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Abstract. In this review, we will talk about chaos in nonlinear dynamical
systems. First, we introduce what a dynamical system is with an emphasis on
iterated maps and define important concepts like fixed points and bifurcation.
Next, we will analyze the logistic map and its chaotic behavior under certain
conditions. Finally, we define chaos and its necessary conditions and prove
that the Hénon map fulfills the condition for chaos.
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1. Dynamics

1.1. Basic Definitions. A dynamical system is a system wherein a function,
which may depend on time, describes the evolution of a point/vector (called a state)
in a geometric space. Assuming a deterministic world, there can only be one future
state that follows from the current state after a given interval of time passes. There
are two kinds of dynamical systems: differential equations, which describes how the
system evolves or changes in continuous time, and iterated maps (or just maps),
which take discrete time.
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This paper primarily focuses on maps since their discrete nature provides simpler
examples of chaos. Maps have the form

(1.1) xn+1 = f(xn),

where f : R → R is a smooth function. If f is linear in xn, then the map is called
linear. Otherwise, it is nonlinear.

We will look at well-known nonlinear maps to study chaos. By choosing a starting
state x0 (called the initial condition), maps generate a sequence of states

(1.2) x0, x1, x2, . . .

by substituting x0 into f to get x1, then x1 into f to get x2, and so on. Denote this
sequence the orbit starting from x0. We imagine the orbit as the path/trajectory
the map takes after starting from a specific x0. The plot of all possible orbits on
the graph xn+1 vs xn is called the phase space.

1.2. Equilibrium and Stability. In dynamics, we study the behavior of dynam-
ical systems as they evolve over time. One important behavior we are concerned
about is whether the system will reach some state and remain there forever. For a
state xf such that

(1.3) f(xf ) = xf ,

we call xf a(n) fixed point/equilibrium. Since xf+1 = f(xf ) = xf , any orbit
with xn = xf will always remain at xf for all future iterations.

However, what happens to a nearby orbit that is a small perturbation ηn away
from a fixed point xf? Let xn = xf+ηn. We want to see whether that perturbation
increases or decreases as n increases. We have that:

(1.4)

xf + ηn+1 = xn+1

= f(xf + ηn)

= f(xf ) + f ′(xf )ηn +O(η2n).

Now using the fact that f(xf ) = xf ,

(1.5) ηn+1 = f ′(xf )ηn +O(η2n).

Then, we linearize the map by ignoring the O(η2n) term and get ηn+1 = f ′(xf )ηn,
where we denote the eigenvalue as λ = f ′(xf )ηn. Thus, we can solve this map with
a general formula:

(1.6) ηn = λnη0.

We see now that if |λ| < 1, then ηn → 0 as n → ∞. Intuitively, this says that any
small perturbation from the fixed point gets smaller and smaller as we iterate the
map. We call xf a stable fixed point. If |λ| > 1, then we see that ηn continues to
increase, so the orbit moves away the fixed point. We instead call xf a unstable
fixed point. In the marginal case where |λ| = 1, we cannot yet say anything and
must consider the neglected O(η2n) term to determine the stability. While we have
used linearization to determine the local stability of the fixed point, this analysis
extends to nonlinear maps as well.

A generalization of a fixed point is a periodic point. A periodic point is a state
xp such that

(1.7) fn(xp) = xp,
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for some n, where fn is the nth iteration of the map f . The smallest positive integer
n such that (1.7) holds is called the period of xp. We easily see that a fixed point
is a periodic point with period one. In general, if the period is m, the orbit visits
xp every mth iteration. Using the same derivation for fixed points, we say that a
periodic point is attracting if |f ′

n| < 1 and repelling if |f ′
n| > 1.

Stable fixed points and attracting periodic points are examples of attractors.
We define an attractor A as a set of points in the phase space such that:

(1) If a ∈ A, then f(a) ∈ A for any iterations
(2) There is a neighborhood of A called the basin of attraction with all the

points that converges to A as n → ∞
(3) There is no non-empty subset of A with the previous two properties

Essentially, an attractor is a subset of the phase space where within a neighborhood
around it, all the orbits will approach the attractor. Unstable fixed points and
repelling periodic points are examples of repellers, which are defined analogously
to attractors, but the orbits are moving away from the set.

Attractors (and repellers) can have a variety of geometric shapes. A stable fixed
point is an attractor where the set is just a point. In discrete-time, we can also
have attractors as a finite number of attracting periodic points that are visited in
sequence (we call this sequence a periodic orbit). We will see later on that chaos
is tied to the shape of the attractor.

Figure 1. The map xn+1 = sin(xn) has a marginal case, so use
cobwebbing to determine stability. Reprinted from [1], p.352.

