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Abstract: We study the equilibrium temperature distribution in a model for strongly
magnetized plasmas in dimensions two and three. Provided the magnetic field is suffi-
ciently structured (integrable in the sense that it is fibered by co-dimension one invariant
tori, on most of which the field lines ergodically wander) and the effective thermal dif-
fusivity transverse to the tori is small, it is proved that the temperature distribution is
well approximated by a function that only varies across the invariant surfaces. The same
result holds for “nearly integrable” magnetic fields up to a “critical” size. In this case,
a volume of non-integrability is defined in terms of the temperature defect distribution
and is related to the non-integrable structure of the magnetic field, confirming a physical
conjecture of Paul et al (J Plasma Phys 88(1):905880107, 2022). Our proof crucially uses
a certain quantitative ergodicity condition for the magnetic field lines on a full measure
set of invariant tori, which is automatic in two dimensions for magnetic fields without
null points and, in higher dimensions, is guaranteed by a Diophantine condition on the
rotational transform of the magnetic field.

1. Introduction

The heat conduction in strongly magnetized plasmas is influenced locally by the direction
of the magnetic field B : R

d → R
d . In three dimensions, Braginskii [1] (see also [2,3])

derived an effective anisotropic diffusion equation for the temperature T in such an
environment which, in steady state and free of heat sources, reads

div(b∇bT + ε∇⊥
b T ) = 0 (1.1)

where, assuming the magnetic field has no null points |B| �= 0, we introduced

b = B/|B| ∇b = b · ∇, ∇⊥
b = ∇ − b∇b. (1.2)

This equilibrium equation captures macroscopically the phenomenon that charged par-
ticle dynamics strongly influenced by B favors collisions aligned with b. In (1.1), the
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Fig. 1. Examples of fibered magnetic fields. Left: a 2d magnetic field without null points on a (topologically)
annular domain—the periodic channel. Integral curves are levels of the streamfunction. Right: a 3d toroidal
magnetic field; depicted in grayscale are distinct level surfaces of the first integral, ψ , the flux function

parameter ε > 0 represents the ratio κ⊥/κ‖ of the transverse diffusion coefficient to the
longitudinal. In general it is a scalar function of local density and field magnitude |B|,
however its magnitude is small in many applications of interest where |B| is large. In
our work, we consider this system on R

d with d ≥ 2, and we treat ε as a constant and
study the limit ε → 0.

For arbitrary B, it is not immediate what emerges in the limit ε → 0 of (1.1),
given some fixed boundary conditions. We focus on toroidal “Arnold fibered” fields B.
These are solenoidal vector fields B having the property that there is a smooth function
ψ : D → R defined in a bounded region D ⊂ R

d with |∇ψ | �= 0 in D, whose level
sets Sψ are (d − 1)-dimensional tori such that ψ is a first integral

B · ∇ψ = 0. (1.3)

We shall term these fields (toroidally) fibered. In two dimensions, if B is divergence-
free and sufficiently smooth, then B = ∇⊥A for a “streamfunction” A : D → R where
∇⊥ = (−∂y, ∂x ). If B has no nulls, then |∇A| > 0, so any non-vanishing divergence-
free field in two dimensions is fibered by its streamfunction, e.g. ψ = A. See Fig. 1a. In
three dimensions, its straightforward to write down explicit fibered fields, see (1.13) and
Fig. 1b. Moreover, as we will later discuss, non-degenerate magnetohydrostatic (MHS)
equilbria have this property.

The temperature equation (1.1) is to be solved in a toroidal shell D with boundaries
S± that are level sets of the first integral ψ . Call ψ− := infD ψ and ψ+ := supD ψ . Since
ψ is non-degenerate by assumption, S± are the levels corresponding to the values ψ±.
To complete the problem, we impose Dirichlet boundary conditions for the temperature
field T : D → R on these surfaces. Overall, we consider the system

div(b∇bT + ε∇⊥
b T ) = 0 in D,

T = T±, on S±,
(1.4)

for constants T−, T+. The system (1.4) is used in practice as an efficient method to
visualize the flux surfaces of the magnetic field [2,4,5].

To state our main result concerning the convergence of Tε, we use some notions from
mixing to characterize the behavior of B via its trajectories on the flux surfaces Sψ .
Denoting I = [ψ−, ψ+], we distinguish surfaces Sψ whose label ψ is in the set

E(γ, M) :=
{
ψ ∈ I : ‖u‖Ḣ−γ (Sψ) ≤ M‖∇Bu‖L2(Sψ), for all u ∈ H1(Sψ)

}
(1.5)

for some nonnegative γ and M , where Ḣ−γ (Sψ) denotes the homogeneous Sobolev
space of index −γ on Sψ as defined in (2.10). The definition of these sets is motivated
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by a Diophantine condition, see (4.1) and the following discussion. The sets E(γ, M)

of labels may be empty or may have full measure, depending on B. We then define the
collection

N (γ, M) = I \ E(γ, M), (1.6)

of “non-ergodic” values of ψ . Note that if M > M ′ then N (γ, M) ⊆ N (γ, M ′).

Definition 1. We say that B satisfies the “coercive ergodicity condition” if, with N (γ, M)

defined as in (1.6), for some c, γ > 0, we have

lim
M→∞ Mcμ(N (γ, M)) = 0, (1.7)

where μ denotes the one-dimensional Lebesgue measure.

Our main result below roughly states that, provided B is ergodic on almost all of the
surfaces Sψ such that the ergodicity condition holds, the temperatures profiles Tε indeed
converge (in H1(D)) to the effective temperature T0. A consequence of our theorem is
that the limiting temperature profile T0 itself fibers B. This fact partially motivated the
work of Paul–Hudson–Helander [5].

Theorem 1.1. Let d ≥ 2 and let B be toroidally fibered by ψ , and let D be the region
bounded by two level sets S±. For ε > 0, let Tε : D → R be the solution of system (1.4)
for constants T− and T+. If the ergodicity condition from Definition 1 holds, then

Tε → T0 := �(ψ) in H1(D) (1.8)

where �(ψ) is the solution of the one-dimensional boundary-value problem on ψ ∈
[ψ−, ψ+]:

d

dψ

(
d�

dψ

∫

Sψ

|∇ψ | dH (d−1)

)
= 0, �(ψ±) = T± (1.9)

where H (d−1) denotes (d − 1) dimensional Hausdorff measure on Sψ .
In particular, there exists a constant C := C(D, B) > 0 such that

‖Tε − T0‖H1(D) ≤ Cε
c

2+c , (1.10)

where c is the largest number so that there is a γ > 0 making condition (1.7) of
Definition 1 hold.

Remark 1. If one weakens the ergodicity condition (1.7) to the condition that lim
M→∞ μ(N (γ,

M)) = 0, the same proof shows that (1.8) still holds but without the explicit rate (1.10).
See Remark 4. We thank the anonymous reviewer for pointing this out.

