optimal bounding constant
f(a!?3) = 2, which is witnessed by the Lorentzian matrices

e 1 1
1 e 1|eLi forsufficiently small € > 0.
1 11

Note that 0 = log f(a'?® + a'3?) < log f(a'3) + log f(a'??) = 2log2. In Theorem C, we
explicitly describe the function f(«) on BR(L3 ).

The inequalities for the primitive bounded ratios a*//* appear in the work of André Weil on
the proof of the Riemann hypothesis for algebraic curves over finite fields, where they are re-
ferred to as the Castelnuovo-Severi inequality [Mil16, Theorem 1.5]. This is the first special case of
the reverse Khovanskii-Teissier inequality [LX17, Theorem 5.7]. The inequalities for a*//* also ap-

pear in early works on Brunn-Minkowski theory; see [Fro15, Page 396] and [BF87, Section 51].!

It turns out that there are no essentially new bounded ratios on L} :
BR(L]) = Cone(oﬂj““)1@-’]-7;&47 where o71* = €;j + ep, — € — €.
Exactly one new type of bounded ratios appear for L7, which we refer to as the pentagonal ratios:

ijk|lm .
QMM = o5 + e + €k + €U + €l + €mm — €4 — €51 — €kl — €1 — € — -

IWe thank Ramon van Handel for pointing out these references.
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Theorem A. The pentagonal inequality holds for any (p;;) € L:

PijPikPikPUPImPmm < 4DaPjiPrPimPimPrm for any i, j, k, 1, m.
The constant 4 is optimal when all five indices are distinct, and

BR(L) = Cone(a ™)1, j kt,mes.

Note that the triangular ratios appear as degenerate cases of the pentagonal ratios:
a'IkIkE — ok for any i, j, k.

The Alexandrov-Fenchel type ratio o'/ appears as a degenerate triangular ratio o1, which is

bounded but not extremal in BR(L; ). The cone of bounded ratios BR(L; ) has forty extremal

rays, corresponding to the ten nondegenerate pentagonal ratios and the thirty nondegenerate

triangular ratios. We have a factorization of the pentagonal ratio into a product of three trian-

gular ratios and one reciprocal:

P12P13P23P44P45P55 _ P12P44 P13Pss  P22Pas <p22p34)1
P14P15D24D25P3aP3s  D1aD2a PisPss  D2aDas  \ P23P2a '

Even though the reciprocal on the right-hand side is unbounded on its own, the pentagonal

ratio on the left-hand side is bounded on L;". Factorizations of this type are not unique.

In general, we show that BR(LL;} ) is a finitely generated polyhedral cone whose extremal rays
are generated by the primitive bounded ratios. Up to S,,-symmetry, the numbers of primitive
bounded ratios for n = 3,4,5,6,7,8 are 1, 1, 2, 4, 36, and 2169, respectively. The two new types
of primitive bounded ratios for L{ correspond to the inequalities of the form

P11P12P12P13P13P23P44P45P46P55P56P66 . P11P11P11P12P12P22P34P35P36P45PA6P56
P14P14P15P15P16P16P24P25 P26 P34P35P36 P13P13P14P14P15P15P16P16P23P24P25P26

although we do not know the optimal bounding constants for these inequalities; see Conjec-
ture 1.9. To prove the general statement, we relate BR(L;) to the cut cone, a finitely generated
integral polyhedral cone extensively studied in metric geometry and graph theory. For a com-
prehensive introduction to the geometry and combinatorics of the cut cone, we refer to the book
[DL10].

Definition 1.5. For any subset S < [n], define the cut vector §(.S) = (6(5)ij)1<i<j<n by

1, if S contains exactly one of 7 and j,

() =
! 0, if otherwise.

The cut cone Cut,, is the polyhedral cone in R(2) generated by all the cut vectors 6(S) for S < [n].

The extremal rays of Cut,, are generated by the cut vectors of nonempty proper subsets of [n].
The cut cone can be identified with the space of semimetrics on n points that are isometrically
embeddable in ¢;-space [DL10, Section 1.1].
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We consider the scaling action of (R~)™ on Sym,, (R~() defined by the formula
(c1,-- w5 en) - (pig) = (cicipij)-

If X < Sym,,(R~¢) is stable under the scaling action, then the orbit space of X can be identified
with the set X of symmetric matrices in X with diagonal entries 1. We say that such matrices in
X < X are normalized, and define the cone of reduced bounded ratios on X by

ij

BR(X) = {(aij)1<i<j<n

there is ¢ > 0 such that H pii? < cforall (p;;) € X} .

1<i<j<n

As before, the optimal bounding constants f(«) for reduced bounded ratios are defined to be
the infimum of all possible constants c satisfying the displayed inequality for all (p;;) in X.
It is straightforward to check that BR(X) is a convex cone in R(:) and f(a) is a log-convex
homogeneous function of degree 1 on the cone of reduced bounded ratios.

If « is a bounded ratio on X, then the corresponding monomial p® must be invariant under
the scaling action of (R~¢)". In other words, if « € BR(X), then

20 = — Z ;; foralli.
J#i

Therefore, the projection 7 : R("2") - R(5) that omits the diagonal entries restricts to a bijection
between BR(X) and BR(X). Moreover, we have f(«) = f(n(«)) for any bounded ratio a.

Theorem B. The cone of reduced bounded ratios on L} is dual of the cut cone:

@(LZ) = {(Oéij)1<i<j<n

Z a;jBi; <0 forall (8ij)1<i<j<n € Cutn} cREG).

I<i<j<n

In particular, the cone of bounded ratios on L} is a finitely generated integral polyhedral cone.