1.3. Cobwebs. To analyze some of the marginal cases where |λ| = 1, we introduce
cobwebs as a visual technique to analyze the global behavior of maps. The picture
is constructed like so: on phase space of xn+1 vs xn, plot the functions

(1.8) xn+1 = f(xn), and xn+1 = xn.

Now, for an initial condition x0 on the horizontal axis, draw a vertical line upwards
until it touches f(x0). The height of this vertical line is x1. Then, to generate the
line for x2, instead of returning to the horizontal axis and drawing a vertical line
from x1, we instead draw a horizontal line from f(x0) until the line touches the
diagonal xn+1 = xn (this intersection should lie directly above x1). We now draw a
vertical line upwards until it intersects f again, and its height is x2−x1. We repeat
this algorithm n times if we want to draw the first n states of an orbit. Figures 1
and 2 are two examples of cobwebs.
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Figure 2. The map xn+1 = cos(xn) displays a spiraling behavior
towards the fixed point. Reprinted from [1], p.352.

To see how a cobweb can help us determine stability, we note that every vertical
line after the first one represents the distance between two consecutive states in an
orbit. If the length of these lines goes to zero, that means that the distance between
two consecutive states goes to zero, and so the orbit from the initial condition x0

converges to a limit x∞. Thus, we have found a stable fixed point since the orbit
starting from x∞ will now remain at that value, and orbits starting nearby are
getting close to this fixed point. In other words, we are graphically looking for the
point where f(xn) = xn, which is the definition of a fixed point, and graphically
analyzing the behavior of orbits close to it.

1.4. Bifurcations. Maps may depend on some control parameter r. This param-
eter is often a characteristic of the model the map represents (ex. varying weights
on top of a beam). In studying such maps, we are interested in what happens
their behavior as we alter r. Most notably, equilibrium points could be created,
destroyed, or have their stability and/or value changed. We call such a transition
a bifurcation and the value of r where a bifurcation occurs a bifurcation point.
We depict these changes with what is called a bifurcation diagram, where we plot
x vs r and only plot the equilibrium points on the graph. To distinguish between
fixed points, we use bold lines for stable ones and dotted lines for unstable ones.

A saddle-node bifurcation creates and destroys fixed points. We start with
one stable fixed point and one unstable fixed point. As we change r, the two fixed
points move closer together until they collide when we reach the bifurcation point.
Their collision creates a half-stable point, where orbits on the stable side approach
the point while orbits on the unstable side are repelled. Then, changing r further
results in the two fixed points annihilating each other. Similarly, we can run this
in reverse and create two fixed points from seemingly nothing by altering r in the
other direction. We show an example in Figure 3, and its bifurcation diagram in
Figure 4 in continuous time for simplicity.

A transcritical bifurcation happens when a fixed point changes its stability
as the parameter is changed. Consider two stable fixed points, one stable at the
origin, and one unstable at −r. As we decrease positive r, the unstable fixed point
approaches the stable fixed point until they form a half-stable fixed point at the
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Figure 3. Example of a saddle-node bifurcation where the closed
dot is a stable fixed point and the open dot is an unstable fixed
point. Reprinted from [1], p.45.

Figure 4. The previous figure’s corresponding bifurcation dia-
gram. Reprinted from [1], p.46.

bifurcation point r = 0. However, as we continue and take r negative, the unstable
fixed point remains at the origin while the stable fixed point moves out along the
positive x-axis. This is interpreted as the fixed points switching their stabilities.

A pitchfork bifurcation is a combination of fixed point creation/destruction
and changing stability. There are two kinds of pitchfork bifurcation: supercritical
and subcritical. A supercritical pitchfork bifurcation occurs when, as we vary
r, a stable fixed point changes to an unstable one, and two new stable fixed points
are created, one to each side of the now unstable fixed point. A subcritical pitch-
fork bifurcation occurs when, as we vary r, an unstable fixed point changes to a
stable one, and two new unstable fixed points are created, one to each side of the
now stable fixed point. A subcritical bifurcation produces the opposite stability as
what occurs in the supercritical case.

A period doubling bifurcation occurs when a new periodic orbit is created
from an existing periodic orbit, the newer one with double the period. Consider a
periodic orbit that visits x1, x2 in sequence. It is clear that the orbit has period two,
since the orbit oscillates between x1 and x2, each point with period two. A period
doubling bifurcation creates a new periodic orbit that repeatedly visits x′

1, x
′
2, x

′
3, x

′
4
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Figure 5. Logistic map. Reprinted from [1], p.353.

in sequence, thus doubling the period of the former orbit. We will show an example
of this with the logistic map.

2. Logistic Map

2.1. Properties. We introduce the logistic map:

(2.1) xn+1 = rxn(1− xn).

The logistic map is used to describe the constrained growth of a population in
discrete time. The state xn ≥ 0 represents the size of the population at time n,
and r ≥ 0 is a parameter that controls the growth rate. Plotting xn+1 vs xn on the
interval x ∈ [0, 1] (see Figure 5) gives us that the map achieves a maximum at r/4.