Remark 2. By the previous remark, the coercive ergodicity condition (1.7) is not neces-
sary if one only wants the convergence (1.8). It would be interesting to determine if this
weaker condition is in fact necessary. We leave this to future work.
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The proof is given in § 2. Briefly, if each integral curve of B|Sψ covers Sψ densely
for some ψ , (that is, if Sψ is an “irrational torus”), one encounters a small divisors
problem; the operator ∇B is bounded below on Sψ but the lower bound may be arbitrarily
small. However, for ψ ∈ E(γ, M), this lower bound cannot be less than 1/M . On
the complement N (γ, M), the operator ∇B is not bounded below, but the ergodicity
condition (1.7) ensures that the measures of the sets N (γ, M) go to zero as M increases.
The net result is one of homogenization to a one-dimensional limit profile adapted to
the geometry of the invariant tori that satisfies an effective diffusion equation. See § 2
for further discussion.

In the upcoming Corollaries 1.1, 1.2, we show that this condition holds for a large
family of physically-relevant vector fields B. Whenever d = 2, the sets N (γ, M) are
empty for large enough M ; that is, every surface Sψ is ergodic in this setting (in three and
higher-dimensions, the ergodicity condition need not be true in general). Thus c in bound
(1.10) may be taken to ∞ for any γ ≥ 0. It follows from our main theorem that, in this
case, we have convergence of Tε to the effective temperature T0. More quantitatively:

Corollary 1.1. Let d = 2 and let B be a non-vanishing divergence-free vector field.
Then

‖Tε − T0‖H1(D) ≤ Cε, (1.11)

where T0 = �(ψ) where � is given by (1.9) and ψ is the streamfunction of B.

In three dimensions, an important example of fibered fields are the smooth solutions
of the magnetohydrostatic equations

(curl B) × B = ∇ p, div B = 0, in D ⊂ R
3, (1.12)

having the property that the pressure satisfies ∇ p �= 0. As noted by Arnold [6,7] since
|∇ p| is nonvanishing by assumption, each surface Sp is a smooth two-dimensional
surface which admits two everywhere transverse non-vanishing tangent vector fields
(curl B and B) and are thus two-dimensional tori or cylinders. In this setting B is fibered
by its pressure, ψ = p. It is straightforward to construct fields B of this type which are
axisymmetric, see e.g. [8,9]. It is an open problem (see [9,10]) to construct such smooth
magnetohydrostatic equilibria with |∇ p| > 0 outside of Euclidean symmetry.

More generally, in three dimensions, given a non-degenerate function ψ : D → R

whose level sets are tori along with functions θ, φ : D → R, any vector field of the
form

B = ∇ψ × ∇θ + ∇φ × ∇χ (1.13)

is divergence-free. If χ is chosen so that χ = χ(ψ, φ), B is fibered by ψ , and known as
“integrable” because the integral curves of B obey a Hamiltonian system with Hamilto-
nian χ , and this Hamiltonian is integrable in the usual sense1 when ∂θχ = 0 (see (1.15)
in the footnote). See Fig. 1, right panel. Fields of this form play an important role in the

1 We suppose that with B as in (1.13), the functions θ, φ, ψ together form a coordinate system in D. Then
for any smooth u : D → R, we have ∇u = ∂ψu∇ψ + ∂φu∇φ + ∂θu∇θ and so, writing J = ∇ψ × ∇θ · ∇φ,

which is nonvanishing by our assumption, we have the formula

(B · ∇)u = [
∂φu + ι(ψ, θ, φ)∂θu + τ(ψ, θ, φ)∂ψu

]
J, (1.14)

where τ(ψ, θ, φ) := −∂θχ(ψ, θ, φ) and where we have introduced the rotational transform ι(ψ, θ, φ) :=
∂ψχ(ψ, θ, φ). There is a simple interpretation of the function χ . Consider any integral curve of B, parametrized
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problem of confining a plasma with a magnetic field [11]. Such fields may sometimes
be regarded as MHS solutions held steady by external forcing (e.g. by current carrying
coils in some particular geometry) [12–14].

Suppose θ, φ form a coordinate system on Sψ and so we write u = u(ψ, θ, φ). Then
if B is as in (1.13) with ∂θχ = ∂φχ = 0, it follows after writing ι(ψ) = χ ′(ψ),

(B · ∇)u = [
∂φu + ι(ψ)∂θu

]
J, (1.16)

where J = ∇ψ × ∇θ · ∇φ. Generally, by a theorem of Sternberg [15], if B is any
nonvanishing divergence-free vector field fibered by a function ψ , (in particular, this
includes the case χ = χ(ψ, φ) of (1.13)) then on each Sψ there are coordinates θ, φ and
a number ι = ι(ψ) so that, expressed in these coordinates, B takes the form (1.16) for a
function J = J (ψ, θ, φ) > 0. We call the function ι from (1.16) the rotational transform.
Our main result in three dimensions, proven in § 4, is that provided ι is invertible with
Lipschitz inverse, we have convergence Tε → T0 in H1(D).

Corollary 1.2. Let d = 3and let B be toroidally fibered byψ . Suppose that the rotational
transform ι from (1.16) is invertible and for some L > 0

|ψ1 − ψ2| ≤ L|ι(ψ1) − ι(ψ2)| (1.17)

holds for all ψ1, ψ2 ∈ I . Then the ergodicity condition (1.7) holds for any γ > 1 with
c = 1. Consequently,

‖Tε − T0‖H1(D) ≤ Cε
1
3 , (1.18)

where T0 = �(ψ) where � is given by (2.6).

In other words, we show that the ergodicity condition holds for integrable Arnol’d
fibered fields B with monotone rotational transform. Such fields are of specific interest
in the plasma physics community, see the discussion in [12]. However such plasma
equilibria, if they exist, may be unstable, or difficult to physically realize. Thus, it is
important to also understand the behavior of non-integrable fields ∂θχ �= 0. There is
an obstruction: the behavior of particle transport (and thus of heat) in non-integrable
fields can be quite complicated because non-integrable Hamiltonian systems may exhibit
chaos.

In [5], the authors consider a model of non-integrable magnetic fields taking the form
(1.13) where

χε(ψ, θ, φ) = χ0(ψ) + εaχ1(ψ, θ, φ), (1.19)

and a ≥ 1/2. A modification of the proof of Theorem 1.1 (see Sect. 5) gives the following
generalization of Corollary 1.2 to fields of this type which are “weakly nonintegrable.”

Footnote 1 continued
by φ. That is, we consider (φ), ϑ(φ) defined by

d

dφ
 = B · ∇ψ

B · ∇φ
= −∂θχ,

d

dφ
ϑ = B · ∇θ

B · ∇φ
= ∂ψχ, (1.15)

with the understanding that the quantities on the right-hand sides are evaluated at (ψ, θ, φ) = ((φ), ϑ(φ), φ).
Thus the integral curves of B satisfy a Hamiltonian system with Hamiltonian χ . Note that if ∂θχ = 0, the
above system is integrable (has a conserved quantity) since ψ is constant along the flow. This also be seen
from the formula (1.14).
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We require the following anisotropic Sobolev spaces tailored to the invariant tori: f ∈
L2(D) which are finite in the norm

‖ f ‖2
H (0,γ ) :=

∫ ψ+

ψ−
‖ f (ψ, ·)‖2

Hγ (Sψ) dψ. (1.20)

Theorem 1.2. Suppose that B has the form (1.13) where χ = χε is given by (1.19) for
a ≥ 1/2 and satisfies ‖∂θχ1‖L∞(D) < 1 and ∂θχ1|∂D = 0. Moreover, denote B0 the
field when ε = 0, and assume that ι = χ ′

0 satisfies the condition from Corollary 1.2.
Then, there is a constant C = C(L) such that

‖∇⊥
b0

(Tε − T0)‖L2 + ‖Tε − T0‖2
L2 ≤ Cε2a−1‖∂θχ1‖2

L2 + Cε
1
3
(‖�T0‖2

H (0,γ ) + ‖�T0‖2
L∞

)
,

(1.21)

‖∇b0 (Tε − T 0)‖L2 ≤ Cε2a‖∂θχ1‖2
L2 + Cε

4
3
(‖�T0‖2

H (0,γ ) + ‖�T0‖2
L∞

)
.

