§4. The binary expansion: subdominant terms.

The general form of the binary expansion was given in (1.7), but with
the coefficients altogether unspecified. Upon the application of a projection
operator P for which P8,(0) = P8;:6,(0) = 0 the first nontrivial term in-

- _‘0' ’1 - L]
volves either P&Yi! or Pa® ’0-’2,
Ad J132

and has the rather simple form described in
Theorem 5 or its corollary. It is of course a consequence of this observation
that the remaining coefficients in (1.7) are all vectors lying in the subspace
spanned by the vectors Pf,(0) and P8;.0,(0), so can be expressed essen-
tially uniquely as linear combinations of the latter vectors. It is actually
not hard to write out these linear relations quite explicitly, by arguing much

as in the preceding sections; the result is the following rather more explicit

version of the general binary expansion.
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THEOREM 6. For any points z;,22,a;1,a2 € M

(w21 + 2 — a1 — az))q(z, 22)a(ar, a2) [H Q2 a)" ]

pr=1

_ é}(o){w;, (1), (22) + wl, (), (21)
- 2w;1 (‘12)“’;1,«:2 (Zl )w:u ,a2 (32)}
b 25 00wl (s lon) + e o)
ik

1wl (22 ) (za)uwh(an) + wh, (22t (e )l ()
— 2w (e Jwh(az)wl, o (22)h z)}

+ Z 39 (a1, ag){w}, o, (21)w}(22) + wa, 0, (22)w}(21)}

+ Z i (a1, an)wf (21 Jw (22)-

Here &?;1;1@1, az) and d'?}coﬂ(al,ag) are meromorphic functions on M x M,
with the only singularities being at most double poles along the subvari-
eties a; = Tay for all T € T'; actually 52;1;1((11,02) has at most a simple

"0 0; 2(al,az) is regu-

pole along the particular subvariety a; = a, while &
lar there. Moreover &2;1;1((11, as) is skew-symmetric in the variables ay,a2,

while & cx (al, az) Is symmetric in these variables.
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Proof. The first step is to multiply (1.7) by g(22,a2)* and take the limit
as zo tends to as. The only nontrivial terms that can arise on the right-
hand side are those involving the meromorphic Abelian differential wy, (23),
which has a double pole at z; = as to cancel out the double zero of the
factor g(z2,a2)?. The left-hand side can be calculated quite easily, and the
result is readily seen to be

6z (w(z1 — a1))g(z1,01) 7

= &3y 0w, (21) + @3 wl, (21) + 851w, o, (21)

+Z-0101

Comparing this and the primary expansion (3.1) shows that

&5 (a1,a9) = 62(0), @237°(a1,a2) =0,

&éll 0(0,1,0,2) = 0, &%JO 1((1.1, 62 Zajkeg O)wk(al)

and similarly or from the obvious symmetries

O{?lo 0(&1,02) = 0, &}11 0((11,0.2) =0

&'}JO 1(01,02 3 263’“62 Jwi.(az).

This determines all the coefficients af‘ ouo ; a:‘ ; ® and & "'1 0 i
Next multiply (1.7) by g(z2,a2)?, but this time apply the differential

operator 8/0z; before taking the limit as 27 tends to ay. It was shown in
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D(5.3) that
q(z2, 02)2w;2(22) =14 O(z2 — a2)?,
so the derivative of this term with respect to 22 tends to 0 as z; tends to

a,. It is clear that

g(22,a2)?w, 4. (22) = —(22 — a2) + O(z2 — as)?,
so the derivative of this term with respect to 25 tends to —1 as z; tends to
as. Finally
q(zg,ag)zw}(zg) = O(z2 — 02)2,
so the derivative of this term with respect to z» tends to 0 as z, tends to
a,. Thus the only nontrivial terms that can arise on the right-hand side
are those involving the function w)_ ,,(z2) = u)(22). On the left-hand side

the variable z, appears both in the theta function and in some of the prime

function factors. As far as the latter are concerned note that
8 glenm) _aenm)? 0 | alan)
Ozs Q(al, 22)2 Q(al, 22)2 Oza Q(01,22)2

— 2 q(z1)z2)2 ! ( 2)
Q(a1,22)2 Z1,03

by Theorem B10. Altogether it is readily verified that the result is
ZB By (w(z1 — a1))w)(az)g(z1, 1) 2 + 20(w(z1 — a1))q(z1,01) ), o, (a2)

2_6{21201”1&2(21) -4011 '(Z)
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since C\!

#1 = 0 as has already been shown. Now multiply this formula by

g{z1,a2) and take the limit as z; tends to az, and observe that

—20,(w(az — a1))g(az,a1)2 = &% (a1,a2) .

From the primary expansion formula (3.1) it then follows that

&0 (ay, a9) = —202(0)wl, (az) — Y Bixba(0)w)(a1)wi(az),
ik
thereby determining this coefficient. These results when substituted into
(1.7) give the desired explicit expansion.

Finally from the general observations of Theorem 1 it follows that

. ~0;1;1 ~0:0;2 . .
the coefficients &; (a1,a2) and & (a1,a2) are meromorphic functions

on M x M with singularities at most along the subvarieties a; = Ta; for
T € T. To be somewhat more precise, note that by using the explicit
form just obtained for the coefficients &' (a;,as) the expansion (1) can

be rewritten

(2)

Z ot al,ag)w;(zl)q(zl,a1)2q(zl,a2)2

= 252 (w(a1 - az))w,',l,a2 (21)Q(01, 02)_2€I(21,01)2Q(Z1,02)2

- 292('11)(21 — ay))w, w,, ,al(GZ)Q(zl, ‘12)2

— Zajé’z(UJ(Zl - al))w}(ag)q(zl, a2)2-
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The right-hand side here is evidently a meromorphic function of
(z1,a1,82) € M?3 with singularities at most double poles along the sub-
varieties a; = Tas, and actually at most a simple pole along the subvariety
a1 = a since the function w; ., (z1) vanishes along that subvariety; since
the functions w; (21)g(z1,01)%g(z1,a2)? of 21 are linearly independent the
coefficients &'2;1;1 must consequently have at most the same singularities, as

asserted. Then in the expansion formula of the present theorem all the terms

. . . . ~040;2
appearing except for those involving the functions o (a1,az) are mero-

morphic functions of (z1,22,a1,a2) € M* with singularities at most double
poles along the subvarieties a; = Tay, z; = Ta;, and since the functions
w} (21)w! (z2) are linearly independent it follows that &2}?;2 (a1, az) have sin-
gularities at most double poles along the subvarieties a; = T'as; actually all
the singularities along the subvariety a; = a3 are cancelled by the zeros of
the functions w}_,,(2;) along that subvariety, so that 62? }coﬂ(al, ap) are even
holomorphic along that subvariety as asserted. Moreover the left-hand side
and the first two terms on the right-hand side of this expansion formula are

symmetric in the variables @, and a3, while the coefficient of &?;1;1

(a'la 0'2)

&0 (a1,00) is

is skew-symmetric in these variables and the coeflicient of
symmetric; since these functions are uniquely determined by the expan-
sion formula they have the asserted symmetries, and the proof is thereby

concluded.
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One of the auxiliary results obtained in the course of the proof of the

preceding theorem is worth restating explicitly here as follows.

COROLLARY 1. For any points z,a,b, € M
a(z,0)72 ) | 8;02(w(z ~ a))wj(b)
j

= 26,(0) [w;(b)w;,b(z) 4 w;(z)w;,z(b)]
+38,6,(0) [w;,b(z)w;- (a)wl(b) + w;,z(b)w;-(a)wz(z)]
ik

- &?;l;l(a, b)w}(z),

J
where &2‘1;1 (a,b) is the function described in the theorem.

Proof. This follows immediately from (2) in the proof of the theorem, upon

using the .expansion (3.1) and making the obvious change of notation.

Another useful auxiliary result that follows from the formula of the theo-
rem itself is a set of functional equations that the coefficients in that formula

must satisfy.
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COROLLARY 2. For any transformation T € I

‘&2;1;1 (Tala a2)K'(Ta a‘l)_l - &’3;1;1 (al 4 0.2)
= By (0)4miB; (Tl (a2)

+ Z Berm b (0)27i8;(T)we(ax Jwp(a2),
£m :

-'0 ;03 2(Ta,1,ag)n(T CI]_) - -‘O 0: 2(":"'13 (12)
= —§,(0)2(2m3)2B;(T) B (T)wg, (a2)

= S Bumfa(0)(2mi) B (T)Bi(T)we(ar)wrm (02)
£m

— 2wi{@; 708 (a1, a2)Bk(T) + & 70 (a1,02)B5(T)}-

where (T, a1) is the canonical factor of automorphy.