Since we want to analyze the behavior of fixed points in the map, we restrict r
to 0 ≤ r ≤ 4 so that the logistic map maps [0, 1] to itself. We want to know how
the behavior of the map changes as we change r. Using cobwebbing (see Figure 6),
we see that for all 0 ≤ r < 1,

(2.2) lim
n→∞

xn = 0.

Figure 6. Cobweb when r = 1/2.
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For a fixed 1 ≤ r < 3, we plot xn vs n to see the behavior of the map (2.1). The
plot for r = 2.8 is shown in Figure 7a. We see that eventually xn converges to a
fixed point, and the population stays at this size.

However, as we increase r beyond this range, we see an interesting change in
behavior. In Figure 7b, we see that the population is constantly alternating between
a large population size and a smaller population size (periodic points). Since xn

repeats every other iteration, this orbit has period two.
In Figure 7c, we see that xn repeats every four iterations, giving it period four.

In fact, the values of rn, where rn is the value of r when a period-2n orbit first
appears, has been experimentally computed, and the difference between successive
rn decreases by a factor of

(2.3) lim
n→∞

rn − rn−1

rn+1 − rn
= 4.669 . . . .

Thus, we see a geometric convergence and find that rn → r∞ ≈ 3.57.
This raises the question, what happens for r > r∞? Looking at the time series

in Figure 7d and cobweb in Figure 8 for r = 3.9, we see very complex behavior
with no clear pattern. To better see how the behavior of the system changes as
we alter r, we plot what is called an orbit diagram in Figure 9. The graph plots
the attractors as a function of r. The picture is similar to a bifurcation diagram,
except we only show the attracting points.

Now, we can graphically see the period-doubling bifurcation shown by the split-
ting of the branches, which represents the periodic orbits doubling in period. We
also see that after r∞ ≈ 3.57, the map becomes chaotic and we now have infinitely
many attractors.

2.2. Analysis. We show analytically some of the interesting behavior the logistic
map displays.

2.2.1. Stability. First, we find all the fixed points and determine their stability. We
solve for the roots of

(2.4) xf = f(xf ) = rxf (1− xf ),

and so we examine

(2.5) xf − rxf (1− xf ) = xf (1− r(1− xf )) = 0.

This implies fixed points

xf = 0 for 0 ≤ r ≤ 4,(2.6)
xf = 1− 1/r for 1 ≤ r ≤ 4.(2.7)

The range of r where the roots of (2.5) are fixed points comes from the fact that
our domain and range is [0, 1].

To determine their stability, we look at the derivative

(2.8) f ′(xf ) = r − 2rxf .

The zero state is stable for r < 1 and unstable for r > 1 since

(2.9) f ′(0) = r.
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(a) The graph converges to a single
population size.

(b) The graph oscillates between
two population sizes.

(c) The graph oscillates between
four population sizes.

(d) Aperiodic points.

Figure 7. Plotting xn vs n for various values of r. The discrete
points are connected with lines to make it easier to read. Reprinted
from [1], p.354-355.
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This makes sense with our previous analysis that the cobweb goes to zero for r < 1.
We also know that the state 1− 1/r is stable for 1 < r < 3 and unstable for r > 3,
since

(2.10)
f ′
(
1− 1

r

)
= r − 2r

(
1− 1

r

)
= 2− r.

Thus, we can see this as a transcritical bifurcation at r = 1 when the zero state
becomes unstable and the state 1− 1/r becomes stable.

2.2.2. Period doubling. Next, we show that for r > 3, the logistic map has a period-
two trajectory. To do this, we find points p, q such that

(2.11) f(p) = q, f(q) = p,

and

(2.12) f2(p) = p, f2(q) = q,

(periodic points with period two).

Figure 8. The cobweb never settles down on some point(s).
Reprinted from [1], p.356.

Figure 9. The orbit diagram of the logistic map
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Figure 10. A partial bifurcation diagram of the logistic map.
Reprinted from [1], p.361.

While f2(x) is a quartic polynomial and we need to solve f2(x) = x, we recognize
that we already have two trivial solutions, zero and 1− 1/r, since if they are fixed
points, f(f(xf )) = f(xf ) = xf . We want to solve:

(2.13) f2(x)− x = r2x(1− x)[1− rx(1− x)]− x = 0.

We remove the factors x and x−(1− 1
r ) through long division and use the quadratic

equation to get the roots

(2.14) p, q =
r + 1±

√
(r − 3)(r + 1)

2r
.

From this, we can tell that we have a period-two trajectory for r > 3 since both
roots are real in that range. In particular, we note that at r = 3, both roots are
equal to x = 1 − 1/r = 2/3, which shows that the periodic trajectory emerges
continuously from the previous stable trajectory.

