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Abstract. In the radiative Vlasov–Maxwell equations, the Lorentz force

is modified by the addition of radiation reaction forces. The radiation

forces produce damping of particle energy but the forces are no longer

divergence-free in momentum space, which has an effect of concentra-

tion to zero momentum. We prove unconditional global regularity of

solutions for a class of radiative Vlasov–Maxwell equations with large

initial data.

1. Introduction

The kinetic description of collisionless relativistic plasma is provided

by the Vlasov–Maxwell equations. The problem of global regularity of

solutions of the Vlasov–Maxwell equations for large data has been studied

extensively, but remains unsolved. In this paper we prove global regularity

for large data for solutions of radiative Vlasov–Maxwell equations.

Radiation reaction forces in the plasma dampen the energy of the par-

ticles. A rigorous self-consistent derivation of the particle dynamics and

their radiation is fraught with fundamental challenges [30]. There are

several models of radiation in the physical literature [18], [27] and a for-

mal derivation from microscopic models [17]. Radiative forces are not ac-

counted for in the classical Vlasov–Maxwell equations. These forces are

significant for particles at large velocities.

The Vlasov–Maxwell equations are locally well posed [1]. Small data

results have been obtained [12], [28], in which the plasma is initially di-

lute, the solutions remain small and smooth, disperse and their asymptotic

behavior is free ([2–5]). This picture holds for nearly neutral data as well

([10],[8]). There are several recent results ([14, 21]) concerning the asymp-

totic behavior of small perturbations of steady states which do not depend
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on the space variable. Existence of global weak solutions was obtained in

[9].

For smooth large data, the possibility of spontaneous singularity for-

mation has been the focus of many analytical works. In seminal papers,

Glassey and Strauss [11, 13] proved that the only way singularities might

arise in finite time is through concentration of particle density at very high

velocity. Specifically, they proved that if the solution-averaged Lorentz

factor ⟨𝛾 ⟩ is uniformly bounded, then no singularities can form in finite

time from smooth and localized initial data. The solution-averaged Lorentz

factor ⟨𝛾 ⟩ is a function of space and time representing the kinetic energy

density of the particles. In [15] it was shown using Fourier analysis that

the singularities are averted if the electromagnetic fields remain bounded.

Several other results are based on Fourier methods [6], [7, 23].

A number of extensions of the results of Glassey and Strauss concern

moments of the type 𝑀𝜃,𝑞 = ‖⟨𝛾 𝜃⟩‖𝐿𝑞(𝑑𝑥). In our notation,

⟨𝛾 𝜃⟩ = ∫
ℝ3
(
√
1 + |𝑝|2)𝜃𝑓 (𝑥, 𝑝, 𝑡) 𝑑𝑝

for an exponent 𝜃. The average of the kinetic energy density considered

by Glassey and Strauss corresponds to𝑀1,∞. In [22], control of𝑀𝜃,𝑞 where

𝜃 > 4/𝑞 and 6 ≤ 𝑞 ≤ ∞ is shown to be sufficient for regularity. Then, [29]

uses [22] to show that control of𝑀0,∞ is sufficient for regularity. This result

was improved in [24] where it was shown that control of 𝑀0,6 is sufficient

for regularity. In [19], it is proven that the solutions remain smooth if a

plane projection of the momenta is bounded through the evolution. The

results of [16] imply that finiteness of 𝑀3,2 is sufficient for regularity. In

[20] it is shown that if 2 < 𝑞 ≤ ∞ and 𝜃 > 2/𝑞, then control of 𝑀𝜃,𝑞 is

sufficient for regularity, and if 1 ≤ 𝑞 ≤ 2 and 𝜃 > 8/𝑞 − 3, then control

of 𝑀𝜃,𝑞 is sufficient for regularity and an improvement [25] shows that if

𝜃 > 3, then control of 𝑀𝜃,1 is sufficient for regularity. Results of global

regularity for cylindrical symmetry are announced in [31].

The Vlasov–Maxwell (VM) equations are formed by the Vlasov equa-

tion for the particle distribution function 𝑓 = 𝑓 (𝑥, 𝑝, 𝑡), coupled to the

Maxwell equations for the electromagnetic (EM) fields 𝐸 = 𝐸(𝑥, 𝑡) and
𝐵 = 𝐵(𝑥, 𝑡). The particle dynamics is driven by the Lorentz force

𝐹𝐿 = 𝐸 + 𝑣 × 𝐵.

The radiative Vlasov–Maxwell (RVM) equations are the same equations,

except that the particles are forced by a total force

𝐹 = 𝐹𝐿 + 𝐹𝑅

where 𝐹𝑅 is the radiation reaction force. The main result of this paper is
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Theorem 1. Assume that the initial data 𝐸0(𝑥) and 𝐵0(𝑥) for the electro-
magnetic fields 𝐸(𝑥, 𝑡) and 𝐵(𝑥, 𝑡) and the initial data 𝑓0(𝑥, 𝑝) for the particle
distribution function 𝑓 (𝑥, 𝑝, 𝑡) are smooth, compatible, and decay at spatial
infinity. In addition assume

𝑓0(𝑥, 0) = 0

(the initial particle distribution vanishes at zero momentum) and

sup
𝑥,𝑝

𝑓0(𝑥, 𝑝) exp (𝐴0|𝑝|) < ∞

holds for some 𝐴0 > 0 large enough (the initial particle density decays uni-
formly exponentially at high momentum). Then, the solution of the RVM
equations is globally smooth and there exist constants 𝐶 depending explicitly
only on the initial data so that

|𝐸(𝑥, 𝑡)| + |𝐵(𝑥, 𝑡)| + |∇𝑥𝐸(𝑥, 𝑡)| + |∇𝑥𝐵(𝑥, 𝑡)| ≤ 𝐶 exp(𝐶𝑡)

and

𝑓 (𝑥, 𝑝, 𝑡) + |∇𝑥𝑓 (𝑥, 𝑝, 𝑡)| +
√
1 + |𝑝|2|∇𝑝𝑓 (𝑥, 𝑝, 𝑡)| ≤ 𝐶 exp(𝐶 exp(𝐶𝑡))

hold for all 𝑥, 𝑝 and 𝑡.

In this paper we address the main problem, which is to obtain global a

priori bounds for large data. We do not strive for the most general function

spaces, and do not provide a construction of solutions. The construction

of solutions, asymptotic behavior for small data, and analysis of related

models, will be discussed in forthcomingworks. We consider for simplicity

the single species model but the same proof applies to multiple species.

Some ideas of the proof and a comparison with the VM equations are

given below. Unlike the VMequations, where the total force 𝐹𝐿 is divergence-
free in 𝑝, div𝑝𝐹𝐿 = 0, the radiative force’s divergence

div𝑝𝐹𝑅 ≠ 0

is negative. Thus, unlike the VM case where 𝑓 is automatically bounded if

initially so, in the RVM equations 𝑓 is not bounded uniformly and can (and

will) grow in time. The danger is implosion, because the phase volume is

contracting. On the other hand, the radiation reaction force causes the flux

of the solution-averaged Lorentz factor to decay. Thus, the main danger

of singularity formation in RVM, as opposed to VM, is coming not from

high, but from low velocity. The radiation reaction force is used to obtain

unconditional a priori bounds on the fluxes of momenta

⟨|𝑣|[𝑝]𝑛⟩(𝑥, 𝑡) = ∫
ℝ3
|𝑣|[𝑝]𝑛𝑓 (𝑥, 𝑝, 𝑡)𝑑𝑝 ≤ 𝑀𝑛
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(in our notation the Lorentz factor is 𝛾 = [𝑝] =
√
1 + |𝑝|2, with the nor-

malized speed of light 𝑐 = 1, the velocity is 𝑣 = 𝑝/[𝑝] and 𝑝 is the mo-

mentum). These flux bounds are a direct consequence of unconditional a

priori bounds on the particle distribution, which blow up like |𝑝|−3 near
the origin, but decay exponentially at large |𝑝|.

Once these bounds are obtained, we deduce “flux of energy”-type bounds

on moments in terms of fluxes of moments and logarithms of gradients of

𝑓 . Herewe use the propagation of the condition 𝑓 (𝑥, 0, 𝑡) = 0 due to the an-
nihilation of the contribution of the electric field at zero momentum. The

moment bounds are then used in conjunction with the Glassey–Strauss

method of representing the electromagnetic fields. We obtain bounds on

the EM fields in terms of a choice of logarithms of gradients of 𝑓 , in other

words, in terms of a quantity

min
{
log+ ‖∇𝑝𝑓 (𝑡)‖𝐿∞ , sup

𝑠≤𝑡
log+ ‖∇𝑥𝑓 (𝑠)‖𝐿∞

}
.

The Glassey–Strauss representation for gradients is then used together

with the EM bounds to obtain a priori estimates of the gradients of the

EM fields. Finally, we apply the bounds on the EM fields and their gradi-

ents to bound the gradients of 𝑓 , closing the argument. Ultimately, global

regularity is a consequence of superlinear differential inequalities for the

gradients of 𝑓 , with doubly logarithmic nonlinearity.

The paper is organized as follows: After a section on notation and pre-

liminaries (Section 2) where we describe the RVM equations, wemake spe-

cific the form of the radiation reaction force 𝐹𝑅 and summarize its proper-

ties in Section 3. We recall the Glassey–Strauss representation in Section

4, and in Section 5 we derive moment bounds. In Section 6 we obtain

bounds on the EM fields and in Section 7 we derive bounds for their gra-

dients. In Section 8 we obtain the final gradient bounds on 𝑓 and conclude

the proof of Theorem 1. In Appendix A we verify some properties of the

Glassey–Strauss representation and in Appendix B we give the proofs of

ODE lemmas.

2. Preliminaries: notation, the RVM equations

The radiative Vlasov–Maxwell equations are formed with the Vlasov

equation

𝜕𝑡𝑓 + div𝑥(𝑣𝑓 ) + div𝑝(𝐹𝑓 ) = 0 (1)

with 𝑓 (𝑥, 𝑝, 𝑡) ≥ 0, (𝑥, 𝑝, 𝑡) ∈ ℝ3 × ℝ3 × ℝ and

𝐹 = 𝐹𝐿 + 𝐹𝑅 (2)
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where 𝐹𝐿 is the Lorentz force
𝐹𝐿 = 𝐸 + 𝑣 × 𝐵 (3)

and 𝐹𝑅 is the radiation reaction force, which will be discussed in the next

section (see Definition 1). The velocity is denoted by 𝑣,

𝑣 =
𝑝√

1 + |𝑝|2
=

𝑝
[𝑝]

, (4)

and the Lorentz factor 𝛾 by [𝑝],

[𝑝] =
√
1 + |𝑝|2. (5)

𝐸(𝑥, 𝑡) and 𝐵(𝑥, 𝑡) are respectively the electric field and the magnetic field.