Proof. In the formula of Theorem 6 replace the variable a; by Ta; through-
out. On the one hand the left-hand side transforms as an Abelian differ-
ential in a;, so the overall effect is just to multiply the entire formula by
the canonical factor of automorphy &(T,a;). On the other hand it is easy
to determine the effect of this substitution on the individual terms on the
right-hand side; w’(a;) and w!, (z) = w(a;) are themselves Abelian differ-
entials, so are multiplied by x(T,a;), while by Theorem B11 the differential

Wy, a, (z) = w.(a1) - w,(ay) satisfies

Wia, 0 (2) = Why 0, (2) + 218 Y _ Be(T)wif2).
£
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Upon comparing the results of these two approaches on the right-hand side
- of the formula and cancelling the common terms it follows in a straightfor-

ward manner that

&(T, al)Za ” (01,02){ Wy, g, (21 )wi(22) + wy, ag(zz)wj(zl)}

&(T,a1) Z&E’f (a1, az)wj(z1)wi(22)
~ —éQ(O)n(T,al)zwal(m){z“iZﬁe(T)wE(zﬂwéuaz(zﬂ
£
+2mi Y Be(TIwp(z2)w), 4, (21) + (27)° > Be(T)Bm (T)wi(zl)win(@)}
£ im
+ 2m2[3f(T Ywy(ze)wh, o4, (21) + (273) Zﬁe(T )Ben( )wE(Z1)wL~¢(22)}
+ E <0315 Tal,az){[ wy 4, (21) + 27rzZﬁg TYwj(z1)]w)(z2)

+ [, g (22) + 2 Zﬂe(T)wz(zz)]w;-(zl)}
£

+ ) @31 (Ta1, an)w)(z:1)wi(22).
ik

Now this last formula is an identity among Abelian differentials in the
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variables z1, z2, involving meromorphic Abelian differentials w;, ,, (z;) and
holomorphic Abelian differentials w}(2;), and since these differentials are
linearly independent it amounts to an identity among the coefficients of
these differentials. In particular, in view of the symmetry in the variables
z; and z,, the coefficients of w), ,, (z1)w}(22) + Wa, 4, (z2)w’(z1) must be
the same on the two sides of the equation, and similarly for the coeflicients
of wj(z1)w}(22)+ wﬂc(zl)iu;-(zz). It is then rather simple to verify that these
two identities are precisely those of the statement of the lemma, thereby
concluding the pfoof.

Upon applying a linear projection operator P for which
P,(0) = P8;18,(0) =0

the function P&'g;l;l (a1,az) takes the simple form described in Theorem 5,

~ while upon applying a linear projection P for which

Py(0) = P8;105(0) = P& (ay,a2) =0

J

the function Pd’?}fﬂ (a1,az) takes the simple form described in the Corollary

- to Theérem 5; these forms are just those of the dominant terms in the
differential expansions. In both cases it is not difficult to obtain quite
explicit forms for the next terms beyond the dominant terms, but these
 are somewhat more complicated forms and characteristically involve the

quadratic period functions discussed in Section B8.
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. 0 . .
The coefficients @' and & "0 2 in the general binary expansion formula

j
of Theorem 6 have not yet been described very explicitly, although it is

evident from Theorem 5 and its corollary that they can be written

(3)

&M ar,a0) = Y €7 Ful, (a1 )wi, (a2)
k

+ Zakl k02(0) 1% (a1, 02) + 82(0)f;(a1,a2) ,
k

(4)
4-(;](-)122 (al, 02) -}‘llj?wkl (a,l)’wk2 62) e Z 5%2 J’::l;;!zka (al, (12)

+ 23k1k292(0 fik2 (a1, a0) + 62(0) £, 5 (a1,02)

where 57“1;92 and E i sz are some representatives in C2° for the corresponding

dominant terms and f(a;,a2) are some meromorphic functions on M?. The
vectors é""f"‘ are uniquely determined modulo the subspace L; spanned by
0, (0) and Bjkgz( ), while the vectors £ 1’“"’ are uniquely determined modulo
the subspace Ly* spanned by L; and E’“l k2. it is clearly possible to choose
these vectors to have the symmetry properties as in Theorem 5 and its corol-
lary. Once the vectors é‘k‘;-“? have been chosen the coefficients f;“ *2(a;,as)
and f;(a;,a2) in (3) are uniquely determined, under the assumption that
the former coefficients are symmetric in the indices ki, k2, since the vec-

tors B, ,02(0) and §(0) are linearly independent modulo this symmetry.
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However after these vectors and the vectors §; ’Jk; have been chosen the

coefficients in (4) may not be uniquely determined, even supposing that

they have the obvious symmetries in their indices, since the vectors £*2 ::f,

Bk, k,02(0), 6,(0) may not be linearly independent modulo their symmetries.
Of course some maximal subset of the vectors £} Faks ? together with Ok, ks 92(0)

and 52 (0) will be linearly independent modulo their symmetries, and if it
is assumed that the coefficients fklk2 k3 corresponding to all the other of
these vectors are identically zero then all the coefficients in (4) are uniquely
determined by these choices. At any rate it is clear that all the coefficients
f can be taken to be meromorphic functions on M2, with the singularities

as described in Theorem 6.

The first terms on the right-hand side of (3) and (4) are the dominant
terms considered in the preceding sections, and the remaining terms can
conveniently be described as the subdominant terms. It is possible fo say

something further about these remaining terms, and at the same time to be

E-‘kl k2 é'kl k2

rather more explicit about the choices of the vectors inin

represent-
ing the dominant terms, obviously intertwined considerations. Again the
" first of the subdominant terms, the principal subdominant terms as it were,
are the easiest to handle, and only these will really be considered here. In

2ddition it is most reasonable and convenient just to consider these princi-

pal subdominant terms modulo the remaining subdominant terms. For (4)
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the result is as follows.

THEOREM 7. If P is any projection operator such that
P85(0) = P;,8,(0) = 0

for all indices 1 £ j,k £ g and £ J'-” are the vectors described in Theorem
5 then there are uniquely determined vectors 53-“1‘;? in the range of P such

that

hiko _ skiks _ Fhkaki _ giid2
6.7'11.7'22 - £j21512 - 6.7'123'2] - Ekl ko

PEY% (a1,00) = Y &5 frwf, (ar Jwh, (a2)
ki1ks

£ Y Y8 |k (el (el

m,p€EG2 kik2
_ miw), (ap)ul, (apz)fs;:ls;;z]

in terms of the quadratic period functions gj(a).

Proof. Apply the projection operator P to the second formula of Corollary
2 to Theorem 6, note that by Theorem 5

P&} (a1, a0) = Zg‘ﬁ-zﬂ&l (a1)wp, (a2),
£14,
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and use this and the Corollary to Theorem Bi2 tho rewrite the result in

terms of the quadratic period functions in the form

_'OOZ(Tal,ag)K,(T al) —*P&?f;z(al,az)

—2ei 3 [ @0pur) + B8 D) [EADTAS

£14;

i .
= = 3 & ipul,(a2) | ¢k, (Tarsaa)s(Tron) ™" = oty (i)
£18y d

- [ _ . T
~ Y&, (a2)| et (Tar;a2)s(T01) A CGH)
£1£62 o .

This last identity really amounts to the assertion that the expression

fir(ar,a2) = Pa’?f;z(al,ag) + Z g‘ﬁ’ w7, (a1502) + glk ‘Pe (a1;a2) ]wi’z(a?)
’ £162 -

~0:0
Pa al:a2 +Z
€18,

gt (a2) + £ (02) ot )

transforms as a differential form on M in the variable a; € M. It is evident
from Theorem 6 that this meromorphic differential form has as singularities
at most a simple pole at the point of M represented by ag, so since the total

residue is zero it is actually a holomorphic differential form. The expression

Gielan,0a) = Fulonsan) + 3 | 5 b (o) + £, (az)]wz,(al)

£1£4
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differs from f';-k(al,ag) by a holomorphic differential form in a; so it too
must be a holomorphic differential form in a;. On the other hand since
"0 103 2(a1,a2) is symmetric in the variables a;,as by Theorem 6 it is clear
that §;k(a1,az) is also symmetric in these variables, hence must be a holo-

morphic differential form in the variable as as well. There are consequently

some uniquely determined vectors 75 such that
gir(a1,a2) Z%k we(a1)wr(az),

and from the observed symmetries it is apparent that these vectors are
symmetric in the indices 7, k and also in the indices £, m. In terms of these
vectors
Q |

PR an,02) = Y €04 |, (a2)k (00) + i anl (o) |

2144

+y [ wy, (a1)@}, (a2) + w, (a2) @}, (a1) ]

£142

+ Z Nk wﬂ(al (02)$

which is much as desired except that the vectors ﬁfg‘ do not quite have all
the symmetries desired.