Thus, the primitive bounded ratios on L; is in bijection with the facets of Cut,,. Karp and
Papadimitriou showed in [KP82] that there is no computationally tractable description of all
facets of the cut cone unless NP = coNP. Consequently, obtaining a complete and explicit
description of the primitive bounded ratios on L; is likely to be a challenging problem.

Nevertheless, several interesting classes of facets of Cut,, are known, the first among which is
given by the hypermetric inequalities [DL10, Chapter 28]: For any vector h = (h;)1<i<n satisfying
> hi =1, wehave

2 hlh]ﬂ” <0 for all (Bij)1<i<j<n in Cutn.

1<i<j<n

Thus, we may deduce the following statement from Theorem B.

Corollary 1.6. If > | h; = 1, the vector (h;h;)1<i<j<n is a reduced bounded ratio on ;.
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Bounded ratios of this type are called hypermetric. Determining the optimal bounding con-
stants for hypermetric bounded ratios as a function of % is an interesting and challenging prob-
lem. The hypermetric inequality for h = e; + ey — e gives the triangular ratio o!?3, and the
hypermetric inequality for i = e; + ey + e3 — e4 — e; gives the pentagonal ratio o231, Up to
Sp-symmetry, two additional hypermetric inequalities are needed to describe all facets of Cutg
[DL10, Remark 15.2.11]. These hypermetric inequalities correspond to

h=2e +ey+e3—es—e5—es and h = —2e; —ey; +e3 +es +e5 + eg.

For n > 7, the cut cone has facets that do not correspond to any hypermetric inequality; see
[DL10, Section 30.6] for a complete list of facets of Cut;. For a comprehensive discussion of the
facets of the cut cone, we refer the reader to Deza and Laurent’s monograph [DL10, Part V].

We begin by outlining the proof techniques for our main theorem and situating them within
a broader context. Brandén and the second author introduced Lorentzian polynomials [BH20],
a class of homogeneous polynomials that unify and extend various notions of log-concavity
arising in combinatorics and geometry. A quadratic Lorentzian polynomial is, by definition, a
quadratic form whose Hessian matrix is Lorentzian. Meanwhile, Baker and Bowler developed a
unifying algebraic framework for matroids over tracts [BB19], which simultaneously generalized
many variants of matroids. Building on this framework, the authors of [BHKL] identified the
space of Lorentzian polynomials with given support with the corresponding thin Schubert cell
in the Grassmannian over the triangular hyperfield, up to homeomorphism. This enabled the
authors to use Gromov’s theorem on ¢-hyperbolic spaces in [BHKL25] to derive new results on
Lorentzian polynomials. Our proof is inspired by this perspective, which we now explain in
concrete terms.

Let Sym,, (R>o) denote the set of n x n symmetric matrices with nonnegative entries.
Definition 1.7. Let A, (Ty) be the set of matrices (p;;) € Sym,, (Rx¢) such that
the maximum among p;;pri, PirP;ji, PPk is achieved at least twice for any i, j, k, [ € [n].
For a positive real number p, let A,,(T,) be the set of matrices (p;;) € Sym,,(R>) such that
(pigpr) P < (ikpjt) P + (pupr) VP for any i, j, k, L € [n].

For any nonnegative real number p, let A} (T, ) denote the intersection A, (T,) N Sym,, (R~).

Note that A (T,) is invariant under the scaling action of (R~()". As before, we identify the
orbit space with the set A (T,) of matrices in A, (T, ) with diagonal entries 1. A key observation
from [BHKL] is that

A} (To) € L, < A, (T),
where L is the set of n x n Lorentzian matrices with diagonal entries 1 and off-diagonal entries
positive. By taking the coordinatewise logarithm and omitting the diagonal coordinates, we
have

log AT (To) € logL; < log A} (T,) in R().
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We observe in Section 3 that log A} (T5) parametrizes Gromov’s §-hyperbolic metrics on n points
for 6 = log2, while log A, (T,) parametrizes 0-hyperbolic metrics on n points, which are pre-
cisely the tree metrics. It follows from Gromov’s tree approximation theorem [Gro87, Section
6.1] that the two spaces are within finite Hausdorff distance of one another. Consequently,

BR(A; (To)) = BR(L;;) = BR(A; (T,)).
Since Cut,, is the convex hull of the space of tree metrics on n points, we conclude that BR(L;")
and Cut,, are dual to each other; see Section 3 for further details.

Having understood the cone of bounded ratios for Lorentzian matrices, it is natural to ask
how the optimal bounding constants f(«) behave as a function on this cone. As mentioned
before,

log f(a+ B) <log f(a) +1log f(B) and log f(ca) = clog f(a).
In Theorem C below, we give an explicit description of the function f(a) whenn = 3.

Recall that the cone of bounded ratios BR(L7 ) has three extremal rays a3, o132, o123 cor-
responding to the optimal inequalities

P23P11 <9 P13p22 <9

P12P33 <
P12pP13 ’ P12p23 ’ P13P23

< 2.

Since log f is a homogeneous function of degree 1, it is enough to determine
f(a,b,c) = f(a-a®" +b-a®? +¢.a'?3) whena+b+c=1anda,b,c > 0.
Theorem C. Let a, b, c be nonnegative numbers such that a + b + ¢ = 1.
(1) Ifa® + b% + ¢ — 2ab — 2ac — 2bc < 0, then f(a,b,c) = 1.
2) If a® + b2 4 ¢ — 2ab — 2ac — 2bc = 0,a > b, a > ¢, then
f(a,bye) =2-a% B0 - ¢ (20— 1)2*71. (1 —20)2°7 1. (1 — 2¢)%7 L.

