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Recitation 1: October 21 18.02A
Focus: Vectors, scalar products.

———∗———

Vectors

Vectors are tools to help us understand what happens in R2 or R3 where it is hard to draw
(or R4 where it is impossible to draw).

• (Vector addition) If v = (x, y, z), w = (a, b, c), then v +w = (x+ a, y + b, z + c).

• (Multiplication of a vector by a real number) If v = (x, y, z), and t is a real number,
then tv = (tx, ty, tz).

• (Length of a vector) If v = (x, y, z), then |v| =
√
x2 + y2 + z2.

• (Dot product of two vectors, also called scalar product) The dot product takes two
vectors and spits out a real number: if v = (x, y, z), w = (a, b, c), then v · w =
xa+ yb+ zc.

• (Vectors with special names) i = (1, 0, 0), j = (0, 1, 0),k = (0, 0, 1).

Problem 1.
What are the ij-components of a vector v of length 3 in the xy-plane, if it makes an angle
of 30◦ with i and 60◦ with j?

Problem 2.
Let v = (2, 1), w = (1, 2). Draw the vectors v,w,−w,v +w,v −w.

Problem 3.
Show that the triangle with vertices (4, 3, 6), (−2, 0, 8) and (1, 5, 0) is a right triangle. Find
its area.

1



Recitation 2: October 23 18.02A
Focus: Projection of vectors, cross products, determinants.

———∗———

Dot product

1. (Dot product of two vectors, also called scalar product) The dot product takes two
vectors and spits out a real number: if v = (x, y, z), w = (a, b, c), then v · w =
xa+ yb+ zc.

2. Very important geometric meaning of dot product: v ·w = |v| · |w| cos θ, where
θ is the angle between the two vectors v and w. In other words, we can easily
calculate the angle between two vectors: if v = (x, y, z), w = (a, b, c), then

θ = cos−1

(
xa+ yb+ zc

|v||w|

)
. (1)

Projection of vectors

1. The scalar projection of b onto a is the component of b along a, i.e. the length of the
part of b in the same direction as a. Computed by

a · b
|a| . (2)

2. The vector projection of b onto a is the part of b in the same direction as a. Computed
by

vector projection = (scalar projection) · (unit vector in direction of a) (3)

= (scalar projection) · a

|a| =
(
a · b
|a|

)
a

|a| . (4)

Determinants

The determinant is a real number calculated from two vectors v1 = (a, b), and v2 = (c, d)
by

det(v1,v2) =

∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc. (5)

The absolute value of this number equals the area of the parallelogram with sides v1, and
v2. Alternatively, det(v1,v2) = |v1||v2| sin θ.
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Cross product

1. The cross product only exists in 3D. There, it takes two vectors v1 = (a1, a2, a3),
v2 = (b1, b2, b3) and spits out another vector by the formula

v1 × v2 = (a2b3 − a3b2)i− (a1b3 − a3b1)j+ (a1b2 − a2b1)k. (6)

In the next lecture, you will learn a formula for this that is easier to remember.

2. Fact: v1 × v2 is a vector that is orthogonal to both v1 and v2.

3. Fact: v1 × v2 has length

|v1 × v2| = |v1| · |v2| sin(θ). (7)

1 Problems

Problem 1.
Find the angle between the two vectors v = (1, 2, 0) and w = (0, 3, 1).

Problem 2.
Calculate the vector projection of (1, 2, 3) onto the vector (1, 0, 1).

Problem 3.
Let v1 = (1,−1, 1), v2 = (1, 2, 2).

a) Calculate v3 = v1 × v2.

b) Calculate the projection of v3 onto v1 and the projection of v3 onto v2.

c) What is the area of the parallelogram spanned by v1 and v2?

Problem 4.
Find the area of the triangle with vertices at (0, 0, 1), (2, 3, 0) and (−1, 1, 2).

Problem 5.
Let P be the point (1, 2, 1). Calculate the point on the line through the origin and (1, 1, 1)
that is closest to P .
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Recitation 3: October 28 18.02A
Focus: Determinants, equations for lines and planes.

———∗———

Lines in R3

A line is determined by one point P = (x0, y0, z0) on it and its direction vector a = (a1, a2, a3).

The line consists of all the points Q = (x, y, z) such that
−→
PQ is parallel to a, i.e.

−→
PQ =

(x− x0, y − y0, z − z0) = ta.