To handle the further symmetries observe that substituting (5) into the
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formula of Theorem 6 yields

(6) 2
sz(’w('ﬁ + 25 — a1 — ag))g(z1, 25)%q(a1,a2)" [ H

=1

g(zu,a0) " ]

= Y &b, (ar)ul, (a2) [ Wl o ()W (z2) + 20, 0y (220 (21) ]

16162

T SR AR EACAPRACOPACY ]

iK1ty
[ (21w} (22) + w)(22)wi(z1) ]

T Z df;cnwfi(al Yw,,, (a2 )w}(z1)wi(z2)-

jkim

In view of the obvious symmetries on the left-hand side, subtracting from

(6) the same formula but with the z’s and a’s interchanged readily yields
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the result that

(7)
> (- ) wileJwin(en)w) (21 )wh(z2)

1kém

= 3 4]k @2)wl(02) [0 2105 22) + s 2} o)

Y.
— wi(z1 )wh(z2) [wl, ., (a1)w)(az) + w}, ., (az)w}(a1)]

+ ) [wia1)eF (a2) + wia2)ef (a1)] [w)(21)wm(22) + w}(22)w,(21)]
— 3 [wi(21)e7 (22) + wi22)e7 (21)] [w)(a1)win(a2) + wj(az)win(ar)] }

The right-hand side of (7) can be rewritten as the sum

(8) z gk'ﬂ' Zﬁ k¢ kaE (21,223 @1, 02),

<k ke

where 6’" ’k’ " is zero unless (7, k,£) is a permutation of the indices (j/, k', )
and is then the sign of the permutation , and fjre(21, 22; a1,a2) is the entire
expression in braces. Formally fjre(21,22;a1,az) is a meromorphic func-
tion on M4, with singularities at most simple poles along the subvarieties
2j =Tay for T €T, and is symmetric in the variables 21, 2, in the vari-
ables a;,az, and under the interchange of the z's and the a’s. It follows

from (7) that the double sum (8) is really a holomorphic differential form
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in each variable; it is actually the case that the inner sum in (8) is also a
holomorphic differential form in each variable, a result that does not at all
involve the auxiliary vectors Ekf Indeed it follows readily from Theorem

B11 and its Corollary together with Theorem B12 that

fixe (Tz1,22;01,a2) 6(T, z1) ™" = fire (21,225 01,02)

= 205 2 ) o )+ o)
o [w}c(zl)wfg(m) + wL(Zz)wE(zl)]

+ 2—? [;ﬁm(T)w%(Zl)wk(zz)] [w;‘ (al)wfz(@) + "”3'(“2)1“2(@1)];

here the first line on the right-hand side is symmetric in the indices k and £
while the second line is symmetric in the indices j and £, so multiplying by
6;:'55' and summing over the indices j,k,¢ yields zero. This shows that the
sumn transforms as a differential form on M in the variable z;, and in view

of the symmetries it has the same property in the other variables. Next

note that

lim q(z1,a1)fike(21,22i01,02) = w}, (a; Ywh(az)w)(z2)+wi (a1 )wj(az)wi(z2);

Zz3—+ai

multiplying this by 6;:':'5' and summing over the indices 7,k,{ again yields
zero, since in the two terms on the right-hand side the indices j, k, £ appear
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with permutations of opposite parity. The sum as a meromorphic differen-
tial form on M in the variable 2; is therefore regular at a;, and since its
total residue is zero it must also be regular at the only possible remaining
pole ay; it is thus a holomorphic differential form in z;, and in view of the
symmetries it is the same in the other variables. Therefore altogether for

any indices j' < k' < £/

fkf
(9) Z‘Sj k£ Fine( 21,22361,02)
ikt

=y 0 p!
= Z cjmlfrﬁg;nlngw:'nl (zl )w:rnz (22)w:’l,1 (al)w:lg ((12)
mymaning

for some uniquely determined constants ¢; from the symmetries of the func-
tions fike(21,22;a1,a2) it is evident that in their lower indices these coeffi-

cients have the symmetries

Cmymasning = Cmomyining = Cmymaingng = —Cningymima-

To calculate these coefficients note first from the period normalization of

the Abelian differentials that integrating (9) yields

(10) / [ :,ftf [ire(21, 225 a1,a2)dz1dze

21€am; 22€am, gkt

At pf
= Z ijlffﬁz;nlnzw:u (al)w:‘lg(GZ)'

niny

If a1, a, are distinct points in the fundamental polygon A C M then from

the period relations of Theorems B11 and B12 together with the defintion
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of the quadratic period funétions it follows that

f f fike(z1, 22501, as)dz1dzy

B | Eaml 23 Eam2

— [ ] {w;(zl)wz(zz)o

21€0m, 22€0m,

° [‘UJ;-(GQ) (wa, (21) — Wa, (22)) + wj(a1) (wa,(21) — wa2(22))] }

+ 3 (wila1)ei (a2) + wilaz)e?’ (a1) (87 67m2 + 6726701
=3 (w(ar)wi(as) + wi(a2)wr(a1)) ®

® f f (wk(z1)¢>?‘(22)+wk(22)‘1’2n(31))

21€am, 72€0m,
= —w)(az) @ (1) +wj(az)ey ™ (a1)0r"
— wh(ar e (a2)67 + wi(a)ep* (a2)6F
+ wh(a1)pl? (02)87" +wilar)ep (a2)65™
+wi(az)py” (a1)67" + wi(az)py* (a1)6]
—2mi Y (wj(ar)win(as) + w(az)w,(a1))

(6 872652 + 6787 61).

Upon multiplying this identity by 53:",2,2, and summing over the indices j,k, {
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it follows readily that the terms in the first two lines on the right-hand side
cancel in pairs; for instance the first and last terms are the same except for
sign and the order of the lower indices, which differ by an even permutation,

so these two terms cancel, and similarly for the others. Thus (10) becomes

]
Zc’mllcﬂt;g,nl na :11 (al)w‘nz (a'z)

ninsz

= —27i Z (w_;1 (a1)w],(az) + w;‘(GZ)w;(al)).

jkifm

57 F"¢ (51’“15’”25% 5;125;:"15;:1)
=y 61 (w5 s, (22) + (@) a1)

£ EEE (w(ar)ul, (az) + w)(az)ut, (al))] ,

and since it holds for all points a;,as € A and the Abelian differentials are

linearly independent it follows readily that

(11 e =~—2m(63 U A i

Mg N ng nimimiz g Na2mimsa " ni
i k £ gmy i k £ gmy
+ 6‘.'11 m2m16 + 6n2m2m1 6!'!.1 *

This expression is clearly symmetric in the indices m;,m; and in the indices

ny,n,; moreover it is zero unless m; = n; for some particular indices ¢, j,
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and if for instance mo = ny = p then

(12) oIkt = 2wibikt

mpinp mnp

and this is skew-symmetric in the indices m,n. Then substituting (8), (9),

and (11) into (7) shows that

RN (R g AR ICOIICHIACS

jkém

= —2mi Z E_kje(é_? k £ 6::;2_*_6.1 k £ 6m2+6j k£ Sma

L1y M2 oMMy TNy 1Moy Tl
j<k<t

TM1maninz

+ 85k L b ) wh, (z1)wh,, (z2)wy, (a1)wy, (a2),

and since the Abelian differentials are linearly independent it follows that
(18) gy — ok = —2mi (?é‘éi; + Eikef + €965, + éﬁf’éi?)-

The right-hand side of (13) vanishes unless at least one of the indices j,k is
equal to one of the indices £,m, and if m = j for instance then (13) reduces

to the simpler formula
-1k —7.f ok
(14) Tie = T = 2mif’y .

The right-hand side of (13) is formally symmetric in the indices j,k and

also in the indices £,m, and if nonzero then reduces to the right-hand side
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of (14) so is formally skew-symmetric under interchanging the pairs (4, k)

and (£,m). The expression
(5) G =+ F + Gt + E061,+ 6

therefore satsifies the desired symmetry conditions, and in terms of these

vectors

Zﬁf?wﬁ (a1)wr,(a2)
= ;; {g"f;;n — i [EmET + 4T
+ £mest + EmEst) }wfz(al)w:n(az)
= ;é'fz*wz(al)w;(az)

—wi Y (&por + ey ) (utlon)uln(an) + wifoa)uln(an) )

fm

Substituting this last formula into (5) yields the desired result and concludes

the proof.
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COROLLARY 1. With the hypotheses and notation as in the theorem,

PG, (w(z1+22 —a1 - “2))(I(Z1,Z2)2(I(a1,02)2 [ H Q(Zj,ak)—z]

= Z “'klkzwr' (al)wkz(az)[ Wy, ag(zl)w;-(zg)—I—w;haz(zz)w;.(zl)]

Jkika

s E’“’”[ (@)t (az) + i (el (o)

Jkikaf

o e uien) )

—wiy 5'7“1’“2[ (a1)wh, (a2) + wh, (32)wk2(a‘1)]

Jkiks
. [w;(zl)wiz (22) + wé(zz)“”m("l)]

-
+ gkt (ar)wh, (a2)w), (21)wy, (22)-

Jij2kiks

Proof. This follows directly upon substituting the formula for

Bir(ai,a2) = P"0 03 2(a1,a2) from Theorem 7 into the expansion of The-

orem 9.
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COROLLARY 2. With the hypotheses and notation as in the theorem,

)G, (2)wh, (2)

kikg

=23 (Bl )+ el ) ) (2

kika

+ 271 Z -*j‘f‘: (w;-l (z) — w), (2))wi(z)
k

for all indices j1, j2.

Proof. The left-hand side of the formula of Corollary 1 vanishes when
a; = a, because of the presence of the factor g(a1,a2)?, and the first line
on the right-hand side vanishes when a; = a> because of the presence of

the factors w}; ,,(2). Thus for a; = a; = z that formula reduces to

0=2 3" 8 ut, (2)of, (2) (e ut(en) + wi i)

—2mi ¥ 8kl (2)ul, (2) (w; (21)wi, (22) + wj(22)wy, (21))

k
J;:?tuk1(z lvk2(z)tUJx(z1) 32(Z2)'

Comparing the coefficients of the linearly independent functions w’; (21)w?}, (22)
in this last formula yields the desired result.
The formula of Corollary 2 is just the more detailed version of (3.6),

1k2

allowing for nontrivial vectors £*';*. There is of course an alternative ver-

sion of the formula of this corollary, obtained by setting z; = z2 in the

59



formula of Corollary 1; that these two versions are equivalent follows from

iy ke
172 ?

the symmetry properties that have been established for the vectors §;
and the version stated here is the simpler one. There remains the ques-

tion wheéther the vectors £ J:sz can be modified by further linear combina-

tions of the vectors g‘"l ;-"2 so that in addition to all the properties already
established the stronger version of Corollary 2 amounting to the identity
Se€ q;“:;? wy (z)wp, (z) = 0 actually holds. The right-hand side of the for-

mula of Corollary 2 can be rewritten as the sum

IR O CRATACRLAEA0) AT

J<kr et ki ke
4+ 27 'k ! ! '
IZ Jijak Wi, (z) — Wy, (21) wk(z)

in terms of the skew-symmetric Kronecker symbols considered earlier. It
is a straightforward consequence of Theorem B12 that the expression in
braces is a quadratic differential on M, so if M is not hypere]liptic it can
be written as a quadratic polynomial in the Abelian differentials. However
it appears rather difficult to obtain reasonably explicit expressions, so pro-
ceeding further in analogy with the argument in the last part of the proof
of the theorem is probably not yet worth the effort.