See Figure 1 for an illustration.

We conclude with a general conjecture on the optimal bounding constant f(«).

Definition 1.8. We say that a reduced bounded ratio on L; is normalized if the sum of its coor-
dinate is —1.

For example, reduced bounded ratios of the form 7 (a% |k ) = e;; — €;; — €, are normalized.
Since the set of Lorentzian matrices is preserved when a diagonal entry is replaced by 0, the
coordinate sum of any nonzero reduced bounded ratio is negative. Thus, any nonzero reduced
bounded ratio is uniquely a positive multiple of a normalized reduced bounded ratio.

Conjecture 1.9. The optimal bounding constant for any normalized reduced bounded ratio on
L;} is at most 2.



8 DAQOJT HUANG, JUNE HUH, DANIEL SOSKIN, AND BOTONG WANG

(-1, -1,1) 2.0

1 -1,-1) 0,0, -1) (-1,1,-1) 1.0

FIGURE 1. Optimal bounding constants for an equilateral triangle cross section
of BR(L}). The midpoints of the three edges correspond to the Alexandrov—
Fenchel type inequalities. Inside the inscribed circle, the optimal bounding con-
stant is 1. Outside of the inscribed circle, the optimal bounding constants are
given by an entropy-like function.

Using log-convexity of the optimal bounding constants, Conjecture 1.9 can be reduced to the
case of extremal bounded ratios. Thus, by Theorem A, we know that Conjecture 1.9 holds for
n < 5. See Section 5 for a closely related conjecture for rank 2 Lorentzian matrices.
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Charles Simonyi Endowment and NSF-DMS52202900. June Huh is partially supported by the Si-
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2. THE PENTAGONAL INEQUALITY

We prove Theorem A. The primary difficulty in proving this theorem lies in determining
the optimal bounding constant for the pentagonal inequality. The statement that BR(LZ) is
generated by the pentagonal ratios follows from Theorem B and the fact that the facets of Cuts
are defined by the pentagonal ratios [DL10, Section 30.6].
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We begin by observing that the constant 4 in the pentagonal inequality is, if valid, best possi-
ble. Let ¢ be a nonnegative real number, and consider the matrix

0 1 1 24t
1 0 1 2 2
Mt)=| 1 1 0 24t t
t2 24t 4t 4+4t
24t 2t A+4t 4

It is straightforward to check that M (t) has rank 3 for ¢ > 0. Since the leading 3 x 3 principal
submatrix of M is nondegenerate and Lorentzian, we see that M (¢) is Lorentzian for any ¢ > 0.
We have
iy P12P13P23P44PasPs5 . (4¢)%(4 + 4t)
11m = 1m 2 B}
=0 p14p15P2aP2sP3aPss -0 413(2 +t)

Since any Lorentzian matrix is a limit of Lorentzian matrices with positive entries [BH20, Sec-
tion 2], there is a family in L} on which the evaluation of the pentagonal ratio limits to 4.

We prepare the proof of the pentagonal inequality with a few auxiliary lemmas.
Lemma 2.1. Suppose that A is a symmetric matrix of the form

0 1 1 pua pis

10 1 poa pos
A=11 1 0 pau pss
P14 P24 DP3a Pas  Pias

P15 P25 P35 P45 Pss

Then there exist unique matrices B and C such that A = BCB”, where

1 0O 0 0 O0\/O 1 1 0 O 1 0 0 by b5

0 1 0 0 Ooffr 01 0 O 0 1 0 boy bos

BCBT =10 o 1 0 0]1 1 0 0 O 0 0 1 b3y b3s
big bog bzg 1 0]]0 0O O cgg eg5||0 O O 1 0
bis bas b3y 0 1 0 0 0 cu5 o355 0 0 0 O 1

Proof. For any pi14, pis, P24, D25, P34, D35, there exist unique bi4, bis, baa, bas, bza, bss such that

0 11
<b14 bay b34> Lo 1l= <—p14 —P24 —P34>
bis bas b - —pas  —D3s)
15 b2s 035 110 P15 D2 b3
This defines the invertible lower triangular matrix 5. The matrix C is uniquely determined by

the condition C = B~1A(BT)~!, and it is straightforward to check that C has the required block
diagonal shape. O
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Lemma 2.2. Consider the symmetric 2 x 2 matrices

M, = pov and M, = a/ﬁ’.
v € B v
If M, is Lorentzian, My is negative semidefinite, and M; + M, has nonnegative entries, then

(1 +a)(v+ B)(E +) < pré.

Proof. Tt suffices to show that (u + ta)(v + t8)(§ + tv) is a decreasing function for 0 < ¢ < 1.
Since M + tMsis a Lorentzian matrix for any 0 < ¢ < 1, it suffices to show that

%(u+ta)(y+tﬁ)(§+t’y) <0.
=0

By taking limits, we may reduce to the case when M5 is negative definite. Since the claimed in-
equality is invariant under the symmetric scaling of rows and columns, we may further suppose
that o = v = —1. Then 8 < 1, and hence

%(wm)(vﬁﬁ)(éﬁv) = pvy + péf + véa < —pv + pé — vE.
t=0

Since M, is Lorentzian, u¢ < 2, so the right-hand side satisfies
—pv 4+ pg —v€ < 2w/ pé + pé < —pg < 0. O
Lemma 2.3. For positive numbers 1, x2, 23, Y1, Y2, Y3, set
— 2 2 2
X = 22120 + 22123 + 22973 — ] — T3 — X3,
Y = 2y1y2 + 291Y3 + 2Y293 — Ui — Y5 — Y3,
Z=x1(y2 +y3 — y1) + w2(y1 + Y3 — y2) + x3(y1 + y2 — y3).