They solve the Maxwell equations,

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝜕𝑡𝐸 − ∇𝑥 × 𝐵 = −𝑗
div𝑥𝐸 = 𝜌

𝜕𝑡𝐵 + ∇𝑥 × 𝐸 = 0
div𝑥𝐵 = 0

(6)

together with

𝜌 = ∫ 𝑓 𝑑𝑝 = ⟨1⟩ and 𝑗 = ∫ 𝑣𝑓 𝑑𝑝 = ⟨𝑣⟩. (7)

Throughout the paper, for a function 𝜙(𝑥, 𝑝, 𝑡), we denote the solution

average

⟨𝜙⟩(𝑥, 𝑡) = ∫ 𝜙(𝑥, 𝑝, 𝑡)𝑓 (𝑥, 𝑝, 𝑡) 𝑑𝑝. (8)

The RVM equations are comprised of (1) with (2) and (6) with (7). Smooth

solutions of RVM require the following compatibility conditions to be sat-

isfied by the initial data: 𝑓0 ≥ 0,

div𝑥𝐸0 = ∫ 𝑓0 𝑑𝑝 and div𝑥𝐵0 = 0. (9)

3. The radiation reaction force

Let us write

𝐊(𝑥, 𝑡) = (𝐸(𝑥, 𝑡), 𝐵(𝑥, 𝑡)) (10)

and

𝐾 2 = |𝐸|2 + |𝐵|2 = |𝐊|2. (11)

Definition 1. In this paper, the radiation reaction force is

𝐹𝑅(𝑥, 𝑝, 𝑡) = −𝜒(|𝑝|)𝐸(𝑥, 𝑝, 𝑡) − 𝑀𝑝𝐾(𝑥, 𝑡)
with 𝑀 > 2 a constant. Here 0 ≤ 𝜒 ≤ 1 is a smooth cutoff,

𝜒(𝑟) = 1 for 𝑟 ≤ 𝑅0 and 𝜒(𝑟) = 0 for 𝑟 ≥ 𝑅1, |𝜒 ′(𝑟)| ≤ 2.
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Remark 1. Some of the examples of radiation reaction forces in the

physical literature include ([18])

𝐹𝐿𝐿 = −ℎ𝑣𝛾 2(|𝐹𝐿|2 − (𝑣 ⋅ 𝐸)2)

and the force due to inverse Compton scattering ([27])

𝐹𝐼𝐶 = −ℎ𝑣𝛾 2𝐾 2.

The parameter ℎ > 0 measures the relative intensity of the reaction, and

is proportional to Planck’s constant. These examples grow quadratically

with the EM fields and vanish at 𝑝 = 0. In the present work we use the

term −𝜒𝐸 to mitigate the effect of the electric field at 𝑝 = 0, and the linear
growth of 𝐹𝑅 in the EM fields to close an a priori bound on the EM fields

using a bootstrap argument. The form in Definition 1 was chosen for its

simplicity, many other similar expressions, including modifications of 𝐹𝐿𝐿
and 𝐹𝐼𝐶 will provide the same effect.

The effect of our radiation reaction force as it pertains to regularity is

as follows. Writing 𝑝 = 𝑝/|𝑝|, we find

𝐹 ⋅ 𝑝 = (1 − 𝜒(|𝑝|))𝐸 ⋅ 𝑝 − 𝑀𝐾|𝑝|
≤ −𝐾(𝑥, 𝑡)(𝑀|𝑝| − (1 − 𝜒(|𝑝|))) ≤ 0

(12)

holds because

𝑀 ≥ 2, 1 − 𝜒(𝑟) ≤ 2𝑟. (13)

We note that

div𝑝𝐹𝐿 = 0, (14)

however, div𝑝𝐹𝑅 ≠ 0; in fact

−div𝑝𝐹 = 3𝑀𝐾(𝑥, 𝑡) + 𝜒 ′(|𝑝|)𝐸 ⋅ 𝑝. (15)

We show in Section 5 that for large enough positive constants 𝐴,

(
3
|𝑝|

+ 𝐴)𝐹 ⋅ 𝑝 − div𝑝𝐹 ≤ 0 (16)

holds. This is a key property of 𝐹 .
Observe that

|𝐹 (𝑥, 𝑝, 𝑡)| ≤ (𝑀 + 2)|𝑝|𝐾(𝑥, 𝑡), (17)

and differentiating, we find

|∇𝑝𝐹(𝑥, 𝑝, 𝑡)| + |∇𝑝∇𝑝𝐹(𝑥, 𝑝, 𝑡)| ≤ 𝐶(𝑀 + 2)𝐾(𝑥, 𝑡). (18)

Moreover,

|∇𝑥𝐹(𝑥, 𝑝, 𝑡)| ≤ 𝐶|𝑝|(|∇𝑥𝐸| + |∇𝑥𝐵| + 𝐾(𝑥, 𝑡)), (19)

and

|∇𝑝∇𝑥𝐹(𝑥, 𝑝, 𝑡)| ≤ 𝐶(|∇𝑥𝐸| + |∇𝑥𝐵| + 𝐾(𝑥, 𝑡)). (20)
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The properties (16)-(20) are sufficient to obtain global regularity.

4. On the Glassey–Strauss representation

Differentiating the Maxwell equations results in the wave equations

□𝐸 = −𝜕𝑡𝑗 − ∇𝑥𝜌, (21)

and

□𝐵 = ∇𝑥 × 𝑗. (22)

We write

□−1𝑔 = ∫
|𝑥−𝑦|≤𝑡

1
|𝑥 − 𝑦|

𝑔(𝑦, 𝑡 − |𝑥 − 𝑦|)𝑑𝑦. (23)

We consider the the tangential derivatives 𝑇𝑖
𝑇𝑖 = 𝜕𝑖 − 𝜔𝑖𝜕𝑡 (24)

with 𝜔 = (𝑦 − 𝑥)/|𝑦 − 𝑥|, which differentiate in directions parallel to the

light cone,

𝑇𝑖 =
𝜕
𝜕𝑦𝑖

(𝑔(𝑦, 𝑡 − |𝑥 − 𝑦|)), (25)

and the derivative

𝑉 = 𝜕𝑡 − 𝜔 ⋅ ∇𝑦 (26)

which differentiates in the running time 𝑠 along the light cone,
𝑑
𝑑𝑠

𝑔(𝑥 + (𝑡 − 𝑠)𝜔, 𝑠) = (𝑉𝑔)(𝑥 + (𝑡 − 𝑠)𝜔, 𝑠). (27)

We note that

𝜔 ⋅ 𝑇 + 𝑉 = 0. (28)

Now we note that, if 𝑔 = 𝐿ℎ where 𝐿 is a vector field belonging to the

linear span of 𝑇𝑖 and 𝑉 and of ℎ is bounded, then □−1𝑔 is bounded. This is

done by integration by parts, using the representation (23) for 𝑉ℎ and 𝑇ℎ.
The linear span can be with variable coefficients depending smoothly on

𝜔.
Glassey and Strauss [11] represent 𝐸 and 𝐵 using the linear wave equa-

tions and expressing 𝜕𝑡 and ∇𝑦 as linear combinations of 𝑆 and 𝑇𝑖 where

𝑆 = 𝜕𝑡 + 𝑣 ⋅ ∇𝑦 (29)

is the streaming derivative, and where 𝑇𝑖 is the tangential derivative given
in (24). The linear combinations are

𝜕𝑖 = 𝑇𝑖 +
𝜔𝑖

1 + 𝜔 ⋅ 𝑣
(𝑆 − 𝑣 ⋅ 𝑇 ) (30)

and

𝜕𝑡 =
𝑆 − 𝑣 ⋅ 𝑇
1 + 𝜔 ⋅ 𝑣

. (31)
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This procedure results in two sets of expressions, one coming from the

streaming derivative 𝑆 and one coming from the tangential derivatives 𝑇𝑖.
The overall form is

𝐊(𝑥, 𝑡) = (𝐊𝑇 + 𝐊𝑆)(𝑥, 𝑡) + 𝑂(1) (32)

where𝑂(1) represents a smooth function of (𝑥, 𝑡)which depends explicitly
on the initial data. For the expressions coming from 𝑆, we have

𝐊𝑆(𝑥, 𝑡) = ∫
|𝑥−𝑦|≤𝑡

𝑎𝑆(𝜔, 𝑣)(𝑆𝑓 )(𝑦, 𝑝, 𝑡 − |𝑥 − 𝑦|) 𝑑𝑝
𝑑𝑦

|𝑥 − 𝑦|

= ∫
𝑡

0
(𝑡 − 𝑠) 𝑑𝑠 ∫

|𝜔|=1
𝑎𝑆(𝜔, 𝑣)(𝑆𝑓 )(𝑥 + (𝑡 − 𝑠)𝜔, 𝑝, 𝑠) 𝑑𝑝 𝑑𝑆(𝜔)

(33)

where the kernel 𝑎𝑆 = 𝑎𝑆(𝜔, 𝑣) is an explicit analytic tensor valued function
satisfying

|∇𝑝𝑎𝑆 | ≤ 𝐶[𝑝]. (34)

The expressions coming from 𝑇 are

𝐊𝑇 (𝑥, 𝑡) = ∫
|𝑥−𝑦|≤𝑡

𝑎𝑇 (𝜔, 𝑣)𝑓 (𝑦, 𝑝, 𝑡 − |𝑥 − 𝑦|) 𝑑𝑝
𝑑𝑦

|𝑥 − 𝑦|2

= ∫
𝑡

0
𝑑𝑠 ∫

|𝜔|=1
𝑎𝑇 (𝜔, 𝑣)𝑓 (𝑥 + (𝑡 − 𝑠)𝜔, 𝑝, 𝑠) 𝑑𝑝 𝑑𝑆(𝜔)