1. The line can be described in parametric form by

(x0, y0, z0) + t(a1, a2, a3). (1)

2. The line can alternatively be described by the
symmetric equations

t =
x− x0

a1
=

y − y0
a2

=
z − z0
a3

. (2)

O

P

−→a Q

x

y

z

Planes in R3

A plane is determined by one point P =
(x0, y0, z0) on it and its normal vector n =
(a1, a2, a3). The plane consists of all those points

Q = (x, y, z) such that
−→
PQ is perpendicular to n,

i.e. 0 = n ·−→PQ = a1(x−x0)+a2(y−y0)+a3(z−z0).
Alternatively, a plane is determined by the equation
a1x+ a2y + a3z = d. x

y

z

P

−→n

Q

Determinants in 3D

In 3D, the determinant is a real number calculated from three vectors v1 = (a, b, c), v2 =
(d, e, f) and v3 = (g, h, i) by

det(v1,v2,v3) =

∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
= a

∣∣∣∣
e f
h i

∣∣∣∣− b

∣∣∣∣
d f
g i

∣∣∣∣+ c

∣∣∣∣
d e
g h

∣∣∣∣ . (3)

The absolute value of this number equals the volume of the parallelepiped with sides v1, v2

and v3. Therefore, the determinant is zero if and only if v1, v2 and v3 are all contained in
the same plane.
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Cross product

The cross product only exists in 3D. There, it takes two vectors v1 = (a, b, c), v2 = (d, e, f)
and spits out another vector by

v1 × v2 =

∣∣∣∣∣∣

i j k
a b c
d e f

∣∣∣∣∣∣
. (4)

1 Problems

Problem 1.
Calculate

a) the determinant of the vectors v1 = (1, 2, 3), v2 = (0,−1, 2), v3 = (1, 1, 1).

b) ∣∣∣∣∣∣

1 1 1
1 2 1
2 3 4

∣∣∣∣∣∣
(5)

Problem 2.
Let v1 = (0,−3, 2), v2 = (2, 2, 1). Calculate v1 × v2.

Problem 3.
Find the equation of

a) the plane that passes through the three points (0, 1, 1), (1, 0, 1) and (1, 1, 0).

b) the plane through (0, 2, 3), (1, 0, 1) and parallel to (3, 1, 2).

Problem 4.

a) Find the equation of the line through P1 = (0,−1,−1) and P2 = (2, 3, 3)

b) Find the point where the line intersects the three coordinate planes.

c) Find the point where this line intersects the plane 2x+ y − 3z = 1.
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Recitation 4: October 30 18.02A
Focus: Intersections of lines and planes; distances between points,
planes and lines.

———∗———

Remember: the normal vector to a plane ax+ by + cz = d can be read off by −→n = (a, b, c).

Intersections of lines and planes

1. A line always intersects a plane in a sin-
gle point, unless the line is parallel to
the plane or the line is contained in the
plane. To find the intersection point,
plug in the parametric equation for the
line into the equation for the plane and
solve for t.

2. Two planes intersect unless they are
parallel which is equivalent to their nor-
mal vectors being parallel. To find the
intersection line, find one point on the
line and the direction vector of the line.

3. The angle between two intersecting
planes is equal to the angle between
their normal vectors.

x

y

z

−→n 1

−→n 2 θ

θ

Distance from a point to a plane

The distance between a point P and a plane
is given by dropping the point perpendicu-
larly (i.e. along the normal vector −→n of the
plane) onto the plane. If we call the point on
the plane that we reach Q, then the distance

is
∣∣∣−→PQ

∣∣∣. x y

z
−→nP

Q

Parametric equations for curves

A particle moving through R2 or R3 can be described parametrically, by saying that at time
t, the particle is at

r(t) = (x(t), y(t), z(t)). (1)

One way of thinking about this is that at each time t, the parametric equation gives you a
snapshot of where the particle is at that instant, namely at 〈x(t), y(t), z(t)〉. As t varies (for
instance for −∞ < t <∞), the particle traces out a curve.
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The particle position r(t) is a vector-valued function, and we can take its derivative by
taking the derivative of each coordinate. This is the velocity of the particle, denoted by v(t):

v(t) =
d

dt
(r(t)) = (x′(t), y′(t), z′(t)). (2)

The speed of the particle is the length of the velocity vector, i.e. |v(t)|.

Problems

Problem 1.
Find the parametric equation for the intersection of the two planes x + y − 3z = 2 and
−x+ 5y − z = 1. What is the angle between these planes?

Problem 2.
Find the distance (i.e. shortest distance) between the point P = (2, 1, 1) and the plane
−x+ 2y + z = 2.