To turn next to the prinicpal subdominant term in (3), the analogue of

Theorem 7 is as follows.
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THEOREM 8. If P is any projection operator such that PG5(0) = 0 then

there are uniquely determined vectors E-i}c in the range of P such that

Pa;' (a1,a2) =) POie(0) [«.o:;(al)wz(az) - sOi;(az)wé(al)]
ke
+ Z Pajk§2(0) [gk(ahaz)
k

i} (o2) — wi(a)uk(a))
+ Zf—”w (a1 )wy(az)
and
a(z,a)"2P0;6;(w(z - a))

= — Y " P86.(0) [gofc(z)wz(a) — sp-};(a)wé(z)]

ke

—ZPBJkGQ 0) [gk(z a) — mi(w ( Jwi(a) — wi(a )w;c(’z))]

- Z?‘fw (2)wy(a).

Here the vectors &j are skew-symmetric in all three indices, and

(16) gr(z,a) = miwy(2)wi(a) + we(z)wi(2) — Z vi(z)wi(a)
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are meromorphic functions on M x M that are skew-symmetric in the vari-

ables z and a.

Proof. Apply the projection operator P to the first formula of Corollary 2
to Theorem 6 and use the Corollary of Theorem B12 to rewrite the result

in terms of the quadratic period functions in the form

P&%(Tay, as)w(T,a1) ™" — P&y (a1, a2)

= ):Paemgz(o)% iB;(T)wp(a1)wm(az)
£m

= Z P8 (0)w!, (az) [tpﬂ:(Tal; as)k(T,a1) ™" = pj(as; ‘12)]-
2m

This last identity really amounts to the assertion that the expression

fi(a1,a2) = P& (a1,a2) — Z P8 5(0)p}(a1; az)wy, (a2)

im

transforms as a differential form on M in the variable a; € M. ltis evi(ient
from Theorem 6 and the definition of the functions w{(al;ag) that this
meromorphic differential forﬁl has as singularities at most a simple pole at
the point of M represented by asz, so since the total residue is zero it is

actually a holomorphic differential form; therefore

alia2 2773(32 wﬁ(a’l)

62



for some uniquely determined values ﬁf(ag), which must consequently be

holomorphic functions of a3 € M. To investigate these functions note that
upon replacing as by T'a; and multiplying by k(T,a3)? it follows from the
transformational formulas of Corollary 2 to Theorem 6 and of Theorem B11

that
> i (Tag)x(T, az) ™ wy(a1)
£

= P& (a1,a2) = Y, POemb5(0)2if;(T)wi(a1)w;n(a2)

fm

- 3 PO Ol (o) [ania2) - 827 3 Tk
fm k
3 i)

+2miy [Pajmé; (0)B¢(T) — P8emb2(0)B; (T)] wh(ar)w!,(az)-

m

The functions w/(a;) are linearly independent so their coefficients in the
preceding formula must also be equal, and from the Corollary to Theo-

rem B12 again this can be rewritten in the form

75(Taz)x(T, a2) " = 7;(az)

= P;mb>(0) [gofn(Taz;m)N(T, az)™ — ¢, (az; 01)]

= 3 PO [ (T an)e(T,0n) = (i)
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This amounts to the condition that the expression

7 (az) + > PO¢m8(0)pln(az; a1) = ZPajmgz(O)an(az;a1)

~ #(as) + 3 [POna(O)h(a2) - PB;(0)¢%(a2)

is a holomorphic differential form on M, so it can be written as some linear

combination 3, 75wy, (az) of the canonical Abelian differentials. Alto-

gether then

(17)
Pag;l;l(alaa2) - z Paﬂng(O) [‘P% (al)w:n(az) - (,Di;(az)w;n(al):l
fm

- PO )| S ehtenuiton) - (oo ()]

+ Z mwy(ar )wp, (a2)

for some uniquely determined vectors ﬁf""" This already gives much of

the first assertion of the present theorem, although the vector ﬁfm is not

necessarily skew-symmetric in its indices.

To introduce the further symmetries desired, note that the function

"0 Ll(q,,az) is skew-symmetric in the variables a, and a3 so

(a1,

0= P&Oll(al,ag)-{-P&O”

(a2va1)

== Z Pajmgz(O)fm(a1, a2) + Z (ﬁ_fm + ﬁ_;nf)wz(al)win(az)
m £m
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where

fmla,a2) = Y b (a1)wy(az) + ) pha(az)wi(as)
i £

— wg, (a2)wl, (a2) — wa, (a1)wy,(a1)

is a meromorphic function on M x M with at most simple poles along the
subvarieties a; = Tay as singularities and is symmetric in the variables a;
and a,. It is a straightforward matter to verify from the functional equa-
tions for the various terms appearing in its defining formula that fn(a1,a2)
transforms as a differential form on M in each variable, so must actually

be holomorphic and expressible as

fm(a1,a2) = che k(a1)wp(az)

for some uniquely determined constants ckt = ct*. These constants can be

evaluated quite readily by using the integral formulas of Theorem B11 and
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B12; for any fixed point a; € A and indices £,m

S ebtwj(an) = [ fnlor,aada:

k az€ag

= Z(pfn(al) / wk(az)dag
k az€oe

+ Y ullen) [ hlea)dan

2€ay

— [ Wa, (a2)wh, (az)daz — wi,(a1) f Wa,(a1)day
az€ae

az oy

= ot (a1) + 2mibLwi(ar) — Prm(a1) = 0,

so that

ckt = 2mib, b1,
and consequently
fm(a1,a2) = omiw!_(a1)wi,(az)-

substituting this into the skew-symmetry condition it follows that

5 (5 + 77 ol

£m

Upon

= —271 Z Pajmé‘z(O)w:n(al)w:n(a?)!

. hence that
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The vectors Efm defined by

are consequently skew-symmetric in the indices £,m, and
ﬁf’" = (f"‘ — w16 P0;m0:(0);

and in terms of these vectors (17) can be rewritten

18
" P (o1,02) = 3 om0 [itan)ut(en) = vian)uiy(a)
+ Y P8jmb>(0)gm(a1,a2)
+ Zcﬁmwe arJw,(az)
where

gm(a1,a2) = ) ¢l (az)wp(ar) = wa, (a2)w},(a2) — wiwp, (a1)wy, (a2).

Since all the other terms in (18) are clearly skew-symmetric in the variables
a; and ag, the functions g, (a1, a2) must be also; that can be verified alter-
natively by comparing the two expressions just obtained for the functions
Tk (01, 02)-

67



Next apply the projection operator P to the formula of Corollary 1 to

Theorem 6 and use (18) to rewrite the result in the form

(19)
g(z,a1)"? ZPBJ-(?Z (w(z — a1))wj(az2)

= Z P8;1,65(0) [wl, ,(z)wi{ar)wi(az) + wy, (e2)w] (a1)wi(2)]
ik

- ZP"O s 1(a1,a2 (z)
- ZPaue*z(O){ S [ (en)uh(e) — o (e i) az) — gz,

+ miwl{an) 2k (an)uk(e) — wh(2)ui(ar) - wi(z)ukan)]

=3 Ful(2)wilar)wi(az)-

ikt

The left-hand side of the preceding identity is skew-symmetric in the vari-
ables z and ay, as is the first line on the last version of the right-hand side;

consequently

S35 + G wi(2)wh(a)wilaz)

jke
=i POk (0)wi(az) [wh(a)wi(z) +wilz)we(or) - 2wi(z)wi(a1)]
ke
or equivalently

Gt + 1t = mi(8] + 65) PO;165(0) — 2mi6 | POieba(0)-
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Since the vectors EJ’F"’ are skew-symmetric in the indices k and £ it follows

readily that

6} = —ﬁ‘f_:f if j,k,£ are distinct
while
(¥ = 1iP8;162(0) if  j,k are distinct.

The vectors g"’f defined by

Gk if j,k,£ are distinct
€% =

0 otherwise

are consequently skew-symmetric in the indices j, k, £, and it is a straight-

forward matter to verify that

> Cmwj(ar ywy,(az)
fm

= 3 7 wi(a)wl(az) = 7i ) PO;0(0) [wj(ar i (a2) — wi(az)uwi(ar)]-
k

£m

Substituting this into (18) yields the first formula of the present theorem;
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substituting it into (19) yields

g{z,a;)"? }: P6j§2 (w(z — al))w;- (az)

= Z Pakﬁé;(o){ Z (7 (a1)wp(z) — e (2)wp(ar)]wh,(a2) — gk(z, a1)w(az)
ke m
+ miwp(az) [2w§c(a1)w2(z) — wi(z)welay) - w’k(z)w;'c(al)]
— miwp(z) [w}c(al)w};(az) — wi (az)we(as )] }

=Y Enwl(2)wilar)wi(az),

jkE€

and comparing the coefficients of the linearly independent functions w’(az)

leads readily to the second formula of the present theorem. That suffices to

conclude the proof.
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§5. The ternary expansion.