(35)

where the kernel 𝑎𝑇 = 𝑎𝑇 (𝜔, 𝑣) is an explicit analytic tensor valued func-

tion satisfying

|𝑎𝑇 | ≤ 𝐶[𝑝]. (36)

For the gradient of the field, the representation ([11] Theorem 4), which

is obtained via a similar procedure, has the form

∇𝑥𝐊(𝑥, 𝑡) = ((∇𝑥𝐊)𝑇𝑇 + (∇𝑥𝐊)𝑇𝑆 + (∇𝑥𝐊)𝑆𝑆)(𝑥, 𝑡) + 𝑂(1) (37)

where𝑂(1) represents a smooth function of (𝑥, 𝑡)which depends explicitly
on the initial data. The terms are

(∇𝑥𝐊)𝑇𝑇 (𝑥, 𝑡) = ∫
|𝑥−𝑦|≤𝑡

𝑎𝑇𝑇 (𝜔, 𝑣)𝑓 (𝑦, 𝑝, 𝑡 − |𝑥 − 𝑦|) 𝑑𝑝
𝑑𝑦

|𝑥 − 𝑦|3
(38)

(∇𝑥𝐊)𝑇𝑆(𝑥, 𝑡) = ∫
|𝑥−𝑦|≤𝑡

𝑎𝑇𝑆(𝜔, 𝑣)(𝑆𝑓 )(𝑦, 𝑝, 𝑡 − |𝑥 − 𝑦|) 𝑑𝑝
𝑑𝑦

|𝑥 − 𝑦|2
(39)

(∇𝑥𝐊)𝑆𝑆(𝑥, 𝑡) = ∫
|𝑥−𝑦|≤𝑡

𝑎𝑆𝑆(𝜔, 𝑣)(𝑆2𝑓 )(𝑦, 𝑝, 𝑡 − |𝑥 − 𝑦|) 𝑑𝑝
𝑑𝑦

|𝑥 − 𝑦|
. (40)

Above, the kernels 𝑎𝑇𝑇 , 𝑎𝑇𝑆 and 𝑎𝑆𝑆 are explicit tensor valued analytic func-
tions which satisfy various properties (see [13] Lemma 4). In particular,

their derivatives in 𝑦 and 𝑝 are bounded by powers of [𝑝].
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5. Moment bounds

In this section we use the radiation reaction force to obtain bounds for

moments

𝑚𝑛(𝑥, 𝑡) = ⟨[𝑝]𝑛⟩ = ∫ [𝑝]𝑛𝑓 (𝑥, 𝑝, 𝑡) 𝑑𝑝. (41)

The charge density 𝜌 corresponds to 𝑚0(𝑥, 𝑡) and, as a consequence of the
Vlasov equation (1), it obeys the conservation equation

𝜕𝑡𝜌 + div𝑥𝑗 = 0. (42)

For higher moments, from the Vlasov equation (1), we have

𝜕
𝜕𝑡

𝑚𝑛 + div𝑥⟨𝑣[𝑝]𝑛⟩ = 𝑛⟨(𝑣 ⋅ 𝐹)[𝑝]𝑛−1⟩, (43)

where we used

𝑣 = ∇𝑝[𝑝] (44)

and integrated by parts ∫ [𝑝]𝑛div𝑝(𝐹𝑓 )𝑑𝑝. A key element of the proof

is provided by the unconditional a priori control of the fluxes 𝑣𝑚𝑛 of the

moments 𝑚𝑛,

𝑣𝑚𝑛(𝑥, 𝑡) = ∫ 𝑓 (𝑥, 𝑝, 𝑡)|𝑣|[𝑝]𝑛𝑑𝑝 = ⟨|𝑣|[𝑝]𝑛⟩ (45)

in terms of the initial data.

Theorem 2. Let (𝑓 , 𝐸, 𝐵) be a smooth solution of the RVM equations on
[0, 𝑇 ]. Assume that there exists constant 𝐶0 such that

0 ≤ |𝑝|3𝑓0(𝑥, 𝑝) exp (𝐴|𝑝|) ≤ 𝐶0

holds for some

𝐴 ≥
3 + 2𝑅0

(𝑀 − 2)(𝑅0)2
.

Then, for any 𝑛 ≥ 0
sup
0≤𝑡≤𝑇

‖𝑣𝑚𝑛(⋅, 𝑡)‖𝐿∞ ≤ 𝑀𝑛

holds with constants 𝑀𝑛 depending explicitly only on 𝑛, 𝐴 and 𝐶0.

Theorem 2 is a corollary of the a priori estimate:

Theorem 3. Let (𝑓 , 𝐸, 𝐵) be a smooth solution of the RVM equations on
[0, 𝑇 ]. Assume that there exists a constant 𝐶0 such that

0 ≤ |𝑝|3𝑓0(𝑥, 𝑝) exp𝐴|𝑝| ≤ 𝐶0 (46)

holds for some

𝐴 ≥
3 + 2𝑅0

(𝑀 − 2)(𝑅0)2
. (47)
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Then,

0 ≤ 𝑓 (𝑥, 𝑝, 𝑡) ≤ 𝐶0|𝑝|−3 exp(−𝐴|𝑝|) (48)

holds for 𝑡 ≤ 𝑇 .

Proof. The path map is defined by the ordinary differential equations

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝑑𝑋
𝑑𝑡

(𝑎, 𝜋, 𝑡) = 𝑣(𝑃(𝑎, 𝜋, 𝑡)), 𝑋(𝑎, 𝜋, 0) = 𝑎,

𝑑𝑃
𝑑𝑡

(𝑎, 𝜋, 𝑡) = 𝐹(𝑋(𝑎, 𝜋, 𝑡), 𝑃(𝑎, 𝜋, 𝑡), 𝑡), 𝑃(𝑎, 𝜋, 0) = 𝜋.

(49)

These represent the characteristic curves of the operator

𝐷𝑡 = 𝜕𝑡 + 𝑣 ⋅ ∇𝑥 + 𝐹 ⋅ ∇𝑝. (50)

Note that

|𝑋(𝑎, 𝜋, 𝑡) − 𝑎| < 𝑡, (51)

because |𝑣| < 1. This property implies that the decay of 𝑓 at spatial infinity

is controlled for finite time, as long as 𝐹 is Lipschitz continuous.

We fix a single characteristic 𝑋(𝑎, 𝜋, 𝑡) and 𝑃(𝑎, 𝜋, 𝑡). The equation (1)

implies

𝑑
𝑑𝑡

𝑓 (𝑋(𝑎, 𝜋, 𝑡), 𝑃(𝑎, 𝜋, 𝑡), 𝑡) =

−(div𝑝𝐹(𝑋(𝑎, 𝜋, 𝑡), 𝑃(𝑎, 𝜋, 𝑡), 𝑡))𝑓 (𝑋(𝑎, 𝜋, 𝑡), 𝑃(𝑎, 𝜋, 𝑡), 𝑡).
(52)

For the purpose of economy of notation, let us write

𝑟(𝑡) = |𝑃(𝑎, 𝜋, 𝑡)|, (53)

for the momentum magnitude,

𝑘(𝑡) = 𝐾(𝑋(𝑎, 𝜋, 𝑡), 𝑡), (54)

for the field strength and

𝑓 (𝑡) = 𝑓 (𝑋(𝑎, 𝜋, 𝑡), 𝑃(𝑎, 𝜋, 𝑡), 𝑡) (55)

for the probability density on characteristics. These quantities depend on

initial data 𝑎 and 𝜋.
In view of (15), (52) results in

𝑑
𝑑𝑡

log 𝑓 (𝑡) ≤ (3𝑀 + |𝜒 ′(𝑟(𝑡))|)𝑘(𝑡). (56)
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For further economy, we suppress that 𝑟, 𝑘, 𝑓 are evaluated at 𝑡. Using (12)
we have

𝑑𝑟
𝑑𝑡

≤ −𝑀𝑘𝑟 + (1 − 𝜒(𝑟))𝑘

≤ −𝑘(𝑀𝑟 − (1 − 𝜒(𝑟)))
≤ 0

(57)

where we use the facts that 𝑀 ≥ 2 and (1 − 𝜒(𝑟)) ≤ |𝜒 ′(𝑟)|𝑟 ≤ 2𝑟 . Let us
consider the function

Φ(𝑟) = 𝐴𝑟 + log 𝑟3. (58)

We have that

𝑑
𝑑𝑡

(Φ(𝑟) + log 𝑓 ) = Φ′(𝑟)
𝑑𝑟
𝑑𝑡

+
𝑑
𝑑𝑡

log 𝑓

≤ −(𝐴 +
3
𝑟 )

(𝑀𝑘𝑟 − (1 − 𝜒)𝑘) + 3𝑀𝑘 + |𝜒 ′|𝑘

≤ −𝐴(𝑀𝑘𝑟 − (1 − 𝜒)𝑘) +
3
𝑟
(1 − 𝜒)𝑘 + |𝜒 ′|𝑘

≤ 0.

(59)

The last inequality follows because 𝐴 is large enough (47). Indeed, the

supports of 𝜒 ′
and of (1 − 𝜒) are included in 𝑟 ≥ 𝑅0, and

𝑀𝑘𝑟 − (1 − 𝜒)𝑘 ≥ 𝑘(𝑀 − 2)𝑟 ≥ 𝑘(𝑀 − 2)𝑅0 (60)

there, while 𝑘((1 − 𝜒)3/𝑟 + |𝜒 ′|) ≤ 𝑘(3/𝑅0 + 2). We deduce that

𝑑
𝑑𝑡

(𝑟3𝑓 exp𝐴𝑟) ≤ 0. (61)

We obtained on each characteristic

|𝑃(𝑎, 𝜋, 𝑡)|3𝑓 (𝑋(𝑎,𝜋, 𝑡), 𝑃(𝑎, 𝜋, 𝑡), 𝑡)
≤ (𝑓0(𝑎, 𝜋)|𝜋|3 exp𝐴|𝜋|) exp (−𝐴|𝑃(𝑎, 𝜋, 𝑡)|).