Problem 3.
Find the distance between the two lines (x, y, z) = (1, 0, 2)+t(1, 1, 1) and (x, y, z) = (2, 2, 1)+
s(−1, 1, 0).

Problem 4.
The point P moves with constant speed 1 in the direction of the constant vector 4i + 3j
towards increasing x-values. If at time t = 0 it is at (x0, y0), what is its position vector
function r(t)?
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Recitation 5: November 4 18.02A
Focus: Parametric equations for curves.

———∗———

Parametric equations for curves

A particle moving through R2 or R3 can be described parametrically, by saying that at time
t, the particle is at

r(t) = (x(t), y(t), z(t)). (1)

One way of thinking about this is that at each time t, the parametric equation gives you a
snapshot of where the particle is at that instant, namely at (x(t), y(t), z(t)). As t varies (for
instance for −∞ < t <∞), the particle traces out a curve.

The particle position r(t) is a vector-valued function, and we can take its derivative by
taking the derivative of each coordinate. This is the velocity of the particle, denoted by v(t):

v(t) =
d

dt
(r(t)) = (x′(t), y′(t), z′(t)). (2)

The speed of the particle is the length of the velocity vector, i.e. |v(t)|.
We can differentiate the velocity, too. This is again a vector-valued function, and the

derivative is the acceleration, denoted a(t):

a(t) =
d

dt
(v(t)) = (x′′(t), y′′(t), z′′(t)). (3)

Problems

Problem 1.
Describe the motions given by each of the following position vector functions, as t goes from
−∞ to ∞. In each case, give the xy-equation of the curve along which the particle travels,
and tell what part of the curve is actually traced out by the particle.
(a) x = t3, y = t2.
(b) x = sin2 2t, y = cos t.

Problem 2.
A circle of radius b rolls on the inside of a circle of radius a > b. If the circle of radius b is
attached at a point P on the x-axis at time t = 0, find an expression for the position of P
at time t. (This is called a hypocycloid, and on the HW, you will study an epicycloid which
is a circle rolling on the outside of another circle.)

Problem 3.
A machine consists of two rods. One big rod of length L is moving around the origin, and
then a smaller rod of length ` is attached to its other end. The big rod makes an angle sin at
relative to the x-axis, and the small rod makes an angle sin bt2 relative to the x-axis.
(a) What is the position vector from the origin to the endpoint of the smaller rod?
(b) What is the velocity vector for this endpoint?
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Recitation 6: November 6 18.02A
Focus: Functions of several variables, partial derivatives.
———∗———

Functions of several variables

For the remainder of the course, we will study functions that depend on two or more variables:
f(x, y), f(x, y, z) et.c. We have two tools to visualize functions f(x, y) of two variables:

1. Drawing level curves (2D picture consisting of many level curves). We draw those
values of x and y for which f(x, y) = 0, which is a curve in the xy-plane, together with
the value of x and y where f(x, y) = 1, f(x, y) = −1 et.c.

2. Graphing the function (3D picture). This is more informative than drawing level
curves, but can be harder. It can sometimes help to draw slices separately, i.e., drawing
f(x, 0) in an xz-coordinate system and f(0, y) in a yz-coordinate system.

Partial derivatives

The value of a function f(x, y) changes when we change either x or y. This change is
measured by partial derivatives.

1. The partial derivative of f(x, y) with respect to x is the change of f when you change
x, and keep y constant. Computed in the ordinary way, by treating y as a constant.

2. The partial derivative of f(x, y) with respect to y is the change of f when you change
y, and keep x constant. Computed in the ordinary way, by treating x as a constant.

Fact: For every function we will encouter in this class, the order in which we take partial
derivatives does not matter:

∂

∂x

(
∂

∂y
f(x, y)

)
=

∂

∂y

(
∂

∂x
f(x, y)

)
. (1)

Problems

Problem 1.
Draw level curves of the following functions, and graph them as well.
(a) f(x, y) = 1 − x− y.
(b) f(x, y) = 1 − x2.
(c) f(x, y) =

√
x2 + y2.

Problem 2.
(a) For f(x, y) = sin(x2y + 3y), compute fx, fy, fxx, fxy, fyx.
(b) Show that w = eax sin(ay) satisfies wxx + wyy = 0.
(c) Find one example of a function f(x, y) that can be written on the form f(x, y) = g(x)h(y)
that satisfies both fx + 9f = 0 and fy + f = 0.

