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1. Introduction

We briefly recount some results in two connected topics: Fourier analysis and
analysis of the vibrating string. In particular, we focus on the localization of infor-
mation in the Fourier transform and the propagation of data in the wave equation.

The Fourier transform of a function allows us to decompose a function of physical
space into functions of frequency. The Plancherel formula tells us that this trans-
form is in fact an isometry of `2. Yet, we have the uncertainty principle, which
gives a limitation on simultaneous information about a function’s variance in space
and its transform’s variance in frequency.

Vibrating strings which satisfy the wave equation propagate information in a
particular manner; the influence of data localized to a specific region of space at
a certain instance of time is limited to the backwards light cone. We prove the
more precise statement for classical solutions to the wave equation, and finally the
uniqueness of these solutions.

2. Fourier Transform

We consider the Fourier transform on the Schwartz space S(R) of functions.
We say f ∈ S(R) if f is infinitely differentiable and all of its derivatives f ′, f ′′, . . . , f (l)
are rapidly decreasing. A function f(x) is rapidly decreasing if ∀k, l ≥ 0

(2.1) sup
x∈R

|x|k|f (l)(x)| <∞.

For such functions, we define the Fourier transform to be

(2.2) f̂(ξ) :=

∫ ∞

−∞
f(ξ)e2πixξ dξ.
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This is denoted as f → f̂ . The rapidly decreasing property of f and its deriva-
tives lends to the following nice properties on how Fourier transforms react to
translation, rotation, and differentiation:
Proposition 2.3. For f ∈ S(R), we have:

(i) f(x+ h) → f̂(ξ)e2πihξ

(ii) f(x)e−2πixh → f̂(ξ + h)

(iii) f(δx) → δ−1f̂(δ−1ξ) for δ > 0

(iv) f ′(x) → 2πiξf̂(ξ)

(v) −2πixf(x) → d
dξ f̂(ξ) .

Importantly, if f(x) = e−πx2 , then f̂(ξ) = f(ξ). This together with (iii) from
Proposition 2.3 tells us that Kδ(x) = δ−1/2e−πx2/δ has Fourier transform e−πδξ2 .

We call a family of kernels {Kδ(x)} good if:
—
∫∞
−∞Kδ(x)dx = 1

— ∃M > 0 so that ∀δ :
∫∞
−∞ |Kn(x)| dx < M

— ∀η > 0, we have
∫
|x|>η

|Kδ(x)| dx→ 0 as δ → 0.

In particular, the family defined by Kδ(x) = δ−1/2e−πx2/δ as δ → 0+ is good.
Given f, g ∈ S(R), we define their convolution to be

(2.4) (f ∗ g)(x) :=
∫ ∞

−∞
f(x− t)g(t) dt.

Kernels are important because they approximate the identity via convolutions:
Theorem 2.5. For f ∈ S(R), (f ∗Kδ)(x) → f(x) uniformly as δ → 0.

Another key property of the transform is the multiplication formula:

(2.6)
∫ ∞

−∞
f(x)ĝ(x) dx =

∫ ∞

−∞
f̂(y)g(y) dy

Together, these observations prove the Fourier inversion formula, which ex-
presses a function via its transform:
Theorem 2.7. If f ∈ S(R), then

f(x) =

∫ ∞

−∞
f̂(ξ)e2πixξ dξ.

Proof. We first prove this for x = 0. Let Gδ(x) = e−πδx2 . By Proposition 2.3 (iii)
and since e−πx2 is fixed under the Fourier transform, Ĝδ = Kδ. By the multiplica-
tion formula,

(2.8)
∫ ∞

−∞
f(x)Kδ(x) dx =

∫ ∞

−∞
f̂(ξ)Gδ(ξ) dξ.

By Theorem 2.5, the left hand side converges uniformly to f(0) as δ → 0. Mean-
while, the right hand side approaches

∫∞
−∞ f̂(ξ) dξ, so we have the desired equality.

Now, let F (y) = f(y + x) so that

(2.9) f(x) = F (0) =

∫ ∞

−∞
F̂ (ξ) dξ =

∫ ∞

−∞
f̂(ξ)e2πixξ dξ,

by Proposition 2.3 (i). �

Corollary 2.10. The Fourier transform is a bijection on the Schwartz space.
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3. Plancherel Formula

In fact, the Fourier transform is an isomorphism on `2 with norm

(3.1) ‖f‖ :=

(∫
R
|f(x)|2 dx

)1/2

.

This result is known as Plancherel formula:

Theorem 3.2. If f ∈ S(R), then ‖f‖ = ‖f̂‖.

Its proof requires some basic properties of convolutions:

Proposition 3.3. For f, g ∈ S(R):
(i) f ∗ g ∈ S(R)

(ii) f ∗ g = g ∗ f
(iii) (̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ).