(62)

Straightfoward from (52) and 𝑓0 ≥ 0 is

𝑓 (𝑋(𝑎, 𝜋, 𝑡), 𝑃(𝑎, 𝜋, 𝑡), 𝑡) ≥ 0. (63)

Reading (62) and (63) at 𝑥 = 𝑋(𝑎, 𝜋, 𝑡), 𝑝 = 𝑃(𝑎, 𝜋, 𝑡) where (𝑥, 𝑝, 𝑡) is
arbitrary in view of the fact that the flow map is invertible (due to the

inverse map theorem of Hadamard, see e.g. [26]) we deduce (48). □

We show that bounds on moment fluxes imply bounds on moments

which depend logarithmically on gradients of 𝑓 in either 𝑥 or 𝑝. We define

𝐺1(𝑡) = sup
0≤𝑠≤𝑡

sup
𝑥,𝑝

|∇𝑥𝑓 (𝑥, 𝑝, 𝑠)| + 2, (64)
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and

𝐺2(𝑡) = sup
𝑥,𝑝

|∇𝑝𝑓 (𝑥, 𝑝, 𝑡)| + 2. (65)

Theorem 4. Let (𝑓 , 𝐸, 𝐵) be a smooth solution of the RVM equations on
[0, 𝑇 ]. Assume that (48) holds and that the initial data satisfies

𝑓0(𝑥, 0) = 0.

Then,
𝑚𝑛(𝑥, 𝑡) ≤ 𝐶𝑀𝑛 + 𝐶𝑛 log𝐺2(𝑡)

holds for 𝑡 ≤ 𝑇 with a constant 𝐶𝑛 depending continuously and explicitly
only on 𝑛 and initial data.

Proof. We note first that 𝑓 (𝑥, 0, 𝑡) = 0 holds as long as the solution is

smooth (because both 𝑣 and 𝐹 vanish at 𝑝 = 0). Then, we write

∫ 𝑓 (𝑥, 𝑝, 𝑡) 𝑑𝑝 = ∫
|𝑝|≤𝑅

(𝑓 (𝑥, 𝑝, 𝑡) − 𝑓 (𝑥, 0, 𝑡)) 𝑑𝑝 + ∫
|𝑝|≥𝑅

𝑓 (𝑥, 𝑝, 𝑡) 𝑑𝑝.

(66)

Using (48) which implies that ∫|𝑝|≥𝑅 𝑓 (𝑥, 𝑝, 𝑡)𝑑𝑝 ≤ 𝐶0 log 1
𝑅 + 𝐶0

𝐴 , and opti-

mizing in 𝑅 we obtain

𝜌(𝑥, 𝑡) ≤ 𝐶 log𝐺2(𝑡). (67)

We have proved the claim for 𝑚0 = 𝜌. For higher moments, we observe

𝑚𝑛(𝑥, 𝑡) ≤
√
2(𝑣𝑚𝑛(𝑥, 𝑡)) + (

√
2)𝑛 ∫

|𝑝|≤1
𝑓 (𝑥, 𝑝, 𝑡)𝑑𝑝

≤
√
2(𝑣𝑚𝑛(𝑥, 𝑡)) + (

√
2)𝑛𝜌(𝑥, 𝑡).

(68)

So, the bound on 𝑚0 implies bounds on all higher moments, in view of

Theorem 2. □

We estimate in terms of 𝐺1 the space-time average of 𝑚𝑛,

𝑚𝑛(𝑥, 𝑡) =
1

4𝜋𝑡 ∫
𝑡

0
∫
|𝜔|=1

𝑚𝑛(𝑥 + (𝑡 − 𝑠)𝜔, 𝑠) 𝑑𝑆(𝜔)𝑑𝑠. (69)

Let us denote the region

Γ(𝑥, 𝑡) = {(𝑦, 𝑠) ∶ 0 ≤ 𝑠 ≤ 𝑡, |𝑥 − 𝑦| ≤ 𝑡 − 𝑠}. (70)

Fixing 𝑛 and the vertex (𝑥, 𝑡), we consider the quantity

𝑄(𝑠) = ∫
|𝑥−𝑦|≤𝑡−𝑠

𝑚𝑛(𝑦, 𝑠)
𝑑𝑦

|𝑥 − 𝑦|2
(71)
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and take the time derivative. Differentiating, we find

𝑑𝑄
𝑑𝑠

= −
1

(𝑡 − 𝑠)2 ∫
|𝑥−𝑦|=𝑡−𝑠

𝑚𝑛(𝑦, 𝑠) 𝑑𝑆(𝑦) + ∫
|𝑥−𝑦|≤𝑡−𝑠

𝜕𝑚𝑛

𝜕𝑠
(𝑦, 𝑠)

𝑑𝑦
|𝑥 − 𝑦|2

. (72)

Then by the moment evolution law (43) and the property (17) of 𝐹

∫
|𝑥−𝑦|≤𝑡−𝑠

𝜕𝑚𝑛

𝜕𝑠
(𝑦, 𝑠)

𝑑𝑦
|𝑥 − 𝑦|2

= ∫
|𝑥−𝑦|≤𝑡−𝑠

𝑛⟨(𝑣 ⋅ 𝐹)[𝑝]𝑛−1⟩(𝑦, 𝑠) − div𝑦⟨𝑣[𝑝]𝑛⟩(𝑦, 𝑠)
𝑑𝑦

|𝑥 − 𝑦|2

≤ ∫
|𝑥−𝑦|≤𝑡−𝑠

𝐶𝑛𝐾(𝑦, 𝑠) − div𝑦⟨𝑣[𝑝]𝑛⟩(𝑦, 𝑠)
𝑑𝑦

|𝑥 − 𝑦|2

(73)

where 𝐶𝑛 depends only on 𝑛 and the a priori moment flux bound 𝑀𝑛 in

Theorem 2. Then, integrating by parts

− ∫
|𝑥−𝑦|≤𝑡−𝑠

div𝑦⟨𝑣[𝑝]𝑛⟩(𝑦, 𝑠)
𝑑𝑦

|𝑥 − 𝑦|2

= −
1

(𝑡 − 𝑠)2 ∫
|𝑥−𝑦|=𝑡−𝑠

𝜔 ⋅ ⟨𝑣[𝑝]𝑛⟩(𝑦, 𝑠) 𝑑𝑆(𝑦)

+ 𝑃.𝑉 . ∫
|𝑥−𝑦|≤𝑡−𝑠

2
|𝑦 − 𝑥|3

𝜔 ⋅ ⟨𝑣[𝑝]𝑛⟩(𝑦, 𝑠) 𝑑𝑦

+ lim
𝜀→0

⟨𝑣[𝑝]𝑛⟩(𝑥, 𝑠) ⋅ ∫
|𝜔|=1

𝜔𝑑𝑆(𝜔).

(74)

We observe that on the right hand side of the equality above, the first term

is bounded by 𝑀𝑛, and the last term vanishes. Then integrating the equa-

tion (72) with respect to 𝑑𝑠 with (74) and (73) in hand yields upon dividing

by 4𝜋𝑡
𝑚𝑛(𝑥, 𝑡)

≤ 𝐶𝑛 + 𝐶𝑛
1
𝑡 ∫

𝑡

0
‖𝐊(𝑠)‖𝐿∞𝑑𝑠 +

1
2𝜋𝑡

𝑃.𝑉 . ∫
Γ(𝑥,𝑡)

1
|𝑥 − 𝑦|3

𝜔 ⋅ ⟨𝑣[𝑝]𝑛⟩ 𝑑𝑦 𝑑𝑠.

(75)

Here, 𝑡 > 0 and𝐶𝑛 depends only on 𝑛 and the initial data. Indeed, (4𝜋𝑡)−1𝑄(0)
is bounded uniformly in (𝑥, 𝑡) for smooth data.

Theorem 5. Let (𝑓 , 𝐸, 𝐵) be a smooth solution of the RVM equations on
[0, 𝑇 ]. Assume that the initial data 𝑓0(𝑥, 𝑝) obeys 𝑓0(𝑥, 0) = 0 and the decay
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condition (46). Then

𝑚𝑛(𝑥, 𝑡) ≤ 𝐶𝑛
1
𝑡 ∫

𝑡

0
𝐾∞(𝑠)𝑑𝑠 + 𝐶𝑇 (1 + log𝐺1(𝑡))

and
𝑚𝑛(𝑥, 𝑡) ≤ 𝐶𝑛(1 + log𝐺2(𝑡))

holds for 𝑡 ≤ 𝑇 with constant 𝐶𝑛 depending continuously and explicitly only
on 𝑛 and initial data and 𝐶𝑇 depending on 𝑛, initial data and 𝑇 .

Proof. The bound for 𝑚𝑛 in terms of 𝐺2 is an immediate consequence

of Theorem 4.

To show the bound for 𝑚𝑛 in terms of 𝐺1, we estimate the principal

value integral in (75) as follows. For fixed 𝑠, we split the spatial integral

into the regions |𝑥 − 𝑦| ≤ 𝛿 and 𝛿 ≤ |𝑥 − 𝑦| ≤ 𝑡 − 𝑠. The value 𝛿 = 𝛿(𝑠) is
chosen below.

The integral on 𝛿 ≤ |𝑥 − 𝑦| ≤ 𝑡 − 𝑠 is bounded by

||||∫𝛿≤|𝑥−𝑦|≤𝑡−𝑠

1
|𝑥 − 𝑦|3

𝜔 ⋅ ⟨𝑣[𝑝]⟩(𝑠) 𝑑𝑦
||||
≤ 𝐶𝑀𝑛 log (

𝑡 − 𝑠
𝛿 ) . (76)

For |𝑥 − 𝑦| ≤ 𝛿 and |𝑝| ≥ |𝑥 − 𝑦|−𝜅, we evaluate

∫
|𝑝|≥|𝑥−𝑦|−𝜅

|𝑣|[𝑝]𝑛𝑓 (𝑦, 𝑝, 𝑠)𝑑𝑝 ≤ |𝑥 − 𝑦|𝑘𝜅𝑣𝑚𝑛+𝑘(𝑦, 𝑠) (77)

and thus the contribution of this term is bounded,

||||∫|𝑥−𝑦|≤𝛿

1
|𝑥 − 𝑦|3

𝜔 ⋅ ∫
|𝑝|≥|𝑥−𝑦|−𝜅

𝑣[𝑝]𝑛𝑓 (𝑦, 𝑝, 𝑠) 𝑑𝑝 𝑑𝑦
||||

≤ 𝐶𝑀𝑛+𝑘 ∫
|𝑥−𝑦|≤𝛿

|𝑥 − 𝑦|𝑘𝜅−3 𝑑𝑦

≤ 𝐶𝑀𝑛+𝑘𝛿𝑘𝛾 .