(1.22)

When a > 1/2, the estimate (1.21) implies that Tε → T0 almost everywhere. When
a = 1/2, we show the same result is true, and in this case, even though ρ∗ = limε→0 Tε−
T0 ∈ H1(D) may not vanish almost everywhere, we find ρ∗|Sψ = 0 for all ψ except
possibly for a family of ψ lying in a set of measure zero. Here, ρ∗|Sψ denotes the
trace of the function ρ∗ on the surface Sψ , and this quantity is well-defined whenever
ρ∗ ∈ H1(D), by the trace theorem. In fact, the support of ρ∗ = limε→0 ρε is contained
in the collection of non-ergodic surfaces N (γ ) = I \ E(γ ), which has measure zero,
where E(γ ) denote the family of ergodic surfaces

E(γ ) =
⋃
M>0

E(γ, M). (1.23)

Corollary 1.3. Under the hypotheses of Corollary 1.2 with a = 1/2, the sequence
ρε = Tε − T0 converges weakly in H1 to a distribution ρ∗ in H1(D) with the property
that

ρ∗|Sψ = 0, whenever ψ ∈ E(γ ). (1.24)

That is, the support of ρ∗ is contained in N (γ ) = I\E(γ ).

Our final result relates directly to the work of [5]. In that paper, the authors consider
the sets

N (ε) = {(ψ, θ, φ) : |∇bT (ψ, θ, φ)|2 ≥ ε|∇⊥
b T (ψ, θ, φ)|2}, (1.25)

where b = B/|B| with B as in (1.13), and study them as a proxy for the “non-
integrability” of the field B. Using the estimates from the above section, we can get
an upper bound on the measure of the set in the limit ε → 0.

Proposition 1.1. Define B as in (1.13) andN (ε) as in (1.25). Suppose that the boundary
values T± from (1.9) satisfy T+ �= T−. Under the hypotheses of Corollary 1.2, there is a
constant C depending continuously on ‖T ′

0‖L∞ , ‖1/T ′
0‖L∞ , ‖T ′′

0 ‖L∞ , (1−‖∇χ1‖L∞)−1

and (1 − γ )−1 so that

μ(N (ε)) ≤ C
(
ε2a−1‖∂θχ1‖2

L∞ + ε1/3‖�T0‖2
H (0,γ )

)
. (1.26)
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Note that the “integrable” case corresponds to taking χ1 = 0 and it follows that in
this case

lim
ε→0

μ(N (ε)) = 0. (1.27)

Since now χ = χ0 is integrable, this agrees with the fact that the effective volume of
non-integrability is zero. If χ1 is nonzero, we get the same result with a > 1/2 but if
a = 1/2 we instead have

lim
ε→0

μ(N (ε)) ≤ C‖∂θχ1‖2
L∞ . (1.28)

This exhibits a relationship between the volume of the set (1.25) and the above proxy for
non-integrability of the Hamiltonian χ , captured by the θ -dependence of the perturbation
χ1.

Remark 3. A true measure of non-integrability would be the volume of the complement
of the set of invariant tori that are perturbations of the unperturbed tori. The problem of
determining this volume could, in principle, be treated by converse KAM theory (see
e.g. [16]). We leave the problem of relating the above notion of non-integrability to this
one to future work.

Our proof of the Proposition (see Sect. 5) partially confirms a conjecture announced
in [5]. There, the authors conjecture that limε→0 μ(N (ε)) = 0 precisely when B is an
integrable field. The above result shows that, at least for the family of model fields (1.13)
we consider here, integrability implies that the measure of these sets vanishes.

2. Proof of Theorem 1.1

The limiting profile �(ψ) is a function of the flux function ψ only, and is determined
from the following heuristic. If B is fibered, expanding Tε = T0 + εT1 leads to

div(b∇bT0) = 0, (2.1)

div(∇⊥
b T0) = − div(b∇bT1). (2.2)

Equation (2.1) is underdetermined for T0; indeed noting that b · ∇ψ = 0 one sees that
any function

T0 = �(ψ) (2.3)

will satisfy (2.1). This arbitrariness of � may be eliminated by considering the second
condition. Indeed, note that since b is tangent to each surface Sψ , we have

div(b∇bT1)

|∇ψ |
∣∣∣
Sψ

= divSψ

([
b∇bT1

|∇ψ |
] ∣∣∣

Sψ

)
(2.4)

where divSψ denotes the divergence operator on Sψ . See Lemma A.2. In light of this,
equation (2.2) comes with the following compatibility condition: on each invariant torus
Sψ ,

∫

Sψ

�T0

|∇ψ |dH (d−1) = 0, (2.5)
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where dH (d−1) is the (d−1) dimensional Hausdorff measure on Sψ . Here we used that
∇⊥
b T0 = ∇T0 since b · ∇T0 = 0. Because T0 is constant on Sψ , it follows from Lemma

(A.1) (see (A.6)) that the solvability requirement (2.5) and the boundary conditions of
(1.4) are satisfied if � is the unique solution to (1.9). From (1.9), we deduce that the
effective temperature distribution is given explicitly by

�(ψ) = T− + (T+ − T−)
H(ψ; ψ−)

H(ψ+;ψ−)
, where H(ψ;ψ−) :=

∫ ψ

ψ−

ds

�(s)
. (2.6)

Here, � is given by

�(ψ) =
∫

Sψ

|∇ψ | dH . (2.7)

In two dimensions, �(ψ) is simply the circulation of the vector field B = ∇⊥ψ on the
circle Sψ :

∫

Sψ

|∇ψ | dH =
∫

Sψ

B · d�. (2.8)

Observing (2.5), we start with the following simple lemma. We first introduce the
homogenous fractional Sobolev seminorms on Sψ . For each Sψ we pick coordinates
θ1, . . . , θd−1 on Sψ such that θ j maps Sψ to [0, 2π ]. For k ∈ Z

d−1, we define

û(k) = 1

(2π)d−1

∫

[0,2π ]d−1

d−1∏
j=1

eik j θ j u(θ1, . . . , θd−1)dθ1 · · · dθd−1, (2.9)

and then for γ ∈ R, we define ‖ · ‖Ḣγ by

‖u‖2
Ḣγ (Sψ)

=
∑

k∈Zd−1\0

|k|2γ |̂u(k)|2. (2.10)

Recall also that (1.20) defines the anisotropic spaces H (0,γ ) tailored to the tori. The
result is then

Lemma 2.1. Suppose that F ∈ H (0,γ )(D)∩L∞(D) for some γ ≥ 0 and that F satisfies

∫

Sψ

F

|∇ψ | dH (d−1) = 0, (2.11)

for all ψ ∈ [ψ−, ψ+]. There is a constant C depending only on D, B and ψ so that for
any M > 0 we have

