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Agenda

1. Brief review of the Taylor equations


2. Well-posedness, Taylor’s constraint, energy balance


3. Brief review of the kinematic dynamo


4. “Nonlinear” dynamo bounds



Governing equations for the geodynamo
Magnetohydrodynamics in the magnetic diffusive time scale 




Dimensionless magnetic field , velocity , and temperature 

∂tB − ∇ × (u × B) = ΔB,
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Governing equations for the geodynamo
In rapidly rotating settings a la Earth’s core





This is the basic reduction in JB Taylor, Proc. R. Soc. Lond. A ’63.

∂tB − ∇ × (u × B) = ΔB,

̂z × u + ∇p = J × B + Ra Tg

∂tT + u ⋅ ∇T = qΔT + H



Governing equations for the geodynamo
In rapidly rotating settings a la Earth’s core





Axis of rotation: , gravity vector: , current , heat source 

∂tB − ∇ × (u × B) = ΔB,

̂z × u + ∇p = J × B + Ra Tg

∂tT + u ⋅ ∇T = qΔT + H

̂z g J = ∇ × B H



Governing equations for the geodynamo
In rapidly rotating settings a la Earth’s core





Constraints  and  is enforced. This determines .

∂tB − ∇ × (u × B) = ΔB,

̂z × u + ∇p = J × B + Ra Tg

∂tT + u ⋅ ∇T = qΔT + H

div B = 0 div u = 0 p



Governing equations for the geodynamo
In rapidly rotating settings a la Earth’s core





Is there a unique evolution for given initial and boundary conditions?

∂tB − ∇ × (u × B) = ΔB,

̂z × u + ∇p = J × B + Ra Tg

∂tT + u ⋅ ∇T = qΔT + H



Well-posedness



Elements of well-posedness
For systems of partial differential equations, one may find:


classical solutions, which have derivatives defined pointwise. These 
are in the  spaces, or


weak solutions, which solve the equation in an integrated sense. 
These are functions in say,   or the Sobolev spaces 


In time evolution, classical solutions are unique, though may not exist 
for long. Weak solutions may be unique due some special structure. 

Ck

Lp Wk,p



Elements of well-posedness
 is the space of -times differentiable functions  so that  exists 

in the classical sense, so is continuous and bounded.


  is the space of functions  such that  has finite integral, and 
 is the space of functions   which are absolutely bounded. 

 
 is the space of -times weakly differentiable functions   in  so 

which have   in .


Let  be the dimension of space. The Sobolev inequalities imply the 
imbeddings  if  and  if  .
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d
W1,p ⊂ Ck p > d Hs ≡ Ws,2 ⊂ Ck s > k + d/2



Context of well-posedness results
The incompressible Navier-Stokes equations


 

2D: global in time unique  solutions, 3D: global in time  solutions.


In the large Prandtl number limit, the Boussinesq-Navier-Stokes is




Global in time unique  solutions in 2D (G., ARMA ’23) and 3D 
(Mecherbet-Sueur, Ann. H. Lebesgue ’22).

∂tu + u ⋅ ∇u + ∇p = Δu, div u = 0
C∞ L2

∂tT + u ⋅ ∇T = 0, − Δu + ∇p = Tg, div u = 0
L1 ∩ L∞



Context of well-posedness results
In the large Prandtl number limit, the Boussinesq-Navier-Stokes is




Global in time unique  solutions in 2D (G., ARMA ’23) and 3D 
(Mecherbet-Sueur, Ann. H. Lebesgue ’22).


The inviscid incompressible porous medium equation




has e.g. nonunique  solutions (Székelyhidi, Ann. Sci. E.N.S. ’12)

∂tT + u ⋅ ∇T = 0, − Δu + ∇p = Tg, div u = 0
L1 ∩ L∞

∂tT + u ⋅ ∇T = 0, u + ∇p = Tg, div u = 0
L∞



Regularity of the Moffatt equations
Moffatt and Loper (Geophys. J. Int. ’94) propose a relative to





by splitting the magnetic field  into a mean part  and a 
fluctuating part  in MHD and then linearize dynamics around fixed , 
then take the Rossby number and magnetic Reynolds number small.