If X,Y, Z are nonnegative, then XY Z < 32z1z2x3y1Y2Ys3-

We note that the final inequality may fail without the assumption that X, Y, Z are nonnega-
tive, for example, when (x1, 22, 23, Y1, Y2, ¥3) = (6,1,1,1,1,6).

Proof. First suppose that (z1,x2,z3) and (y1, y2, y3) satisfy the triangle inequalities. Setting u; =
z;+xr —x; > 0and v; == y; + yr — y; > 0, we have

X = ujug +urus +uguz, Y = v1vg + 0103 + vov3, 27 = (ug +uz)vy + (u1 + uz)ve + (ug + us)vs.
The goal is to show that

(uus + urug + uguz)(v1ve + v1vs + vou3)((uz + uz)vy + (ug + us)ve + (w1 + ug)vs)

< (ug 4+ u2)(ug + us)(uz + ug)(vy + v2)(v1 + v3)(ve + v3).
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The right-hand side minus the left-hand side can be simplified to

2, .2 2, 2 2, .2 2, 2 2, .2 2 2 2,2 2, 2
UTU2V] V2 + UTUIVT V2 + UTU2V] V3 + UTUIVT V3 + U1UZVIV5 + URU3V1V5 + U1UZVRV3 + USU3V5 V3
+ ulugvgvg + ungvgvg + ulugvlvg + ugugvlvg — 22U UU3V1 V2 V3.

Notice that at most one of the nonnegative numbers u;, us, u3 is zero, and similarly for vy, v2, vs.
Thus, the sum of the positive coefficient terms is strictly positive. If any of the u; is zero, then the
difference is positive. If u;, uz, us are all positive, then the only negative term —2u;uausgvivovs
can be grouped with the terms ufusvivs and usu3vov? to form a square, and the remaining sum
is positive.

Thus, without loss of generality, it is sufficient to justify the inequality under the assumption
that x1 > o + x3 and z2 > z3. lf y3 < yo, then (y1 + y3 — y2) < (y1 + y2 — y3). In this case,

To(y1 +y3 —y2) + x3(y1 + y2 —y3) < x2(y1 +¥2 —y3) + 23(y1 + Y3 —y2) and

T1(Y2+ys—y1)+22(Y1+ys—y2) +23(y1 +y2—y3) < T1(y2+ys—y1)+r2(y1+y2—ys)+r3(y1+yz—ya)-
Thus, swapping y» and y3 makes Z larger without changing X, Y, and z1z2x3y1y2y3. Therefore,
it is enough to consider the case when z; > x5 + z3 and z2 > x3 and y3 > y».

Since X = —(z1 — 29 —x3)* +4xox3, replacing z1 by x5 + z3 makes X larger without changing
Y. We check that the same replacement makes the ratio Z/x; larger:

(yo2 +ys —y1) + (@2(y1 +y3 — y2) + 23(y1 + Y2 — y3))27 "
< (y2+ys —y1) + (22(y1 + ys3 — y2) + 23(y1 + y2 — y3)) (w2 + 23) .

In fact, we have x1 > 3 + 3 and

Zo(y1 + ¥z — y2) + x3(y1 + v2 —y3) = (2 + x3)y1 + (22 — 23) (Y3 — y2) = (z2 + x3)y1 > 0.

Since

Z =yi(x2 + 23 — 1) + y2(21 + 23 — 2) + y3(z1 + 22 — 73),
replacing x; by x2 + 23 preserves the nonnegativity of Z, this reduces the problem to the case
when (21, z2, x3) satisfies the triangle inequalities. Repeating the argument for (yi, y2, y3), we
reduce the problem to the case where both (1,22, x3) and (y1,y2,ys) satisfy the triangle in-
equalities, which was considered before. O

Proof of Theorem A. To show the pentagonal ratio is at most 4, it suffices to consider Lorentzian
matrices of the form
0 1 1 pu ps
L0 1 pau px
A=|1 1 0 ps pss
P14 P24 P34 Pas P45
Pis P25 P35 Pas Pss
Indeed, we can set the first three diagonal entries to be zero, since decreasing diagonal entries
only decreases eigenvalues. We can then rescale rows and columns using the scaling action to



12 DAQOJT HUANG, JUNE HUH, DANIEL SOSKIN, AND BOTONG WANG

obtain matrix A. Both operations do not affect the value of the pentagonal ratio. We need to
show that
P44P45Ps55

< 4.
P14p24P34P15P25P35
By Lemma 2.1, there is a unique factorization

1 0 0 0O\f/fO1 1 0 O 1 0 0 by bis

0 1 0 0 Offr 01 0 O 0 1 0 byy bos

A=B-C-B"=|l0 0 1 00|t 10 0 o 0 0 1 b3y bss
big bag bz 1 0|0 O O cgg eg5||]0 O O 1 O

bis bas b3s 0 1/\0O O 0 c45 55/ \0 0 0 0 1

Since A is Lorentzian, C' has at most one positive eigenvalue. The upper-left block of C has ex-
actly one positive eigenvalue, it follows that the lower-right block of C is negative semidefinite.
For 0 <t < 1, we consider the matrices A(¢) and C(t) defined by