∣∣∣∣
∫

D
Fu dμ

∣∣∣∣ ≤ CM‖F‖H (0,γ )‖∇bu‖L2 + Cμ(N (γ, M))1/2‖F‖L∞‖u‖L2 . (2.12)
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Proof. By the co-area formula (A.1), we have

∫

D
Fu dμ =

∫ ψ+

ψ−

∫

Sψ

F

|∇ψ |u dH (d−1)dψ. (2.13)

Now, for each ψ , we write
∫

Sψ

F

|∇ψ |u dH (d−1)

=
∫

[0,2π ]d−1
G(ψ, θ1, . . . , θd−1)u(ψ, θ1, . . . , θd−1)dθ1 · · · dθd−1, (2.14)

where G = F
|∇ψ | |h|1/2, where we are writing the metric on Sψ as h = hαβdθαdθβ and

|h| = det hαβ . By Parseval’s theorem,

∫

[0,2π ]d−1
G(ψ, θ1, . . . , θd−1)u(ψ, θ1, . . . , θd−1)dθ1 · · · dθd−1

= (2π)d−1
∑

k∈Zd−1

Ĝ(ψ, k )̂u(ψ,−k), (2.15)

where F̂, û are defined as in (2.9). Now we note that

Ĝ(ψ, 0) =
∫

[0,2π ]d−1

F

|∇ψ | |h|1/2dθ1 · · · dθd−1 =
∫

Sψ

F

|∇ψ | dH (d−1) = 0,

(2.16)

by assumption. We therefore have
∫

Sψ

F

|∇ψ |u dH (d−1) = (2π)d−1
∑

k∈Zd−1\0

Ĝ(ψ, k )̂u(ψ,−k), (2.17)

and it follows that
∣∣∣∣
∫

D
Fu dμ

∣∣∣∣ ≤ C
∫ ψ+

ψ−

∑
|k|�=0

|Ĝ(ψ, k )̂u(ψ,−k)| dψ. (2.18)

Now we split [ψ−, ψ+] = E(γ, M) ∪ N (γ, M) and bound
∫

ψ∈E(γ,M)

∑
|k|�=0

|Ĝ(ψ, k )̂u(ψ,−k)| dψ

≤
∫

ψ∈E(γ,M)

‖G‖Hγ (Sψ)‖u‖Ḣ−γ (Sψ) dψ

≤ M
∫

ψ∈E(γ,M)

‖G‖Hγ (Sψ)‖∇Bu‖L2(Sψ) dψ

≤ M‖G‖H (0,γ )(D)‖∇Bu‖L2(D), (2.19)



   57 Page 10 of 21 T. D. Drivas, D. Ginsberg, H. Grayer II

by the definition of E(γ, M) and
∫

ψ∈N (γ,M)

∑
|k|�=0

|Ĝ(ψ, k )̂u(ψ,−k)| dψ ≤ ‖G‖L2(N (γ,M))‖u‖L2(D)

≤ μ(N (γ, M))1/2‖G‖L∞(D)‖u‖L2(D). (2.20)

This gives the result. ��
Our main result, Theorem 1.1, will be a direct result of the following estimate.

Proposition 2.1. Define T0 = �(ψ) where � is given by (2.6) and let ρ = Tε − T0.
Under the hypotheses of Theorem 1.1, there is a constant C depending only on the
domain D so that for each ε > 0 and M > 0, we have

‖∇bρ‖2
L2 + ε‖∇⊥

b ρ‖2
L2 + ε‖ρ‖2

L2

≤ C
(
M2ε2 + εμ(N (γ, M))

) (
‖�T0‖2

H (0,γ ) + ‖�T0‖2
L∞

)
(2.21)

Proof. The remainder ρ satisfies

div(b∇bρ) + ε div(∇⊥
b ρ) = −ε�T0, in D, (2.22)

ρ|S± = 0, (2.23)

where we wrote �T0 = div(∇⊥
b T0) since b · ∇T0 = 0. If we multiply (2.22) by ρ and

integrate over D, then use the co-area formula (A.1) we find
∫

D

(
|∇bρ|2 + ε|∇⊥

b ρ|2
)

dμ = ε

∫

D
�T0ρ dμ = ε

∫ ψ+

ψ−

∫

Sψ

�T0

|∇ψ |ρ dH (d−1)dψ.

(2.24)

Recall that we have defined T0 so that F = �T0 satisfies the condition (2.11). We can
therefore apply Lemma 2.1, and by (2.12) we have

ε

∣∣∣∣
∫ ψ1

ψ0

∫

Sψ

�T0

|∇ψ |ρ dH (d−1)dψ

∣∣∣∣
≤ Mε‖�T0‖H (0,γ )‖∇bρ‖L2 + εμ(N (γ, M))1/2‖�T0‖L∞‖ρ‖L2

≤ 1

2

(
M2ε2‖�T0‖2

H (0,γ ) +
1

δ
εμ(N (γ, M))‖�T0‖2

L∞

)
+

1

2
‖∇bρ‖2

L2 +
δ

2
ε‖ρ‖2

L2

(2.25)

for any δ > 0. Since ρ|∂D = 0, by Poincaré’s inequality we have

‖ρ‖2
L2 ≤ CP‖∇ρ‖2

L2 , (2.26)

where CP is the Poincaré constant for D. Taking δ so that δCP is sufficiently small, we
see from (2.24) and (2.25) that there is a constant C > 0 depending only on CP so that

‖∇bρ‖2
L2 + ε‖∇⊥

b ρ‖2
L2 + ε‖ρ‖2

L2

≤ C
(
M2ε2 + εμ(N (γ, M))

) (
‖�T0‖2

H (0,γ ) + ‖�T0‖2
L∞

)
, (2.27)

after using (2.26) again to bound ε‖ρ‖2
L2 ≤ C ′‖∇bρ‖2

L2 + C ′ε‖∇⊥
b ρ‖2

L2 for another
constant C ′. ��
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Proof of Theorem 1.1. If we take M = ε− 1
2+c , then writing Nε = N (γ, ε− 1

2+c ), (2.21)
gives

‖∇⊥
b ρ‖L2 + ‖ρ‖2

L2 ≤ Cε
c

2+c

(
1 + ε− c

2+c μ(Nε)
) (

‖�T0‖2
H (0,γ ) + ‖�T0‖2

L∞
)

, (2.28)

‖∇bρ‖L2 ≤ Cε1+ c
2+c

(
1 + ε− c

2+c μ(Nε)
) (

‖�T0‖2
H (0,γ ) + ‖�T0‖2

L∞
)

.

(2.29)

By assumption, limε→0 ε− c
2+c μ(Nε) = 0 and the result follows. ��

Remark 4. If one replaces assumption (1.7) with the weaker assumption that lim
M→∞ μ(N (γ,

M)) = 0, a nearly identical argument gives that limε→0 ‖∇ρ‖L2 = 0. Indeed, it is
enough to take M = M(ε) so that limε→0 M2ε = 0 and then note that by assumption
limε→0 μ(N (γ, M(ε))) = 0.

