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1. Introduction

This is a note on the classification of surfaces which are topologically different,
e.g. the sphere S2, and the torus T2. We first separately review notions of topol-
ogy and abstract algebra in Sections 2 and 3. In Section 4, elements of algebraic
topology are introduced, in particular Theorem 4.7 connecting topological equiva-
lence to group isomorphism. We conclude in Section 5 with a demonstration that
the surfaces S2 and T2 are distinct topologically via a proof that their respective
fundamental groups are not isomorphic.

2. Topology and Homeomorphism

Definition 2.1. A surface is a metric space X such that every point in X has a
neighborhood which is homeomorphic to the plane.

Definition 2.2. A metric space is a set X with a map d : X ×X → R satisfying
the following properties:

• d(x, x) = 0
• If x 6= y, then d(x, y) > 0
• d(x, y) = d(y, x) for all x, y
• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z.

Definition 2.3. A topology T on a set X is a set of subsets of X with the following
properties:

• The empty set and X belong to T
• Any arbitrary union of members of T belongs to T
• The intersection of any finite number of members of T belongs to T .
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If a subset U of X is in the topology T of X, then it is called open. A set U ⊂ X
is called closed if its complement X \U is open. A topological space (X, T ) is a set
X together with a topology T on it.

Definition 2.4. A map f : X → Y from one topological space (X, T1) to another
(Y, T2) is continuous if the preimage f−1(U) of any open set U ∈ T2 is open in T1.

Definition 2.5. A map f : X → Y from one metric space (X, dX) to another
(Y, dY ) is continuous at x ∈ X if for any ε > 0, there is some δ > 0 such that

dX(x, x′) < δ ⇒ dY (f(x), f(x
′)) < ε.

The above two definitions of continuity agree whenever all topologies are induced
by the respective metrics.

Definition 2.6. A map d : X → Y is a homeomorphism if h is a bijection and both
h and h−1 are continuous.

Example 2.7. The stereographic projection is a homeomorphism from the sphere
minus a point to C. Suppose the missing point is (0, 0, 1), then the map is explicitly

(x1, x2, x3) 7→
(

x1

1− x3

)
+

(
x2

1− x3

)
i.

3. Groups and Isomorphism

Definition 3.1. A group is a set G together with an operation “ · ” that satisfies
the following:

• g1 · g2 is defined and belongs to G for all g1, g2 ∈ G
• g1 · (g2 · g3) = (g1 · g2) · g3 for all g1, g2, g3 ∈ G
• There exists a unique e ∈ G such that e · g = g · e = g for all g ∈ G
• For each g ∈ G there is a unique element h such that g · h = h · g = e. This

element is called “g inverse” and is written as h = g−1.

Definition 3.2. Let G1 and G2 be groups. A map f : G1 → G2 is a homomorphism
if f(a · b) = f(a) · f(b) for all a, b ∈ G1.

Notice that the “ · ” on the left-hand side is the operation for G1 and the “ · ” on
the right-hand side is the one for G2.

Definition 3.3. A map f is an isomorphism if f is a bijective homomorphism.

Example 3.4. Logarithm is an example of isomorphism. Recall that for all positive
real numbers x, y

log(xy) = log(x) + log(y)

with log(1) = 0 and log(1/x) = −x. Therefore, we have an isomorphism of the
multiplicative group of positive real numbers to the additive group on the whole
real line.

Definition 3.5. For a set A of n elements, a permutation is a bijection f : A → A.

A permutation group is a set of all the n! permutations of set A with the group
operation being composition of maps. In fact, we can represent the elements of any
finite abstract group by sets of permutations.

Theorem 3.6 (Cayley’s Theorem). Every finite group is isomorphic to a subgroup
of a permutation group.
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4. Fundamental Group

Definition 4.1. Let X and Y be metric spaces and I = [0, 1] be the unit interval.
Two maps f0, f1 : X → Y are homotopic if there is a continuous map F : X×I → Y
such that F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈ X. We write f0 ∼ f1.

Definition 4.2. Take X = I. A loop in Y is a continuous map f : I → Y such
that f(0) = f(1) = y0 ∈ Y . Here y0 is called the basepoint.

Definition 4.3. The fundamental group of space Y is the group of equivalence
classes under homotopic loops with basepoint y0. The group is written as π1(Y, y0).

The group operation of the fundamental group is composing loops. Define the
new loop h = f · g by the following rule:

• If x ∈ [0, 1/2], define h(x) = f(2x),
• If x ∈ [1/2, 1], let x′ = x− 1/2 and define h(x) = g(2x′).

Definition 4.4. Y is path connected if for any two points y0, y1 ∈ Y there is a
continuous map f : I → Y such that f(0) = y0 and f(1) = y1.

Lemma 4.5. Suppose y0, y1 ∈ Y are connected by a path. Then π1(Y, y0) and
π1(Y, y1) are isomorphic groups.

If a space Y is path connected, then the fundamental group π1(Y, y) is independent
of the choice of basepoint y so we may just write π1(Y ).

Proposition 4.6. Let (Y, y0) and (Z, z0) be two pointed spaces, and let f : Y → Z
be a continuous map such that f(y0) = z0. Then there exists a homomorphism

f∗ : π1(Y, y0) → π1(Z, z0).

