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1. Selberg sieve: statement

We recall the statement of the Selberg sieve, slightly generalized to allow more general types

of sieving primes. It can be derived by just using the exact same strategy we used before.

Theorem 1.1 (Selberg sieve). Let I be a set ofN positive integers, and P be a �nite product of dis-
tinct primes (In the previous lecture, we took P =

∏
p≤z p). Assume the existence of a multiplicative

function f such that, for d|P ,

|{n ∈ I : d|n}| = N

f(d)
+Rd.

Let

f1(a) =
∑
d|a

µ(d)f
(a
d

)
,

and, for d|P ,

λd =
1

V 1
z,P

µ(d)f(d)

f1(d)

∑
a≤ z

d
(a,d)=1
a|P

µ(a)2

f1(a)
, V 1

z,P =
∑
a≤z
a|P

µ(a)2

f1(a)
.

Then,

S(I, P ) := |{n ∈ I : (n, P ) = 1}| ≤ N

V 1
z,P

+
∑
d1,d2|P

∣∣λd1λd2R[d1,d2]

∣∣ .
Remark 1.1. In our de�nition, it is implicit that λd = 0 for d > z or d 6 | P (in particular when d
is not squarefree). Also, in the de�nitions of λd and V 1

z,P , µ(a)2 = 1 is unnecessary; it is there to

make it look similar to the previously stated Selberg sieve.
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2. Brun–Titchmarsh

The �rst application we saw was the number of primes in an interval. We can ask a little bit

more, that is we can ask the number of primes in an interval of arithmetic progression. The setup

for the sieve would be as follows.

• Choose (a,m) = 1.

• I = {x < n ≤ x+ y : n ≡ a(modm)}, so that N = bx+y−a
m
c − bx−a

m
c = y

m
+O(1).

• We choose z =
√

y
m

and

P =
∏

p≤
√

y
m

(p,m)=1

p.

Then,

S(I, P ) =

∣∣∣∣{x < n ≤ x+ y : n ≡ a(modm), any prime factor of n is >

√
y

m

}∣∣∣∣ .
Bounding this number from above will bound π(x+ y;m, a)− π(x;m, a) from above. Indeed, if

p ≡ a(modm) is a prime satisfying x < p ≤ x+ y, then either p|P or (p, P ) = 1, so

π(x+ y;m, a)− π(x;m, a) ≤ ω(P ) + S(I, P ),

where ω(P ) is the number of prime factors of P .

Now we use z =
√

y
m

and run the Selberg sieve machinery. We have a similar situation as the

previous example of primes in an interval, namely f(d) = d and f1(a) = φ(a). Also, |Rd| ≤ 1,

and the same bound

∑
d≤z |λd| �

z
V 1
z,P

holds. Thus so far we have

π(x+ y;m, a)− π(x;m, a) ≤ π

(√
y

m

)
+

y
m

+O(1)

V 1
z,P

+O

(
y
m

(V 1
z,P )2

)
.

We are left with �nding a lower bound for V 1
z,P . The similar analysis applies, and we see that

V 1
z,P =

∑
a≤
√

y
m

a|P

1

φ(a)
=

∑
s(n)≤
√

y
m

s(n)|P

1

n
≥

∑
n≤
√

y
m

(n,m)=1

1

n
≥ ϕ(m) log(y/m)

2m
.

Thus,

π(x+ y;m, a)− π(x;m, a) ≤ O

( √
y
m

log
(
y
m

))+
2y +O(m)

ϕ(m) log
(
y
m

) +O

(
my

ϕ(m)2
(
log
(
y
m

))2
)
.

We let the formula to be expressed this way as we may want m to be dependent on y. The RHS

can be simpli�ed whenever m is given an upper bound “not too close to y.” To see what can go

wrong, if we take, say, m = y
10

, then one founds that the RHS really contains little information;

the main term is subsumed in the error term as 2y + O(m) = O(m). If, on the other hand, one

chooses small ε > 0 and asserts a bound m < y1−ε, then the upper bound simpli�es as follows:

Theorem 2.1 (Brun–Titchmarsh). Choose 0 < ε < 1. Ifm < y1−ε, then

π(x+ y;m, a)− π(x;m, a) ≤ 2y

ϕ(m) log
(
y
m

) +Oε

(
y(

log
(
y
m

))2
)
.
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Taking x = 0, one gets the Brun–Titchmarsh as stated in the Hint for Problem 4 of HW4:

Corollary 2.1. Ifm < y1−ε, then

π(y;m, a)�ε
y

φ(m) log y
.

