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Agenda

1. Brief review of the Taylor equations
2. Well-posedness, Taylor's constraint, energy balance
3. Brief review of the kinematic dynamo

4. “Nonlinear” dynamo bounds



Governing equations for the geodynamo

Magnetohydrodynamics in the magnetic diffusive time scale

0B —V X (uXB)=AB,

| | |
—Q@u+u-Vu)+—2Xu+Vp=Au+—J/XB+RaTg
Pr E, E,
| |
—O0 1T +u-VT)=AT+—H
q q

Dimensionless magnetic field B, velocity u, and temperature 1



Governing equations for the geodynamo

In rapidly rotating settings a /a Earth’s core

0B —V X(uXB)=AB,

ZzXu+Vp=JXB+RaTg

01 +u-VI'=qgAT+H

This is the basic reduction in JB Taylor, Proc. R. Soc. Lond. A '63.



Governing equations for the geodynamo

In rapidly rotating settings a /a Earth’s core

0B —V X(uXB)=AB,

ZzXu+Vp=JXB+RaTg

01T +u-VI'=gAT+ H

Axis of rotation: Z, gravity vector: g, current J/ = V X B, heat source H



Governing equations for the geodynamo

In rapidly rotating settings a /a Earth’s core

0B —V X(uXB)=AB,

ZzXu+Vp=JXB+RaTg

01T +u-VI'=gAT+ H

Constraints div B = 0 and div u = 0 is enforced. This determines p.



Governing equations for the geodynamo

In rapidly rotating settings a /a Earth’s core

0B —V X(uXB)=AB,

ZzXu+Vp=JXB+RaTg

01 +u-VI'=qgAT+H

Is there a unique evolution for given initial and boundary conditions”?



Well-posedness



Elements of well-posedness

For systems of partial differential equations, one may find:

classical solutions, which have derivatives defined pointwise. These
are in the CX spaces, or

weak solutions, which solve the equation in an integrated sense.
These are functions in say, L” or the Sobolev spaces whp

In time evolution, classical solutions are unique, though may not exist
for long. Weak solutions may be unigue due some special structure.



Elements of well-posedness

C* is the space of k-times differentiable functions f so that V*f exists
INn the classical sense, so Is continuous and bounded.

L? is the space of functions fsuch that | f|” has finite integral, and
L™ is the space of functions f which are absolutely bounded.

WP is the space of k-times weakly differentiable functions f in L” so
which have VXf in L”.

Let d be the dimension of space. The Sobolev inequalities imply the
imbeddings W' ¢ C¥ifp > dand H* = W** C Crifs > k+d/2 .



Context of well-posedness results

The incompressible Navier-Stokes equations
ou+u-Vu+Vp=Au, divu=0

2D: global in time unique C*° solutions, 3D: global in time L? solutions.

In the large Prandtl number limit, the Boussinesqg-Navier-Stokes is
0T+u-VIi=0, —-Au+Vp=7Tg, divu=0

Global in time unique L' N L solutions in 2D (G., ARMA ’23) and 3D
(Mecherbet-Sueur, Ann. H. Lebesgue ’22).



Context of well-posedness results

In the large Prandtl number limit, the Boussinesqg-Navier-Stokes is
0T+u-VIi=0, —-Au+Vp=7Tg, divu=0

Global in time unique L! N L* solutions in 2D (G., ARMA ’23) and 3D
(Mecherbet-Sueur, Ann. H. Lebesgue ’22).

The inviscid incompressible porous medium equation
0T +u-VIi=0, u+Vp=T7Tg, divu=0
has e.g. nonunique L™ solutions (Székelyhidi, Ann. Sci. E.N.S. ’12)



Regularity of the Moffatt equations

Moffatt and Loper (Geophys. J. Int. ’94) propose a relative to

0B+u-VB=B-Vu+ AB,
ZzXu+Vp=B-VB+ Tg
ol +u-VI=qAT+H

by splitting the magnetic field B = B + b into a mean part B and a

fluctuating part b in MHD and then linearize dynamics around fixed B,
then take the Rossby number and magnetic Reynolds number small.



Regularity of the Moffatt equations

Moffatt and Loper (Geophys. J. Int. ’94) propose the simplification

O=B-Vu+ Ab,
ZXu+Vp=B-Vb+ Tg
0l +u-VI=qAT+H

g > 0 : global in time L solutions

g = 0 : solution map is not Lipschitz continuous in any WP c C L?

Due to a series of papers by Friedlander-Rusin-Vicol, 11, ’11, ’14, '15



Regularity of a linearized Taylor equations

Gallagher and Geérard-Varet 17 simplify the Taylor equations

0B —V X(uXB)=AB,
ZXu+Vp=JXB+RaTg
ol +u-VI'=gAT+ H

by considering Ra = 0 and H = 0, and then linearizing B = B+b.



Regularity of a linearized Taylor equations

Gallagher and Gérard-Varet 17 simplify the Taylor equations to

0b—V X (uXxXb)=Ab,
ZXu+Vp=curlbXB+curl BXb
divb=0 divu=20

by considering Ra = 0 and H = 0, and then linearizing B = B+ b.

On the periodic domain T°, there is global existence of Lg solutions b.



Realistic domains

llustration of the /-plane and the plane layer, Ghil-Childress ‘87



Taylor’s constraint in the sphere

Taylor '63 showed that a necessary condition of a solution to
ZzXu+Vp=JxB+Tg, divu=20

on the sphere D, with no-slip boundary conditions u - n = 0 on dD.