2.2.3. Stability of periodic orbits. Finally, we want to look at the stability of the
period-two trajectory. We want to show that it is attracting for

(2.15) 3 < r < 1 +
√
(6),

which is exactly the r before a period-four trajectory emerges. To determine sta-
bility, we find the derivative of f2:

(2.16)
λ =

d

dx
(f(f(x))

∣∣∣∣
x=p

= f ′(f(p))f ′(p)

= f ′(q)f ′(p).

Note that we get the same λ for states p and q, proving that they bifurcate at the
same time. For their stability, we examine

(2.17) λ = r(1− 2q)r(1− 2p) = r2[1− 2(p+ q) + 4pq].

Substituting (2.14) into the above expression gives us

(2.18) λ = r2
[
1− 2

(
r + 1

r

)
+ 4

(
r + 1

r2

)]
= 4 + 2r − r2.
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Figure 11. We see that around the r-value where the logistic
map becomes chaotic, the Liapunov exponent becomes positive

We want |λ| < 1 for the orbit to be stable, and so (2.15) is sufficient. We also see
this in a bifurcation diagram, Figure 10, that includes both the stable and unstable
branches of the logistic map.

2.3. Liapunov Exponent. For certain values of r, we see the existence of aperi-
odic orbits. However, are these orbits truly “chaotic”? We will define chaos rigor-
ously in the next section. For now, we note that one of the characteristics of chaotic
systems is that they display sensitive dependence on initial conditions, where
nearby orbits will, on average, move away at an exponential rate.

For an initial condition x0, consider a close state x0 + δ0, where δ0 is small.
Define δn to be the separation between the orbits after n iterations. If

(2.19) |δn| ≈ |δ0|enλ,

we call λ the Liapunov exponent. A positive Liapunov exponent is an indicator
that the system may be chaotic.

We can derive an explicit formula. From (2.19), we know log |δn| ≈ nλ log |δ0|,
and so

(2.20) λ ≈ 1

n
log

∣∣∣∣δnδ0
∣∣∣∣ .

Notice that δn = fn(x0+δ0)−fn(x0), hence the right hand side of (2.20) is exactly

(2.21) 1

n
log

∣∣∣∣fn(x0 + δ0)− fn(x0)

δ0

∣∣∣∣ .
Taking δ0 → 0, the above becomes the derivative

(2.22) 1

n
log |(fn)′(x0)| .

Using chain rule:

(2.23) log

∣∣∣∣∣
n−1∏
i=0

f ′(xi)

∣∣∣∣∣ =
n−1∑
i=0

log |f ′(xi)|.
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Figure 12. Reprinted from [2], p.556.

If the limit exists, then we define the Liapunov exponent as

(2.24) λ ≡ lim
n→∞

(
1

n

n−1∑
i=0

ln |f ′(xi)|

)
.

While the Liapunov exponent depends on the initial conditions, it has the same
value for all initial conditions within a basin of attraction of an attractor (since in
the limit all the orbits will converge to the attractor). For stable fixed points and
periodic orbits, λ < 0, while for “chaotic attractors,” λ > 0. For the logistic map,
we can numerically compute λ and plot it as a function of r, see Figure 11.

3. Chaos

3.1. Smale Horseshoe. To be able to define precisely what chaos is, we turn
to the simplest map that exhibits chaotic behavior to narrow down the essential
properties of chaos, the Smale Horseshoe map. The Smale Horseshoe map is a
two-dimensional map f : D → D, where D is a square in R2:
(3.1) D ≡ {(x, y) ∈ R2 | x, y ∈ [0, 1]}.
Roughly, f contracts D in the x-direction, extends the y-direction, and then folds
D back on itself. The backward iteration of f , f−1 contracts D in the y-direction,
extends the x-direction, and then folds D back on itself. Figure 12 illustrates this.

More explicitly, for some fixed parameters µ−1 > 0 and λ < 1/2, we map
H0 = {(x, y) ∈ D | y ∈ [0, µ−1]},(3.2)
H1 = {(x, y) ∈ D | y ∈ [1− µ−1, 1]},(3.3)

to
f(H0) = {(x, y) ∈ D | x ∈ [0, λ]} ≡ V0,(3.4)
f(H1) = {(x, y) ∈ D | x ∈ [1− λ, 1]} ≡ V1.(3.5)

Essentially, the horizontal rectangles H0, H1 are mapped to vertical rectangles V0,
V1 respectively. The horizontal boundaries of H0,H1 are mapped to the horizontal
boundaries of V0, V1 respectively (likewise for vertical boundaries). In the opposite
direction, f−1 maps Vk and their boundaries to Hk and their boundaries.

Now, we introduce two important observations.

Properties 3.6. For the Smale Horshoe map f given above, we have the following:
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Figure 13. What happens to a rectangle in the square through a
mapping. Reprinted from [2], p.558.

