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Recitation 16: January 7 18.02A
Focus: Vector fields and line integrals in the plane.

———∗———

Vector fields in the plane

A vector field takes any point (x, y) in the
plane and assigns to it a vector (blue in the
figure). We can write this as

F(x, y) = M(x, y)i + N(x, y)j. (1)

Examples: F electromagnetic force between
two charged particles, or gravitational force
between two planets.

A special kind of vector field, called a gra-
dient field, is one where there is some func-
tion f so that the vector field can be written
on the form F = ∇f = ∂f

∂x
i + ∂f

∂y
j.

−2 −1 0 1 2

−2

−1

0

1

2

x
y

Line integrals in the plane

A line integral of a vector field F along a curve C in the plane calculates the total work done
by a force F on a particle that moves along the curve C. It is denoted by

∫

C

F · dr, or

∫

C

M(x, y)dx + N(x, y)dy. (2)

To compute:

1. parametrize the curve C as x = x(t), y = y(t), where t = t1 is the starting point of the
curve and t = t2 the end-point.

2. Write dx = dx
dt
dt, dy = dy

dt
dt.

3. Plug everything in in terms of t. Calculate the ordinary integral of the one variable t:

∫

C

M(x, y)dx + N(x, y)dy =

∫ t2

t1

(
M(x, y)

dx

dt
+ N(x, y)

dy

dt

)
dt. (3)

The line integral does not depend on the parametrization we choose. However, the
value does depend on the path we take from start-point to end-point. Different paths give
different values (in general).
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Problems

Problem 1.
Evaluate the line integral I =

∫
C
xy2dx− (x+ y)dy, along the following paths from (0, 0) to

(1, 2):

a) the straight line segment from (0, 0) to (1, 2),

b) the broken line from (0, 0) to (1, 0) to (1, 2).

c) the path x = 1
8
y3 from (0, 0) to (1, 2).

Problem 2.
Calculate the work done by the force F = 2xyi + (x2 + y2)j on a particle moving along the
boundary of the semicircular region x2 + y2 ≤ 1, y ≥ 0, described clockwise.

Problem 3.
Write down expressions for the following vector fields:

a) The force pointing towards a particle at (x, y), from the point (1, 1), with magnitude 1
over the distance between the points.

b) Each vector is parallel to i + j, but the magnitude is e−x2−y2 . Draw this vector field.

Problem 4.
Calculate the line integral I =

∫
C
xydx+ (x2 + y2)dy along the following paths C from (0, 0)

to (1, 1):

a) y = x

b) y = x2

c) x = y2

d) the broken line from (0, 0) to (1, 0) to (1, 1).

Problem 5.
Find the work done by the force F(x, y) = i

x2+y2
+ j

x2+y2
on a particle moving around the

upper half of the circle x2 + y2 = a2 from (a, 0) to (−a, 0).

Answers: 1a) −2 b) −4 c) −1; 2) 0; 4a) 1 b) 13
12 c) 14

15 d) 4
3 ; 5) − 2

a .
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Recitation 17: January 9 18.02A
Focus: Gradient fields and conservative vector fields.

———∗———

Gradient fields

1. A vector field F is called a gradient field if there is some function f so that F = ∇f .

2. Fundamental theorem of calculus for line integrals: If F = ∇f is a gradient
field, and C a path from a point P to Q, then

∫

C

F · dr = f(Q)− f(P ). (1)

Conservative vector fields

Recall that the line integral
∫
C

F · dr between two points P and Q does not depend on the
parametrization we choose, but in general depends on which path we take from P to Q.

1. A vector field F is called conservative if the line integral does not depend on the
particular path we choose, but only on the end-points P and Q, i.e., if C1 and C2 are
any two paths between P and Q, then

∫
C1

F · dr =
∫
C2

F · dr.

2. A vector field is conservative if and only
∮
C

F · dr = 0, for any closed curve C, i.e., a
curve ending and starting at the same point.

3. Important fact: a vector field is conservative if and only if it is a gradient field.

Testing if F is conservative and finding the potential

If F = M i + N j, and M,N and all their derivatives Mx,My, Nx, Ny are continuous for all

(x, y), then: F is conservative if and only if My = Nx.

If we have a field F = (M,N) that we know is conservative, how do we find the corre-
sponding f? Two methods:

1. “Algebraic method” : since M = fx, find antiderivative of M with respect to x and

call this f = A(x, y) + g(y). g(y) is an unknown constant of integration that we now
determine. Differentiate this to get fy = Ay + g′(y) = N . Solve for g′(y) and integrate
to get g(y). The potential is then f(x, y) = A(x, y) + g(y).