This is the right order of magnitude.

3. p+ 2 = q (Twin primes)

Now we want the upper bound for the pairs of twin primes in an interval. The setup for the

sieve is as follows.

• I = {n(n+ 2) : x < n ≤ x+ y}.
• z ≤ √y to be determined later.

• P =
∏

p≤√y p.

Then,

S(I, P ) = |{x < n ≤ x+ y : (n, P ) = (n+ 2, P ) = 1}| .
Let u(x, y) = |{x < n ≤ x+ y : (n, n+ 2) twin prime}|. Then

u(x, y) ≤ ω(P ) + S(I, P ) = O

( √
y

log y

)
+ S(I, P ).

For an odd p ≤ √y,

|{n ∈ I : p|n}| = |{x < n ≤ x+ y : p|n or p|n+ 2}| = y

p/2
+Rp,

where |Rp| ≤ 2. So, f is a multiplicative function where f(p) = p/2 for p ≤ √y odd and

f(2) = 2. Thus, the Selberg sieve upper bound works.

We would like to �rst �nd a bound for V 1
z,P . First of all, f1(p) = p

2
− 1 (and f1(2) = 1), and

V 1
z,P =

∑
a<z

µ(a)2

f1(a)
.

This sum is a bit weird, so we want to compare this with a nicer sum. Note that for p > 2,

µ(p)2

f1(p)
=

2

p− 2
,

and there is a multiplicative function that takes value 2/p at p; namely, d(n)/n (recall d(n) is the

number of divisors of n). Thus we would like to express
µ(a)2

f1(a)
as a convolution of

d(n)
n

with some

fairly tame function c(k). Namely, we would like to �nd c(k) such that

µ(a)2

f1(a)
=
∑
n|a

c
(a
n

) d(n)

n
.

Such function in fact does exist. We defer its calculation at the moment and proceed. Then we

have

V 1
z,P =

∑
a<z

µ(a)2

f1(a)
=
∑
a<z

∑
n|a

c
(a
n

) d(n)

n
=
∑
k<z

c(k)
∑
n≤ z

k

d(n)

n
.
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It is an elementary exercise to show that∑
n≤N

d(n)

n
=

1

2
(logN)2 +O(logN),

so

V 1
z,P =

∑
k<z

c(k)

(
1

2

(
log
(z
k

))2
+O

(
log
(z
k

)))

=
1

2
(log z)2

∑
k≤z

c(k) +O

(
(log z)

∑
k

|c(k)| log k

)
+O

(∑
k

|c(k)|(log k)2

)
.

Now we calculate c(k). By taking the Dirichlet series generating series, we see that∑
n

µ(n)

f1(n)
n−s =

(∑
n

c(n)n−s

)
·

(∑
n

d(n)

n
n−s

)
.

In terms of Euler products, we have

(1 + 2−s)
∏
p>2

(
1 +

2

(p− 2)ps

)
=

(∑
n

c(n)n−s

)∏
p

(
1− 1

ps+1

)−2
,

so ∑
n

c(n)n−s = (1 + 2−s)
∏
p>2

(
1 +

2

(p− 2)ps

)∏
p

(
1− 1

ps+1

)2

.

This Euler product absolutely converges for Re s > −1
2
, so

∑
k |c(k)| log k and

∑
k |c(k)|(log k)2

are convegent. So,

V 1
z,P =

1

2
c(log z)2 +O(log z),

where c =
∑

n c(n) = 1
2

∏
p>2

(
1 + 2

p−2

)(
1− 1

p

)2
.

Now we bound the error term. In general, for d|P , |Rd| ≤ d
f(d)

(namely |Rp1···pk | ≤ 2k for

distinct odd primes p1, · · · , pk ≤ z). So the error term is�
(∑

d≤z
d

f(d)
|λd|
)2

. Now we have∑
d≤z

d

f(d)
|λd| =

∑
d≤z

dµ(d)2

f1(d)V 1
z,P

∑
a≤ z

d
(a,d)=1

µ(a)2

f1(a)
=

1

V 1
z,P

∑
m≤z

σ(m)µ(m)2

f1(m)
,

by multiplicativity. Now a sum of multiplicative function has a nice estimate:

Theorem 3.1 (Vaughan–Montgomery, Theorem 2.14). Let g be a nonnegative multiplicative func-
tion such that there is a constant A such that for all x,∑

p≤x

g(p) log p ≤ Ax,

∑
pk

k≥2

g(pk)k log p

pk
≤ A.
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Then, ∑
n≤x

g(n)� x

log x

∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)
.