3. Proof of Corollary 1.1: The 2d case

If |B| > 0 in D, B is fibered by its streamfunction ψ , B = ∇⊥ψ . We bound

‖u‖2
Ḣ0(Sψ)

=
∑
k∈Z\0

|̂u(k)|2 ≤
∑
k∈Z

|k|2 |̂u(k)|2 ≤ C

inf Sψ |B|2 ‖∇Bu‖2
L2(Sψ)

(3.1)

for a constant C > 0. Here we have used that B spans the tangent space to Sψ at each
point. Therefore, E(0, M) = D whenever M ≥ C

infD |B| , and so N (0, M) is empty in
this case. Thus (1.7) holds for any c ≥ 0 and the result follows.

4. Proof of Corollary 1.2: The 3d Integrable Case

We first show that if γ > 1, under the hypotheses of Corollary 1.2, the condition (1.7)
holds with c = 1. We start by relating this condition to the “Diophantine” condition.

Let I = [ψ−, ψ+]. Fix ι = ι(ψ) with ι ∈ L∞(I ). Let |(m, n)| = √
m2 + n2. We

define

D(γ, M) =
{
ψ ∈ I : |m + ι(ψ)n| ≥ 1

M |(m, n)|γ for all (m, n) ∈ Z
2 \ {0}

}
. (4.1)

If ψ ∈ D(γ, M) for some γ, M , we will say that ψ is “Diophantine” and that the surface
Sψ is a “Diophantine surface”. With m + ι(ψ)n replaced by ω · (m, n) for ω ∈ R

2, these
sets play a fundamental role in the proof of the celebrated KAM theorem [17]. Note that if
ψ ∈ D(γ, M), the flow of B is ergodic in the usual sense by e.g. Theorem 3.1 from [18],
since in particular ψ ∈ D(γ, M) requires that ι(ψ) is irrational. The condition in (4.1)
can therefore be thought of as a quantitative measure of the ergodicity of the flow of B.
Similarly, one can think of the “coercive ergodicity” assumption from Definition 1 as the
requirement that the restriction of the flow of B to “most” surfaces Sψ is (quantitatively)
ergodic, in the above sense.

These sets are empty if γ < 1 by the classical Dirichlet approximation theorem (see
[19, Theorem 9.1]) but it turns out that if ι is bi-Lipschitz and γ > 1 they have positive
measure; in fact the complement of ∪M>0D(γ, M) has zero measure, as the next result
shows.
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Lemma 4.1. Let ι : I → R be an invertible function and suppose there is L > 0 so that

1

L
|ψ1 − ψ2| ≤ |ι(ψ1) − ι(ψ2)| ≤ L|ψ1 − ψ1|. (4.2)

Define D(γ, M) as in (4.1) and let μ denote the one-dimensional Lebesgue measure. If
γ > 1 and M > 0, there is a constant K depending only on μ(I ), L, and 1/(γ − 1) so
that

μ(I \ D(γ, M)) ≤ K

(
1

M
1

1+γ

+
1

M

)
. (4.3)

Taking M → ∞ in (4.3) shows that the set of ψ which fails the condition (4.1) for
all M > 0 has zero measure. Equivalently, the set of ψ satisfying the condition in (4.1)
for some M has full measure, though in general the complement may be nonempty.

Proof. This result follows from a straightforward modification of the argument from
e.g. [19, Theorem 9.3]. We include the details here for the convenience of the reader.
For (m, n) ∈ Z

2\(0, 0), we define

�(m,n)(γ, M) =
{
ψ ∈ I : |m + ι(ψ)n| <

1

M |(m, n)|γ
}

, (4.4)

so that

I \ D(γ, M) ⊆
⋃

(m,n) �=(0,0)

�(m,n)(γ, M). (4.5)

If n �= 0, �(m,n)(γ, M) is contained in the interval [ψ1, ψ2] ⊂ I where ψ1 are such that
ι(ψ1) = 1

n
1

M|(m,n)|γ + m
n and ι(ψ2) = −ι(ψ1) (such ψ1, ψ2 exist and are unique since

by (4.2) ι is invertible). These are the maximal and minimal values of ψ such that (4.4)
holds for a given (m, n). Therefore

μ(�(m,n)(γ, M)) ≤ |ψ1 − ψ2| ≤ L

2M |n||(m, n)|γ . (4.6)

If n = 0, �(m,0)(γ, M) = I when |m| < M−1/(1+γ ) and it is empty otherwise. Therefore
∑

(m,n) �=(0,0)

μ(�(m,n)(γ, M)) ≤
∑
m �=0

μ(�(m,0)(γ, M)) +
∑

(m,n) �=(0,0),n �=0

μ(�(m,n)(γ, M))

≤ |I | 1

M1/(1+γ )
+

L

M
+

L

2M

∑
|m|,|n|≥1

1

|n||(m, n)|γ , (4.7)

since there are two terms in the second sum on the first line with m = 0. The last sum
here is bounded by

2
∞∑

m=1

∞∑
n=1

1

n

1

(m2 + n2)γ /2 ≤ 2
∞∑

m=1

∫ ∞

1

dz

z(m2 + z2)γ /2

= 2
∞∑

m=1

1

mγ

∫ ∞

1/m

dw

w(1 + w2)γ /2 . (4.8)
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Now we bound
∫ 1

1/m

dw

w(1 + w2)γ /2 �
∫ 1

1/m

dw

w
= logm, (4.9)

and
∫ ∞

1

dw

w(1 + w2)γ /2 ≤ C((γ − 1)−1) (4.10)

for a continuous function C . It follows that the above sum is bounded by

∞∑
m=1

∞∑
n=1

1

n

1

(m2 + n2)γ /2 ≤
∞∑

m=1

1

mγ
(logm + C(γ )), (4.11)

which is finite for γ > 1.
In this case we therefore have

μ (I \ D(γ, M)) ≤ μ
(⋃

(m,n) �=(0,0)
�m,n(γ, M)

)

≤ C1

(
1

M1/(1+γ )
+

1

M

)
, (4.12)

for a constant C1 depending only on |I |, L and 1/(γ − 1), which proves (1.26). ��
Remark 5. If one replaces the assumption that ι is bi-Lipschitz with the (essentially
weaker) assumption that ι is C1 but has only finitely many critical points, a slight
modification of the above proof gives (the slightly weaker result) μ(∪M I \ D(γ, M)) =
0. Indeed, for any ε > 0, let Bε(xi ) denote the ball of radius ε around each critical
point xi . On I\ ∪xi Bε(xi ), ι is locally bi-Lipschitz. Applying the above argument to
I\ ∪xi Bε(xi ) and taking M → ∞, one gets

μ(∪M I \ D(γ, M)) ≤ Cε

for a constant C depending on the number of critical points. Since ε was arbitarary
this gives the stated result. Combining this argument with Remark 4 and the upcoming
argument gives an alternative version of Corollary 1.2 where the assumption 1.17 is
replaced with the above-mentioned assumption, but where the conclusion is the slightly
weaker result that ‖Tε − T0‖H1(D) → 0 in place of (1.18). We thank the anonymous
reviewer for pointing this out.

The values of ψ ∈ D(γ, M) are sometimes called “strongly non-resonant”, and the
surfaces Sψ with ψ ∈ D(γ, M) are called “non-resonant flux surfaces”.