2. “Integration method” : by the fundamental theorem, f(x, y) =
∫ (x,y)

P0
F · dr, where

you can choose P0 and any path from P0 to (x, y) as your curve.
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Problems

Problem 1.
Let F = (x, y).

a) Find a function f so that F = ∇f .

b) Using the fundamental theorem of calculus for line integrals, find the maximum possible
work that the force field F can do in moving a particle between two points in the region
x2 + y2 ≤ 4

Problem 2.
Show that the vector field 2xyi+(y2−x2)j is not conservative, by computing its line integral
along two different paths from (0, 0) to (1, 1).

Problem 3.
For which values of a is F = (y2+2x)i+axyj a gradient field. What is the potential function?

Problem 4.
Which of the following vector fields are conservative? For the ones that are, find a potential
function.

a) xyi + xy2j

b) (2xy2 + y3, 2x2y + 3xy2)

Problem 5.
Let F = (2x cos(πy) + y3,−π sin(πy)x2 + 3xy2). Let C the upper semicircle from (1, 0) to
(−1, 0).

a) Check that My = Nx. Is F conservative?

b) Evaluate
∫
C

F ·dr by using path independence and evaluating the integral along a simpler
path.

c) Evaluate
∫
C

F · dr by using the fundamental theorem of calculus for line integrals.

Answers: 1a) x2

2 + y2

2 b) 2; 2) E.g. along y = x : 2/3, along y = x2 : 1/3; 3) a = 2; potential x2 + xy2 ;
4a) No; b) Yes, x2y2 + xy3+constant; 5a)Yes; b) 0; c) 0.
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Recitation 18: January 14 18.02A
Focus: Green’s theorem (tangential and normal forms), flux,
divergence, curl.
———∗———

Divergence, curl and flux

1. The divergence of a vector field F = (M,N) is div(F) = Mx +Ny.

2. The curl of F = (M,N) is defined as curl(F) = Nx − My. curl(F) measures how
rotational F is.

3. F is a gradient/conservative if and only if curl(F) = 0 (unless the domain of definition
of F has holes, and if M,N and all their derivatives are continuous).

4. A curve is called closed if it starts and ends at the same point.

5. A curve is called simple if it does not intersect itself (except at the endpoints, if it is
a closed curve).

6. A curve is called positively oriented if the region it encloses is always to the left.

7. The flux across a curve C is denoted by
∫
C

F · nds. This can be computed by a line
integral ∫

C

F · nds =

∫

C

Mdy −Ndx.

Green’s theorem

Green’s theorem relates line integrals over a given curve to double integrals on the region
enclosed by the curve. There is one for work (tangential form) and one for flux (normal
form).

If C is a simple, closed curve with positive orientation, enclosing a region R, then Green’s
theorem in tangential form says that

∫

C

F · dr =

∫∫

R

curl(F)dxdy, or in other words:
∫

C

Mdx+Ndy =

∫∫

R

Nx −Mydxdy.

If C is a simple, closed curve with positive orientation, enclosing a region R, then Green’s
theorem in normal form says that

∫

C

F · nds =

∫∫

R

div(F)dxdy, or in other words:
∫

C

Mdy −Ndx =

∫∫

R

Mx +Nydxdy.

This measures the flux out of R.
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Problems

Problem 1.
Use Green’s theorem to calculate

∮
C
−y3dx + x3dy, where C is the closed path formed by

y = x3, y = x, oriented counter-clockwise.

Problem 2.
Compute

a) The flux of F = (2x2y2, xy) across the curve y = x2 for 0 ≤ x ≤ 1.

b) The flux of F = (x2, xy) out of the square with corners at (0, 0), (1, 0), (0, 1) and (1, 1).
Do this both directly and using Green’s theorem.

Problem 3.

a) Let F = (y + e−x, 2x − cos(y)). Compute the line integral of F along the broken curve
from P = (−1, 0) to (0, 1) then to Q = (1, 0).

b) Let C be the closed curve that starts at the origin, then follows the curve x = sin y to
the point (0, 2π) and then follows the curve x = − sin y back to the origin. Use Green’s
theorem to calculate

∮
C
xdx+ xydy.

c) Let C1 be the curve that goes counter-clockwise along the square of side length 2 cen-
tered at the origin, and C2 the curve that goes clockwise along the square of side-length
1. Let R be the region between them. If someone tells you that

∮
C1

F · dr = 2, and∫∫
R

curl(F)dxdy = 3, what is
∮
C2

F · dr?