(78)

We are left with the integral for |𝑥 − 𝑦| ≤ 𝛿 and |𝑝| ≤ |𝑥 − 𝑦|−𝜅. Because
the unit sphere average ∫|𝜔|=1(𝜔 ⋅ 𝑣)𝑓 (𝑥, 𝑝, 𝑠)𝑑𝑆(𝜔) vanishes, we have

||||∫|𝑥−𝑦|≤𝛿

1
|𝑥 − 𝑦|3

𝜔 ⋅ ∫
|𝑝|≤|𝑥−𝑦|−𝜅

𝑣[𝑝]𝑛𝑓 (𝑦, 𝑝, 𝑠) 𝑑𝑝 𝑑𝑦
||||

≤ 𝐶 sup
𝑦,𝑝

|∇𝑓 (𝑠)| ∫
|𝑥−𝑦|≤𝛿

𝑑𝑦
|𝑥 − 𝑦|2 ∫|𝑝|≤|𝑥−𝑦|−𝜅

[𝑝]𝑛 𝑑𝑝

≤ 𝐶 sup
𝑦,𝑝

|∇𝑓 (𝑠)|𝛿1−(𝑛+3)𝜅.

(79)
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By choosing 0 < 𝜅 < 1
𝑛+3 and 𝛿 = (𝑡 − 𝑠)/(2 + sup𝑦,𝑝 |∇𝑥𝑓 (𝑠)|), we find that

the time average of the principal value integral is bounded as

||||
1

2𝜋𝑡 ∫
𝑡

0
𝑃.𝑉 . ∫

|𝑥−𝑦|≤𝑡−𝑠

1
|𝑥 − 𝑦|3

𝜔 ⋅ ⟨𝑣[𝑝]⟩(𝑠) 𝑑𝑦 𝑑𝑠
||||
≤ 𝐶𝑇 (1 + log𝐺1(𝑡)).

(80)

With this estimate and inequality (75), we have shown the bound in terms

of 𝐺1. □

6. Electromagnetic field bounds

Theorem 6. Let (𝑓 , 𝐸, 𝐵) be a smooth solution of the RVM equations on
[0, 𝑇 ]. Assume that the initial data 𝑓0(𝑥, 𝑝) obeys 𝑓0(𝑥, 0) = 0 and the decay
condition (46). Let

𝐾∞(𝑡) = sup
0≤𝑠≤𝑡

‖𝐊(⋅, 𝑠)‖𝐿∞ .

Then
𝐾∞(𝑡) ≤ 𝐶1 (1 + min{log𝐺1(𝑡), log𝐺2(𝑡)})

holds for 𝑡 ≤ 𝑇 with a constant 𝐶1 depending continuously and explicitly
only on initial data and 𝑇 .

Proof. We use theGlassey–Strauss representation (32) for𝐊 and bound

the integrals 𝐊𝑆 and 𝐊𝑇 .

To bound the integral 𝐊𝑆 with kernel 𝑎𝑆 , we first use the Vlasov equa-
tion (1), 𝑆𝑓 = −div𝑝(𝐹𝑓 ), to integrate by parts in 𝑝, so

∫ 𝑎𝑆𝑆𝑓 𝑑𝑝 = ∫ (∇𝑝𝑎𝑆)𝐹𝑓 𝑑𝑝 (81)

pointwise in (𝑦, 𝑠). Then, properties (17) and (34) imply

||||∫
𝑎𝑆𝑆𝑓 𝑑𝑝

||||
≤ 𝐶 ∫ [𝑝]|𝑝||𝐊|𝑓 𝑑𝑝

≤ 𝐶𝑀2‖𝐊(𝑠)‖𝐿∞
(82)

because |𝑝|[𝑝] = |𝑣|[𝑝]2. Therefore, 𝐊𝑆 has the bound

||||∫|𝑥−𝑦|≤𝑡
𝑎𝑆𝑆𝑓 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|

||||
≤ 𝐶𝑀2 ∫

𝑡

0
(𝑡 − 𝑠)‖𝐊(𝑠)‖𝐿∞ 𝑑𝑠

≤ 𝐶𝑀2𝑇 ∫
𝑡

0
‖𝐊(𝑠)‖𝐿∞ 𝑑𝑠.

(83)

To bound the integral 𝐊𝑇 with kernel 𝑎𝑇 , we use Theorem 5 because

⟨𝑎𝑇 ⟩ does not generally have a pointwise bound by a moment flux. In

particular, property (36) implies

||||∫|𝑥−𝑦|≤𝑡
𝑎𝑇 𝑓 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|2

||||
≤ 𝐶𝑇 𝑚1(𝑥, 𝑡) (84)
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pointwise in (𝑥, 𝑡) and then we apply Theorem 5 for 𝑛 = 1 using the bound
in terms of either 𝐺1 or 𝐺2. Using the bound in terms of 𝐺2, we obtain

||||∫|𝑥−𝑦|≤𝑡
𝑎𝑇 𝑓 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|2

||||
≤ 𝐶1𝑀1𝑇 log𝐺2(𝑡). (85)

On the other hand, from the bound in terms of 𝐺1 we have

||||∫|𝑥−𝑦|≤𝑡
𝑎𝑇 𝑓 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|2

||||
≤ 𝐶1 ∫

𝑡

0
‖𝐊(𝑠)‖𝐿∞ 𝑑𝑠 + 𝐶1 log𝐺1(𝑡). (86)

To conclude, we apply the estimate (83) for 𝐊𝑆 with either estimate (85)

or (86) for 𝐊𝑇 in the Glassey–Strauss representation, and use the Grönwall

inequality. □

7. Gradient bounds for electromagnetic fields

Now that we know the bounds for the moments in Theorem 2 and the

uniform 𝐿∞ bound on 𝐊 in Theorem 6, we can use the Glassey–Strauss

representations (37) for the spatial gradients of 𝐸 and 𝐵 which we denote

by ∇𝑥𝐊.

Theorem 7. Let (𝑓 , 𝐸, 𝐵) be a smooth solution of the RVM equations on
[0, 𝑇 ]. Assume that the initial data 𝑓0(𝑥, 𝑝) obeys 𝑓0(𝑥, 0) = 0 and the decay
condition (46). Then

‖∇𝑥𝐊(⋅, 𝑡)‖𝐿∞ ≤ 𝐶1 log𝐺1(𝑡) log𝐺2(𝑡)

holds for 𝑡 ≤ 𝑇 with a constant 𝐶1 depending continuously and explicitly
only on initial data and 𝑇 .

Proof. We use the representation (37) for the gradient ∇𝑥𝐊 and bound

the integrals (∇𝑥𝐊)𝑇𝑇 , (∇𝑥𝐊)𝑇𝑆 and (∇𝑥𝐊)𝑆𝑆 .
The simplest term to bound is the integral (∇𝑥𝐊)𝑇𝑆 whose kernel 𝑎𝑇𝑆

satisfies ([13], Lemma 4)

|∇𝑝𝑎𝑇𝑆 | ≤ 𝐶[𝑝]4. (87)

After using 𝑆𝑓 = −div𝑝(𝐹𝑓 ) to integrate by parts, we find

∫ 𝑎𝑇𝑆𝑆𝑓 𝑑𝑝 = ∫ (∇𝑝𝑎𝑇𝑆)𝐹𝑓 𝑑𝑝. (88)

The properties (17) and (87) then imply

||||∫
𝑎𝑇𝑆𝑆𝑓 𝑑𝑝

||||
≤ 𝐶 ∫ [𝑝]4|𝑝||𝐊|𝑓 𝑑𝑝

≤ 𝐶𝑀5‖𝐊(𝑠)‖𝐿∞
(89)



RADIATIVE VLASOV–MAXWELL EQUATIONS 17

with the fact |𝑝|[𝑝]4 = |𝑣|[𝑝]5. Therefore, (∇𝑥𝐊)𝑇𝑆 has the bound
||||∫|𝑥−𝑦|≤𝑡

𝑎𝑇𝑆𝑆𝑓 𝑑𝑝
𝑑𝑦

|𝑥 − 𝑦|2
||||
≤ 𝐶𝑀5 ∫

𝑡

0
‖𝐊(𝑠)‖𝐿∞ 𝑑𝑠

≤ 𝐶𝑀5𝑇𝐾∞(𝑡).
(90)

In order to bound (∇𝑥𝐊)𝑆𝑆 , we first rewrite 𝑆2𝑓 appealing twice to the

Vlasov equation 𝑆𝑓 = −div𝑝(𝐹𝑓 ). Pointwise,
𝑆(𝑆𝑓 ) = −𝑆(div𝑝(𝐹𝑓 ))

= ∇𝑥(𝐹𝑓 ) ∶ ∇𝑝𝑣 − div𝑝(𝑆(𝐹𝑓 ))
= ∇𝑥(𝐹𝑓 ) ∶ ∇𝑝𝑣 − div𝑝(𝑓 𝑆𝐹) − div𝑝(𝐹𝑆𝑓 )
= ∇𝑥(𝐹𝑓 ) ∶ ∇𝑝𝑣 − div𝑝(𝑓 𝑆𝐹) + div𝑝(𝐹div𝑝(𝐹𝑓 )).

(91)

We thus have three terms entering the expression of (∇𝑥𝐊)𝑆𝑆 . For 𝑛 =
0, 1, 2, the kernel 𝑎𝑆𝑆 satisfies ([13], Lemma 4)

|∇𝑛
𝑝𝑎𝑆𝑆 | ≤ 𝐶[𝑝]4. (92)

For the last term, integrating by parts in 𝑝 twice gives

∫ 𝑎𝑆𝑆 div𝑝(𝐹div𝑝(𝐹𝑓 )) 𝑑𝑝 = ∫ 𝐹 ⋅ ∇𝑝(𝐹 ⋅ ∇𝑝𝑎𝑆𝑆)𝑓 𝑑𝑝. (93)

Then, properties (17), (18) and (92) imply

||||∫
𝑎𝑆𝑆div𝑝(𝐹div𝑝(𝐹𝑓 )) 𝑑𝑝

||||
≤ 𝐶 ∫ |𝑝|[𝑝]4(|∇𝑝𝐹 | + |𝐹 |)|𝐊|𝑓 𝑑𝑝

≤ 𝐶 ∫ |𝑣|[𝑝]5|𝐊|2𝑓 𝑑𝑝

≤ 𝐶𝑀5‖𝐊(𝑠)‖2𝐿∞ .