Proof of Corollary 1.2. We first consider a field of the form (1.13) when χ = χ(ψ) and
where θ, φ form a coordinate system on each Sψ . With ι(ψ) = χ ′(ψ), in this setting we
have

(B · ∇)u = J
[
∂φ + ι(ψ)∂θ

]
u, J = ∇ψ × ∇θ · ∇φ (4.13)

where J �= 0 by assumption. We claim that the Diophantine surfaces are ergodic, in the
sense that there is a constant C with

D(γ,CM) ⊆ E(γ, M) (4.14)
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for any M > 0. It follows from this claim that N (γ, M) ⊆ I\D(γ,CM) and so the
condition (1.7) holds for any c < 1, since (4.3) then implies that

μ(N (γ, M)) ≤ C

M
, M ≥ 1. (4.15)

We now prove (4.14). Wheneverψ ∈ D(γ, M), for any smooth functionu : Sψ → R,
we have

‖u‖2
Ḣ−γ (Sψ)

=
∑

(m,n)∈Z2\0

|̂u(m, n)|2(
m2 + n2

)γ ≤ M2
∑

(m,n)∈Z2\0

|m + ι(ψ)n|2 |̂u(m, n)|2.

(4.16)

Now we note that by (4.13),

̂
(∇B/J u

)
(ψ,m, n) = −2π i(m + ι(ψ)n)̂u(ψ,m, n). (4.17)

It follows that if ψ ∈ D(γ, M), there are constants C1,C2 so that

‖u‖2
Ḣ−γ (Sψ)

≤ C1M
2‖∇B/J u‖2

L2(Sψ)
≤ C2M

2‖∇bu‖2
L2(Sψ)

, (4.18)

and this gives (4.14).
We now show how to get the same result for any non-vanishing divergence-free

fibered field provided the rotational transform satisfies the bound (1.17). We first show
that the rotational transform is well-defined in this setting; that is, that we can find
coordinates so that B takes the form (1.16).

In light of (A.7), since div B = 0, it follows that |∇ψ |−1 is an integral invariant of
B|Sψ (namely U = |∇ψ |−1 is a conserved density along the flow of B|Sψ on Sψ ) and so
by Sternberg’s theorem (Theorem 1 of [15]), B is orbitally conjugate to a constant vector
field on Sψ . That is, there are coordinates (θ, φ) on Sψ so that in these coordinates, there
is a nonvanishing function J = J (θ, φ) so that on Sψ , B takes the form

(B · ∇T )u = J
(
∂φ + ι∂θ

)
u, u ∈ C∞(Sψ) (4.19)

for a real number ι (compare with (1.14)), where ∇T denotes the tangential gradient
on Sψ , given by ∇T u = (∇ − ∇ψ/|∇ψ |2∇ψ · ∇)u when u is a function defined in a
neighborhood of Sψ . Applying this theorem on each Sψ then gives ι = ι(ψ).

The above proof goes through with a minor change, which is that we want to replace
the fractional Sobolev norm ‖u‖Ḣγ , which was defined relative to a fixed coordinate
system (because the Fourier coefficients û(k) depend on the choice of coordinates in
(2.9)), with a fractional Sobolev norm ‖u‖ ˙̃Hγ defined relative to the coordinates guaran-
teed by Sternberg’s theorem. This means we want to modify the definition of E(γ, M)

and define

Ẽ(γ, M) =
{
ψ ∈ I : ‖u‖ ˙̃H−γ

(Sψ)
≤ M‖∇Bu‖L2(Sψ), for all u ∈ H1(Sψ)

}
.

(4.20)

It is clear that the proof of Theorem 1.1 goes through without change if we replace
the sets E(γ, M) with Ẽ(γ, M). It is also clear from the formula (4.19) and the above
argument that there is a constant C > 0 so that (4.14) holds with E replaced with Ẽ , if
the rotational transform ι = ι(ψ) from (4.19) satisfies (1.17). ��
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5. Proof of Theorem 1.2, Corollary 1.3 and Proposition 1.1: the non-integrable
case

We now consider the non-integrable case χ1 �= 0 of (1.19). With B as in (1.13)–(1.19),
we set

B0 = ∇ψ × ∇θ + ι(ψ)∇φ × ∇ψ, B1 = ∇φ × ∇χ1 (5.1)

where ι(ψ) = χ ′
0(ψ). We then write b = B/|B| in the form

b = b0 + εab1, b0 = B0

|B| , b1 = B1

|B| . (5.2)

5.1. Proof of Theorem 1.2. We start by recording a simple estimate.

Lemma 5.1. If ‖∇χ1‖L∞ < 1 and a ≥ 1/2, there is a constant C > 0 so that for any
function u ∈ H1(D), we have

1

C

(
‖∇bu‖2

L2 +ε‖∇⊥
b u‖2

L2

)
≤ ‖∇b0u‖2

L2 +ε‖∇⊥
b0
u‖2

L2 ≤C
(
‖∇bu‖2

L2 +ε‖∇⊥
b u‖2

L2

)
.

(5.3)

Proof. This follows after writing ∇b0 = ∇b − εa∇b1 , noting that |b1| ≤ C |∇χ1|, and

|∇b0u|≤|∇bu|+εa |∇χ1||∇u|, |∇⊥
b0
u| = |(∇ − b0∇b0)u|≤|∇⊥

b u| + εa |∇χ1||∇u|
(5.4)

for smooth u. It follows that for u ∈ H1(D),

‖∇b0u‖2
L2 + ε‖∇⊥

b0
u‖2

L2 ≤ ‖∇bu‖2
L2 + ε‖∇⊥

b u‖2
L2 + ε2a‖∇χ1‖2

L∞‖∇u‖2
L2 . (5.5)

Provided 2a ≥ 1, this gives

(1 − ε‖∇χ1‖L∞)‖∇b0u‖2
L2 + ε(1 − ‖∇χ1‖2

L∞)‖∇⊥
b0
u‖2

L2 ≤ ‖∇bu‖2
L2 + ε‖∇⊥

b u‖2
L2 ,

(5.6)

which is the second bound in (5.3). The first bound is nearly identical. ��
Proof of Corollary 1.2. Since ∇b0T0 = 0 we have

div(b∇bT0) + ε div(∇⊥
b T0) = εa div(b∇b1T0) + ε�T0 − ε div(b∇bT0)

= (εa − ε1+a) div(b∇b1T0) + ε div(∇T0). (5.7)

Then ρ = Tε − T0 satisfies

div(b∇bρ) + ε div(∇⊥
b ρ) = (ε1+a − εa) div(b∇b1T0) − ε div(∇T0) in D, (5.8)

ρ|S± = 0. (5.9)

Since ∂θχ1|∂D = 0 by assumption, b is tangent to ∂D and so if we multiply this by ρ

and integrate over D, we find
∫

D
|∇bρ|2 + ε|∇⊥

b ρ|2 dμ = ε

∫

D
�T0ρ dμ + (εa − ε1+a)

∫

D
∇b1T0∇bρ dμ,

(5.10)
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after integrating by parts in the second term on the right-hand side. Since |∇b1T0| ≤
|∂θχ1||T ′

0|, for any δ > 0 we have

‖∇bρ‖2
L2 + ε‖∇⊥

b ρ‖2
L2 ≤ ε2a

2δ
‖∂θχ1‖2

L2‖T ′
0‖2

L∞ +
δ

2
‖∇bρ‖2

L2

+ε

∣∣∣∣∣
∫ ψ+

ψ−

∫

Sψ

div ∇T0

|∇ψ | ρ dH (d−1)dψ

∣∣∣∣∣ . (5.11)

Arguing as in (2.25)-(2.27) and using (5.3), this implies that there is a constant C > 0
so that for any M > 0,

‖∇b0ρ‖2
L2 + ε‖∇⊥

b0
ρ‖2

L2 + ε‖ρ‖2
L2

≤ Cε2a‖∂θχ1‖2
L2‖T ′

0‖2
L2 + C

(
M2ε2 + εμ(N (γ, M))

) (
‖�T0‖2

H (0,γ ) + ‖�T0‖2
L∞

)
.