This is a first connection between topology and algebra where the homomorphism
f∗ is constructed from the continuous map f . If one desires f∗ to be an isomorphism,
then we must demand that f is actually a homeomorphism. The result of including
bijectivity into the argument for Proposition 4.6 is the following:

Theorem 4.7. Suppose Y and Z are path connected spaces. If π1(Y ) and π1(Z)
are not isomorphic, then Y and Z are not homeomorphic.

The inverse of Theorem 4.7 is generally difficult. A famous example for three-
dimensional manifolds was known as the Poincaré conjecture:

Every closed 3-manifold with trivial fundamental group is homeomorphic to S3.

This remains the only Millennium problem to be solved.

5. Spheres and Tori

The two-dimensional sphere S2 and torus T2 are topologically distinct. This is
done by computing the fundamental groups of these surfaces. It turns out that

(5.1) π1(S2) 6∼= π1(T2).

We then apply Theorem 4.7.

Proposition 5.2. Let (Y, y0) and (Z, z0) be two pointed spaces. Then,

π1(Y × Z, (y0, z0)) = π1(Y, y0)× π1(Z, z0).
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Proposition 5.3. For any basepoint x ∈ S1,
π1(S1, x) = Z.

The proof that π1(S1, x) is merely nontrivial is subtle. This involves showing
that the loop
(5.4) f(t) = (cos(2πt), sin(2πt))

is inequivalent to the identity loop. We refer to [1, 2] for details and discussion.
The fundamental group of the torus T2 = S1 × S1 is evident.

Proposition 5.5. For any basepoint x ∈ T2,
π1(T2, x) = Z2.

Definition 5.6. A loop g : I → S2 with basepoint x is called bad if g(I) = S2.
Otherwise, the loop g is called good.

We proceed to show the fundamental group of the sphere is the trivial group “0”
consisting of only the identity (loop). In other words, we will show every loop on
the sphere is homotopic to a point.

Proposition 5.7. Any good loop is homotopic to a point.

Proof. Let g : I → S2 be a good loop. Then there exists a point p ∈ S2 such
that p /∈ g(I). It follows that g(I) is a subset of S2 \ {p}. With the stereographic
projection (see Example 2.7), we have S2 \ {p} is homeomorphic to the plane. The
plane is in fact simply connected, and this follows immediately by the construction
(5.11) in the next proof. �

Proposition 5.8. Let [a, b] be an interval, and let H be a hemisphere in S2. Let f :
[a, b] → H be a continuous map. Then, there exists a homotopy F : [a, b]×[0, 1] → H
such that

• F (a, t) and F (b, t) are independent of t,
• F (x, 0) = f(x) for all x,
• f1 : [a, b] → H is contained in a circular arc joining f(a) to f(b).

Proof. First, we will show that the hemisphere is homeomorphic to the disk. View
the sphere S2 as embedded in R3 where its center is at the origin. We fix the
orientation such that the pole of the hemisphere H ⊂ S2 lies directly on the z axis.
In that case consider the projection P : R3 → R2

(5.9) (x, y, z) 7→ (x, y)

by taking the first two coordinates in R3 as its coordinates in R2. By restricting P
to H ⊂ R3, we have a bijection from the hemisphere into the open disk
(5.10) D = {(x, y) : x2 + y2 < 1}.

In the inverse, the z coordinate is z =
√
1− (x2 + y2). One may see that P is

continuous as well as its inverse because any open set in H is projected onto an
open set in D, and similar happens in the inverse.

Next, we will show the disk is simply connected, meaning all paths connecting
two points in D are homotopic to each other. Let g0 and g1 be two paths with the
same orientation connecting points x1 and x2, then a homotopy is
(5.11) gt(s) = tg1(s) + (1− t)g0(s).
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It follows that D is simply connected, and by the homeomorphism above, that the
hemisphere H is simply connected. In particular, any path f in the hemisphere is
homotopic to a circular arc joining f(a) to f(b). �

Proposition 5.12. Let g be an arbitrary loop on S2. There is a finite partition
0 = t0 < t1 < · · · < tn = 1

such that g maps each interval [ti, ti+1] into a hemisphere.

Proof. Since g is continuous on the compact interval I, then g is in fact uniformly
continuous. Therefore, there exists δ > 0 such that whenever |t− t′| < δ it follows
that
(5.13) dS2(g(t), g(t

′)) < π

for all t, t′ ∈ I. We choose the intervals such that ti = i/n where n = d1/δe and
dse is the least integer greater than s ∈ R. �

Corollary 5.14. An arbitrary loop on S2 is loop homotopic to a good loop.

Proof. First, we use Proposition 5.12 to partition an arbitrary loop into a finite
number of paths each on a hemisphere. Then, we use Proposition 5.8 to show each
path is homotopic to a circular arc. A finite number of circular arcs cannot cover
the whole sphere, and so we have found a homotopy into a good loop. �

Theorem 5.15. For any basepoint x ∈ S2,
π1(S2, x) = 0.

Proof. Observing both Proposition 5.7 and Corollary 5.14, it follows an arbitrary
loop on S2 is homotopic to a point. �
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