(94)

The bound for the last term is therefore

||||∫|𝑥−𝑦|≤𝑡
𝑎𝑆𝑆 div𝑝(𝐹div𝑝(𝐹𝑓 ))𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|

||||

≤ 𝐶𝑀5 ∫
𝑡

0
(𝑡 − 𝑠)‖𝐊(𝑠)‖2𝐿∞𝑑𝑠

≤ 𝐶𝑀5(𝑇𝐾∞(𝑡))2

(95)

For the second term, integration by parts in 𝑝 yields

−∫ 𝑎𝑆𝑆 div𝑝(𝑓 𝑆𝐹) 𝑑𝑝 = ∫ (∇𝑝𝑎𝑆𝑆)(𝑆𝐹)𝑓 𝑑𝑝. (96)

From the Maxwell equations,

𝑆𝐸 = 𝑣 ⋅ ∇𝑥𝐸 + ∇𝑥 × 𝐵 − 𝑗,
𝑆𝐵 = 𝑣 ⋅ ∇𝑥𝐵 − ∇𝑥 × 𝐸,

(97)
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and so from property (92), noting that 𝑆𝜒 = 0,
||||∫

𝑎𝑆𝑆 div𝑝(𝑓 𝑆𝐹) 𝑑𝑝
||||
≤ 𝐶 ∫ |𝑝|[𝑝]4(|𝑆𝐸| + |𝑆𝐵|)𝑓 𝑑𝑝

≤ 𝐶𝑀5(𝑀0 + ‖∇𝑥𝐊(𝑠)‖𝐿∞).
(98)

The bound for the second term is then

||||∫|𝑥−𝑦|≤𝑡
𝑎𝑆𝑆 div𝑝(𝑓 𝑆𝐹) 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|

||||

≤ 𝐶𝑀5 ∫
𝑡

0
(𝑡 − 𝑠)(𝑀0 + ‖∇𝑥𝐊(𝑠)‖𝐿∞) 𝑑𝑠

≤ 𝐶𝑀5𝑇 ∫
𝑡

0
(𝑀0 + ‖∇𝑥𝐊(𝑠)‖𝐿∞) 𝑑𝑠

(99)

For the first term, to integrate by parts the quantity

∇𝑥(𝐹𝑓 ) ∶ ∇𝑝𝑣 = 𝜕𝑖(𝐹𝑗𝑓 )
𝜕𝑣𝑖
𝜕𝑝𝑗

(100)

where 𝜕𝑖 = 𝜕/𝜕𝑥𝑖, we recall the decomposition of derivatives

𝜕𝑖 = 𝑇𝑖 + (
𝜔𝑖

1 + 𝑣 ⋅ 𝜔) (𝑣 ⋅ 𝑇 − 𝑆). (101)

Repeated indices indicate summation. We then write

𝑎𝑆𝑆(∇𝑥(𝐹𝑓 ) ∶ ∇𝑝𝑣) = 𝐴𝑖𝑗𝑇𝑖(𝐹𝑗𝑓 ) + 𝑏 𝑗𝑆(𝐹𝑗𝑓 ) (102)

as the sum of two expressions.

The latter expression is

𝑏 𝑗𝑆(𝐹𝑗𝑓 ) =
𝜕𝑣𝑖
𝜕𝑝𝑗 (

𝜔𝑖

1 + 𝑣 ⋅ 𝜔) 𝑎𝑆𝑆𝑆(𝐹𝑗𝑓 ) (103)

which becomes

𝑏 𝑗𝑆(𝐹𝑗𝑓 ) = 𝑏 𝑗𝐹𝑗𝑆𝑓 + 𝑏 𝑗𝑓 𝑆𝐹𝑗 . (104)

Observe that each term on the right hand side above may be treated in a

similar fashion to terms previously discussed; we use the Vlasov equation

to integrate by parts in 𝑝 and use property (17) to deduce

||||∫|𝑥−𝑦|≤𝑡
𝑏 𝑗𝐹𝑗𝑆𝑓 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|

||||
≤ 𝐶𝑀6𝑇 2𝐾∞(𝑡), (105)

and we use properties (18) and (97) to arrive at

||||∫|𝑥−𝑦|≤𝑡
𝑏 𝑗𝑓 𝑆𝐹𝑗 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|

||||
≤ 𝐶𝑀6𝑇 ∫

𝑡

0
(𝑀0 + ‖∇𝑥𝐊(𝑠)‖𝐿∞) 𝑑𝑠 (106)

The former expression is

𝐴𝑖𝑗𝑇𝑖(𝐹𝑗𝑓 ) =
𝜕𝑣𝑖
𝜕𝑝𝑗 (

𝑇𝑖 +
𝜔𝑖

1 + 𝑣 ⋅ 𝜔
𝑣 ⋅ 𝑇) (𝐹𝑗𝑓 ). (107)



RADIATIVE VLASOV–MAXWELL EQUATIONS 19

Each 𝑇𝑖 is a total 𝑦 derivative, and so integrating by parts in 𝑦 gives

∫
|𝑥−𝑦|≤𝑡

𝐴𝑖𝑗𝑇𝑖(𝐹𝑗𝑓 ) 𝑑𝑝
𝑑𝑦

|𝑥 − 𝑦|
= −∫

|𝑥−𝑦|≤𝑡
𝐴̃𝑗(𝐹𝑗𝑓 ) 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|2

+ 𝑂(1) (108)

where 𝑂(1) represents a function of (𝑥, 𝑡) which depends explicitly on the

initial data. On the right hand side is the kernel 𝐴̃𝑗 = 𝑟2𝜕/𝜕𝑦𝑖(𝐴𝑖𝑗/𝑟)where
𝑟 = |𝑥 − 𝑦|, which in particular satisfies |𝐴̃𝑗 | ≤ 𝐶[𝑝]4 (see [13] Lemma 4).

The estimate for this expression is then by property (17)

||||∫|𝑥−𝑦|≤𝑡
𝐴𝑖𝑗𝑇𝑖(𝐹𝑗𝑓 ) 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|

||||
≤𝐶 ∫

|𝑥−𝑦|≤𝑡
|𝑣|[𝑝]5|𝐊|𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|2

+ 𝑂(1)

≤𝐶𝑀5 ∫
𝑡

0
‖𝐊(𝑠)‖𝐿∞ 𝑑𝑠 + 𝑂(1)

≤𝐶0(1 + 𝑀5𝑇𝐾∞(𝑡))
(109)

where 𝐶0 depends only on the initial data. Taking together (109), (105) and

(106) gives us a bound on the first term entering the expression of (∇𝑥𝐊)𝑆𝑆 ,
while the second and last term have bounds (99) and (95).

Therefore, (∇𝑥𝐊)𝑆𝑆 has the bound

||||∫|𝑥−𝑦|≤𝑡
𝑎𝑆𝑆(𝑆2𝑓 ) 𝑑𝑝

𝑑𝑦
|𝑥 − 𝑦|

||||
≤ 𝐶𝑇 (1 + 𝐾∞(𝑡)2 + ∫

𝑡

0
‖∇𝑥𝐊(𝑠)‖𝐿∞𝑑𝑠)

(110)

where 𝐶𝑇 depends only on the initial data and 𝑇 .
To bound (∇𝑥𝐊)𝑇𝑇 , we write the integral as

(∇𝑥𝐊)𝑇𝑇 (𝑥, 𝑡) = ∫
𝑡

0

𝑑𝑠
𝑡 − 𝑠 ∫|𝜔|=1

𝑎𝑇𝑇 (𝜔, 𝑣)𝑓 (𝑥 + (𝑡 − 𝑠)𝜔, 𝑝, 𝑠)𝑑𝑝 𝑑𝑆(𝜔)

(111)

We split the integral on the backwards light cone into two pieces: the base

piece on 0 ≤ 𝑠 ≤ 𝑡 − 𝛿, and tip piece on 𝑡 − 𝛿 ≤ 𝑠 ≤ 𝑡, where 𝛿 is chosen

below. The properties of the kernel 𝑎𝑇𝑇 ([13], Lemma 4),

|𝑎𝑇𝑇 | ≤ 𝐶[𝑝]3 (112)

and

∫
|𝜔|=1

𝑎(𝑣, 𝜔)𝑑𝑆(𝜔) = 0, (113)

imply for the base piece

||||∫
𝑡−𝛿

0

𝑑𝑠
𝑡 − 𝑠 ∫|𝜔|=1

𝑎𝑇𝑇 𝑓 𝑑𝑝 𝑑𝑆(𝜔)
||||
≤ 𝐶(𝑀4 + log𝐺2(𝑡)) log (

𝑡
𝛿)

. (114)
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For the tip piece, we first note

||||∫|𝑝|≥(𝑡−𝑠)−𝜅
𝑎𝑇𝑇 𝑓 𝑑𝑝

||||
≤ 𝐶 ∫

|𝑝|≥(𝑡−𝑠)−𝜅
[𝑝]3𝑓 𝑑𝑝

≤ 𝐶(𝑡 − 𝑠)𝛼 ∫
|𝑝|≥(𝑡−𝑠)−𝜅

|𝑝|
𝛼
𝜅 [𝑝]3𝑓 𝑑𝑝

≤ 𝐶𝑀𝑛(𝑡 − 𝑠)𝛼

(115)

where 𝑛 = ⌈4 + 𝛼/𝜅⌉, and 𝛼, 𝜅 are numbers chosen freely. We let 𝛼 > 0 so
that

||||∫
𝑡

𝑡−𝛿

𝑑𝑠
𝑡 − 𝑠 ∫|𝜔|=1

∫
|𝑝|≥(𝑡−𝑠)−𝜅

𝑎𝑇𝑇 𝑓 𝑑𝑝 𝑑𝑆(𝜔)
||||
≤ 𝐶𝑀𝑛𝛿1−𝛼 . (116)

Then, we choose 𝜅 < 1
6 such that

||||∫
𝑡

𝑡−𝛿

𝑑𝑠
𝑡 − 𝑠 ∫|𝜔|=1

∫
|𝑝|≤(𝑡−𝑠)−𝜅

𝑎𝑇𝑇 𝑓 𝑑𝑝 𝑑𝑆(𝜔)
||||

≤ sup
𝑠≤𝑡

sup
𝑥,𝑝

|∇𝑥𝑓 (𝑥, 𝑝, 𝑠)| ∫
𝑡

𝑡−𝛿
∫
|𝑝|≤(𝑡−𝑠)−𝜅

[𝑝]3 𝑑𝑝

≤ 𝛿1−6𝜅 sup
𝑠≤𝑡

sup
𝑥,𝑝

|∇𝑥𝑓 (𝑥, 𝑝, 𝑠)|.