(1) If V is a vertical rectangle in D, then f(V )∩D contains exactly two vertical
rectangles, one in V0 and one in V1, each with width λ times that of V .

(2) If H is a horizontal rectangle in D, then f−1(H) ∩D contains exactly two
horizontal rectangles, one in H0 and one in H1, each with width µ times
that of H.

See Figure 13 for a visualization. The proof uses the definition of f . The vertical
rectangle V intersects the horizontal boundaries of both H0 and H1, so when we
map those pieces of boundaries to the horizontal boundaries of V1, V2, the image
f(V ) would appear in both V0 and V1, creating two vertical rectangles. The width
contracts by λ because of the contraction in the x-direction of H0 and H1 via (3.4)
and (3.5). Property 2 for a horizontal rectangle H follows similarly.

Now, we want to look at the invariant set Λ of the map. We think of the invariant
set as a set of points that remain in D after all forward and backward iterations of
the map (f and f−1). Thus,

(3.7) Λ =

∞⋂
n=−∞

fn(D).

We first focus on constructing
⋂k

n=0 f
n(D) and take k → ∞. Then, the negative

portion will follow analogously. We know that V0 and V1 are in the first intersection,
D ∩ f(D). To find what remains in

(3.8) D ∩ f(D) ∩ f2(D),

we use the first property on V0 and V1. By Property 1, since V0 and V1 intersects
H0 and H1 and so does their horizontal boundaries, then (3.8) will contain exactly
four vertical rectangles: two in V0 and two in V1. The map f contracts width by a
factor of λ, so the width of the rectangles in (3.8) is λ2. Doing the same thing for

(3.9) D ∩ f(D) ∩ f2(D) ∩ f3(D),
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Figure 14. Drawing (3.8) and (3.9). Reprinted from [2], p.561.

we get eight vertical rectangles (V0 and V1 each have four, each rectangle of (3.8)
has two), all having width λ3. Pictorially, the construction looks like Figure 14.

We see that
⋂k

n=0 f
n(D) will contain 2k vertical rectangles, each of width λk.

We observe there is a unique k-length binary sequence that labels each rectangle.
Then, taking k → ∞ and using the fact that a decreasing intersection of compact
sets (rectangles are closed and bounded) is non-empty, we see that

(3.10)
∞⋂

n=0

fn(D)

consist of infinitely many vertical rectangles with zero width (limk→∞ λk = 0). In
the limit, we have recovered a set of vertical lines that we may uniquely label with
an infinite sequence of zeros and ones. Doing the same for

(3.11)
−∞⋂
n=0

fn(D)

again yields infinitely many horizontal lines uniquely labeled by an infinite sequence
of zeros and ones.

Then, Λ, which is the intersection of the sets (3.10) and (3.11), consists of in-
finitely many points since the vertical and horizontal lines from each set intersect
at a unique point in D. Additionally, any p ∈ Λ, formed from the intersection of
a vertical line Vs−1,...,s−k,... in (3.10) labeled s−1, ..., s−k, ... and a horizontal line
Hs0,...,sk,... in (3.11) labeled s0, ..., sk, ..., can be uniquely labeled with a bi-infinite
sequence

(3.12) ..., s−k, ...s−1.s0, ..., sk, ...,

where the dot separates the forward and backward iterations. Under such a labeling
of the vertical and horizontal rectangles, we can find the associated sequence of
fk(p) by shifting the dot in the label p by k places (left if k < 0, right if k > 0).
To understand this more, we turn to symbolic dynamics.

3.2. Symbolic Dynamics. Let Σ be the space of bi-infinite sequences of zeros
and ones which will label the points in Λ. We say that two sequences are “close” if
they agree on a long central block. We define the shift map σ : Σ → Σ that shifts
the dot to the right by one place:

(3.13) σ({..., s−n, ..., s−1.s0, s1, ..., sn, ...}) = {..., s−n, ..., s−1, s0.s1, ..., sn, ...}.
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Now, we look at the dynamics of σ, especially the orbits of points in Σ under
the shift map. We note that there are only two fixed points: the sequence of all
zeros and sequence of all ones. Periodic orbits are represented by repeating sections
of finite length in the sequence, like {10.10}. We then see that the length of the
repeating section is exactly the period of the orbit, because we need to move the
decimal point over the entire section before we get the original sequence back:

σ({10.10}) = {01.01},(3.14)
σ({01.01}) = {10.10},(3.15)
σ2({10.10}) = {10.10}.(3.16)

These repeating sections can have arbitrarily many symbols, but must be finite.
Thus, σ has a countable number of periodic orbits of any period.

We also see that σ has uncountably many non-periodic orbits. We see this from
the fact that we can associate any bi-infinite sequence to an infinite one:
(3.17) ..., s−n, ..., s−1.s0, ..., sn, ... 7→ .s0, s1, s−1, ..., sn, s−n, ....