1 0 0 00\/0 1 1 0 0\/1 00 bu by
0 1 0 0O0|[t o1 0 0 [0 1 0 ba bos
At)=B-C(t)-B"=0 0o 1 o oll1t 10 0o o0 [|l0o 0 1 by by
by bay bzy 1 0||0 0 0 teas tes[]O O 0O 1 0
bis bas bys 0 1/\0 0 0 tess tess/)\0 0 0 0 1

Matrices B and B correspond to sequences of row and column operations respectively, so

0 1 1 D14 D15
1 0 1 P24 D25
At)y=( 1 1 0 P34 P35

P14 Paa p3a X +tcas Y +teys
P15 Pas P35 Y +teas 2 +tess

for some X, Y, Z independent of ¢. The rank of C'(0) is 3, and hence the rank of A(0) is 3. Thus,
all the 4 x 4 minors of A(0) are zero, which implies that

_ 2p1apaa + 2p1apsa + 2p2apsa — Py — D3y — Doy

X
2
7 — 2p15p25 + 2p15P35 + 2P2aspP3s — P%g) - P%5 — p§5
2 )
P14P25 + P14P35 + P24P15 + P24P35 + P34P15 + P34P25 — P14P15 — P24P25 — P34P35
Y = .

2

Since c44 and cs5 are nonpositive and psa = X + caq and pss = Z + c55 are nonnegative,
X +teag =20 and Z +tess >0 forall0 <t < 1.

In particular, X and Z are nonnegative.
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We now reduce to the case when Y is nonnegative as well. Since C'(t) has at most one positive
eigenvalue for all 0 < ¢ < 1, the same holds for the matrix A(¢), and hence

X +tc Y +tc
det 44 5 <
Y +tcas Z + tess

Suppose Y is negative. Since Y + c¢45 > 0, we must have ¢;5 > 0 and there is a unique positive
t1 < 1suchthatY + ¢ics5s = 0. The determinantal inequality above says that

X +ticyy =0 or Z 4 tics5 = 0.

If t; < 1, this implies that c44 = 0 or ¢55 = 0, and hence c45 = 0 by the negative semidefiniteness
of the lower-right block of C, reaching a contradiction. Thus

pas =Y +ca5 =0,
in which case the pentagonal inequality holds trivially.

The remaining case to consider is when X, Y, Z > 0, thatis, when the matrix A(0) is Lorentzian.
We apply Lemma 2.2 to the sum

X Y n Caa Ca5) _ [Paa P45
Y Z C45  Cs5 pas pss)

and conclude that ps4psspss < XY Z. Thus, the pentagonal ratio of A(0) is greater or equal to
the pentagonal ratio of A. Thus, it is enough to show the pentagonal inequality for A(0), which
reads

XY Z < 4p14p24Pp3ap15D25P35-

This is precisely the content of Lemma 2.3. O

It is interesting to compare the above analysis with that for the pentagonal ratio on A (T,),
which is much simpler.

Proposition 2.4. Let nonnegative p and any matrix (p;;) € A} (T,), we have

P12P13P23P45P44P55 _ 8P
P14P15P24P25P34P35
The equality is achieved by the matrix

0 28 2% 1 1
25 0 28 1 1
25 25 0 1 1 [eA,(T),)
1 1 1 25 2%
1 1 25 2%

Proof. We first consider the case when p is positive. We have

(p44p13)1/p < 2(19141)34)1/’7, (p55p23)1/p < 2(p25p35)1/p, SO (p44p55p13p23)1/p < 4(p14p34p25p35)1/p~
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Similarly, we have

(Paap23) VP < 2(paapza) P, (pssp1z) P < 2(pr1spas) P, 50 (Paapssprapaz) P < 4(paapaapispas) /P

Using the triangle inequality (p12pas) P < (prapas)Y? + (p15p2sa) /P, we get

(p12D13P23D1aDs5Pa5) P < (paapssprap2sprapas) P + (Paspsspiapaapispas) /P

< 8(p1ap1sp2apaspaapss) /P

Since A, (Ty) < A, (T,) for all p > 0, the case of p = 0 follows from taking the limitp — 0. O

3. LORENTZIAN MATRICES AND J-HYPERBOLIC SPACES
We give a detailed proof of Theorem B outlined in the introduction.

Proposition 3.1. For any n > 0, we have A,,(Ty) < L,, € A, (T3).

In the language of [BKH™], the proposition states that every rank 2 polymatroid over Ty is

Lorentzian, and every Lorentzian matrix is a rank 2 polymatroid over Ts.

Proof. The first inclusion is a special case of [BH20, Corollary 3.16] for quadratic polynomials.
The second inclusion follows from [BHKL25], whose proof we reproduce here.

Suppose (p;;) is a Lorentzian matrix. If ¢, j, k, [ are distinct indices, we consider the matrix

0 pij pik Da
pi; 0 Dpjx P
pik Pk 0 pr
Pii Pjt P O

obtained from replacing the diagonal entries of a principal submatrix of (p;;) by zero. This

matrix is Lorentzian with

det = — (\/PisPrt + \/Pikbjt + /Pitbjk) - (—\/PijPrt + \/PikPjt + /PitPjk)
(\/Pijpjt — \/PikPji + A/Pubjk) - (\/PijPri + \/DikDjt — +/PuDjk) < 0,

SO \/DijPkl, A/DikDji, A/PiPjk form three sides of a triangle [HHM, Proposition 3.1].