(5.12)

If we take M = ε−1/3 and use the estimate (4.15) for μ(N (γ, M)), we find

‖∇⊥
b0

ρ‖L2 + ‖ρ‖2
L2 ≤ Cε2a−1‖∂θχ1‖2

L2 + Cε
1
3

(
‖�T0‖2

H (0,γ ) + ‖�T0‖2
L∞

)
, (5.13)

‖∇b0ρ‖L2 ≤ Cε2a‖∂θχ1‖2
L2 + Cε

4
3

(
‖�T0‖2

H (0,γ ) + ‖�T0‖2
L∞

)
. (5.14)

��

5.2. Proof of Corollary 1.3. Before proving Corollary 1.3, we collect some preliminary
results. First, from the uniform bounds (1.21) and (1.22), it follows that that the sequence
Tε − T0 has weak limit ρ∗ in H1 and that ∇b(Tε − T0) converges strongly to 0 in L2.

If we knew that ∇Bρ∗ was smooth, it would follow that ∇Bρ∗ = 0 everywhere. We
however only know that ∇Bρ∗ is in L2 and in particular the restriction ∇Bρ∗|Sψ need
not be defined. The following result shows that ∇Bρ∗|Sψ = 0 in a weak sense.

Lemma 5.2. Let ρ∗ = limε→0 Tε − T0. For any ψ and any v ∈ C2(Sψ), with B ′ =
B|∇ψ |−1,

∫

Sψ

ρ∗ divSψ (B ′v) dH (d−1) = 0. (5.15)

Remark 6. The statement of (5.15) holds with B ′ replaced by B (or indeed any mul-
tiple of B) but it is more convenient for our purposes to use B ′ since divSψ (B ′v) =
|∇ψ | div(Bv) = |∇ψ |∇Bv, by (A.7) and the fact that div B = 0. See Lemma 5.3.

Proof. The idea is to use Stokes’ theorem to write (5.15) in terms of an integral in the
interior of D and to integrate by parts in the interior to exploit the fact that ∇Bρ∗ = 0
almost everywhere.

Fix a surface Sψ ′ . Define a cutoff function Q ∈ C∞(R) such that Q(z) = 1 when
|z| ≤ 1 and Q(z) = 0 when |z| > 2. Define

Qδ(ψ) = Q((ψ − ψ ′)/δ), (5.16)
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so that Qδ(ψ) vanishes when |ψ − ψ ′| < 2δ and Qδ(ψ) ≡ 1 when |ψ − ψ ′| ≤ δ.
Let D−(ψ ′) = D ∩ {ψ ≤ ψ ′}. Then the boundary of D−(ψ ′) is Sψ ′ ∪ Sψ− , and if δ is
sufficiently small, Qδ vanishes identically on Sψ− .

Let V denote the constant extension of v to D−(ψ ′), V (ψ, θ, φ) = v(ψ ′, θ, φ) for
all (ψ, θ, φ) ∈ D−(ψ ′). By Stokes’ theorem, since the outer unit normal to Sψ ′ is
∇ψ/|∇ψ |, we have

∫

Sψ ′
ρ∗ divSψ ′ (B

′u) dH (d−1) =
∫

Sψ ′
(n · n) ρ∗ divSψ ′ (B

′V )Qδ dH (d−1)

=
∫

D−
Qδ div

(
ρ∗ divSψ ′ (B

′V )
∇ψ

|∇ψ |
)

dμ

+
∫

D−
ρ∗ divSψ ′ (B

′V )
∇ψ

|∇ψ | · (∇Qδ) dμ. (5.17)

The first term here is bounded by

‖ divSψ ′ (B
′V )‖H1(|ψ−ψ ′|≤δ)‖ρ∗‖H1(|ψ−ψ ′|≤δ) ≤ Cδ1/2‖v‖C2(Sψ ′ )‖ρ∗‖H1(D). (5.18)

As for the second term, we use the identity (A.7) to write

divSψ (B ′V ) = 1

|∇ψ | div(BV ), (5.19)

and since ∇ψ
|∇ψ | · (∇Qδ) = 1

δ
|∇ψ |Q′

δ and b is tangent to Sψ ′ , the second term in (5.17)
is

1

δ

∫

D−
ρ∗ divSψ ′ (B

′V ) |∇ψ |Q′
δ dμ = 1

δ

∫

D−
ρ∗ div(BV )Q′

δ dμ

= −1

δ

∫

D−
∇B(ρ∗Q′

δ)V dμ, (5.20)

after integrating by parts. We have therefore shown that for any δ > 0,
∣∣∣∣∣
∫

Sψ ′
ρ∗ divSψ (B ′V ) dH (d−1)

∣∣∣∣∣ ≤ Cδ1/2‖v‖C2(Sψ ′ )‖ρ∗‖H1(D)

+
1

δ
C

(‖∇Bρ∗‖L2 + ‖∇BQ
′
δ‖L2

) ‖V ‖L2

= Cδ1/2‖v‖C2(Sψ ′ )‖ρ∗‖H1(D), (5.21)

where we used that ∇Bu = 0 whenever u = u(ψ) and that ∇Bρ∗ = 0 in L2. Taking
δ → 0 gives the claim. ��

The condition (5.15) nearly says that ρ∗ = 0 on each Sψ in the sense of distributions,
but in order to conclude this we would need to know that any test function v can be written
in the form v = divSψ (Bw) for some test function w. This need not be possible on an
arbitrary surface Sψ , but by the next Lemma it is possible provided Sψ is a Diophantine
surface. We set

D(γ ) =
⋃
M>0

D(γ, M). (5.22)
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Note that by (4.14), D(γ ) ⊆ E(γ ) where E(γ ) = ∪M>0E(γ, M) denotes the collection
of all ergodic values of ψ . Note also that by Lemma 4.1, the complement I \ D(γ ) has
zero measure when γ > 1.

Lemma 5.3. Fix γ > 1 and define D(γ ) as in (5.22). If ψ ∈ D(γ ) and v ∈ Hs+γ (Sψ)

for some s ≥ 0, there is w ∈ Hs(Sψ) satisfying

divSψ (B ′w) = v, B ′ = B|∇ψ |−1. (5.23)

Remark 7. The equation (5.23) is sometimes known as the “magnetic differential equa-
tion”. Lemma 5.3 simply says that you can solve this equation on good (sufficiently
ergodic) flux surfaces.