(117)

With 𝛼 = 1, we choose here 𝛿 = 𝑡(2 + sup𝑠≤𝑡,𝑥,𝑝 |∇𝑥𝑓 (𝑥, 𝑝, 𝑠)|)−1/(1−6𝜅) in
view of the above.

Therefore, we have the following bound for (∇𝑥𝐊)𝑇𝑇
||||∫

𝑡

0

𝑑𝑠
𝑡 − 𝑠 ∫|𝜔|=1

𝑎𝑇𝑇 𝑓 𝑑𝑝 𝑑𝑆(𝜔)
||||
≤ 𝐶𝑇 log𝐺1(𝑡) log𝐺2(𝑡). (118)

Putting together estimates (90), (110) and (118), we obtain

|∇𝑥𝐊(𝑥, 𝑡)| ≤ 𝐶𝑇 (log𝐺1(𝑡) log𝐺2(𝑡) + ∫
𝑡

0
‖∇𝑥𝐊(𝑠)‖𝐿∞ 𝑑𝑠) (119)

where we chose to bound 𝐾 2
∞ by the product 𝐶 log𝐺1 log𝐺2 in view of

Theorem 5. Using the Grönwall inequality, we conclude the proof. □

8. Proof of Theorem 1

Theorem 8. Let (𝑓 , 𝐸, 𝐵) be a smooth solution of the RVM equations on
[0, 𝑇 ]. Assume that the initial data 𝑓0(𝑥, 𝑝) obeys 𝑓0(𝑥, 0) = 0 and the decay
condition (46). Then

‖∇𝑥𝑓 (⋅, 𝑡)‖𝐿∞ + ‖[𝑝]|∇𝑝𝑓 (⋅, 𝑡)|‖𝐿∞ ≤ 𝐶 exp(𝐶 exp(𝐶𝑡))

holds for 𝑡 ≤ 𝑇 with a constant 𝐶 depending continuously and explicitly only
on initial data.
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Proof. We consider the quantities

𝑊(𝑡) = sup
𝑠≤𝑡

‖∇𝑥𝑓 (𝑠)‖𝐿∞ + 3 (120)

and

𝑍(𝑡) = sup
𝑠≤𝑡

‖|𝑝||∇𝑝𝑓 (𝑠)| + (1 + |𝑝|)𝑓 (𝑠)‖𝐿∞ + 3. (121)

Below we show 𝑊 and 𝑍 obey the certain differential inequalities. We

write (1) as

𝐷𝑡𝑓 = −(div𝑝𝐹)𝑓 (122)

and take derivatives in 𝑥 and in 𝑝:

𝐷𝑡(𝜕𝑥𝑖𝑓 ) = −(𝜕𝑥𝑖𝐹) ⋅ ∇𝑝𝑓 − (div𝑝𝐹)(𝜕𝑥𝑖𝑓 ) − (𝜕𝑥𝑖(div𝑝𝐹))𝑓 (123)

and

𝐷𝑡(𝜕𝑝𝑖𝑓 ) = −(𝜕𝑝𝑖𝑣)⋅∇𝑥𝑓 −(div𝑝𝐹)(𝜕𝑝𝑖𝑓 )−(𝜕𝑝𝑖𝐹)⋅∇𝑝𝑓 −(𝜕𝑝𝑖(div𝑝𝐹))𝑓 (124)

We deduce inequalities for quantities

𝑤 = |∇𝑥𝑓 | + 3 (125)

and

𝑧 = (1 + |𝑝|)𝑓 + |𝑝||∇𝑝𝑓 | + 3. (126)

Using the estimates (17), (18), (19) and (20), we find that

𝐷𝑡𝑤 ≤ 𝐶(𝐾𝑤 + (𝐾 + |∇𝑥𝐊|)𝑧) (127)

and

𝐷𝑡𝑧 ≤ 𝐶(𝑤 + 𝐾𝑧) (128)

from equations (123) and (124).

To see this, first multiply the equation (123) by 𝜕𝑥𝑖𝑓 /|∇𝑥𝑓 | and add in 𝑖
to obtain,

𝐷𝑡 |∇𝑥𝑓 | ≤ |div𝑝𝐹 ||∇𝑥𝑓 | + |∇𝑥𝐹 ||∇𝑝𝑓 | + |∇𝑥div𝑝𝐹 |𝑓
≤ 𝐶(𝐾|∇𝑥𝑓 | + (𝐾 + |∇𝑥𝐊|)(|𝑝||∇𝑝𝑓 | + |𝑓 |))
≤ 𝐶(𝐾𝑤 + (𝐾 + |∇𝑥𝐊|)𝑧).

(129)

This implies (127). Then, we multiply (124) by |𝑝|𝜕𝑝𝑖𝑓 /|∇𝑝𝑓 | and add in 𝑖 to
obtain

|𝑝|𝐷𝑡 |∇𝑝𝑓 | ≤ 2|∇𝑥𝑓 | + |𝑝||div𝑝𝐹 ||∇𝑝𝑓 | + |𝑝||∇𝑝div𝑝𝐹 |𝑓
≤ 2|∇𝑥𝑓 | + 𝐶(𝐾|𝑝||∇𝑝𝑓 | + 𝐾|𝑝|𝑓 )
≤ 𝐶(𝑤 + 𝐾𝑧).

(130)

We used |𝑝||∇𝑝𝑣| < 2, which is immediate from (144) and |𝑣| < 1. This

implies, with (122), the estimate (128). Now we have that

𝑊(𝑡) = sup
𝑠≤𝑡

‖𝑤(𝑠)‖𝐿∞ , (131)
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and

𝑍(𝑡) = sup
𝑠≤𝑡

‖𝑧(𝑠)‖𝐿∞ . (132)

Taking the supremum in time of (127) and (128), we find

sup
𝑠≤𝑡

‖𝐷𝑡𝑤(𝑠)‖𝐿∞

≤ 𝐶 (𝐾∞(𝑡)𝑊 (𝑡) + (𝐾∞(𝑡) + sup
𝑠≤𝑡

‖∇𝑥𝐊(𝑠)‖𝐿∞)𝑍(𝑡))

(133)

and

sup
𝑠≤𝑡

‖𝐷𝑡𝑧(𝑠)‖𝐿∞ ≤ 𝐶(𝐾∞(𝑡)𝑍(𝑡) + 𝑊(𝑡)) (134)

We use now

Lemma 1. Let 𝑔 = 𝑔(𝑡) be a positive Lipschitz function of 𝑡 ∈ [0, 𝑇 ] and
let 𝐺(𝑡) = sup𝑠≤𝑡 𝑔(𝑠). Then, 𝐺 = 𝐺(𝑡) is Lipschitz and

lim sup
ℎ→0

𝐺(𝑡 + ℎ) − 𝐺(𝑡)
ℎ

≤ lim inf
𝜀→0

sup
𝑠≤𝑡+𝜀

|𝑔 ′(𝑠)|.

By Lemma 1, differentiation under sup𝑠≤𝑡 for Lipschitz functions of

time is permissible. We have thus

𝑑𝑊
𝑑𝑡

≤ lim inf
𝜀→0

sup
𝑠≤𝑡+𝜀

‖𝐷𝑡𝑤(𝑠)‖𝐿∞ (135)

and

𝑑𝑍
𝑑𝑡

≤ lim inf
𝜀→0

sup
𝑠≤𝑡+𝜀

‖𝐷𝑡𝑧(𝑠)‖𝐿∞ (136)

holds for almost all 𝑡. Then, using Theorem 6 and Theorem 7 and the

continuity of the upper bounds allowing to set 𝜀 = 0, we arrive at the ODE
system

𝑑𝑊
𝑑𝑡

≤ 𝐶((log𝑊)𝑊 + (log𝑊)(log 𝑍)𝑍) (137)

and

𝑑𝑍
𝑑𝑡

≤ 𝐶((log 𝑍)𝑍 +𝑊). (138)

We apply Lemma 2:

Lemma 2. Let 𝑊 = 𝑊(𝑡) and 𝑍 = 𝑍(𝑡) be nondecreasing, Lipschitz
functions of 𝑡 ≥ 0. Let𝑊(0) = 𝑊0 and 𝑍(0) = 𝑍0 and suppose

min {log𝑊0, log 𝑍0} ≥ 1.

Assume that𝑊(𝑡) and 𝑍(𝑡) obey differential inequalities
𝑑𝑊
𝑑𝑡

≤ 𝐶((log𝑊)𝑊 + (log𝑊)(log 𝑍)𝑍)
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and
𝑑𝑍
𝑑𝑡

≤ 𝐶((log 𝑍)𝑍 +𝑊).

Then the functions𝑊 and 𝑍 satisfy

𝑊 + 𝑍 ≤ 𝐶 exp(𝐶 exp(𝐶𝑡))

where 𝐶 depends only on𝑊0 and 𝑍0.

Remark 2. In contrast, the ODE

𝑑𝑌
𝑑𝑡

= 𝑌 (log 𝑌 )2

blows up in finite time.

□

The proof of Theorem 1 is completed now by applying the bounds of

Theorem 8 to the bounds on the EM fields in Theorems 6 and 7.