Answers: 1 2/5; 2a) 1/4; 2b) 3/2 3a) e− 1− e−1; 3b) −4π; 3c) 1.
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Recitation 19: January 16 18.02A
Focus: Triple integrals, cylindrical coordinates, review.

———∗———

Triple integrals

A triple integral of a function f(x, y, z) over a region V in xyz-space is denoted by

∫∫∫

V

f(x, y, z)dxdydz. (1)

To compute

1. Find the limits of integration.

2. Compute the inner integral with respect to the first variable, then the second, followed
by the third.

Just like for double integrals, we can change the order of integration to e.g., dydzdx. When

we do this, we must also remember to change the limits!

1. Limits in order dzdxdy: fix x and y and ask how z varies (in terms of x and y). Then
find all possible values of x, y by projecting onto xy-plane.

2. Limits in order dxdydz or dydxdz: fix z and ask how x and y vary (in terms of z).
Then find all possible values of z.

Applications: The mass of a shape V with density δ is given by

∫∫∫

V

δ(x, y, z)dxdydz. (2)

Cylindrical coordinates

Instead of specifying a point (x, y, z) in xyz-
space with its cartesian coordinates, we can also
specify it by giving z together with (x, y) in po-
lar coordinates, i.e., (r, θ, z). Certain integrals
are more easily computed in cylindrical coordinates,

if either the integrand or the domain of integration is

easier to express in cylindrical coordinates.

To compute the integral

∫∫∫

V

f(x, y, z)dxdydz:

1. Write f(x, y, z) in terms of r, θ and z.

2. Write limits of integration for region V in terms of
r, θ and z.

3. Set dxdydz = rdrdθdz or dxdydz = rdzdrdθ.
Warning: Do not forget the factor r!

x

y

z

θ

r

z
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Problems

Problem 1.

a) Evaluate ∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

ydzdydx. (3)

Also write the limits of this integral also in the order dxdydz.

b) Set up the double integral computing the mass of the shape determined by the surfaces
x = y, x = 1, x = 2, y = 0, z = 0, z =

√
x2 + y2 in cylindrical coordinates. The density

is δ(x, y, z) = y√
x2+y2

.

c) Evaluate the triple integral ∫∫∫

V

x2ydxdydz (4)

where V is bounded the the surfaces y = x2, x = y, z = 0 and z+ x+ y = 5. Also set up
the integral in cylindrical coordinates.

Problem 2.

a) Let F = (cos(x) sin(y) + x, sin(x) cos(y) + 1). Compute
∫
C
F · dr, where C is the curve

given by x = t3, y = t2, for 0 ≤ t ≤ 2.

b) Compute
∮
C
F·dr, where F = x2(i+j) and C is the rectangle joining (0, 0), (2, 0), (0, 1), (2, 1)

traversed clockwise.

c) Compute
∫
C
F·dr, where F = xi+xyj and C is the part of the curve y = ex for 0 ≤ x ≤ 1.

Answers: 1a) 1/24 and
∫ 1

0

∫ 1−z
0

∫ 1−z−y
0

ydxdydz; 1b) 7/6; 1c)≈ 0.1 and
∫ π/4
0

∫ sin θ/ cos2 θ

0

∫ 5−r(cos θ+sin θ)

0
r4 cos2 θ sin θ;

2a) sin(8) sin(4) + 36; 2b) −4 2c) 3+e2

4 .
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Recitation 20: January 21 18.02A
Focus: Triple integrals, cylindrical coordinates, spherical
coordinates.
———∗———

Cylindrical coordinates

Instead of specifying a point (x, y, z) in xyz-space
with its cartesian coordinates, we can also specify it by
giving z together with (x, y) in polar coordinates, i.e.,
(r, θ, z). Certain integrals are more easily computed in
cylindrical coordinates, if either the integrand or the do-
main of integration is easier to express in cylindrical co-
ordinates.

To compute the integral

∫∫∫

V

f(x, y, z)dxdydz:

1. Write f(x, y, z) in terms of r, θ and z.

2. Write limits of integration for region V in terms of
r, θ and z.

3. Set dxdydz = rdrdθdz or dxdydz = rdzdrdθ.
Warning: Do not forget the factor r!

x

y

z

θ

r

z

Spherical coordinates

Instead of specifying a point (x, y, z) in xyz-space
with its cartesian coordinates, we can also specify it by
giving its distance ρ to the origin, together with its polar
angle θ and angle to the z-axis φ, i.e., (ρ, θ, φ).