Problem 3.
Where does the graph of the function f(x, y) = x2 + y2 intersect
(a) the line (1, 1, 1) + t(2, 0,−1)?
(b) the plane z − 2x− 2y = 2?
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Recitation 7: November 13 18.02A
Focus: Tangent planes, linear approximations, gradients and
directional derivatives.
———∗———

Gradients

Given a function f(x, y), the gradient of f at a point (x0, y0) is defined by

∇f(x0, y0) :=

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
. (1)

In 3D, the gradient of f(x, y, z) at a point (x0, y0, z0) is defined by

∇f(x0, y0, z0) :=

(
∂f

∂x
(x0, y0, z0),

∂f

∂y
(x0, y0, z0),

∂f

∂z
(x0, y0, z0)

)
. (2)

The reason why we care enough about the gradient to name it, is because it has the
following important properties:

1. If (x0, y0) is a point on the level curve f(x, y) = C (for some constant C), then
∇f(x0, y0) is perpendicular to the level curve at (x0, y0). In 3D, same but for level
surfaces.

2. At a point (x0, y0), the direction in which f increases fastest is along ∇f(x0, y0) and
the direction in which f decreases fastest is along −∇f(x0, y0).

3. It can be used to compute directional derivatives.

Directional derivatives

Let u be a unit vector, i.e. |u| = 1. The directional derivative of f at a point (x0, y0) in the
direction u is the rate of change of f in the direction u, starting at (x0, y0). It is denoted by
Duf(x0, y0) and can be calculated by

Duf(x0, y0) = ∇f(x0, y0) · u. (3)

Note: u must have length 1! If your u has a different length, replace it by u
|u| .

Tangent planes

The tangent plane to the function z = f(x, y) at a point (x0, y0, z0) is given by

z − z0 = fx(x0, y0) · (x− x0) + fy(x0, y0) · (y − y0). (4)

In other words, this is a plane containing the point (x0, y0, z0) and with normal vector

(−fx(x0, y0),−fy(x0, y0), 1). (5)
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Surfaces can also be defined implicitly, e.g., by
f(x, y, z) = constant. This means that the surface is a
level surface of the function f . The tangent plane can
then be found by using the fact that ∇f is a normal
to the level surface.

f(x, y, z) = 1

f(x, y, z) = 0

∇f(x, y, z)

Linear approximations

In 1D, the best linear approximation of a function f(x) at the point x0 is given by the
tangent line to f(x) at x0.

In 2D, the best linear approximation to a function f(x, y) is given by the tangent plane
to f(x, y) at (x0, y0), i.e. by

f(x0, y0) + fx(x0, y0) · (x− x0) + fy(x0, y0) · (y − y0). (6)

Out of all the polynomials that are linear in both x and y, this is the polynomial that is the
closest to the graph of f(x, y), for x close to x0 and y close to y0.

Problems

Problem 1.
Find the equations of the tangent planes of the surfaces
a) w = y2/x at the point (x0, y0, w0) = (1, 2, 4).
b) 2x2 + y2 + z2 = 1 at (0, 1√

2
,− 1√

2
)

c) xyz + x2 − 2y2 + z3 = 14 at the point (5,−2, 3)

Problem 2.
Let f(x, y) = x2 + 4y2 − 4x.
a) Calculate the directional derivative at the point (1, 2) in the direction parallel to the line
y = x.
b) Find all points (x0, y0) where the direction of fastest increase of f is perpendicular to
(1, 1).
c) Find all points (x0, y0) where the direction of fastest increase of f is parallel to (1, 1).
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Recitation 8: November 18 18.02A
Focus: Maximizing/minimizing functions of several variables,
second derivative test, method of least squares.

———∗———

Finding maxima/minima

The maximum/minimum of f in a region R with boundary curve C is attained either inside
the region, or on the boundary. To find:

1. Find all critical points inside the region, i.e. points (a, b) such that ∇f(a, b) = 0. If the
maximum/minimum is attained (strictly) inside the region, it is attained at a critical
point.

2. Check values of f on the boundary C (using 18.01A knowledge). If the maximum/minimum
is attained on the boundary, you find it in this step.

3. Compare the function values at all the critical points to the maximum/minimum on
the boundary, and pick the biggest/smallest one.

Classifying critical points

The above procedure finds the maximum/minimum of f in all of the region R (also called
global maximum/minimum). If we want to understand each critical point better, we can
classify each of these as local maximum/minimum or saddle points. The second derivative
test: for each critical point (x0, y0), compute D = fxx(x0, y0)fyy(x0, y0)− fxy(x0, y0)

2. If

1. D > 0, fxx < 0, it is a local maximum.

2. D > 0, fxx > 0, it is a local minimum.

3. D < 0, it is a saddle point

4. D = 0, the test is inconclusive.

−1
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0
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z
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0
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y
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Problems

Problem 1.
Find the maximum and minimum of f(x, y) = x2 + y3 − 6xy on the region R given by
0 ≤ x ≤ 4, 0 ≤ y ≤ x.