If there are exactly three distinct indices among i, j, k, [, we may suppose k = [. We need to

show that ,/pi;jDrk, \/PikDjk, r/PikPjk form sides of a triangle, that is, |/pijprk < 24/PikDjk- This
follows from the Lorentzian condition for (p;;) because

0 pij pik
det | pi; 0 pjr | = Pij(2PikDjr — PijPrk) = 0.
Dik  Pjk  Dkk
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If three of 4, j, k, [ are equal, then the statement is trivial. Thus, the only remaining nontrivial
case is when i = k and j = I. We need to check that ,/p;;p;; < 2p;;, and this follows from

det Pii  Pij | _ PiiDjj — p?j <0. ([l
Pij  DPjj

We now recall the definition of tree metric in terms of phylogenetic trees, following [MS15,
Section 4.3]. A phylogenetic tree on n leaves is a tree with n labeled leaves and no vertices of
degree 2. We say that (d;;)1<i<j<n is a tree metric if there is a phylogenetic tree 7 with n leaves
and nonnegative edge lengths ¢ on 7 such that

d;; = (the sum of all £(e) over all edges e in the unique path from i to j in 7).”

Every tree metric uniquely determines a phylogenetic tree together with the assignment of edge
lengths.

Lemma 3.2. The following statements hold for A" (Tj).

(1) The set of coordinatewise logarithms log A" (Ty) = R() is equal to the space of tree metrics
on n leaves.

(2) The convex hull of log A} (Ty) in R() is equal to the cut cone Cut,,.

(3) The cone of reduced bounded ratios BR(A;"(Ty)) is the dual of the cut cone Cut,,.

Proof. Note that the points in log A} (Ty) are of the form (¢;;) = (logp;;), where

¢;i = logp;; = 0 and g;; = logp;; = log \/piipj; = 0,

and in addition, for distinct indices i, j, k, [, we have

Qij + Qe = log pijpr < log max(pikpji, Pupjr) = max(qix + ¢jis ¢t + qjk)-

Thus, the first statement is the characterization of tree metrics by the “four-point condition”,
which is exactly the logarithm of the condition defining A (T,) [MS15, Lemma 4.3.6].

For the second statement, observe that the cut vector 6(5) is the tree metric corresponding
to the phylogenetic tree that consists of a single edge of length 1 that connects the leaves in S
with the leaves not in S. Therefore, the extremal rays of Cut,, are in log A (T). For the other
inclusion, consider a tree metric d given by a phylogenetic tree 7 and a length function ¢. For
each edge e of 7, let S(e) be the set of leaves that remain connected to the distinguished leaf 1
after removing e from 7. Then d admits the decomposition

d =D, Ue)3(S(e)),
showing that d is in the cut cone. This proves the second statement.

%In [MS15, Section 4.3], edge lengths are allowed to be non-positive. A vector d is a tree metric in this sense if and
only if the sum of d and a constant vector of large positive value is a tree metric in the more restrictive sense above.
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For the third statement, notice that

BR (A (Ty)) = {a e R(3) | 3¢ > 0 such that Z @ijqi; <loge forallge 1ogA:('H‘O)}

1<i<j<n

= {a eRr() Je¢ > 0 such that Z a;;q;; <logc forallg e Cutn}

1<i<j<n

= {a er() Z a;;q;; <0 forallg e Cutn} .

I<i<ji<sn
The first equality is the definition of BR, the second follows from the fact that Cut,, is the convex
hull of log A} (Ty), and the third follows from the fact that Cut,, is a cone. O

We now review Gromov’s tree approximation theorem for J-hyperbolic spaces. Let § be a
nonnegative real number. A metric d on [n] is called é-hyperbolic if
dij +di < max(dik + djl + 26,d; + djk + 2(5) for all 1,7, k,le [n]

As noted above, when ¢ = 0, the condition is equivalent to d being a tree metric. We will use the
following corollary of the tree approximation theorem; see [Gro87, Section 6.1] and [GdIH90,
Chapitre 2].

Proposition 3.3. For any positive real number ¢ and a positive integer n, there is a constant ¢
such that any d-hyperbolic metric d on [n] can be approximated by a 0-hyperbolic metric d':

dij —c< d;] < dij for all iaj € [TL]

Corollary 3.4. For any positive integer n, there is a constant e® such that for any (p;;) € A (T2),
there is (pj;) € A,; (To) satisfying the condition

e “pij < pi; < pij foralli,je [n].
Proof. We reformulate the statement in terms of log coordinates, where ¢;; = logp;;. Since
(pij) € A} (T3), we have
(1) ¢ =0foralli € [n];
(@) gij < qik + gjx + 2log?2 for all distinct 4, j, k € [n];
(3) ¢ij + g < max(qir + qi + 21082, ¢ + qjx + 2log 2) for all distinct ¢, j, k, 1 € [n],
where the last condition follows from

VPiiPkl < \/DikPji + /Puljx < max(2./DikDji, 2\/PuDjk)-

Thus any such (g;;) is a 6-hyperbolic metric on [n] for § = log2. The conclusion follows from

Lemma 3.2 and Proposition 3.3. 0

For the following lemma, let X < Y be arbitrary subsets of n x n symmetric matrices with
positive entries.
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Lemma 3.5. Suppose that there is a constant e“ such that, for any (p;;) € Y, there is (p};) € X
satisfying e~“p;; < pj; < pi; forall i, j € [n]. Then BR(X) = BR(Y).

Proof. Since X < Y, we have BR(Y') € BR(X). We prove the reverse inclusion. Given (p;;) € Y,
our assumption says that there is (p;;) € X such that
e °pij < pi; < pij foralli,j e [n].

If [, p};"" is bounded above by a constant, then the same is true for [ [, pi;*. O

Proof of Theorem B. Proposition 3.1, Corollary 3.4, and Lemma 3.5, we have
BR(A[(To)) = BR(L,;) = BR(A[(T2)).