Apply this for g(m) = σ(m)µ(m)2

f1(m)
(the existence of A follows easily from the Prime Number

Theorem), and we get∑
m≤z

σ(m)µ(m)2

f1(m)
� z

log z

∏
p≤z

(
1 +

2(p+ 1)

p(p− 2)

)
=

z

log z

∏
p≤z

p2 + 2

p(p− 2)
� z

log z

∏
p≤z

p

p− 2
� z log z,

where at the last part we used Mertens’ third theorem. Therefore, the error is bounded by

O
(

z2

(log z)2

)
. Thus, we have

u(x, y) ≤ O

( √
y

log y

)
+

y
1
2
c(log z)2 +O(log z)

+O

(
z2

(log z)2

)
=

2y

c(log z)2
+O

( √
y

log y
+

y

(log z)3
+

z2

(log z)2

)
.

We now take z =
√

y
log y

. Then log z = 1
2

log y +O(log log y), so

u(x, y) =
2y

c(1
4
(log y)2 +O(log y log log y))

+O

( √
y

log y
+

y

(log y)3
+

y

(log y)3

)
=

8y

c(log y)2
+O

(
y log log y

(log y)3

)
+O

(
y

(log y)3

)
=

8y

c(log y)2
+O

(
y log log y

(log y)3

)
.

We record this as the following

Theorem 3.2. The number of twin primes x < p ≤ x+ y is bounded above by

8y

c(log y)2
+O

(
y log log y

(log y)3

)
, c =

1

2

∏
p>2

(p− 1)2

p(p− 2)
.

Corollary 3.1 (Brun). The sum of reciprocals of twin primes is convergent.

Proof. The number of twin primes 2k < p ≤ 2k+1
is bounded above by� 2k

k2
. So,∑

p twin prime

2k<p≤2k+1

1

p
� 2k

k2
· 1

2k+1
� 1

k2
.

Adding up, we get a convergent sum. �

Remark 3.1. For any a, b ∈ Z, almost the same strategy gives a similar upper bound for the

number of primes p in an interval where ap + b is a prime. Note that a can be negative, so this

can give an upper bound for the number of expressions 2n = p + q. One can also do a similar

game for k-tuple of linear equations.
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4. n2 + 1

More generally, for any f(X) a polynomial with integer coe�cients, one can take I = {f(n) :
x < n ≤ x+ y}. For appropriately chosen P , S(I, P ) would be close to

#{x < n ≤ x+ y : f(n) is the least factorizable}.

More precisely, if f(X) = f1(X) · · · fk(X) for irreducible polynomials f1(X), · · · , fk(X), then

f(n) being the least factorizable means the condition of f1(n), f2(n), · · · , fk(n) all being prime.

One can run the Selberg sieve, and one can calculate the major term of the upper bound as long

as one knows well about the problems f(X) ≡ 0(mod p) for each prime p.

For example, let’s take the simplest non-linear irreducible polynomial, f(X) = X2 + 1. The

Selberg sieve works more or less in the same fashion, except that every prime we consider needs

to be ≡ 1(mod 4). As a result, the estimates we use in the process get changed; for example,∏
p≤N

p≡1(mod 4)

p

p− k
= Θ

(
(logN)k/2

)
(“Mertens’ theorem for arithmetic progressions”),

∑
n≤N

prime factors of n are all ≡ 1(mod 4)

d(n)

n
= Θ(logN),

etc. In turn, one induces the

Proposition 4.1. The number of primes of form n2 + 1, x < n ≤ x + y is bounded above by
Cy
log y

(1 + o(1)) for an explicit constant C .

Proof. We take

• I = {n2 + 1 : x < n ≤ x+ y},
• z =

√
y,

• P =
∏

p≤√y,p≡1(mod 4) p.

Then,

#{x < n ≤ x+ y : n2 + 1 is a prime} ≤ ω(P ) + S(I, P ) = O

( √
y

log y

)
+ S(I, P ).

We have f(p) = p
2

and f1(p) = p
2
− 1 for p ≤ √y, p ≡ 1(mod 4).

We estimate V 1
z,P . In this case

V 1
z,P =

∑
k<
√
y

c(k)
∑
n≤
√
y

k
any prime factor of n is ≡ 1(mod 4)

d(n)

n
,

where ∑
n

c(n)n−s =
∏

p≡1(mod 4)

(
1 +

2

(p− 2)ps

)(
1− 1

ps+1

)2

.