In cylindrical coordinates (7, @, 7) so that D = {r2 +z72 < 1},

[ (JxB),drd¢ =0, 0<s<1

must be satisfied by any classical solution to the Taylor equations.



Abstract MAC Balance

In terms of Coriolis operator €u = Z X u and projector P : L* > Lg

Gu=P(JxB+RaTg)
Is the momentum equation. Then Taylor’s constraint abstractly Is

P(J X B+ RaTg) € Range € inLg

A solution u & Lg then admits the decomposition

U= Uy+ Uy T U,

Into magnetostrophic u,,, Archimedean 1 ,, and geostrophic U, parts.



Abstract MAC Balance

A solution 1 € L> then admits the decomposition

U= Uyt Uy T U,

Into magnetostrophic u,,, Archimedean u,, and geostrophic i, parts.

* Uy € Lg is the unique solution to G'u,, = P(J X B)

. u, € L isthe unique solution to €u, = P(RaTg)

2. - _
+ U, € L;isasolution to Gu, =0

In Gallagher-Gérard-Varet, where Ra = 0, this structure gives a key
cancellation in their L? energy estimate of b in the linearized equations



An energy balance for Taylor’s equations

For a solution of Taylor’s equations, consider the magnetic energy

1 2
For insulating or perfectly conducting boundary conditions, it holds

d
—FE,, = —J \VxBlde+RaJ' Tu-gdV
dz N N
This holds for very general D. If specifically D is the sphere, then

J Tu-ng=[ Tuy,, -gdV
D D



Dynamo criteria



The kinematic dynamo problem

Consider a magnetic field governed by the induction equation
0B—V XuXB)=AB

where u is a given smooth flow in the domain D.

What criteria on u are necessary for dynamo action?

What qualitative or quantitative conditions u allow

dE > ()7
e M=



Qualitative criteria

Consider a magnetic field governed by the induction equation
0B—VXuXB)=AB

where u is a given velocity field in the domain D. Then no dynamo if

. B is axisymmetric in the whole space R

e B is independent of a Cartesian coordinate in T

e 1 IS purely toroidal in a sphere

e 1 is planar in a Cartesian domain

Reviews by Elsasser '’46 and Moffatt ‘78



Quantitative criteria

Consider a magnetic field governed by the induction equation
0B—R, VX(uXB)=AB
where u is a given velocity field in the sphere D. Then no dynamo if

» R is smaller than a factor depending on ||V u||; - (Backus '58)

» R is smaller than r||u||; ~ (Childress '69)

. R _is smaller than1/3/8/(||Vu||;»R*) ~ 0.612 in enstrophy
normalized settting (Proctor, Geophys. Astrophys. Fluid Dyn. ’79)



Quantitative criteria

Consider a magnetic field governed by the induction equation
0B—R, VX(uXB)=AB
where u is a given velocity field in the sphere D. Then no dynamo if

» R is smaller than a factor depending on ||V u||; - (Backus '58)

» R is smaller than r||u||; ~ (Childress '69)

. R _is smaller than1/3/8/(||Vu||;»R*) ~ 0.612 in enstrophy

normalized settting (Proctor, Geophys. Astrophys. Fluid Dyn. ’79)

2. /3714 ~ 3.1009 in enstrophy normalized

settting (Luo-Chen-Li-Jackson, Proc. R. Soc. A ’20). C is a constant.

+ R, issmaller than C~



The Taylor dynamo problem

Consider a magnetic field governed by the induction equation
0B—V XuXB)=AB
where u satisfies Taylor’s equation
ZzXu+Vp=JxB+RaTg, divu=0

and 1 is a given temperature field in the domain D.

What qualitative or quantitative conditions on 7 allow

dE > ()7
e M=



Qualitative criteria

Consider a magnetic field governed by the induction equation
0B—V XuXB)=AB
where u satisfies Taylor’s equation
ZXu+Vp=JXB+RaTg, divu=0
and 1 is a given temperature field in the whole space R with g =T

Then from pointwise relation g = r$ X Z, here (r, ¢, 7) are cylindrical

d
— M=—[ \VXB\ZdV+J Tu-gdV
dr I IS



Qualitative criteria

Consider a magnetic field governed by the induction equation
0B—VXuXB)=AB
where u satisfies Taylor’s equation
ZzXu+Vp=JxB+RaTg, divu=0
and 1 is a given temperature field in the whole space R with g =T

Then from pointwise relation g = r$ X Z, here (r, ¢, 7) are cylindrical

| h p2n
[ Tu-ng:—J qu-uxirdV:[ FZJ J (/X B),Td¢dzdr
D D o JoJo



Qualitative criteria

Consider a magnetic field governed by the induction equation
0B—V XuXB)=AB
where u satisfies Taylor’s equation
ZXu+Vp=JXB+RaTg, divu=0

and 1 is a given temperature field in the whole space R with g =T

d



Quantitative criteria

Consider a magnetic field governed by the induction equation
0B—V XuXB)=AB
where u satisfies Taylor’s equation
ZzXu+Vp=JXB+RaTg, divu=0
and T is a given temperature field in plane layer D = T* X [0,1]

d

—1 [\VxB\de
d

L.r
holds for known constant C, depending on p > 3.

e
J V., Td¢
0




Quantitative criteria

Consider a magnetic field governed by the induction equation
0B—V XuXB)=AB
where u satisfies Taylor’s equation
ZzXu+Vp=JXB+RaTg, divu=0
and T is a given temperature field in plane layer D = T* X [0,1]

1 d
Ra< ——— = —E,,<0
CpHVx,y THLP dz

where C), is a known constant depending on p > 3