Here, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π. We do not let φ be
bigger than π, since all points with this angle can be
described by a φ in [0, π] and θ+π. To convert between
the coordinates, use

x = ρ sinφ cos θ,

y = ρ sinφ sin θ,

z = ρ cosφ. x

y

z

(x, y, z)

θ

φ

To compute the integral

∫∫∫

V

f(x, y, z)dxdydz:

1. Write f(x, y, z) in terms of r, θ and φ.

2. Write limits of integration for region V in terms of ρ, θ and φ.

3. Set dxdydz = ρ2 sinφdρdφdθ.

1



Problems

Problem 1.
Find the z-coordinate for the centroid of the region below the unit sphere and above the
cone z2 = x2 + y2.

Problem 2.
Change the following integral to spherical coordinates:

∫ 2π

0

∫ 3

2

∫ √9−r2

0

rdzdrdθ +

∫ 2π

0

∫ 2

0

∫ √9−r2
√
4−r2

rdzdrdθ.

Problem 3.
The paraboloid z = x2 + y2 is shaped like a wine-glass, and the plane z = 2x slices off a
finite piece D of the region above the paraboloid (i.e., inside the wine-glass). Calculate its
volume.

Problem 4.
Describe the region given in spherical coordinates by 0 ≤ ρ ≤ 2 sinφ, 0 ≤ θ ≤ 2π and
0 ≤ φ ≤ π. Also calculate its volume.

Answers: 1) 3
16(1− 1√

2
)
; 2)

∫ 2π

0

∫ π/2
0

∫ 3

2
ρ2 sinφdρdφdθ; 3) π/2 4) 2π2.
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Recitation 21: January 23 18.02A
Focus: Flux in 3D, surface integrals.

———∗———

Flux integrals Please read supplementary notes V9.

Let F be a vector field in 3D. Given a sur-
face S in xyz-space, we can compute the flux
of F through S. This is denoted by

∫∫

S

F · ndS. (1)

Here, n is a unit normal to the surface S,
and the flux is the flux in the same direction
as n. If we e.g. want the flux out of a sphere,
we choose the normal pointing outwards, and
if we want the flux into the sphere, we choose
the normal pointing inwards.

z = f (x, y)

n

Upwards flux along n

n

z = f (x, y)

Downwards flux along n

1. If S is the graph of f(x, y) and n is the normal pointing upwards, then

ndS = (−fx,−fy, 1)dxdy. (2)

If n is the normal pointing downwards, then

ndS = −(−fx,−fy, 1)dxdy = (fx, fy,−1)dxdy. (3)

NOTE: no need to separate n and dS.

2. Sometimes it is convenient to find an expression for the unit normal n directly. We
then need to plug in an expression for dS:

(a) If z = f(x, y), dS =
√

1 + (fx)2 + (fy)2dxdy,

(b) If the surface is a cylinder of radius a, dS = adzdθ,

(c) If the surface is a sphere of radius a, dS = a2 sinφdφdθ.

(d) If the surface is a part of the xy-plane, dS = dxdy. Similarly for xz-plane, and yz-plane.
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Surface integrals

If a function f(x, y, z) is defined on a surface S, we can integrate f over S by plugging in
the expression for dS: ∫∫

S

f(x, y, z)dS. (4)

Problem 1.

a) Compute the flux
∫∫

S
F · ndS when F = (y2,−xy, z), and S is the part of z = x2 + y2

above the disk of radius 3 centered at (0, 0) in the xy-plane. Choose n as the upwards
normal.

b) Set up the flux integral if F = (x, 1, z), and S is the graph of z = ex−y above the region
in the xy-plane bounded by y = x and y = x2. Choose n as the downwards normal.

Problem 2.

Compute

∫∫

S

3dS, when S is the graph of z = xy over the part of the unit circle in the first

quadrant.

Problem 3.
Compute the flux

∫∫
S
F · ndS when

a) F = (2x, 2y, 2z) and S is the part y ≥ 0, 2 ≤ z ≤ 3 of the cylinder with radius 2 around
the z-axis. Choose the normal pointing away from the origin.

b) F = (−y, x, z) and S is the part of the sphere of radius 3 at the origin with z ≥ 0 together
with the bottom. Choose the normal pointing into the sphere.

Problem 4.
Set up the integral for the flux into S when F = (1, 0, 1) and S is the part of the cylinder of
radius 3 and height 10 below the plane y + z = 5 (the sides only).