∂tB + u ⋅ ∇B = B ⋅ ∇u + ΔB,
̂z × u + ∇p = B ⋅ ∇B + Tg

∂tT + u ⋅ ∇T = qΔT + H

B = B̄ + b B̄
b B̄



Regularity of the Moffatt equations
Moffatt and Loper (Geophys. J. Int. ’94) propose the simplification





 : global in time  solutions


 : solution map is not Lipschitz continuous in any 


Due to a series of papers by Friedlander-Rusin-Vicol, ’11, ’11, ’14, ’15

0 = B̄ ⋅ ∇u + Δb,
̂z × u + ∇p = B̄ ⋅ ∇b + Tg

∂tT + u ⋅ ∇T = qΔT + H

q > 0 L∞

q = 0 Wk,p ⊂ ⊂ L2



Regularity of a linearized Taylor equations
Gallagher and Gérard-Varet ’17 simplify the Taylor equations





by considering  and , and then linearizing .

∂tB − ∇ × (u × B) = ΔB,
̂z × u + ∇p = J × B + Ra Tg

∂tT + u ⋅ ∇T = qΔT + H

Ra = 0 H = 0 B = B̄ + b



Regularity of a linearized Taylor equations
Gallagher and Gérard-Varet ’17 simplify the Taylor equations to





by considering  and , and then linearizing .


On the periodic domain , there is global existence of  solutions .

∂tb − ∇ × (u × b) = Δb,
̂z × u+∇p = curl b × B̄ + curl B̄ × b

div b = 0 div u = 0

Ra = 0 H = 0 B = B̄ + b

𝕋3 L2
σ b



Realistic domains

Illustration of the -plane and the plane layer, Ghil-Childress ‘87β



Taylor’s constraint in the sphere
Taylor ’63 showed that a necessary condition of a solution to




on the sphere , with no-slip boundary conditions   on . 
 
In cylindrical coordinates  so that  ,





must be satisfied by any classical solution to the Taylor equations.

̂z × u + ∇p = J × B + Tg, div u = 0
D u ⋅ n = 0 ∂D

(r, ϕ, z) D ≡ {r2 + z2 ≤ 1}

∫r=s
(J × B)ϕ dr dϕ = 0, 0 < s ≤ 1



Abstract MAC Balance
In terms of Coriolis operator  and projector 




is the momentum equation. Then Taylor’s constraint abstractly is


 


A solution  then admits the decomposition




Into magnetostrophic , Archimedean , and geostrophic  parts.

𝒞u = ̂z × u ℙ : L2 → L2
σ

𝒞u = ℙ(J × B + Ra Tg)

ℙ(J × B + Ra Tg) ∈ Range 𝒞  in L2
σ

u ∈ L2
σ

u = uM + uA + ug
uM uA ug



Abstract MAC Balance
A solution  then admits the decomposition




Into magnetostrophic , Archimedean , and geostrophic  parts.


•  is the unique solution to 

•  is the unique solution to 


•  is a solution to 


In Gallagher-Gérard-Varet, where  this structure gives a key 
cancellation in their  energy estimate of  in the linearized equations

u ∈ L2
σ

u = uM + uA + ug
uM uA ug

uM ∈ L2
σ 𝒞uM = ℙ(J × B)

uA ∈ L2
σ 𝒞uA = ℙ(Ra Tg)

ug ∈ L2
σ 𝒞ug = 0

Ra = 0,
L2 b



An energy balance for Taylor’s equations 
For a solution of Taylor’s equations, consider the magnetic energy


 .


For insulating or perfectly conducting boundary conditions, it holds





This holds for very general . If specifically  is the sphere, then





EM = 1
2 ∫D

|B |2 dV

d
dt

EM = − ∫D
|∇ × B |2 dV + Ra∫D

Tu ⋅ g dV

D D

∫D
Tu ⋅ g dV = ∫D

TuM ⋅ g dV



Dynamo criteria



The kinematic dynamo problem
Consider a magnetic field governed by the induction equation 




where  is a given smooth flow in the domain .