Appendix A: Checking the nonlinear Glassey–Strauss
representation

Here we derive (33) and (35) and check the properties (34) and (36). The

expressions for 𝐸 coming from 𝑆, 𝐸𝑆 are [11] p.63,

(𝐸𝑆)𝑖

= −∫ 𝑑𝑝 ∫
𝑡

0
∫
|𝜔|=1 (

𝜔𝑖 + 𝑣𝑖
1 + (𝜔 ⋅ 𝑣))

(𝑆𝑓 )(𝑥 − 𝑟𝜔, 𝑝, 𝑡 − 𝑟)𝑟𝑑𝑟𝑑𝑆(𝜔)

(139)

where 𝜔 = 𝑦 − 𝑥 . Using the equation (1), denoting

𝑁(𝑦, 𝑝, 𝑠) = 𝐹(𝑦, 𝑝, 𝑠)𝑓 (𝑦, 𝑝, 𝑠), (140)

and integrating by parts in (139) we obtain

(𝐸𝑆)𝑖

= −∫ 𝑑𝑝 ∫
𝑡

0
∫
|𝜔|=1

𝜕𝑝𝑗 (
𝜔𝑖 + 𝑣𝑖

1 + (𝜔 ⋅ 𝑣))
𝑁𝑗(𝑥 − 𝑟𝜔, 𝑝, 𝑡 − 𝑟)𝑟𝑑𝑟𝑑𝑆(𝜔)

(141)

which we write as

(𝐸𝑆)𝑖

= −∫ 𝑑𝑝 ∫
𝑡

0

1
𝑡 − 𝑠 ∫|𝑥−𝑦|=𝑡−𝑠

𝑁(𝑦, 𝑠) ⋅ ∇𝑝 (
𝜔𝑖 + 𝑣𝑖

1 + (𝜔 ⋅ 𝑣))
𝑑𝑆(𝑦)𝑑𝑠

(142)
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The expressions (142) for 𝐸𝑆 are nonlinear because they employ (1). The

expression for 𝐸𝑇 [11] p. 63 is

(𝐸𝑇 )𝑖

= −∫ 𝑑𝑝 ∫
𝑡

0

1
(𝑡 − 𝑠)2 ∫|𝑥−𝑦|=𝑡−𝑠

𝑓 (𝑦, 𝑠)
1

[𝑝]2 (
𝜔𝑖 + 𝑣𝑖

(1 + (𝜔 ⋅ 𝑣))2)
𝑑𝑆(𝑦)𝑑𝑠

(143)

Note that 𝐸𝑇 is linear in 𝑓 , because it comes without use of the equation of

evolution of 𝑓 . There are analogous representations for 𝐵. The main point

here is to verify (34) and (36). We observe that

𝜕𝑝𝑖𝑣𝑘 =
1√

1 + |𝑝|2
(𝛿𝑖𝑘 − 𝑣𝑖𝑣𝑘) = [𝑝]−1(𝕀 − 𝑣 ⊗ 𝑣)𝑖𝑘 (144)

and

|𝑣|2 = 1 −
1

[𝑝]2
. (145)

We note the following facts. First,

𝜕𝑝𝑗 (
1

1 + 𝜔 ⋅ 𝑣)
=

𝑣𝑗
[𝑝](1 + 𝜔 ⋅ 𝑣)

−
𝜔𝑗 + 𝑣𝑗

[𝑝](1 + 𝜔 ⋅ 𝑣)2
(146)

and

𝜕𝑝𝑗 (
𝜔𝑖 + 𝑣𝑖

1 + (𝜔 ⋅ 𝑣))
=

1
[𝑝]

(𝛿𝑖𝑗 + 𝑣𝑗𝜔𝑖)
1 + (𝜔 ⋅ 𝑣)

−
1
[𝑝]

(𝜔𝑖 + 𝑣𝑖)(𝜔𝑗 + 𝑣𝑗)
(1 + (𝜔 ⋅ 𝑣))2

. (147)

These are done by direct calculation, inserting 𝜔 + 𝑣 terms. The second

observation is that

|𝜔 + 𝑣|2

(1 + (𝜔 ⋅ 𝑣))2
=

(1 − |𝑣|)2 + 2|𝑣|𝛿
(1 − |𝑣|)2 + |𝑣|2𝛿2 + 2(1 − |𝑣|)|𝑣|𝛿

(148)

where

𝛿 = 1 + 𝜔 ⋅ 𝑝 = 1 + cos 𝜃. (149)

Multiplying the numerator by 1−|𝑣| and using (1−|𝑣|)3 ≤ (1−|𝑣|)2 in the
numerator we see that the resulting fraction is less than 1, and therefore,

after taking square roots we have,

|𝜔 + 𝑣|
1 + (𝜔 ⋅ 𝑣)

≤
√
2[𝑝] (150)

where we used

(1 − |𝑣|)−1 = [𝑝]2(1 + |𝑣|) ≤ 2[𝑝]2. (151)

Also, from 1 + (𝜔 ⋅ 𝑣) = 1 + |𝑣| cos 𝜃 ≥ 1 − |𝑣| and (151) we have that

0 ≤
1

1 + 𝜔 ⋅ 𝑣
≤ 2[𝑝]2. (152)
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Thus, the second term in (147) obeys

||||
1
[𝑝]

(𝜔𝑖 + 𝑣𝑖)(𝜔𝑗 + 𝑣𝑗)
(1 + (𝜔 ⋅ 𝑣))2

||||
≤ 2[𝑝] (153)

and the first term in (147) is bounded in view of (152) by 4[𝑝]. This implies

||||
𝜕𝑝𝑗 (

(𝜔𝑖 + 𝑣𝑖)
1 + (𝜔 ⋅ 𝑣))

||||
≤ 6[𝑝]. (154)

Note also that

||||
1

[𝑝]2 (
𝜔𝑖 + 𝑣𝑖

(1 + (𝜔 ⋅ 𝑣))2)
||||
≤ 2

√
2[𝑝]. (155)

We verified thus the bounds (34) and (36) in the representation of the elec-

tric field. After use of the equation (1) and integration by parts, the mag-

netic field representation [11] p.63, yields

𝐵𝑆 = ∫ 𝑑𝑝 ∫
𝑡

0

1
𝑡 − 𝑠 ∫|𝑥−𝑦|=𝑡−𝑠

𝑁(𝑦, 𝑠) ⋅ ∇𝑝 (
𝜔 × 𝑣

1 + (𝜔 ⋅ 𝑣))
𝑑𝑆(𝑦)𝑑𝑠 (156)

From (146) and the inequalities (150) and (152) and because |𝜔× 𝑣| ≤ |𝜔+𝑣|
we have

||||
∇𝑝 (

𝜔 × 𝑣
1 + (𝜔 ⋅ 𝑣))

||||
≤ 10[𝑝] (157)

Finally, the representation of 𝐵𝑇 from [11] is

𝐵𝑇 = ∫ 𝑑𝑝 ∫
𝑡

0

1
(𝑡 − 𝑠)2 ∫|𝑥−𝑦|=𝑡−𝑠 (

𝜔 × 𝑣
[𝑝]2(1 + (𝜔 ⋅ 𝑣))2)

𝑓 (𝑦, 𝑠)𝑑𝑆(𝑦)𝑑𝑠

(158)

and we have

||||
𝜔 × 𝑣

[𝑝]2(1 + (𝜔 ⋅ 𝑣))2
||||
≤ 2

√
2[𝑝], (159)

concluding the verification of the inequalities (34) and (36).

Appendix B: ODE Lemmas

We prove here Lemma 1 and Lemma 2.

Proof of Lemma 1. If 𝐺(𝑡) = 𝑔(𝑠) with 𝑠 < 𝑡, then 𝑔(𝑠′) ≤ 𝑔(𝑠) for all
𝑠 ≤ 𝑠′ ≤ 𝑡 (otherwise, 𝐺(𝑡) would have been attained at 𝑠′ not at 𝑠) and
therefore𝐺(𝑠′) = 𝑔(𝑠) for 𝑠′ ∈ [𝑠, 𝑡] and the left derivative of𝐺′(𝑡 −0) of𝐺
at 𝑡 vanishes. If 𝑔(𝑡) < 𝐺(𝑡) then 𝐺(𝑠) = 𝐺(𝑡) for a small interval of 𝑠 > 𝑡
and so 𝐺′(𝑡) = 0.

If 𝑔(𝑡) = 𝐺(𝑡) then for any 𝜀 > 0 we have

𝑔(𝑠) − 𝑔(𝑡) ≤ (𝑠 − 𝑡)𝐿𝜀 (160)
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for all 𝑡 < 𝑠 ≤ 𝑡 + 𝜀, where 𝐿𝜀 = sup𝑡≤𝑠≤𝑡+𝜀 |𝑔 ′(𝑠)|. We take 0 < ℎ < 𝜀, write
𝑔(𝑠) ≤ 𝑔(𝑡) + ℎ𝐿𝜀 for 𝑠 ≤ 𝑡 + ℎ and take the supremum in 𝑠 to deduce

𝐺(𝑡 + ℎ) ≤ 𝐺(𝑡) + ℎ𝐿𝜀 . (161)

Thus 𝐺′(𝑡 + 0) ≤ 𝐿𝜀 . Because 𝜀 > 0 is arbitrary, we have

𝐺′(𝑡 + 0) ≤ lim inf
𝜀→0

𝐿𝜀 .

Finally, if 𝐺(𝑡) = 𝑔(𝑡) and 𝑔(𝑠) < 𝐺(𝑡) for all 𝑠 < 𝑡 then

𝐺(𝑠0) ≤ 𝐺(𝑡) + sup
𝑠′≤𝑡

|𝑔 ′(𝑠′)|(𝑡 − 𝑠0) (162)

holds by taking supremum of

𝑔(𝑠) ≤ 𝑔(𝑡) + sup
𝑠′≤𝑡

|𝑔 ′(𝑠′)|(𝑡 − 𝑠) (163)

for 𝑠 ≤ 𝑠0 < 𝑡. This concludes the argument. □

Proof of Lemma 2. Consider 𝑍 = 𝑍 log 𝑍 . The differential inequality
for𝑊 then reads

𝑑𝑊
𝑑𝑡

≤ 𝐶((log𝑊)𝑊 + (log𝑊)𝑍) (164)

and from the differential inequality for 𝑍 we have

𝑑𝑍
𝑑𝑡

≤ 𝐶(log 𝑍 + 1)(𝑊 + 𝑍). (165)

Now take 𝑊 = 𝑊 + 𝑍 . Because 𝑍 ≥ 𝑍 we have log 𝑍 ≤ log 𝑍 ≤ log𝑊 .

We also have log𝑊 ≤ log𝑊 , so we obtain

𝑑𝑊
𝑑𝑡

≤ 𝐶(log𝑊 + 1)𝑊 (166)

and thus 𝑊 is bounded by a double exponential of time. □
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