Answers: 1a) 81π
2 ; 1b)

∫ 1

0

∫ x
x2(x−2)ex−ydydx; 2) π

2

(
23/2 − 1

)
; 3a) 8π; 3b)−18π ; 4)

∫ 2π

0

∫ 5−3 sin θ

0
−3 cos θdzdθ.
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Recitation 22: January 28 18.02A
Focus: Divergence theorem, line integrals in 3D.
———∗———

Divergence theorem

The divergence of a field F = (M,N,P ) is

div(F ) = ∇ · F = Mx +Ny + Pz. (1)

The divergence theorem (also sometimes known as Gauss’s theorem) is a 3D analogue of
Green’s theorem for 2D flux.

1. (Green’s theorem for 2D flux) If C is a closed curve and n is the normal with outward
orientation, then the flux out of the region R enclosed by C is

˛

C

F · nds =

¨

R

div(F)dxdy (2)

2. (Divergence theorem) If S is a closed surface and n is the normal with outward
orientation, then the flux out of the domain R enclosed by S is

‹

C

F · ndS =

˚

R

div(F)dxdydz (3)

If the surface S is not closed, we can close it by adding another surface (just like we did
for Green’s theorem when the curve was not closed).

Line integrals in 3D

Let F = (M,N,P ) be a vector field, and C a path.
A line integral of a vector field F along a curve C in
xyz-space calculates the total work done by a force
F on a particle that moves along the curve C. It is
denoted by

ˆ

C

F·dr, or

ˆ

C

M(x, y, z)dx+N(x, y, z)dy+P (x, y, z)dz.
−1 −0.5 0

0.5 1−1

0

1

−1

0

1

To compute:

1. parametrize the curve C as x = x(t), y = y(t), z = z(t), where t = t1 is the starting
point of the curve and t = t2 the end-point.

2. Write dx = dx
dt
dt, dy = dy

dt
dt, dz = dz

dt
dt.

3. Plug everything in in terms of t. Calculate the ordinary integral of the one variable t:
ˆ

C

Mdx+Ndy + Pdz =

ˆ t2

t1

(
M(x, y, z)

dx

dt
+N(x, y, z)

dy

dt
+ P (x, y, z)

dz

dt

)
dt. (4)

1



Problem 1.

a) A region is enclosed by the surface z = 1− x2 − y2 and the xy-plane. Calculate the flux
into this region (including through the bottom part) by the field F = (2x3 + y3)i+ (y3 +
z3)j + 3y2zk.

b) Find the flux out of the part of the unit sphere at the origin with y ≥ 0, by the field
F = (2xz3, 2

3
y3z, x2z2) (not including the part of the sphere with y = 0).

c) Find the flux in through the sides of the cylinder (not including the top or bottom) around
the z-axis with radius a and height h. The field F is F = (ln(ex + ey), ln(ex + ey), x2 +
y2 + z2).

Problem 2.
Compute the integral

´

C
F · dr when

a) C is the path
(
(t+ 1)2, 3t+ 1, cos(π

2
t)
)

from (4, 4, 0) to (9, 7,−1), and F = (y, x, z2).

b) C is given by z = θ, r = 2θ from θ = 0 to θ = π/2 and F = (−z, 0, x).

c) C is a curve on the unit sphere centered at the origin, described by θ = 2t, φ = 2t from
t = 0 to t = π/4 and F = (2z, z, 3z).

Answers: 1a) −π; 1b) 0; 1c) −πa2h; 2a) 140/3; 2b) 2π − 4; 2c) −1/6.
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Recitation 23: January 30 18.02A
Focus: Conservative fields in 3D, Stokes’ theorem, review.

———∗———

Conservative vector fields in 3D

1. The curl of a field F = (M,N,P ) in 3D is defined by

curl(F) =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

M N P

∣∣∣∣∣∣
= (Py −Nz,Mz − Px, Nx −My).

Here, the z-component is what we previously defined as the curl of a 2D vector field
(M,N).

2. A vector field F is called conservative if the line integral does not depend on the
particular path we choose, but only on the end-points P and Q, i.e., if C1 and C2 are
any two paths between P and Q, then

´

C1
F · dr =

´

C2
F · dr.

3. If F = (M,N,P ), and M,N,P and all their derivatives are continuous for all (x, y, z),
then: F is conservative if and only if curl(F) = 0.

4. If we have a field F = (M,N,P ) that we know is conservative, how do we find the
corresponding potential function f? “Algebraic method”:

(a) since M = fx, find antiderivative of M with respect to x and call this f =
A(x, y, z) + g(y, z). g(y, z) is an unknown constant of integration that we now
determine.