We know that numbers in [0, 1] can be expressed as binary expansions (the infinite
sequences of zeros and ones), with the uncountably many irrationals corresponding
to non-repeating sequences in Σ. The non-repeating sequences are the non-periodic
orbits, so we have uncountably many non-periodic orbits.

Finally, we assert that σ has a dense orbit. We know these three facts about
the shift map, and we can construct a homeomorphism φ : Λ → Σ. Thus, the
Smale Horeshoe map f on D and the shift map σ on Σ are topologically conjugate,
meaning the diagram in Figure 15 commutes.

Figure 15. Reprinted from [2], p.572.

From this, we know that f has these properties of σ:

Properties 3.18. For the Smale Horshoe map, there exists
(1) countable periodic orbits of any period,
(2) uncountable non-periodic orbits,
(3) a dense orbit.

Additionally, we assert that Σ is uncountable, perfect, and totally disconnected,
making it a Cantor set. These properties carry over to the invariant set, meaning
Λ is a Cantor set. This invariant set is an attractor (since we can find orbits arbi-
trarily close to it) with fractal structure and measure zero, which we call a strange
attractors. Strange attractors are typically associated with chaotic dynamics.

From Properties 3.18 , we see that the dynamics of f on Λ fulfills the properties
of deterministic chaos. Generally, chaotic dynamical systems have

(1) sensitive dependence on initial conditions,
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(2) topologically transitivity, meaning that for any two open sets of initial
states, some iteration of one will intersect the other,

(3) dense periodic orbits.
Topologically transitivity follows from the existence of a dense orbit on a compact

set. We need this property in addition to sensitive dependence on initial conditions,
because a map which merely doubles the values of states has sensitive dependence
but not chaos, as we can predict its behavior. We adopt the convention in [2] and
call a dynamical system chaotic if it has sensitive dependence on a closed invariant
set of more than one orbit.

For the Smale Horseshoe map, we will show sensitive dependence on initial con-
ditions in Λ through symbolic dynamics. It is obvious that Λ is compact since it is
closed and bounded. Consider some p ∈ Λ represented by
(3.19) φ(p) = {s−n, ..., s−1.s0, ..., sn, ...}.
Take an ε-neighborhood around p and then we can find, for a finite N = N(ε), a
point x ∈ Λ which is represented by a sequence φ(x) that is identical to φ(p) up to
the (N + 1)th symbol.

Now, suppose the (N + 1)th symbol of φ(p) is zero and φ(x) is one. This shows
that after a finite number of iterations, no matter how small of a neighborhood we
take, fN (p) would be in H0 and fN (x) would be in H1, which are separated by a
distance of at least 1 − 2λ. Thus, arbitrarily close initial conditions can evolve to
become arbitrarily far apart (within the invariant set), but can also evolve to be
arbitrarily close in the attractor, which is why their behavior appears to be random.

3.3. Conley-Moser Conditions. Before we state the Conley-Moser conditions for
chaos, we must define several terms. Consider the unit square D with points labelled
(x, y). A µv-vertical curve is a graph v(y) of some function v : [0, 1] → [0, 1] such
that

(3.20) max
y1,y2∈[0,1]

|v(y1)− v(y2)|
|y1 − y2|

≤ µv.

A µh-horizontal curve is defined analogously, but for some h(x) and µh.
A µv-vertical strip is the set

(3.21) V = {(x, y) ∈ D | x ∈ [v1(y), v2(y)]}
given by two µv-vertical curves v1(y), v2(y) which do not intersect. The width d(V )
of a vertical strip V ⊂ D is
(3.22) d(V ) = max

y∈[0,1]
|v2(y)− v1(y)|.

Again, we define a µh-horizontal strip and its width analogously. We assert these
two lemmas about the curves and strips:

Lemma 3.23. If V1 ⊃ V2 ⊃ ...Vk ⊃ ... is a nested sequence of µv-vertical strips
such that limk→∞ d(Vk) = 0, then

V∞ ≡
∞⋂
k=1

Vk

is a µv-vertical curve. The analogous holds for horizontal strips and curves.

Lemma 3.24. If 0 ≤ µvµh < 1, then a µv-vertical curve and a µh-horizontal curve
intersect at a unique point.
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Figure 16. Naming of the strips. Reprinted from [2], p.603.

Let S = {1, 2, ..., n} be an index set with at least two elements. For i = 1, 2, ..., n,
denote Hi as a set of disjoint µh-horizontal strips and Vi a set of disjoint µv-vertical
strips. Consider a map f : D → R2, where D is the unit square. We can prove
using the above lemmas that if f satisfies two conditions, then f has an invariant
Cantor set Λ ⊂ D that is topologically conjugate to a full shift on n symbols, Σn.
These conditions are called the Conley-Moser conditions, and the invariant set
will have chaotic dynamics.