Problem 2.
Classify the critical points of f(x, y) = x2y + y2x + xy as either local maximum, minimum
or saddle points.

Problem 3. Find the global max of 2x− x2 + 2y2 − y4 in all of the xy-plane.

Problem 4.
A scientist is measuring the pollution (x) in three different lakes together with the amount
of healthy fish in the respective lakes (y). Find the line y = ax + b that best fits the given
data (x, y) = (1, 3), (2, 2) and (3, 2).
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Recitation 9: November 20 18.02A
Focus: Lagrange multipliers.

———∗———

Lagrange multipliers

2D

Lagrange multipliers are tools that allow us to maximize/minimize functions f(x, y) subject
to a constraint of the form g(x, y) = C, for some constant C. At a maximum/minimum
(x0, y0), there is a real number λ (the Lagrange multiplier) such that

• ∇f(x0, y0) = λ∇g(x0, y0)

• g(x0, y0) = C.

To find max/min:

1. Solve these three equations for x0, y0 and λ. Although we usually do not care about
the actual value of λ, it is usually needed to solve for x0 and y0.

2. Check which of all solutions gives the largest/smallest value of f . These are
then the maxima/minima.

3D

The same equations work for functions f(x, y, z), g(x, y, z) in 3D:

• ∇f(x0, y0, z0) = λ∇g(x0, y0, z0)

• g(x0, y0, z0) = C.

To maximize/minimize functions f(x, y, z) subject to two constraints of the form g(x, y, z) =
C, h(x, y, z) = D, for some constants C,D, there are real numbers λ, µ (the Lagrange mul-
tipliers) such that

• ∇f(x0, y0, z0) = λ∇g(x0, y0, z0) + µ∇h(x0, y0, z0)

• g(x0, y0, z0) = C, h(x0, y0, z0) = D.
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Problems

Problem 1.
Maximize and minimize xy subject to the constraint x2 + 4y2 = 4.

Problem 2.
What is the minimum and the maximum of 81x2 + y2 in the region 4x2 + y2 ≤ 9?

Problem 3.
Find the points on the curve x2 + xy + y2 = 3 that are closest to the origin and farthest
away from the origin.

Problem 4.
Consider the curve given as the intersection of the ellipsoid x2

2
+ y2

2
+ z2

25
= 1 and the plane

x + y = −z. Find the the maximum and minimum distance of points on the curve to the
origin.
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Recitation 10: November 25 18.02A
Focus: Chain rules for multivariable functions.
———∗———

Chain rule

Single variable chain rule: If y = f(x) and x = g(t), then f(x) = f(g(t)) and

df

dt
=

df

dx
· dx
dt

. (1)

Multivariable chain rules:

1. If w = w(x, y), x = x(t) and y = y(t), then w = w(x(t), y(t)) and

dw

dt
=

∂w

∂x
· dx
dt

+
∂w

∂y
· dy
dt

. (2)

2. If w = w(x, y), x = x(u, v) and y = y(u, v), then w = w(x(u, v), y(u, v)) and

∂w

∂u
=

∂w

∂x
· ∂x
∂u

+
∂w

∂y
· ∂y
∂u

(3)

∂w

∂v
=

∂w

∂x
· ∂x
∂v

+
∂w

∂y
· ∂y
∂v

. (4)

Implicit functions

A function z(x, y) can be defined by an implicit equation such as x3 + y3 + z3 + 6xyz = 9.
We can find ∂z

∂x
and ∂z

∂y
without having to explicitly solve for z as a function of x

and y, by taking ∂
∂x

everywhere and solving for ∂z
∂x

.

Double integrals

If R is a region in the xy-plane, then the volume under the graph of the function f(x, y)
over the region R is given by the double integral

∫ ∫

R

f(x, y)dA. (5)

To compute the integral:

1. Draw the region R.

2. Slice R either horizontally or vertically.

3. For vertical slices: for each x, integrate f(x, y) over y. Then integrate over x:
∫ ∫

f(x, y)dydx. (6)

For horizontal slices: for each y, integrate f(x, y) over x. Then integrate over y:
∫ ∫

f(x, y)dxdy. (7)
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Problems

Problem 1 (2E-1).
In the following, find dw

dt
for the composite function w = f(x(t), y(t), z(t)) in two ways:

i) use the chain rule, then express your answer in terms of t by using x = x(t), etc.;

ii) express the composite function f in terms of t, and differentiate.

a) w = xyz, x = t, y = t2, z = t3

b) w = x2 − y2, x = cos t, y = sin t.