Proof of Plancherel formula. Let h = f ∗ f(−x). Then by Proposition 3.3 (iii),
ĥ(ξ) = |f̂(ξ)|2. From the convolution formula (2.4),

(3.4) h(0) =

∫ ∞

−∞
f(t)f̄(t) dt = ‖f‖.

Now we apply the Fourier inversion formula (Theorem 2.7) with x = 0. �

4. Uncertainty Principle

The more information we have on the variance of a function in the spatial variable
x ∈ R, the less we have on such for its transform in the frequency variable ξ ∈ R.
This is illustrated by the uncertainty principle:

Theorem 4.1. Consider a function ψ ∈ S(R) with ‖ψ‖ = 1. Then,(∫ ∞

−∞
x2|ψ(x)|2 dx

)(∫ ∞

−∞
ξ2|ψ̂(ξ)|2 dξ

)
≥ 1

16π2
.

Here we show this result in Rd where, for f ∈ S(Rd)

(4.2) f̂(ξ) :=

∫
Rd

f(ξ)e2πix·ξ dξ and ‖f‖ :=

(∫
Rd

|f(x)|2 dx
)1/2

,

the Plancherel formula (Theorem 3.2) holds.

Theorem 4.3. Suppose ψ ∈ S(Rd) satisfies ‖ψ‖ = 1. Then,(∫
Rd

x2|ψ(x)|2 dx
)(∫

Rd

ξ2|ψ̂(ξ)|2 dξ
)

≥ 1

16π2
.

Proof. Integration by parts gives:

(4.4)

∫
Rd

|ψ(x)|2 dx = −
∫
Rd

x · ∇|ψ(x)|2 dx

= −
∫
Rd

(x · ∇ψ(x)ψ(x) + x · ∇ψ(x)ψ(x)) dx.
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Because ‖ψ‖ = 1, we have

(4.5)
1

2
≤
∣∣∣∣∫

Rd

x · ∇ψ(x)ψ(x) dx
∣∣∣∣

≤ ‖∇ψ‖‖xψ‖,
where the second inequality follows from the Cauchy-Schwarz inequality. By Plancherel
formula and Proposition 2.3 (iv) in Rd,

(4.6) ‖∇ψ‖ = 2π‖ξψ̂‖.
We conclude that

(4.7) ‖ξψ̂‖2‖xψ‖2 ≥ 1

16π2
.

�

5. Data in the Wave Equation

The wave equation on Rd+1 for coordinates (x1, . . . , xd, t) is given by:

(5.1) �u =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2d
− 1

c2
∂2u

∂t2
= 0.

The Cauchy problem for the wave equation asks for solutions u(x, t) to �u = 0
with initial conditions

(5.2) u(x, 0) = f(x) and ∂u

∂t
(x, 0) = g(x).

We may assume that c = 1 by coordinate scaling. By Proposition 2.3 (iv) in Rd

and the wave equation, the solution u has Fourier coefficients û(ξ, t) which satisfy:

(5.3) −4π2|ξ|2û(ξ, t) = ∂2û

∂t2
(ξ, t).

For a fixed ξ ∈ Rd, this is an ordinary differential equation which has the general
solution
(5.4) û(ξ, t) = A(ξ) cos(2π|ξ|t) +B(ξ) sin(2π|ξ|t).

Meanwhile, the initial conditions become û(ξ, 0) = f̂(ξ) and ∂tû(ξ, 0) = ĝ(ξ). So we
must have A(ξ) = f̂(ξ) and B(ξ) = (2π|ξ|)−1ĝ(ξ). Altogether, this yields solution

(5.5) û(ξ, t) = f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)

2π|ξ|
sin(2π|ξ|t).

Now, we can use the Fourier inversion formula in Rd to get a solution u for the
initial-value problem, (5.1) with (5.2), in terms of f and g:

Theorem 5.6. A solution to the Cauchy problem for the wave equation is

u(x, t) =

∫
Rd

[
f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)

2π|ξ|
sin(2π|ξ|t)

]
e2πix·ξ dξ.

In fact, the solution u(x, t) of the Cauchy problem in a region known as the
backward light cone:
(5.7) LB(x0,r0) ≡ {(x, t) ∈ Rd × R : |x− x0| ≤ r0 − t, 0 ≤ t ≤ r0}
is uniquely determined by the initial data on the base region B(x0, r0), the closed
ball centered at x0 ∈ Rd with radius r0 in the hyperplane of {t = 0}. More precisely:
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Theorem 5.8. Suppose that u(x, t) is a C2 function on the closed upper half-plane
{(x, t) : x ∈ Rd, t ≥ 0} that solves the wave equation �u = 0. If

u(x, 0) =
∂u

∂t
(x, 0) = 0

for all x ∈ B(x0, r0), then u(x, t) = 0 for all (x, t) ∈ LB(x0,r0).