Definition 3.25. The Conley-Moser conditions are:
(1) If 0 ≤ µhµv < 1, then f(Hi) = Vi for i = 1, 2, ..., n, where the horizontal

boundaries of Hi map to the horizontal boundaries of Vi and the vertical
boundaries of Hi map to the vertical boundaries (homeomorphic mapping).

(2) Define H ′
i as f−1(H) ∩ Hi, where H is a µh-horizontal strip in

⋃
i∈S Hi.

We require that H ′
i is a µh-horizontal strip for all i ∈ S and

d(H ′
i) ≤ xhd(H)

for some 0 < xh < 1. This must also hold for vertical strips, and the
condition is defined analogously, with V ′

i ≡ f(V ) ∩ Vi.

These two conditions show that geometrically, chaos arises from some form of
“stretching” and “squishing” of the square and folding it back onto itself.

Theorem 3.26 ([2], p.590). If f satisfies Conditions 1 and 2, then f has an invariant
Cantor set Λ on which it is topologically conjugate to a full shift on n symbols.

While the first condition is straightforward, it can be difficult to directly verify
the second condition. Since the second condition deals with the rate of expan-
sion and contraction, we want to find an equivalent condition by looking at the
derivatives of maps. Let Vji ≡ f(Hi) ∩Hj and

(3.27) Hij ≡ Hi ∩ f−1(Hj) = f−1(Vji)

for i, j ∈ S, where S is the index set defined previously. Let H be the union of all
such Hij and V the union of Vji, and we see that f(H) = V . Figure 16 depicts the
case where n = 2.
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Figure 17. Sectors. Reprinted from [2], p.604.

We require that f is C1 and maps H diffeomorphically onto V . Let (ξz0 , ηz0) ∈ R2

be a vector originating from point z0 = (x0, y0) ∈ H ∪ V . We define the stable
sector at z0 as

(3.28) Ss
z0 = {(ξz0 , ηz0) ∈ D : |ηz0 | ≤ µh|ξz0 |}.

The unstable sector at z0 is

(3.29) Su
z0 = {(ξz0 , ηz0) ∈ D : |ξz0 | ≤ µv|ηz0 |}.

Geometrically, the stable sector can be seen as a “cone” of vectors originating from
z0, where each vector has a maximum absolute value slope of µh with respects to the
x-axis. The unstable sector is the same, except each vector has a maximum absolute
value slope of µv with respects to the y-axis. See Figure 17 for an illustration.

Now, we will define the sector bundles, which are unions of stable/unstable
sectors over points in either H or V :

Ss
H =

⋃
z0∈H

Ss
z0 : stable sector bundle over H,(3.30)

Su
H =

⋃
z0∈V

Su
z0 : unstable sector bundle over H,(3.31)

Ss
V =

⋃
z0∈H

Ss
z0 : stable sector bundle over V ,(3.32)

Su
V =

⋃
z0∈V

Su
z0 : unstable sector bundle over V .(3.33)

Then, we can give our alternative to the second Conley-Moser condition:

Definition 3.34.
(3) For the sector bundles defined above, we require

Df(Su
H) ⊂ Su

V and Df−1(Ss
V ) ⊂ Ss

H .

In this alternate condition, Df(Su
H) ⊂ Su

V means that for every z0 ∈ H,

(3.35) (ξz0 , ηz0) ∈ Su
z0 ⇒ Df(z0)(ξz0 , ηz0) ≡

(
ξf(z0), ηf(z0)

)
∈ Su

f(z0)
.
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The statement Df−1(Ss
V ) ⊂ Ss

H is defined similarly. In particular, we note that if
(ξz0 , ηz0) ∈ Su

z0 and ξf(z0), ηf(z0)) ∈ Su
f(z0)

, then

(3.36) |ηf(z0)| ≥
1

µ
|ηz0 | for 0 < µ < 1− µhµv.

Analogously, if (ξz0 , ηz0) ∈ Ss
z0 and

(3.37) Df−1(z0)(ξz0 , ηz0) ≡ (ξf−1(z0), ηf−1(z0)) ∈ Ss
f−1(z0)

,

then

(3.38) |ξf−1(z0)| ≥
1

µ
|ξz0 | for 0 < µ < 1− µhµv.

Finally, we can state our theorem regarding sector bundles.

Theorem 3.39 ([2], p.605). If Conditions 1 and 3 hold with 0 < µ < 1 − µhµv,
then Condition 2 holds with xh = xv = µ/(1− µhµv).

Thus, we can show chaos with either Conditions 1 and 2, or Conditions 1 and 3.

4. Hénon Map

To close off the paper, we want to prove that the Hénon map, which is a two-
dimensional analog of the logistic map, is chaotic. The Hénon map F is given by
the equations:

(4.1) F :

{
xn+1 = a− byn − x2

n

yn+1 = xn

.