Lemma 3.2 says that this cone is dual to the cut cone Cut,,. O

4. OPTIMAL BOUNDING CONSTANTS FOR L3
We determine the optimal bounding constants on BR(L] ).

Proof of Theorem C. We consider the triangular section of the cone of reduced bounded ratios
{a ~aBl 4 b a3 4 ¢ a2 g, b, c are nonnegative numbers that sum to 1} < BR(L3).

The condition a? + b% + ¢? — 2ab — 2ac — 2bc = 0 defines an inscribed circle in the given triangle,
where the three tangent points are given by

(a,b,c) = (1/2,1/2,0), (1/2,0,1/2), (0,1/2,1/2).

These points are the midpoints of the sides of the triangle, corresponding to the Alexandrov—
Fenchel inequalities.

The inscribed circle splits the triangle in four regions. The part within the circle is defined by
a® + b2 4+ & — 2ab — 2ac — 2be < 0.

Outside the circle, the connected component containing the vertex a?3/!

is defined by
a2+ 0>+ —2ab—2ac—2bc>0, a=b, a=>c.
The other two regions outside of the inscribed circle are described similarly.
We may reformulate the objective as the problem of finding the global maximum of

R(pi2, 13, p23) == (p12)" " (p13)" " *(pa3)* "¢,

subject to certain constrains on p12, p13, p23. More precisely, we want to find the global maximum
of R(p12,p13, p23) in terms of the parameters a, b, c when p12, p13, pas = 1 and

1 pi2 pi3
det | pi2 1 pa3 | =1+ 2p1ap13pa3 — p%z - P%B - P%B = 0.
P13 p23 1
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These inequalities are equivalent to the condition that 3 x 3 matrix (p;;) being Lorentzian.

We apply Lagrange’s method to R(p12, 13, p23) separately on the three regions outside the

23|1

inscribed circle. On the region containing o**!*, one finds that the interior of the domain has no

critical points, and thus the maximum is attained on the boundary. The interesting case is when

1+ 2p12p13p2s — Pia — Pis — Pas = 0.

Since pi2, p13, p2s = 1, the condition is equivalent to

pas = p1ap1s + /(P12 — 1)(p13 — 1).

Thus, setting = = p; and y = p;, the question reduces to finding the global maximum of

a—b—c
r(z,y) = x’y° (1+\/(1—z)(17y)) when0 < z,y < 1.

The unique critical point of r(z, y) has coordinates
xo = 4ab/(a +b—c)* and yo = 4ac/(a — b+ c)?,
and they satisfy 0 < z¢,yo < 1 because a? + b + ¢* — 2ab — 2ac — 2bc > 0. Evaluating, we get
r(zo,y0) = 2-a® - b* - ¢ (2a — 1)1 (1 = 20)2°7 1 - (1 — 2¢)%¢ L,

When a? + b? + ¢ — 2ab — 2ac — 2bc = 0, we have (a+b—c)? = 4aband (a — b+ ¢)? = 4ac. In this
case, the critical point is (1,1) and r(x, y) has value 1 at the critical point. Thus, when (a, b, ¢)
lies in the the boundary of the inscribed circle, f(a,b,c) = 1. By the log-convexity of f(a,b,c),
we conclude that f(a, b, ¢) < 1 inside the circle. On the other hand, the matrix with all entries 1
is Lorentzian, and any ratio for this matrix equals 1. Thus, f(a,b,c) = 1 inside the circle. O

We compare the optimal bounding constants f(a,b,c) for L3 with the corresponding con-
stants f,(a, b, ¢) for A (T,), which is piecewise log-linear.

Proposition 4.1. Consider the reduced bounded ratio & = a-a??!' +b-a'32 +-¢-a123 on A} (T,),

where a, b, c are nonnegative numbers. The optimal bounding constant for « is given by

20p ifa>0b+c,

20p if b>a+c,
.fp(aa ba C) = .

20P ifc>a+b,

27D it Gtherwise.

Proof. Letg;; = log,(pi;), where i, j are any two distinct indices from {1, 2, 3}. Inlog coordinates,
the problem reduces to the maximization of the linear function

l(a,b,c) = alges — q12 — q13) + b(q13 — 12 — q23) + c(q12 — Q13 — @23),
where the domain given by the linear inequalities

q23 <P+ qi2 + qus, Q13 <P+ Q12 + qo3, Q12 <P+ q13 + qos,
0<p+aq2+aqo, 0<p+aqs+ qs, 0<p+qe3+qos.
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The maximum of ¢(a, b, c) is attained at one of the vertices of the domain. The solution to the
system contains four vertices

(0,—-p/2,-p/2), (=p/2,0,—p/2), (—p/2,—p/2,0), and (—p/2,—p/2,—p/2),

corresponding to the four cases in the displayed equation for f,(a,b, c). O

5. RANK 2 LORENTZIAN MATRICES

We show that the cone of bounded ratios on Lorentzian matrices is equal to the cone of
bounded ratios on rank 2 Lorentzian matrices. The space of rank 2 Lorentzian matrices admits a
natural parametrization, which allows us to formulate a stronger notion of positivity called the
subtraction-freeness. Throughout, we work with n x n symmetric matrix M with real entries.

Lemma 5.1. The quadratic form Q(z) = 27 Mz factors into a product of two linear forms if and
only if there is a rank 1 matrix B such that M = 1(B + B7).

Proof. If the quadratic form Q(z) factors into linear forms, we can rewrite
Q(z) = 2" Mz = (z7a) (0" z) = 27 (ab" )z = 2T (ba™)z,

where a and b are column vectors. Then B = ab” is a rank 1 matrix and Q(z) = 2T ( 5

Conversely, if M = 1(B + BT) for a rank 1 matrix B, then

B+ BT
Qz) ="Mz = 27 <+2> x =z Bx.