In discussing more general differential expansion formulas it is convenient
to use the auxiliary meromorphic functions introduced in D(6.10), namely
the functions
(1)

Q213203 G15--+58n) = | H q(zj,0x)] /| H q(z;,2k)q(a;, ar)]
155,kEn 12j<ksn

with the understanding that Q(z1;a1) = g(2z1,a:). These functions in gen-

eral have simple poles along the subvarieties z; = Tz and a; = Tay for

j # k and simple zeros along the subvarieties z; = T'a;, for all j, k, and for

all T € T'. Note that forn > 1

(2) im q(zn,an) Q215+ +y 20} G1, -+ -, Qn)

-2 Raad 1 2%

= (“1)n_1Q(zla creyZn=1381y0 -1y an—l):

by a straightforward calculation.
To consider the dominant terms in the ternary differential expansion

choose a linear projection mapping P : C2* — C™ such that
(3) Pb, (w(z1 + 22 — a1 — az)) =0 for all z;,a; € M,
on equivalently such that

(4) PB,(0) = P8;0,(0) = P€¥k2 = Pghak = 0

1J2
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for all indices, where Ek‘k’ and E kz are any vectors in C2’ representing

J

those invariants of the binary expansion.

THeEOREM 9. If P is any linear projection mapping satisfying (3) then

there are umquer determined constant vectors é‘k‘f’;“ in the range of P

and holomorphic functions 5_,,-1 jais(a1,02,03) on M?3 with values in the range
of P such that
(5)

P92(w(21 4 29 + 23 — a3 — ag — a3)) Q(21, 22,237 a1, 22, az)”?

= 3 Y ekl (ar)w) (2w (as) @

r€6(0,1,2) jk
. [wgl,aa(zﬂ)w;h (@1) (@) + Wy on (210, (az)wzz(al)]

+ 3 Birass (01,02, 03)w], (21) w3, (22)w}, (23)-

]

Here the Vectors§ ”” ;, are symmetric in the indices j, 3 and in the indices

ko, k3, and further satisfy
1323 Fiikaks 11213 Fiz11i3 Fia3iiis
= 1 —_ -
(6) s =~ iais ghiph £ HERE =05

they are determined uniquely by the identity

(7) 8 Pé, (w(z1+ 22— a1 - az))Q (21, 223 01, ag)™?

-—Zfii"ifz w', (a3 yw), (az)w, (21)wt, (22)-
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- L
The vectors f3j, j,j,(a1,a2,a3) are symmetric in the indices ji, jz, .

Proof. The result of applying the projection mapping P to the general
expansion of Theorem 1 is (2.2), and by Theorem 3 for n = 3 the dominant
order satisfies 2L < 3 or L £ 1; thus there are only two sorts of nontrivial
terms in the expansion, namely P&y Nis i 2- and Pa "'3 3 SJ where 1 £ A £ 2 and

1 £ j; £ g. The first sort have the explicit form given in Theorem 3, and

their contribution to the expansion is

S S P wh (2m1)wh, (2e2)w), (2r3)

T€6(0,1,2) Aj2Ja

= E Z [gk];c;ﬁsu;(z" ) 2.;6213’23”’ (Zwl)]

r€G(0;1;2) sk

o W, (Zn2)w], (2n8)wh, (a1)wi, (az)wi, (as)

where u}(z) = wy_ ,,(2) and uy(2) = wy, 4, (2); when rearranged by group-

ing together those terms with the same vectors 5 this evidently yields the
first part of the desired formula. The contribution of the second sort of

nontrivial terms is

=0;0;3
Z E P& Qjii2ds ;1(2‘”1) ;-2(211-2)‘10;3(2,,3)

n€6(0;0;3) jaj2js

—0:0;3
= ZP & j1iada .;'1 (zl)w;z (22)w;‘3 (23):

and that yields the second part of the desired formula with

— P-+003

5.11 jada @i ;5. The coefficient vectors have the desired symmetries
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in their indices by Theorems 1 and 3. The second formula in the statement
of the theorem determines these vectors by the Corollary to Theorem 3.
The general results from Theorem 1 only imply that the functions 5 are
meromorphic, with singularities at most along the subvarieties a; = Ta;;
but none of the other terms in the expansion have such singularities and the

functions wj, (Zl)w;Z(ZQ)'[U;s(Zg) are linearly independent, so the functions

E are clearly actually holomorphic.

The asymmetry arising from the choice of the basis w;],aa(z),w;%as(z)

for the Abelian differentials of the third kind is more apparent in this case

than in that of the binary expansion, since in the latter case the basis

!

consisted just of w,

. a,(2) Which is at least skew symmetric in the variables
a1,as. This asymmetry can be alleviated by using the Abelian integrals of
the second kind rather than the Abelian differentials of the third kind, since
w), (2) = w,{a) — w;(b). There are g rather than g — 1 such integrals, but
the resulting expansions are still unique since the integrals w' (a;) transform
by the rather complicated formulas of Theorem B11 so only special linear

combinations of them transform as Abelian differentials. In these terms the

ternary expansion can be rewritten as follows.
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COROLLARY 1. With the hypotheses and notation as in the theorem

P52 ('w(z1 +2z2+23—a;—az— as))Q(Zlazz,zs;ah C'vzaaa)"2

= Z Z E_k];c:g!‘;s w;cl (apl)w;m (ap2)w;c3 (aPS)wzwI (apl)w,;: (zﬂz)w,;a (zﬂ3)
r,p€6(0,1,2) ik

+ Y Birjaia (01,02, as)w), (21)w], (z2)w), (23),
i

and the functions B;,;,;,(a1,a2,a3) are also symmetric in the variables

a,az,as.

Proof. In the first line on the right-hand side of the ‘principal formula
of Theorem 9 the product of the expression in brackets with wj_(a3) can

evidently be rewritten

wz'lrl (al )w;ﬂtl (al)wkz (az)w;c;g (as) + wzsrl (az)w;cl (az)wkz (al)w;(:;; (a3)

0 (o5 ol (82)0l o1k (02) = 2, (02 [, (@) o) (00

Tl (az)wl, (ar ), (a) + wly, (a5l (ar)ecl, (02)]s
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and -

“

L PR ENOREEAOENORRSY
k

sl (as)ol, (o) ()]
=3 @+ 8l bt i, ol (a2t o2
k

=0

gkl&zks

as a consequence of the symmetry conditions satisfied by the vectors {™ ;. °.

That yields the formula of the corollary quite easily. In that formula the left-
hand side and the first line on the right-hand side are evidently symmetric
functions of the variables a;,a2,a3, S0 the second line on the right-hand
<ide must also be symmetric; since the functions w) (2:1)1lu;-2 (z9)w}, (z3) are
linearly independent the :ndividual coefficients must actually be symmetric

as well, and that suffices to conclude the proof.

If the projection mapping P is one for which P&'g?;?s = 0 then the lead-

ing terms in the expansion of the preceding theorem are trivial and the

—0;0;

dominant terms are Pa 3 Tn that case the theorem can be modified as

J1j2ds

follows.

COROLLARY2. With the hypotheses and notation as in the theorem, if all
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the vectors £ 1k’k3 vanish then

Pﬁz (‘w(zl +29+23~a; —az — aa)Q(Zl,Zz,23;01302,03)_2

Z Takaks ! (0, Y, (a2)wh, (aa)u), (21 ), (22 ), (2)

for some uniquely determined vectors £ k2ks in the range of P; these vectors

J1j2Js
are symmetric in the indices j1j2j3, and in the indices kikoks, and under

the interchange of the j’s and the k’s.