∂tB − ∇ × (u × B) = ΔB
u D

What criteria on  are necessary for dynamo action?u

What qualitative or quantitative conditions  allow


  ?

u
d
dt

EM ≥ 0



Qualitative criteria
Consider a magnetic field governed by the induction equation 




where  is a given velocity field in the domain . Then no dynamo if

•  is axisymmetric in the whole space 

•  is independent of a Cartesian coordinate in 

•  is purely toroidal in a sphere

•  is planar in a Cartesian domain


Reviews by Elsasser ’46 and  Moffatt ‘78

∂tB − ∇ × (u × B) = ΔB
u D

B ℝ3

B 𝕋3

u
u



Quantitative criteria
Consider a magnetic field governed by the induction equation 




where  is a given velocity field in the sphere . Then no dynamo if

•  is smaller than a factor depending on  (Backus ’58)

•  is smaller than  (Childress ’69)


•  is smaller than  in enstrophy 
normalized settting (Proctor, Geophys. Astrophys. Fluid Dyn. ’79)

∂tB − Rm ∇ × (u × B) = ΔB
u D

Rm ∥∇u∥L∞

Rm π∥u∥L∞

Rm 3/8/(∥∇u∥L2 R2) ≈ 0.612



Quantitative criteria
Consider a magnetic field governed by the induction equation 




where  is a given velocity field in the sphere . Then no dynamo if

•  is smaller than a factor depending on  (Backus ’58)

•  is smaller than  (Childress ’69)


•  is smaller than  in enstrophy 
normalized settting (Proctor, Geophys. Astrophys. Fluid Dyn. ’79)


•  is smaller than  in enstrophy normalized 
settting (Luo-Chen-Li-Jackson, Proc. R. Soc. A ’20).  is a constant.

∂tB − Rm ∇ × (u × B) = ΔB
u D

Rm ∥∇u∥L∞

Rm π∥u∥L∞

Rm 3/8/(∥∇u∥L2 R2) ≈ 0.612

Rm C−3/2 3/4 ≈ 3.1009
C



The Taylor dynamo problem
Consider a magnetic field governed by the induction equation 




where  satisfies Taylor’s equation




and  is a given temperature field in the domain .


∂tB − ∇ × (u × B) = ΔB
u

̂z × u + ∇p = J × B + Ra Tg, div u = 0
T D

What qualitative or quantitative conditions on  allow


  ?

T
d
dt

EM ≥ 0



Qualitative criteria
Consider a magnetic field governed by the induction equation 




where  satisfies Taylor’s equation




and  is a given temperature field in the whole space  with .

Then from pointwise relation , here  are cylindrical


∂tB − ∇ × (u × B) = ΔB
u

̂z × u + ∇p = J × B + Ra Tg, div u = 0
T ℝ3 g = r

g = r ̂ϕ × ̂z (r, ϕ, z)
d
dt

EM = − ∫D
|∇ × B |2 dV + ∫D

Tu ⋅ g dV



Qualitative criteria
Consider a magnetic field governed by the induction equation 




where  satisfies Taylor’s equation




and  is a given temperature field in the whole space  with .

Then from pointwise relation , here  are cylindrical


∂tB − ∇ × (u × B) = ΔB
u

̂z × u + ∇p = J × B + Ra Tg, div u = 0
T ℝ3 g = r

g = r ̂ϕ × ̂z (r, ϕ, z)

∫D
Tu ⋅ g dV = − ∫D

T ̂ϕ ⋅ u × ̂z rdV = ∫
1

0
r2 ∫

h

0 ∫
2π

0
(J × B)ϕT dϕ dz dr



Qualitative criteria
Consider a magnetic field governed by the induction equation 




where  satisfies Taylor’s equation




and  is a given temperature field in the whole space  with .


∂tB − ∇ × (u × B) = ΔB
u

̂z × u + ∇p = J × B + Ra Tg, div u = 0
T ℝ3 g = r

T = T(r) ⟹ d
dt

EM ≤ 0



Quantitative criteria
Consider a magnetic field governed by the induction equation 




where  satisfies Taylor’s equation




and  is a given temperature field in plane layer 





holds for known constant  depending on 

∂tB − ∇ × (u × B) = ΔB
u

̂z × u + ∇p = J × B + Ra Tg, div u = 0
T D ≡ 𝕋2 × [0,1]

d
dt

EM ≤ CpRa ∫
z

0
∇x,yT dζ

Lp

− 1 ∫ |∇ × B |2 dV

Cp p ≥ 3.



Quantitative criteria
Consider a magnetic field governed by the induction equation 




where  satisfies Taylor’s equation




and  is a given temperature field in plane layer 


∂tB − ∇ × (u × B) = ΔB
u

̂z × u + ∇p = J × B + Ra Tg, div u = 0
T D ≡ 𝕋2 × [0,1]




where  is a known constant depending on 

Ra ≤ 1
Cp∥∇x,yT∥Lp

⟹ d
dt

EM ≤ 0

Cp p ≥ 3