There are critical values of a and b such that F exhibits chaos; that is F fulfills the
properties of deterministic chaos. Here, we fix b and examine

(4.2) B =
(5 + 2

√
5)(1 + |b|)2

4
.

Theorem 4.3 ([3]). Let Λ be the invariant set of F . For a > B, Λ has a hyperbolic
structure and is conjugate to the 2-shift.

Proposition 4.4 ([2], p.610). For a > B, F satisfies Conley-Moser Condition 1.

Proof. Let R be the larger root of

(4.5) ρ2 − (|b|+ 1)ρ− a = 0,

and S ⊂ R2 the square with the center at the origin and vertices at (±R,±R). We
will show that for a > B, the condition

(4.6) |x| ≥ λ
1 + |b|

2

divides S into two vertical strips and

(4.7) |y| ≥ λ
1 + |b|

2

divides S into two horizontal strips that satisfy Condition 1.
For x0 = x, we want to show that under F , the image of x0 is in the horizontal

strips specified by (4.7). Under F , we have that x0 satisfies (4.6) and y1 = x0.



20 RICKY LIN

Thus, y1 satisfies (4.7) such that the y-coordinates of the horizontal strip fulfill our
requirements. For the x-coordinates,
(4.8) x1 = a− by0 − x2

0,

which implies that

(4.9) x1 ≤ a− by0 −
(
λ
1 + |b|

2

)2

.

Solving this yields that |x1| ≤ R.
For the horizontal strips mapping to vertical strips y0 = y, we do the same thing,

except we have to use the inverse map, which can be found by solving for xn and
yn and changing the index:

(4.10) F−1 :

xn−1 = yn

yn−1 =
−xn + a− y2n

b

,

where xn−1, yn−1 denotes the inverse iterations. Then, we see that x−1 = y0, thus
x−1 satisfies (4.6). For the y-coordinates, we have

(4.11) y−1 =
−x0 + a− y20

b
,

as desired. �

Proposition 4.12 ([2], p.611). For a > B, F satisfies Conley-Moser Condition 3.
Proof. Now, we will look at the sectors

Su
λ = {(ξ, η) ∈ S : |ξ| ≥ λ|η|},(4.13)

Ss
λ = {(ξ, η) ∈ S : |η| ≥ λ|ξ|}.(4.14)

If the inequality for a from before holds, we want to show that we can find λ > 2
so that Su

λ is invariant under DF (x, y) in the vertical strips and Ss
λ is invariant

under DF−1(x, y) in the horizontal strips, thus satisfying Condition 3.
To show this, we first notice that the matrix of partial derivatives of the maps

F and F−1 is

(4.15) DF =

(
−2x −b
1 0

)
and

(4.16) DF−1 =
1

b

(
0 b
−1 −2x

)
.

Since x satisfies (4.6), we have 2|x| ≥ λ+ λ|b|. This implies that

(4.17) 2|x| − |b|
λ

> 2|x| − λ|b| ≥ λ and 2|x| − λ ≥ λ|b|.

Now, consider a vector (ξ0, η0) ∈ Su
λ and (ξ1, η1) = DFx(ξ0, η0). Using DFx, the

reverse triangle inequality, the definition of unstable bundle (|ηz| ≥ λ|ξz|), and the
first inequality in (4.17), we see that

(4.18)

|ξ1| = | − 2xξ0 +−Bη0| ≥ 2|x||ξ0| − |B||η0|

≥
(
2|x| − |B|

λ

)
|ξ0|

≥ λ|ξ0|.
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Similarly, using DF−1 and the second inequality in (4.17), we show that

(4.19)

|η−1| =
|ξ0 + 2xη0|

|b|

≥ (2|x| − λ)|η0|
|b|

≥ λ|η0|.
If the points (x0, y0) and (x1, y1) = F (x0, y0) both satisfy (4.6), for λ > 2, then

Su
λ is invariant under DF (x, y) (and (ξ1, η1) ≥ λ|ξ0, η0|) and Ss

λ is invariant under
DF−1(x, y) (and λ(ξ1, η1) ≤ |ξ0, η0|).

Consider (ξ0, η0) ∈ Su
λ and (ξ1, η1) = DFx0

(ξ0, η0), noting that η1 = ξ0. Using
that |ξ1| > λ|ξ0|, we find that
(4.20) λ|η1| = λ|ξ0| ≤ |ξ1|,
which shows that (ξ1, η1) ∈ Su

λ . Using the definition of Su
λ , we see that

(4.21) λ|η0| ≤ |ξ0| = |η1|,
proving the first part of the claim. The second part follows symmetrically. �

Proof of Theorem 4.3. With Propositions 4.4 and 4.12, we apply Theorem 3.39.
We observe Theorem 3.26, and we are done. �
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