Problem 2.
Let w = f(x, y), and make the change of variables x = u2 − v2, y = 2uv. Show

(wx)2 + (wy)
2 =

(wu)2 + (wv)
2

4(u2 + v2)
. (8)

Problem 3.
Let w = f(x, y), and make the change of variables x = u− v, y = v3. Express wvv in terms
of wxx, wyy et.c.

Problem 4.
Calculate ∂z

∂x
at the point (1, 0, 1), where z is implicitly defined by x2z + 3 sin(yz) + y/x = 1.

Problem 5 (2E-2).
Information about the gradient of an unknown function f(x, y) is given; x and y are in turn
functions of t. Use the chain rule to find out additional information about the composite
function w = f(x(t), y(t), z(t)), without trying to determine f explicitly.

c) ∇f = (1,−1, 2) at (1, 1, 1). Let x = t, y = t2, z = t3; find df
dt

at t = 1.
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Recitation 11: November 27 18.02A
Focus: Double integrals.
———∗———

Double integrals

If R is a region in the xy-plane, then the volume under the graph of the function f(x, y)
over the region R is given by the double integral

∫ ∫

R

f(x, y)dA. (1)

To compute the integral:

1. Draw the region R.

2. Slice R either horizontally or vertically.

3. For vertical slices: for each x, integrate f(x, y) over y. Then integrate over x:
∫ ∫

f(x, y)dydx. (2)

For horizontal slices: for each y, integrate f(x, y) over x. Then integrate over y:
∫ ∫

f(x, y)dxdy. (3)

One of these choices can be easier than the other! Warning: when changing the
order of integration from e.g. dxdy to dydx, you must also change the limits
of integration!

Applications

1. Area of R =

∫ ∫

R

1dA.

2. Volume between z = f(x, y) and z = g(x.y) over regionR =

∫ ∫

R

(f(x, y) − g(x.y)) dA.

3. Average value of f(x.y) on region R =
1

Area(R)

∫ ∫

R

f(x, y)dA.

4. Total mass m of metal plate R with variable density ρ(x, y) is m =

∫ ∫

R

ρ(x, y)dA.

5. Center of mass (x0, y0) of the plate is given by

x0 =
1

m

∫ ∫

R

xρ(x, y)dA, (4)

y0 =
1

m

∫ ∫

R

yρ(x, y)dA. (5)

1



Problems

Problem 1 (3A-3c).

Compute the integral

∫ ∫

R

ydA where R is the triangle with vertices at (±1, 0), (0, 1).

Problem 2 (3A-5).
Evaluate each of the following iterated integrals, by changing the order of integration (begin
by figuring out what the region R is, and sketching it).

a)

∫ 1
4

0

∫ 1
2

√
t

eu

u
dudt

b)

∫ 1

0

∫ 1

x
1
3

1

1 + u4
dudx.

Problem 3.
a) Find the volume above the xy-plane bounded by the paraboloid z = x2 + y2 and the
planes x = ±1, y = ±1.
b) Find the volume above the xy-plane bounded by the cylinder y = 4 − x2 and the planes
y = 3x, z = x+ 4.

2



Recitation 12: December 2 18.02A
Focus: Double integrals.
———∗———

Double integrals

If R is a region in the xy-plane, then the volume under the graph of the function f(x, y)
over the region R is given by the double integral

∫ ∫

R

f(x, y)dA. (1)

To compute the integral:

1. Draw the region R.

2. Slice R either horizontally or vertically.

3. For vertical slices: for each x, integrate f(x, y) over y. Then integrate over x:
∫ ∫

f(x, y)dydx. (2)

For horizontal slices: for each y, integrate f(x, y) over x. Then integrate over y:
∫ ∫

f(x, y)dxdy. (3)

One of these choices can be easier than the other! Warning: when changing the
order of integration from e.g. dxdy to dydx, you must also change the limits
of integration!

Applications

1. Area of R =

∫ ∫

R

1dA.

2. Volume between z = f(x, y) and z = g(x.y) over regionR =

∫ ∫

R

(f(x, y)− g(x.y)) dA.