Since B has rank 1, there are real vectors a and b such that 27 Bz = 27 (abT)z = (27a)(bTz). O

T
B+B )x

Lemma 5.2. There is a rank 1 matrix B such that M = 1(B + B”) if and only if M has rank at
most 2 and all 2 x 2 principal minors of M are nonpositive.

Proof. If M = (B + BT) for a rank 1 matrix B, then, by Lemma 5.1, there is a factorization

2TMz = ( Z aixi> ( 2 bm)
1<i<n 1<i<n

Thus, M has rank at most 2 and any 2 x 2 principal minor of M is nonpositive:

1
2

(2aib,)(2ajbj) — (aibj + ajbl')2 = 7@?[)? + Qaiajbibj — a?bzz < 0.

For the converse, suppose that M has rank at most 2 and that all 2 x 2 principal minors
of M are nonpositive. We want to find a matrix B = ab” for some real vectors a, b such that
M = %(B + BT). By rescaling, we may suppose a; = b; = 1 and m; = 1. The problem then is

to find a; and b; such that
a; +b;
2
Since the 2 x 2 principal minors are nonpositive, the above system has a solution

_ 2 — T . /02
a; = ay; + ay; — Qg and bz = a1 + ay; — Q-

and my; = CLibi

mi; =
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Since M is of rank at most 2, any 3 x 3 principal minor is zero, which gives

2 _ /42
a; = ay; + ali — Q5 and bz = Qa1 — ay; — Q4

where the choice of signs is unique up to swapping B and B7. O

Proposition 5.3. For any nonnegative vector (a;)1<i<n, (b:)1<i<n, the Hessian of the quadratic
form (3,_;<,, @i%:) (X <;<n bi:) is Lorentzian, and every Lorentzian matrix of rank at most 2
is of this form.

Proof. Let M be the Hessian of the quadratic form Q = (3, <, aizi) (X1 <;<,, biwi), where a, b
are nonnegative real vectors. By Lemma 5.1 and Lemma 5.2, we know that M is of rank at most
2 and all 2 x 2 principal minors of M are nonpositive. Since a, b are nonnegative, the entries of
M are nonnegative. Thus, the symmetric matrix M is a Lorentzian matrix of rank at most 2.

Conversely, for any nonzero Lorentzian matrix A of rank at most 2, by Lemma 5.1 and
Lemma 5.2, the corresponding quadratic form =7 Mz factors into a product

2T Mz = ( Z aixi> ( Z bixi> for some real vectors a, b.

1<i<n 1<i<n
It remains to show that vectors a, b can be chosen nonnegative. Since the entries of M are non-
negative, a;b; > 0 forall 1 <i < n.

First, consider the case when a;b; = 0 for 1 < i < n. Since M is nonzero, replacing all a; and
b; by its negative and permuting the indices if necessary, we may suppose that a; > 0, which
in turn implies that b = 0. For any b; # 0, since a1b; + a;b; = 0, we have b; > 0. Thus, all
nonzero b; are positive. Since M is nonzero, one of the b; must be positive. Then we apply the
same argument to conclude that all nonzero a; are positive.

When a;b; > 0 for some 4, without loss of generality, we may assume that a; > 0 and b; > 0.
Since a1b; + a;b; is nonnegative as well as a;b; = 0 for any 4, we conclude that all a; and b; are
nonnegative. O

Let ;7 (2) denote the set of n x n Lorentzian matrices of rank at most 2. Since L} (2) < L7,
we have BR(L;}) < BR(L; (2)). We show that these cones coincide and they are dual to the cut
cone Cut,,.

Proposition 5.4. We have BR(L;) = BR(L;(2)).

Proof. Theorem B says that Cut,, is dual to @(L;) Thus, the dual of Cut,, is contained in
BR(L;} (2)). We show the opposite inclusion.

Let E be the set of entry-wise exponentials of extremal rays of Cut,,, viewed as n x n symmet-
ric matrices with diagonal entries 1. Since every element of £ is the tree metric of a star tree, it
follows that E = A} (Ty) < L, . Since every matrix in F has rank at most 2, we have E < L' (2).
Thus, any reduced bounded ratio o on L, (2) satisfies - 3 < 0 for all 3 € log F, and hence for
all 8 € Cut,,. |
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We close with a statement that strengthens Conjecture 1.9 for rank 2 Lorentzian matrices.

Conjecture 5.5. Let & € BR(LL;") be any integral bounded ratio and (p;;)1<i<;<n be the Hessian
matrix of the quadratic form (33, _;,, aizi) (X1 <;<,, bizi). Then

D g e (<271
25 Pij Pij
Oéij<0 Oéij>0

is a polynomial with nonnegative coefficients in a; and b;.

For example, for (a1z1 + azzs + aszs)(bix1 + baxa + byzs) with a,, b; = 0, we have

puip2s  (2a1b1)(azbs + azbs)

P12P13 (a1ba + a2b1)(a1bs + asbr) =

and, in fact, the difference 2p1ap13 — p11p2s = 2a3babs + 2aza3b? has nonnegative coefficients.
Computations show that Conjecture 5.5 holds for all primitive bounded ratios up to n < 7. For
a similar subtraction-free phenomenon for bounded ratios of Pliicker coordinates over totally
positive Grassmannians was observed in [BF08, Conjecture 37]. For a connection to cluster
algebras, see [GGS].
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