Note that

∑
n≤N

n≡1(mod 4)

d(n)
n

can be estimated via Wiener–Ikehara (see Appendix); the Dirichlet

series for {d(n)}
prime factors ≡ 1(mod 4) is

∏
p≡1(mod 4)(1−p−s)−2, and this should have a pole at s = 1
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of order 1 (see Appendix). So

∑
n≤N,prime factors ≡ 1(mod 4) d(n) ∼ AN where A > 0 is the residue

of the Dirichlet series at s = 1. By partial sum,∑
n≤N,prime factors ≡1(mod 4)

d(n)

n
∼ A

(∑
n≤N

1

n+ 1

)
∼ A logN.

So,

V 1
z,P ∼ Ac′ log z =

Ac′

2
log y,

where c′ =
∏

p≡1(mod 4)
(p−1)2
p(p−2) . For the error term, by the same argument,

Error term of Selberg sieve�

 z

log z

∏
p≤z,p≡1(mod 4)

p

p− 2

2

� z2 = y,

by Mertens’ for arithmetic progressions (see Appendix). Thus

#{x < n ≤ x+y : n2+1 prime} ≤ 2y

Ac′ log y + o(log y)
+O

( √
y

log y
+

y

(log y)2

)
=

2y

Ac′ log y
(1+o(1)).

�

5. Appendix: Useful tools for estimating

∑
n≤N f(n)

Theorem 5.1 (Mertens’ �rst theorem). For any n ≥ 2,∣∣∣∣∣∑
p≤n

log p

p
− log n

∣∣∣∣∣ ≤ 2.

Theorem 5.2 (Mertens’ second theorem). For any n ≥ 2,∣∣∣∣∣∑
p≤n

1

p
− log log n−M

∣∣∣∣∣ ≤ 4

log(n+ 1)
+

2

n log n
,

whereM is some absolute constant.

Theorem 5.3 (Mertens’ third theorem).

lim
n→∞

log n
∏
p≤n

(
1− 1

p

)
= e−γ,

where γ is the Euler constant.

Theorem 5.4 (Mertens’ third theorem for arithmetic progressions; Williams). For (a,m) = 1,∏
p≤x

p≡a(modm)

(
1− 1

p

)
= Ω

(
(log x)−

1
φ(m)

)
.

More precisely, ∏
p≤x

p≡a(modm)

(
1− 1

p

)
= A(log x)−

1
φ(m) +O

(
(log x)−

1
φ(m)

−1
)
,
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where

A =

(
e−γ

m

φ(m)

∏
χ 6=χ0 modulusm

∏
p

(
1− 1

p

)χ(pa−1)
) 1

φ(m)

.

Theorem 5.5 (Wiener–Ikehara tauberian theorem; Wiener–Ikehara, Delange, Kable). Let {an}
be a sequence of nonnegative real numbers. Suppose that

L(s) =
∞∑
n=1

an
ns
,

is absolutely convergent for Re s > d, and has a pole of order u ∈ Q>0 at s = d with L(s) ∼
A(s− d)−u for A > 0 around s = d. Then,∑

n≤N

an ∼
A

dΓ(u)
Nd(logN)u−1.

For example, having a pole of order
3
2

means that L(s)2 has a pole of order 3 at s = d with

A2 = lims→d L(s)2(s− d)3.

Theorem 5.6 (Takloo-Bighash). Let K/Q be Galois, and C ⊂ Gal(K/Q) be a conjugacy class.
Then

LC(s) =
∏

p unrami�ed inK , Frobp ∈ C

(1− p−s)−1,

is absolutely convergent for Re(s) > 1 and has a pole of order |C|
|Gal(K/Q)| at s = 1.

It’s �ne if you don’t know algebraic number theory; for example, this implies that the partial

Euler product

∏
p≡1(mod 4)(1− p−s)−1 has a pole of order 1/2 at s = 1 (the case of K = Q(i) and

C being the identity).

Theorem 5.7 (Vaughan–Montgomery, Theorem 2.14). Let g be a nonnegative multiplicative func-
tion such that there is a constant A such that for all x,∑

p≤x

g(p) log p ≤ Ax,

∑
pk

k≥2

g(pk)k log p

pk
≤ A.

Then, ∑
n≤x

g(n)� x

log x

∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)
.
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