Proof. If all the vectors £™'; ‘k2 k" vanish then the dominant terms in the

differential expansion have the form

~0t)3 'k k
.7132.73 311.72:1?’::3 w;ﬁfz (al)w;m (az)w;ﬁ?a (a‘3)

as in Theorem 3, where the vectors E p szjke' have the asserted symmetries;
that is the desired result.
These vectors satisfy some further conditions, in addition to the sym-
metries that have already been noted. First since Q(z1,22;a1,a2)"2 = 0
whenever z; = z; and the functions w}, (a;)w}, (a2) are linearly independent

it follows directly from (7) of Theorem 9 that

(8) 2 3 i wk1 (z)’wk, (z) =

ki kg
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for all points z € M and all indices i,j1,j2. By the symmetries of these

vectors this can be rewritten as

(9) Z Ehh_f:w;cl (zl)w;cz(zg)wks(z;;) =0 if z;, =z, for iy <iy
kq ks ks

for any points z; € M and any indices 11,12, j1, J2; for the case that zg = 23

that is immediately clear from (8) and the first symmetry (6), while

Tk ko k Ses ki k
ljfnaw' (2)wy, (2) = —5 Zf 331322‘“ (z)wy,(z)
ks ko 254

from the second symmetry (6). Next if E‘“lffjga = 0 for all indices then
since Q(z1, 22, z3; a1, az,a3)~2 = 0 whenever z; = z; and
wh (a)w), (a2)wj, (as)w}, (23) are linearly independent it follows directly
from Corollary 2 that
(10) Y G, (e, (2) =0
’ k1 kg
for all points z € M and all indices %, j1, j2,j3. Again by the symmetries of
these vectors this can obviously be rewritten as
_.klkgkg ! ! ! . 0 -f L e s f . .
(11) il wh (21)wg, (z2)wi, (23) = if z;, = z;, for i) <1y,
k1 kg ks
for any points z; € M and any indices i1, 12, J1,J2, J3; and correspondingly

upon interchanging the upper and lower indices of the vectors.
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As for the significance of these conditions, clearly (8) means that for any
fixed indices i, j1,j2 each component of the vector g;’l ij; must lie in the
Petri space Ps of quaaratic forms vanishing on the canonical curve, and by
symmetry the same must be the case for any fixed indices %, ki, k2. Thus
- if pi() = Y5, Phj,%i T, is any chosen basis for P; as before then
evidently
(12) G = DT aPS PRk,

£18;

for some uniquely determined vectors 7'7'2‘ in the range of P. The first

symmetry condition (6) is just that
: _iif
(13) Tot = =2
The second symmetry condition (6) though is that
jrly £ ity sy, ¢
> (‘75.’; "Piyie + e Py g IPjijz)Pkﬁ =0
£14;

which since the forms p; are linearly independent is equivalently that

. ~jpl. 2 "y,
(14) Z (’ii’ Piris T 7k Piujs + 70 Pfu'z) = 0.
£

Thus beyond the simple skew-symmetry condition (13) these auxiliary vec-
tors ﬁf are subject to a system of linear equations that depends to a non-

trivial extent on the structure of the Petri space rather than just on its
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dimension. It is not difficult to find examples of spaces of polynomials
pi(z) of the same dimension for which the sets of vectors ﬁf;ﬁ satisfying
(13) and (14) have different dimensions; the question whether that is also
the case for spaces pi(z) which are possible bases for the Petri spaces of

Riemann surfaces is another matter of course. Next if gk ’;"2]";3 = 0 for all in-

fhikaka

. This is a somewhat
JlJ:J

dices then condition (10) applies to the vectors ;
stronger condition than that each component of this vector belongs to the
Petri space P3 of cubic polynomials vanishing on the canonical curve, in

either upper or lower indices. Formally let P. be the space of homogeneous

polynomials p(z) = 3 2: Pj; «+ +jn Tjs « -+ Tin such that

D P W (2 (2 (2) ., (2n) = 0

for all points z,23,...,2, € M, the modified Petri space P.C P, If

p; (z) = pi;,;, is a basis for P, then (10) means that

Fi1dzds  __ *£1 *fg
(15) kikaks = anzphjzjaph kaks
£1 45

for some uniquely determined vectors ﬁf: in the range of P, and the sym-

metry condition of Corollary 2 is just that

(16) ek = g



This is more like the corresponding situation for the binary expansion.

For the case of the natural projection mapping
(17) Py :C¥ = C¥ /Ly,

the minimal projection satisfying (2), there result canonically defined vec-
tors é’“j?f;‘;a in the range of P,, spanning an intrinsically determined linear

subspace L C range P;. Then for the further natural projection
(18) P, : (range P;) — (range P»)/Lj

Fi ka2 ks

there result canonically defined vectors &% in the range of Pj; these

vectors span the space Ls / L}, where L3 is the span of all vectors
52 (w(zl + 20+ 23 —a; —as — a3)) for arbitrary points z;,a; € M. As
in the case of the binary expansion this situation can be summarized in the

following diagram, in which Ly = Py *(L5).

L, C L, C Ly
P | { ]

(19) 0 C Ly=L3/Ly C Ls/Ly (L3/L»=span"if)
Py ] ! !

0 ¢ 0 C Ls/Ly (Ls/Ly =span €5ff)

It is of course possible to describe this situation by using the vectors ﬁjf in
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place of E-’“ k2 ks

1 72ds and 77¥ in place of § J‘kz ks although this requires a choice

15273
of bases of the Petri spaces P2 and P3.

It is again possible to say something about the subdominant terms in this
expansion without much difficulty. As a first observation, the coefficients
Ejl injs in the formula of Theorem 9 admit an explicit expression in much the
same form as in Corollary 2, even without any further assumptions about

the projection operator P, as follows.

COROLLARY 3. With the hypotheses and notation as in the theorem, there

are uniquely determined vectors é:“‘;“zﬁ*" in the range P such that

2 rk
Bjyizis (1,02, as) = Z Zf ljc:;:;, ‘Pkll (apl)wkg (ap2)wk, (ap3)

7,p€6(0,1,2) k

+ Z E;j?j;aw (a1)wh, (a2)wi, (a3);

these vectors are symmetric in the indices ji, j2, 73 and in the indices k1, k2, k3.

Proof. : In the formula of Corollary 1 replace a; by Ta4 for some T € I'. The
left-hand side is a relatively automorphic function for the canonical factor

of automorphy &(T,a;), as is each term wj(a1), while by Theorem B1l

w,(Tay) = w,{ar) +2mi Yy Be(T)wi(2)-

£
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It then follows from a straightforward calculation that

Yoo S &b amiBy(TYwi(zx1 Ywi, (a1)wh, (a2)wk, (a3)w), (22)w], (2r3)
7€6(0,1,2) jkt

+ &(Tya1)! ZEJ (Ta1,az, as)wj, (21)w}, (22)wj, (23)
J

= 3 Bj(ar, az, as)ul, (2 )l (2205, (25),
J

or upon comparing coefficients of the linearly independent functions

w’; (21)w}, (22)w}, (23) that equivalently

- -
ﬁj1j2j3 (Ta'l y A2y a‘3)n(T’ al)_l - ﬁjszja (al y 02, 03)

=2miy [é"“ kaks g, (T) + E¥1kaks gy, (T)
k

T (T)] w), (1)), (az)wl, (as)

= ¥ S kb ) (ar)u,(as) @

r€5(0,1,2) k
o [‘P}i’;l (Ta1; a0)k(T,a1)™" - 991:1(01;00)],

where the last equality is an application of the Corollary to Theorem B12
for any fixed ag € M. This really amounts to the condition that

o -
fijzja (al’ az, (13) = ﬁ,hj:ja (ﬂ-l, as, (13)

y -
- Y S éek b olni(ag;a0)u, (a2)wh, (a2)

r€6(0,1,2) k
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transforms as a differential form on M as a function of the variable a; € M.

Since

E ' § :E_‘k:kz ks g .'Isrl - § : Fin1ix2iw3
ix2dx &2 k3

r€6(0,1,2) k1 r€6(0,1,2)
_ Fiijads __ Fiaiiis _ gisiidz —
- koka ko ks koks =

in view of the symmetries of these vectors then actually
fjlj?jﬁ (al’ az, a3) = ﬁj:jzia ((11, az, 03)
_‘klkﬂ kS j‘lr] ! r
B Z Z in2in3 Pk (a1)wg, (a2)wy, (as)
r€6(0,1,2) k

<o these functions do not depend on the point ag; they are indeed holomor-

phic functions of the variables a; € M, and a holomorphic differential form

on M in the variable a;. The functions

Givinia(@1,a2,@3) = Bjy 525, (a1, a2, a3)

D IR MR CRVIRCRENCD)
7,p€6(0,1,2) k
differ from f;-l iajs (@1,02,a3) by holomorphic functions of a; that are also
holomorphic differential forms on M in the variable a;, and are symmetric
in the variables a;,as,as; they are comsequently holomorphic differential
forms on M in each variable d,-, so can be written

Giviois(@1,02,03) = 3 E ks w) (ar)wp, (az)wi, (as)
k
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,?91 kzks
J1J233

for some uniquely determined vectors that are symmetric in their
. upper indices and also in their lower indices. The desired result follows
directly from these observations.

The vectors f}“l‘;;‘}';s of Corollary 3 can be viewed as representatives of the
correspondingly denoted vectors of Corollary 2, where the latter are viewed
as lying in the quotient space of the range of P modulo the subspace spanned
by the vectors E-?“ fﬁ:“ . The vectors of Corollary 3 consequently satisfy the
further symmetry condition that interchanging the j’s and k’s changes them
only by vectors lying in the subspace spanned by the vectors é"“f;j’;a . It is
actually possible to choose representatives that are really fully symmetric
under interchanging the j’s and k’s, by arguing as in the second part of the

proof of Theorem 7; the result and proof are sufficiently complicated that

it seems unnecessary to provide the details here.
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§6. The quaternary expansion.
To describe the quaternary expansion consider a linear projection map-
ping P : C** — C" such that
(1) P, (w(zy +22+23—a1—az— az)) =0 for all z;,a; € M.
The dominant terms are described as follows.