3. Average value of f(x.y) on region R =
1

Area(R)

∫ ∫

R

f(x, y)dA.

4. Total mass m of metal plate R with variable density ρ(x, y) is m =

∫ ∫

R

ρ(x, y)dA.

5. Center of mass (x0, y0) of the plate is given by

x0 =
1

m

∫ ∫

R

xρ(x, y)dA, (4)

y0 =
1

m

∫ ∫

R

yρ(x, y)dA. (5)

1



Problems

Problem 1.
a) Compute the volume above the xy-plane bounded by the cylinder x2 + y2 = 1 and the
plane x+ y + z = 2.
b) Find the volume of the solid in the first octant bounded by the cylinder 4y = x2 and the
planes x = 0, z = 0, y = 4 and x− y + 2z = 2.

Problem 2.
Calculate the centroid for the region R between y = sinx and the x-axis from x = 0 to
x = π.

Problem 3.
Calculate the total mass and center of mass for the region R bounded by the parabola y = x2

and the line y = x, where the density at a point (x, y) is
√
xy.
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Recitation 13: December 4 18.02A
Focus: Polar coordinates for double integrals.

———∗———

Polar coordinates

Instead of specifying the xy-coordinates of a point in the xy-plane, we can also specify the
distance r of the point to the origin and the angle θ it makes to the positive x-axis.

In formulas:

x = r cos θ,

y = r sin θ.
(1)

If we want to transform the other way, we have the formulas

r =
√
x2 + y2,

θ = atan
(y
x

)
.

(2)

Double integrals in polar coordinates

Certain integrals are more easily computed in polar coordinates, if

either the integrand or the domain of integration is easier to ex-

press in polar coordinates.

To compute the integral

∫ ∫

R

f(x, y)dA:

1. Write f(x, y) in terms of r and θ.

2. Write limits of integration for region R in terms of r and θ.

3. Set dA = rdrdθ. Warning: Do not forget the factor r!

1



1 Problems

Problem 1.
a) Find the volume of the domain under the graph of xy and over the region R, which is the
first-quadrant portion of the interior of x2 + y2 = a2.

b) Compute ∫ ∫

R

cos(x2 + y2)dA,

over the region R, which is the first-quadrant portion of the interior of x2 + y2 = 1, bounded
by the line x = y.

c) Compute ∫ ∫

R

1√
1 − x2 − y2

dA,

where R is the right half-disk of radius 1
2

centered at (0, 1
2
).

Problem 2.
Consider two circles of radius 1, one centered at (0, 0) and the other centered at (1, 0);
calculate the double integral for the area of intersection between the two circles.

2



Recitation 14: December 9 18.02A
Focus: Surface area, change of variables in double integrals.
———∗———

Change of variables in double integrals

For one-variable integrals, we can change the variable of integration by
∫

f(x)dx =

∫
f(x(t))

dx

dt
dt, (1)

where we also change the limits of integration.
For double integrals, we can change the variables from x, y to new variables u, v where

u(x, y) and v(x, y) are functions of both x and y.

The steps for computing the integral

∫ ∫

R

f(x, y)dxdy in the new variables are:

1. Express f(x, y) in terms of u and v.

2. Express the region R in terms of u and v.

3. Put dxdy =

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣dudv (the lines denote the absolute value). Here, the quantity

∂(x,y)
∂(u,v)

is called the Jacobian for the change of variables, and is defined by

∂(x, y)

∂(u, v)
= det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
. (2)

To remember the formula dxdy =
∂(x, y)

∂(u, v)
dudv, notice the “cancellation” of u and v in

the right hand side.

Sometimes it is easier to compute

∂(u, v)

∂(x, y)
= det

(∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
(3)

than ∂(x,y)
∂(u,v)

. We can then use the following fact in step 3:

∂(x, y)

∂(u, v)
=

1
∂(u,v)
∂(x,y)

. (4)

Surface area using double integrals

The surface area of the portion of the graph z = f(x, y) above the region R in the xy-plane
is given by ∫ ∫

R

√
1 + (fx)2 + (fy)2dxdy. (5)

1



Problems

x

y

1

1-1
-1

Problem 1.
Using an appropriate change of variables u = x − y, v = x + y, compute the
integral ∫ ∫

R

(x− y)2

(x + y + 3)3
dxdy, (6)

where R is shown in the figure.

Problem 2 (3D-4).

Evaluate

∫ ∫

R

(2x − 3y)2(x + y)2dxdy, where R is the triangle bounded by the

positive x-axis, negative y-axis, and line 2x − 3y = 4, by making a change of variable
u = x + y, v = 2x− 3y.