Proof. We start by using (A.7) to write

divSψ (B ′w) = 1

|∇ψ | div(Bw) = 1

|∇ψ |∇Bw, (5.24)

and so (5.23) takes the form

∇B/Jw = V, V = J |∇ψ |v, (5.25)

where recall J = |g|−1/2 = |(∇ψ × ∇θ) · ∇φ|. We now define

ŵ(m, n) = i

2π

1

m + ι(ψ)n
V̂ (m, n). (5.26)

Because ψ ∈ D(γ ), for some M > 0, we have the bound

|ŵ(m, n)|2 ≤ M2
(
m2 + n2

)γ |V̂ (m, n)|2, (5.27)

so that in particular w ∈ Hs(Sψ) whenever v = V/(J |∇ψ |) ∈ Hs+γ (Sψ). By the
identity (4.17), it follows that w satisfies (5.23). ��
Proof of Corollary 1.3. Fixγ > 1 and define D(γ ) as in (5.22). It follows from Lemma 5.3
that given v ∈ C∞(Sψ), there is w ∈ C∞(Sψ) so that with divSψ (B|∇ψ |w) = v. It
then follows from Lemma 5.15 that

∫

Sψ

ρ∗v dH (d−1) =
∫

Sψ

ρ∗ divSψ (B|∇ψ |w) dH (d−1) = 0, (5.28)

as required. ��

5.3. Proof of Proposition 1.1: effective volume of non-integrability. It follows immedi-
ately from the equation (1.9) (or, equivalently, (2.6)) for T0 = �(ψ) that either T0 is
constant or else T ′

0 is nonvanishing. Since T0|S+ = T+ �= T− = T0|S− we have that T ′
0 is

nonvanishing and in particular T ′
0 is bounded below. With λ = minD |T ′

0|−1, for any set
N ⊆ D we therefore have

μ(N ) ≤ λ2
∫

N
|T ′

0|2 dμ ≤ C

(
λ2

∫

N
|∇⊥

b T |2 dμ + λ2
∫

N
|∇⊥

b ρ|2 dμ

)
, (5.29)
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where we used that T ′
0 = |∇ψ |−2∇T0 ·∇ψ and that |∇T0| ≤ |∇⊥

b T | ≤ |∇⊥
b T |+|∇⊥

b ρ|2.
In particular, with N = N (ε), since ‖∇⊥

b T ‖2
L2(N (ε))

≤ ε−1‖∇bT ‖2
L2(N (ε))

,

μ(N (ε)) ≤ Cλ2
(

ε−1
∫

N (ε)

|∇bT |2 dμ +
∫

N (ε)

|∇⊥
b ρ|2 dμ

)

≤ Cλ2
(

ε−1
∫

N (ε)

|∇bT0|2 dμ + ε−1
∫

D
|∇bρ|2 dμ +

∫

D
|∇⊥

b ρ|2 dμ

)

≤ Cλ2ε−1
(∫

N (ε)

|∇bT0|2 dμ +
∫

D
|∇bρ|2 dμ + ε

∫

D
|∇⊥

b ρ|2 dμ

)
.

(5.30)

Since b = b0 + εab1 and ∇b0T0 = 0, we have

‖∇bT0‖2
L2(D)

≤ ε2a‖∇b1T0‖2
L2(D)

≤ ε2a‖∂θχ1‖2
L2(D)

‖T ′
0‖2

L∞(D). (5.31)

To handle the second and third terms in (5.30), we use (1.21)-(1.22) combined with
(5.3). By (5.31) we therefore have

μ(N (ε)) ≤ Cλ2
(
ε2a−1‖∂θχ1‖2

L2(D)
‖T ′

0‖2
L∞(D) + ε1/3‖�T0‖2

H (0,γ )(D)

)
. (5.32)
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Appendix A. Geometric Identities from the Co-area Formula

In this section we collect some geometric formulas that we will use repeatedly. In what
follows, we fix ψ : D → R such that |∇ψ | �= 0 on D and so that the level surfaces Sψ

are codimension one manifolds which foliate D. Let ψ− = infD ψ and ψ+ = supD ψ .
We will use the co-area formula

∫

D
u dμ =

∫ ψ+

ψ−

∫

Sψ

u

|∇ψ | dH (d−1)dψ, (A.1)

see e.g. [20]. We start with a simple result that generalizes Lemma E.2 from [21].

Lemma A.1. If F ∈ H2(D), we have

d

dψ

∫

Sψ

F dH (d−1) =
∫

Sψ

div

( ∇ψ

|∇ψ | F
)

dH (d−1)

|∇ψ | . (A.2)
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Proof. We start with the observation that
∫

Sψ2

F dH (d−1) −
∫

Sψ1

F dH (d−1) =
∫

Dψ1,ψ2

div

( ∇ψ

|∇ψ | F
)

dμ, (A.3)

where Dψ1,ψ2 = ∪ψ1≤ψ ′≤ψ2 Sψ ′ denotes the region bounded by the surfaces Sψ1 , Sψ2 .
Indeed, by the divergence theorem,

∫

Dψ1,ψ2

div

( ∇ψ

|∇ψ | F
)

dμ =
∫

Sψ2

nSψ2 · ∇ψ

|∇ψ | F dH (d−1)

+
∫

Sψ1

nSψ1 · ∇ψ

|∇ψ | F dH (d−1), (A.4)

where nSψ denotes the outward-pointing unit normal to Sψ . Then

nSψ2 = ∇ψ

|∇ψ |
∣∣∣
Sψ2

and nSψ1 = − ∇ψ

|∇ψ |
∣∣∣
Sψ1

, (A.5)

so (A.4) gives (A.3). Dividing (A.3) by ψ2 − ψ1 and taking the limit gives (A.2). ��
In particular, if F = F(ψ) is constant on Sψ , writing �F = div(∇F) = div(∇ψF ′)

we have
∫

Sψ

�F
dH (d−1)

|∇ψ | = d

dψ

(∫

Sψ

|∇ψ |F ′dH (d−1)

)

= d

dψ

([∫

Sψ

|∇ψ |dH (d−1)

]
F ′

)
. (A.6)

Another consequence of the formula (A.1) is the following

Lemma A.2. Let X be a vector field defined in D with the property that X |Sψ is tangent
to Sψ . Then the divergence div X in D is related to the divergence operator divSψ on
Sψ by

div X

|∇ψ |
∣∣∣
Sψ

= divSψ

([
X

|∇ψ |
] ∣∣∣

Sψ

)
. (A.7)

In particular, if X is divergence-free in D, then � := |∇ψ |−1
∣∣
Sψ

is a density conserved

by X on Sψ .

Proof. This can be seen by working in local coordinates but it is simpler to use (A.1)
and note that if u ∈ C∞(D) is any test function then

−
∫

D
div Xu dμ =

∫

D
(X · ∇)u dμ =

∫ ψ+

ψ−

∫

Sψ

(X · ∇)u
dH (d−1)

|∇ψ |

=
∫ ψ+

ψ−

∫

Sψ

(X · ∇T )u
dH (d−1)

|∇ψ |

= −
∫ ψ+

ψ−

∫

Sψ

divSψ

(
X

|∇ψ |
)
u dH (d−1),
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where we used that X · ∇ = X · ∇T on Sψ , where ∇T denotes the tangential gradient
on Sψ ,

∇TU =
(

∇ − ∇ψ

|∇ψ |2 ∇ψ · ∇
)
u (A.8)

whenever u is an extension ofU from Sψ to a neighborhood of Sψ . By (A.1), the left-hand
side is

−
∫ ψ+

ψ−

∫

Sψ

div X

|∇ψ | u dH (d−1). (A.9)

Then (A.7) follows since u is arbitrary. ��
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