THEOREM 11. If P is any linear projection mapping satisfying (1) then

there are uniquely determined constant vectors Ek‘kz I;" ’J"‘* in the range of P

— -
and holomorphic functions B3j,5,5.(@1, @2, @3, as) and B, ;5,555 (a1,a2,a3,04)

on M* with values in the range of P such that

(2)

POy (w(z+ 22+ 23+ 22— 01— a2 — a3~ a4))Q(21, 22, 23, 24; a1,02,03,04)

= Z Zgﬁh]a?:w (@p1 )Wk, (@p2)wi, (ap3)w, (as)e
reG(0,2 .2) 2.k
pEG(2,1)

¢ w;pi 204 (zﬂl)w;pz 224 (zﬂz)w!f;; (ZWS)w,‘;’.& (zﬂfl)

+ Z Zﬂ)\izja.h (alaa2aa3aa4)°

71’66(0,1,3) A7
o wl o, (2n1 )W), (2r2)w], (2r3) W], (2x4)

+ Y Bisiaisia(a1,02, 03, a4)w 31(21) Jz(zz)wgs(zs)w (24)-
b

e
Here the vectors f”"’-’k‘f,:z are symmetric in the indices 1,13, In the indices

41,j2, and in the indices k1, ks, and under any interchange of the three sets
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of indices 1, j, k; moreover they satisfy the further symmetry condition that

: (3) é’fli:zi:su + 6:;13:214 _I_E'-'ilz“z;a =0,

J3j4 VENE NENT
and are determined uniquely by the identity
(4) 8,1, PO (w(z1 + 22 — a1 — a2)) Q(21, 223 @1, 02) ™2

= Z 611221.;;}7:2 J1 zl)w.'lz (zz)uk] (al)wk2 (0.2)-

The vectors E,\_,-z isis(a1,a2,a3,a4) are symmetric in the indices
j2,93,44, while Ejljzj:;j&(al,ag,a;;,a‘i) are symmetric in the indices
1,32, 33, J4-

Proof. The result of applying P to the general expansion of Theorem 1
s (2.2), and by Theorem 3 for n = 4 the dominant order satisfies 2L < 4
or L < 2; thus there are only three sorts of nontrivial terms in the expan-
sion, namely Pd’g{fﬁ Jaia? P "‘,{ lefa iad and P"?lg 2433 jo- The first sort have the
explicit form given in Theorem 3, and their contribution to the expansion
isr

32:2
E Z P&‘gl A233J4UA1 (zﬂ'l)u)uz (zwz)wja (27;-3) ;4 (ZW4)
7€6(0,2,2) A,j

= > X [ﬁlkz‘;:f:ul (2m1 )y (2e2) + €148 54 (201 Y (212)

r€6(0,2,2) jk
e kokak |
4 Prkakabays (zﬂl)u;,,(zwz)]

° w;-S (z,r3)w;-4 (zna)wy, (a1) ... wi (aq),
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where () = W, o, (2), 1h(2) = Why 0, (), and w4(2) = Wl 0, (2); when
rearranged by grouping together those terms with the same vectors g,

which is effected by permuting the variables a1,as2,a3 by the permutations

p € 6(2,1) C &3, this yields the first part of the desiréd formula. The last

: . a - =+0;1;3
two terms arise from (2.2) by setting Brjajsin = PaY5; @ d
E . = paY%%t . The coefficient vectors have the desired symme-
7132333+ 7 J1323334°

tries by Theorems 1 and 3. The second formula of the theorem determines

the vectors involved by the Corollary to Theorem 3.

The general results from Theorem 1 only imply that the functions ﬁ are
meromorphic, with singularities at most along the subvarieties
a; = Ta;. They will b‘e shown to be holomorphic by using an auxiliary for-
mula somewhat analogous to (4); the discussion is a bit more extensive than
necessary just to complete the proof, since this formula is rather interesting
by itself. To derive it, multiply the expansion (2) by ¢(z,,a.,)?, apply the
differential operator 8/8z,, and take the limit as z, — a,. On the left-hand
side the product g(z,,0,)?Q(21,.--,a4)”" is holomorphic at z, = au, with
the limiting value obtained from (5.2), while thé term P, (w(zg 4+~ as))
vanishes at z, = a, as a consequence of the assumption (1); thus the only
nontrivial terms arise from differentiating the theta function. Each separate
term on the right-hand side will have a double zero at z, = a, coming from

the factor g(z,,a,)?, and hence will contribute nothing to the final result,

88



except for those terms involving a meromorphic factor w;  ,(z,) for some
a; b

point b, and for the latter

(Zw a, )’ wg, p(20) = 1.

Zp=—rl,

Thusifvr =1

(5)
ZB,-P@; ('w(zg + 234 24— Qg — a3z — 04))102(01)@(22,23, z4;a2,a3,a4)"2

Z Z gkl sz:}’i,!w, (al)wkz (092)1’”5473 (a‘P3)w;¢?4 ((14).

clmpr=1"

o w, , o (2r2)W], (2x3)w], (274)

+ Z 513'2.7'354 (a‘l 302, A3, a4)w;'2 (22)1”;'3 (23)w;4 (24)3
J
whileif v =4

(6)
z (9,-P52 (w(21 4 25+23—a; —as— a3))w§(a4)Q(zl, 29,23;a1,0Q2, 0.3)_2

=-S5 @kakskow (a,)wh, (@p2)wh, (@g)wh, (as)e

29P4 J,
o w:J.p] J04 (zﬂ'l)w;;; (213)‘“’34 (zﬂ"i)

- Z B'}\J'zja.f; (a'l yG2,03, 0,4)'11);-2 (21 )wgs (zz)w;‘ (23);

AJ
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in these formulas 7 € 6(0,2,2) C 64 and p € 6(2,1) C 63, with the
further restrictions as noted. Now in (5) the only singularities on the left-
hand side and in the first line on the right-hand side are poles of order
at most two along the subvarieties z; = Ta;; that must consequently be
the case for the second line on the right-hand side also, and it is then
clear that the functions 51 jajaje BI€ holomorphic. The cases v = 2,3 yield
corresponding formulas, so that Eyjz jajy BTE holomorphic for v = 1,2,3,
while from (6) it follows that 3 Bxj, s, are holomorphic and consequently
S0 are 543‘2 jsjs- Thus all the terms Bsz j»4, are holomorphic, and it then
follows immediately from the main expansion formula (2) that the terms

ﬁj1j2j3j4 must be as well, to conclude the proof.

It may be worth noting in passing that the‘ reason for the extra step in
showing that the functions ﬁ are holomorphic is that the product
B injaje(@1,02,03, ag)wh, o (2r1) is  holomorphic even  when
ﬁ;\jz jsic(a1,02,03,04) has a simple pole along the subvariety ax = a4. Just
as for the ternary expansion the asymmetries here in the variables ay can
be alleviated by rewriting the formula in terms of the Abelian integrals of

the second kind as follows.
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COROLLARY 1. With the hypotheses and notation as in the theorem
Py (w(z1 + 22 + 23 + 24 — a1 — az — a3 — a4)} Q(21, 22, 23, Z4301,02,03,84)

= 3 Y fukkk (ag1)uj, (eo2)wk, (acs)ul, (acs) @

T,0€86(2,2) j.k

W,y (aal)wzwz (a02)wj3 (zﬂ3)w.'i4 (zﬂ"i)

4 .
+ Z Z Zﬁ:jzja.h (01,02,03,04)w2ﬂ (a")w.;z (z’rz)w;‘a (2”3)1'”;4 (2”4)

r€6(1,3)v=1 j

+ Y Bjrinisia (@15 82, a3, ag)wj, (21)wj, (z2)w], (z8)w], (24)
j

-t — —
for uniquely determined holomorphic functions 8} ; . and Bj,j,5,5, on M 4

with values in the range of P. Here

4
-
(7) Zﬂ:jzjah (a1,az, as,as) =0
v=1
and
=2 =
(8) ﬂ(g—ly)j2j3j4 (aala Ag2y Qo3 aa4) = ﬁvizish (al ,02,03, 04)

for any permutation o € &4; moreover ﬁjl i2jsje(@1,02,a3,a4) Is a symmetric
function of the variables a;, and both sets of functions are symmetric in the
indices j.
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Proof. In the first line on the right-hand side of (2) make the substitution

- w) (2) = wa(a) - w;(b). With the shorthand notation
(ili?; i3i4i5i6) = Wz (a‘ix )wzwn (aiz)w;cl (a’is)w;cz (ah)w;cs (a‘is )'w;“ (ais)

the coefficient of E-‘k‘kz ';:;“: wh (zn3)wi, (2n4) in that line for any fixed per-

mutation 7 and indices j,k can be written

9) > {(pl p2; pl p2 p34) — (p14; pl p2 p34)
p€ES(2,1)

— (4 p2; p1 p2 p34) + (44;p1 p2 53 4)}
= (12;1234) - (14;1234) — (42;1234) + (44;1234)
+ (13;1324) — (14;1324) — (43;1324) + (44;1324)

4 (23;2314) — (24;2314) — (43;2314) + (44;2314).