(b) Differentiate this to get fy = Ay + gy(y, z) = N . Solve for gy(y, z) and integrate
to get g(y, z) + h(z). h(z) is again an unknown constant of integration that we
determine.

(c) Differentiate with respect to z to get fz = Az + gz + h′(z). Solve for h′(z) and
integrate to get h(z). The potential is then f(x, y, z) = A(x, y, z) + g(y, z) +h(z).

Stokes’ theorem

Stokes’ theorem relates the line integral of a field
F over a closed curve C to the flux of the field curl(F)
through the surface S enclosed by C.

˛

C

F · dr =

¨

S

curl(F) · ndS. (1)

Here, n is the normal to the surface S with orienta-
tion chosen according to the right-hand rule: when
we travel along C with S to our left, the normal n
has to point upwards.

1



Problem 1.
Are the following fields conservative? If so, compute the corresponding potential functions
and the work done by F on a particle moving from (0, 0, 0) to (1, 1, 2).

a) F = (2xyz + cos(x), x2z + z, x2y + y)

b) F = (x2y2z, x3y2z, z)

c) F = (y2z + x, 2xyz + sin(z), xy2 + y cos(z) + 1)

Problem 2.
Use Stokes’ theorem to calculate

¸

C
F · dr if F = (y, z, x) and C is

a) the portion of the plane x + 2y + 3z = 4 cut out by the cylinder x2 + y2 = 1 traversed
counter-clockwise when seen from positive z-axis,

b) the portion of the surface z = 2 − x2 − y2 cut out by the cylinder x2 + y2 = 1 traversed
counter-clockwise when seen from positive z-axis.

Problem 3. Compute

a) the flux of the field F = (x3, y2) out of the unit circle in the xy-plane,

b) the work done by F = (xy2, x) on a particle moving counter-clockwise around the triangle
with vertices (0, 0), (1, 1), (2, 0),

c) the flux of F = (x2y, y2) across the curve y = x2, 0 ≤ x ≤ 1,

d) the work of F = (x2y, y2) on a particle moving along the curve y = x2, 0 ≤ x ≤ 1.

Answers: 1a) x2yz+ sin(x) + yz+ c, work = 4+ sin(1); 1b) No; 1c) xy2z+ x2/2+ y sin(z) + z+ c, work
= 9/2 + sin(2); 2a) −2π; 2b) −π; 3a) 3π/4; 3b) 1/3; 3c) 2/15; 3d) 8/15.
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Final review problems

Problem 1. a) Evaluate

∫

C

F · nds, when F = (x2y, xy2) and C is the curve (t+ 1)i + t2j,

for 0 ≤ t ≤ 1.

b) Let C be the boundary of the triangle with vertices at (0, 0), (1, 0), (0, 1), traversed
counter-clockwise. If F = (x2y, y2x), compute the flux out through C as well as the
work done by F on a particle moving one lap around C.

c) Evaluate
∫
C
F ·dr where F = (2xy, x2 +z, yz) and C is the line from (1, 1, 1) to (2, 1,−2).

Problem 2. Let D be the region above the cone z =
√
x2 + y2 and under the unit sphere

at the origin. Find the average distance from to the origin to the points in D.

Problem 3. Use the divergence theorem to calculate the flux of F = (z2x, 1
3
y3+tan z, x2z+

y2) over the top half of the sphere x2 + y2 + z2 = 1.

Problem 4.
Compute the flux

∫∫
S
F · ndS when

a) F = (x, y, z) and S is the part 0 ≤ z ≤ 3 of the cylinder with radius 2 around the z-axis.
Choose the outwards normal.

b) F = (−y, x, z) and S is the top half of the sphere of radius 3 at the origin. Choose the
outwards normal.

Problem 5. Is the field F = (2xy− 2xz + 2x, x2 + 3y2 + z,−x2 + 4z3 + y) conservative? If
so, find the corresponding potential function.

Problem 6. Compute
∮
C
F · dr using Stokes’ theorem. Here, C is the intersection of the

cone z = 2
√
x2 + y2 with the surface z = 3 − x2 − y2 and F = (y, z, x). C is traversed

counter-clockwise as seen from above.
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Answers

1. a) 19/15

b) Flux: 1/6, work: 0.

c) 9/2

2. 3/4

3. 13π/20

4. (a) 24π

(b) 18π

5. x2y − x2z + x2 + y3 + zy + z4

6. −π
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