Proof. The proof has two main steps; (a) we discover an expression for the growth
of an energy E for the solution u and then (b) through estimates discover that E
and thus u vanish on the interior of the backwards light cone.

a) Assume that u is real. For 0 ≤ t ≤ r0 let
(5.9) Bt(x0, r0) ≡ {x : |x− x0| ≤ r0 − t}
and

(5.10) Du(x, t) :=

(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xd
,
∂u

∂t

)
.

Consider the nonnegative energy of the string

(5.11) E(t) :=
1

2

∫
Bt(x0,r0)

|Du|2 =
1

2

∫
Bt(x0,r0)

(
∂u

∂t

)2

+

d∑
j=1

(
∂u

∂xj

)2

.

Now with integration by parts,

(5.12) d

dt

1

2

∫
Bt(x0,r0)

(
∂u

∂t

)2

=

∫
Bt(x0,r0)

∂u

∂t

∂2u

∂t2
dt− 1

2

∫
∂Bt

|Du|2dσ(y).

By the chain rule,

(5.13) d

dt

d∑
j=1

(
∂u

∂xj

)2

= 2

d∑
j=1

∂u

∂xj

∂2u

∂xj∂t
.

We have discovered that the energy grows according to

(5.14) E′(t) =

∫
Br(x0,r0)

∂u

∂t

∂2u

∂t2
+

d∑
j=1

∂u

∂xj

∂2u

∂xj∂t
dx− 1

2

∫
∂Bt

|Du|2 dσ(y).

By the product rule,

(5.15) ∂

∂xj

(
∂u

∂xj

∂u

∂t

)
=

∂u

∂xj

∂2u

∂xj∂t
+
∂2u

∂x2j

∂u

∂t
,

and so it follows that

(5.16)
d∑

j=1

∂u

∂xj

∂2u

∂xj∂t
=

d∑
j=1

(
∂

∂xj

(
∂u

∂xj

∂u

∂t

)
− ∂2u

∂x2j

∂u

∂t

)
.

So,

(5.17)

∫
Br(x0,r0)

∂u

∂t

∂2u

∂t2
+

d∑
j=1

∂u

∂xj

∂2u

∂xj∂t
=

∫
Bt(x0,r0)

∂u

∂t

∂2u
∂t2

−
d∑

j=1

∂2u

∂x2j

+

d∑
j=1

∂

∂xj

(
∂u

∂xj

∂u

∂t

)
.



6 ANNA KROKHINE

Since u satisfies the wave equation �u = 0, the first summand on the right hand
side vanishes. Thus from equation (5.14), we get

(5.18) E′(t) =

∫
Bt(x0,r0)

d∑
j=1

∂

∂xj

(
∂u

∂xj

∂u

∂t

)
− 1

2

∫
∂Bt

|Du|2 dσ(y).

b) By the divergence theorem, this equals

(5.19)
∫
∂Bt(x0,r0)

d∑
j=1

∂u

∂xj

∂u

∂t
vjdσ(y)−

1

2

∫
∂Bt

|Du|2 dσ(y),

where vj is the jth coordinate of the normal to Bt(x0, r0). By Cauchy-Schwarz,

(5.20)
(
∇u, v ∂u

∂t

)2

≤

(
|Du|2 −

∣∣∣∣∂u∂t
∣∣∣∣2
)∣∣∣∣v ∂u∂t

∣∣∣∣2 ,
where ∇u = (∂x1

u, . . . ∂xd
u), and on the left hand side is the inner product on Rd.

Next, |v∂tu|2 = |v|2|∂tu|2, and since v is a unit normal vector, |v| = 1. Altogether,

(5.21)
(
∇u, v ∂u

∂t

)2

≤

(
|Du|2 −

∣∣∣∣∂u∂t
∣∣∣∣2
)∣∣∣∣∂u∂t

∣∣∣∣2 .
Since ∂u/∂t is merely a coordinate of Du, clearly |Du|4/4 bounds the right hand
side above. Therefore we have (∇u, v∂tu) ≤ |Du|2/2 which implies

(5.22) E′(t) ≤ 0.

However, E(0) = 0 and therefore E(t) = 0 in general, such that u vanishes every-
where in the backwards light cone LB(x0,r0). �

Corollary 5.23. Suppose there are two C2 functions w, v which satisfy the wave
equation on the closed upper half plane, and that

w(x, 0) = v(x, 0) and ∂w

∂t
(x, 0) =

∂v

∂t
(x, 0),

for all x ∈ B(x0, r0). Then, w = v in LB(x0,r0).

Proof. Since the wave equation is linear, their difference u = w− v solves the wave
equation. As w and v agree on B(x0, r0), u vanishes on the base. By Theorem 5.8,
u must then also vanish on the whole backward light cone, so we are done. �
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