Here observe that

(10) > Eokbk {(44; 1234) + (44;1324) + (44 2314)}
k

=5 e, (as)ws,, (as)wh, (@) wh, (a2)wh,(as)wi, (as)
k

cki1kakaky ckikaks h Fhakakiks
® {E Jajs +£ Jaja +£ J3j4
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as a consequence of the symmetries of the vectors E-., so the last column
on the right-hand side of (9) will contribute nothing to the final sum and
can therefore be dropped. Then add and subtract the sum (14;1423) +
(24;2413) + (34;3412) on the right-hand side of (9). The negative terms

there can be regrouped and rewritten as the sum

3

— E {(v4; 1234) + (v4;1324) + (v4; 1423)},

v=1
and just as in (10) this will contribute nothing to the final result. The

positive terms are then the only ones that need be considered, and they can

be rewritten as the sum

> (o102;01020304),
c€6(2;2)

yielding the first line on the right-hand side of the formula of the corollary.
The second line on the right-hand side of (2) can be rewritten correspond-
ingly in the form

Z B‘Ajzjah (wzwl (O‘.)\) — Wzay (0‘.4)) w_;'z (z‘FT?)w;'a (zﬂ'3)w;‘4 (Zﬂ'4)

ﬂ!Ahi -

4
= Z Z BljriaiaWens (au)w;z (3w2)w;'3 (zw3)w;‘4 (zx4)

n,] v=1
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where

( 5,,_,-2_53]-* for v=1,2,3,
(11) 6:j2i3.1'4 = ﬁ G
= Brigieis  for v=4
L A=1

these are consequently uniquely determined holomorphic functions on M,

and it is evident from (11) that they satisfy (7) as desired.

Now the first line on the right-hand side of (2) has been rewritten so as
to exhibit it as a symmetric function of the variables a;, while the left-hand
side is obviously symmetric, so the remaining terms on the right-hand side

are also symmetric. It is evident from this that for any permutation o € G4

Z 5:3213]4 (al’ az, as, a"l)wzwl (au)wgz (z"rz) et w;.g (z‘ﬂ"‘l)
o155

-
+ Z ﬁjl.‘iziaia (al y 22,03, a4)w;'1 (zl) s w;‘; (z4)
j

= Z ﬁ:’jzjah (aC’l’ g2y Qo3 004)1’”2:1 (aav)w:iz (z‘fr?) e w;'4 (z-mi)
w,1h)

. .
+ Z Birizisia (ao1,852: 803, %4)?0;-, (z1)... wh (24)
; _ ;

Comparing the residues at the point z, = a, on the two sides of this
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equation shows that

> Bijiiuii(a1,02,03,00) w5, (2n2) - - 0], (274)

2
wl=m

-
= Z ﬂgﬂ_]n)jﬂai&(a“l’a02’a03’a‘0‘4)w;z(212) L. 'w;'4(z7f4)a

l=m

hence that these functions satisfy (8) as desired. From this it is easy to see
that the second line on the right-hand side of (2) is also symmetric in the
variables a;, particularly when rewritten as in the formula of the corollary.
The last line and hence each separate coefficient Ejl j2jaj. Tust then be

symmetric as well, to conclude the proof.

If the projection mapping P is one for which P&?\;ﬁi jsi, = 0 then the

=0:1;3

dominant terms are P&, ; ., and the preceding expansion can be rewritten

as follows.

COROLLARY 2. With the hypotheses and notation as in the theorem, if all
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the vectors E’“kz‘;—‘; 'J“: vanish then

(12)

sz (w(zl +2z9+23+24—0a1—a2—G3— 04))52(21,22, Z3,24;01,02,03, 04)_2

T Skl (), (@)l (ap) vk, (a) ®

x,p€G(0,1,3) 1,k

® w;pl 2y (z,rl)'w_‘;-2 (zm2)ws, (Zﬂg)w34 (zr4)

+ ) Bisjaiaia(01,02,83, ag)w' (z1)w}, (z2)w}, (z3)w], (24)

3

for some uniquely determined vectors Ekl ?2?;2‘ in the range of P and holo-

morphic functions Bj,j,5,5, on M* with values in the range of P. The
vectors £ 21, are symmetric in the indices jz, j3,J4 and in the indices

4

ko, ks, k4, and further satisfy
(13) -‘iljgj;-;j.; _ E-‘i] k2k3 k{ E?,J 1.2 13 14 + 61211 7.3 14 + E'n‘,gl] 22 t4 + 52411 tg 13 _— 0
kaksks = d2d3ja *S kaokaks kakaky kaokzky kokiks —

they are determined uniquely by the identity
(14)
8; POy (w(z1+ 22+ 23 —a1— a2 — a3))Q(z1,22, 2301, az,a3)”’

—ZE Jriads wh (@), (ag)wh, (aa)w, (21)wh, (22) Wi, (2)-

— - - . . - - -
The vectors B}, jis7. (31, 82,83, a4) are symmetric in the indices j1, 2,33, J4-

Proof. If all the vectors g’“ ez ’jg f,f: vanish then the dominant terms in the

expansion are P&y Nz ;3 iad which have the explicit form given in Theorem 3;
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their contribution to the expansion is

—0;1;
Z 2 Pa)\.?zfahu‘\(z”l) J2 (Z,rz)'sz (2,3)11)34 (zﬂ4)

7€6(0,1,3) Al

“kikokak ko kikak ki ko ke
= Z Z [E ]J;J:J:ul(z"rl) +£ 23;1:.144"' (2m1 )+€ 332.7':544“'3(2“1)] b
ﬂ65(0,1,3) jgk

o wi, (a1)wh, (a2)wk, (as)wk, (aa)w}, (Zr2)wj, (2n3)w], (2r4) -

When rearranged by grouping together those terms with the same vectors
é’ this yields the first part of the desired formula. The coefficients have the
desired symmetries by Theorems 1 and 3. The second formula determines
the vectors involved by the Corollary to Theorem 3. The functions 53’; ajia
are just those of the theorem itself so are holomorphic as desired, to conclude

the proof.

COROLLARY 3. With the hypotheses and notation as in the theorem, if

both the vectors E_‘k‘kz ?gf: and é’“‘ ’;:f:i“ all vanish then

PG, (w(zi+22+23+24—0a; —az—az — G4))Q(Z1,32,23,24;01,02,03,04)“2

Z .711.’;2?.’7‘:; ’;: w, (al) Tt w;u (a4)w;1 (zl) e w.;4 (‘z4)

1kakaks

for some uniquely determined vectors 53 injs 3a

in the range of P; these
vectors are symmetric in the indices jij2j3js and in the indices kikykzka,

as well as under the interchange of the j’s and the k’s.
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Proof. Under the hypotheses of this corollary the dominant terms are

—{;0:4
Pa; i

: the expansion as asserted follows immediately from Theorem 3,
as do the symmetries of the vectors involved.

Just as for the ternary expansion so also in the quaternary expansion do
the auxiliary vectors involved satisfy some further conditions beyond the
symmetries already noted. First it follows immediately from (4) that

i
(15) S @i (2w, (2) = 0
k1 ks
~ for all points z € M and all indices ,j. Thus if pi(z) = 3, ;, D5, 5,%51 %42

is a basis for the Petri space P; then
Syigii N .
(16) e =) T PP Prak,

for some uniquely determined vectors ﬁflf: in the range of P; these vectors
are symmetric in the three indices ¢1,45,43, and in addition as a consequence
of (3) satisfy
10, [, 61 . f TR T
(17) Z’? ' (p:‘:igpi:i4 + P i Pii, T+ pi:i.,p:';i;;) =0
£, 22
for all indices i;,42,13,%4,7. Next if f_‘i‘i?iiﬁ =0 for all indices 1,5,k
then it follows immediately from (14) that
(18) Y B, (2w, (2) = 0
kike

98



for all points z € M and all indices i, j. Thus if

— i PSR
pi(z) = E : Pjiis33TiiTi2Tis

J1Jads
is a basis for the modified Petri space P; then

Fijijzds _ ~ify €y £
(19) E k] kzka - Zn £2pjlj2j3pk1 k2k3
£1£2

for some uniquely determined vectors ﬁ‘f; in the range of P; these vectors

are skew-symmetric in the indices £;, £, and in addition by (13) satisfy

. 2l sl ¢ iy b ¢
(20) Z (ﬁn]jpfgia i F TP igiy T T i Phigiy 1 jpi1i2i3) =0
¢

-t

for all indices ,,15,%3,%4,7. Finally #f 5'”2;2 ,-g: =0 and

g ‘fcifzfci = 0 for all indices i,j,k then it follows immediately from

Corollary 3 that

(21) S ghihiiyl (2)w) (2)=0
k1ks

for all points z € M and all indices i,7. Thus if

pilz) = > ph ;.2

Jid2Jaja
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is a basis for the modified Petri space P, then

, Ti1inizie _ . ¢

(22) 6313:;;;: - qf;pilli:zishpiijzjah

ks k2
for some uniquely determined vectors ﬁﬁ’ in the range of P, and these
2

vectors are symmetric in the indices ki, k.

In this case the extension from L3 to Ly, where of course L4 is the span of
all vectors 52 ('w(zl vt zg—ag—-- -—~a4)) for arbitrary points z;, a; € 1\7,

naturally splits into three steps as in the following diagram

Ly C L, C Ly C L
Py ] ! ! l
0 C L,=L;/Ls C L, /Ls C L4/Ls
(23) P | ! ! !
0 C 0 C Ly=Ly /Ly C Li/L;
Py | ! ! !
0 C 0 C 0 C L4/Ly
where L) = span § 1k2;-°f?;, Ly = span é%ﬂ;:i;;i;;, and
L, /L:;= ‘= span é;‘;fgf:’j:, the projections Ps, P}, P} are the minimal

possible ones with the indicated kernels. It is again possible to describe
this situation by using the auxiliary vectors ﬁe ‘2, T-].ig; , f]f; to describe the

subspaces involved, although this requires a choice of bases for the Petri

* *
spaces Pz, P3, P,.
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