Problem 3.
Find the surface area of the surface z = 1 − x2 − y2 that lies above the unit disk R in the
xy-plane.

Problem 4.
Find the surface area of the part of the cylinder x2 + z2 = a2 that lies in the first octant and
between the planes y = 3x and y = 5x.

For more practice: please do 3D-2, 3D-3 of the supplementary notes and let
me know if you want suggestions of more problems!
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Recitation 15: December 11 18.02A
Focus: Review.

———∗———

Problems

Problem 1.
Find the maximum/minimum of f(x, y, z) = xy − z2 on the region x2 + y2 + z2 ≤ 1.

Problem 2.
Calculate the volume between the surfaces z = 3 − x2 − y2 and z = 2

√
x2 + y2 (shown in

the figure), for x, y in the first quadrant.

1
-1 1

1.5

-0.5 0.5

2

2.5

00

3

-0.50.5
-11

Figure 1: z = 3− x2 − y2

0
1-1
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1

-0.5 0.5

1.5

2

2.5

0 0

3

-0.50.5
1 -1

Figure 2: z = 2
√
x2 + y2

Problem 3.
Let w = f(x, y) be a function of x and y. Suppose ∇w = (2,−1) at x = 0, y = 2. If we
perform the change of variables x = u2 − v2, y = 2uv, what are ∂w

∂u
, ∂w
∂v

at u = 1, v = 1?

Problem 4.

Evaluate

∫ ∫

R

xy

(4x− y)2
dxdy, where R is the region enclosed by the four curves 4x − y =

1, 4x− y = 5 and 2x− y = 2, 2x− y = 3.

Problem 5.

Evaluate

∫ ∫

R

1

x2
dxdy, where R is the region with boundaries y2 − x2 = 1, y2 − x2 = 4 and

y = 4x, y = 6x using the change of variables u = y2 − x2, v = y/x.

1



Midterm review problems

Problem 1. Denote by P the plane passing through the points (1, 2, 3), (3, 1, 2) and (1, 1, 0).
Find the

a) point where P intersects the line through (−1, 0, 1) and (2, 1, 1).

b) line where P intersects the plane given by −2x + 4y − 2z = 2. Also calculate the angle
between the two planes.

c) distance between P and the point Q = (2, 3, 1).

Problem 2. Find the tangent plane to

a) f(x, y) = arctan
(
x
y

)
at the point (4, 4). Approximate f(4.1, 3.9).

b) the surface defined by x4yz3 = 2 at (1, 2, 1).

Problem 3. Let f(x, y) = x3 + 2x2 − y2 + 2y. For which x, y is

a) the direction of fastest increase of f at (x, y) perpendicular to (1, 1)?

b) the direction of fastest increase of f at (x, y) parallel to (1, 1)?

Problem 4. a) Calculate the directional derivative of ln(x2 + y2) at (3, 2) in the direction
of (5, 1).

b) For which directions −→u is the directional derivative of f(x, y) = x2 − y2 at the point
(1/2, 1/2) in the direction −→u equal to 1?

Problem 5. a) Suppose a ball starts at the origin (0, 0) and is thrown at an angle of θ = π
4

with the positive x-axis and with speed s, after which it only feels acceleration g in the
negative y-direction. Calculate its position vector r(t) as a function of time t.

b) Suppose a fly starts out at (1, 0) and orbits the ball with fixed radius and constant angular
speed ω counterclockwise around the ball. Calculate the position vector and the velocity
vector of the fly as a function of time t.

1



Final review problems

Problem 1. A function z(x, y) is defined implicitly by

zx2y2 + 3 sin(
π

2
xyz) = 2. (1)

Compute ∂z
∂y

at the point (1, 1, 2).

Problem 2. Find and classify the critical points of f(x, y) = 2x4 + y2 + xy + 1.

Problem 3. Find the maximum and minimum of the function f(x, y) = 1
3
x3 + y2 − 3x on

the region given by triangle with vertices at (−2, 0), (0, 2), (0,−2).

Problem 4. Calculate

a)

∫ 1/4

0

∫ 1/2

√
t

sin(u)

u
dudt.

b) the volume removed by drilling a hole of radius b into a sphere of radius a.

c)

∫ ∫
xdxdy, where R is the region bounded by the curves x − 2y = 1, x − 2y = 3, and

x+ y = 4, x+ y = 5.

Problem 5. Find the maximum and minimum of 2x2 + y + y2 on the circle x2 + y2 = 1.

1


