1.
F. Differential expansions of Riemennian theta functions
§1. The general expansion formula.

The model for the differential expansion of the second order thete

functions is the formuls of Theorem D6, which can be written

(1) Gb(w(z-a)) q(z,a)'2 =

= 8.(0) « wz) +1/2 ? ; (0) » v (z)w! (a}).
2 a '3]),:32 Jpdp 2 3 o

Each component on the left-hand side of (1), when vieved as a function of

z ¢ 15 for a fixed point B € ?Z, is & meromorphic relstively automorphic
function for the cenonical factor of automorply x, or equivalently a
meromorphic Abelian differentiel on M, with at most double poles at the
points Ta; that function can be written uniquely as some linear combination
of the canonical Abelien differential of the second kind w;(z) and the
ordinary cenonical Abelian differentials VS(Z)' and (1) describes this
expansion quite explicitly. This result was derived from the trisecant
formula by & limiting process, but can just as easily be obtained directly.
There is always some expansion in terms of the canonical Abelian
differentials, hence some formula of the form

+ * 2 > 2
Eb("{z'a)) = a g(z,a) v;(z) + IJch(z,a) w&(z)

> + -4
wvhere a,a, €I° are vectors that depend on a bdut not on 2, and it is

J
merely a matter of determining these vectors explicitly. That can be done

by much the same sort of limiting process that was earlier applied to



the trisecant formula; the‘argument will be used repeatedly in the sequel,
in more general circumstances, 80 will not be discussed further here.

The general differentiel expansion arises as the analogous treatment

-+
of the function Bz(w(zl+eo-+zn—gl.---_gn)). This expansion can be

developed through eppropriate 1imiting cases of the multisecant formula,
but the direct approach seems to yield & clearer overall viev of the
structure of the formulas. The general case is somewhat more complicated
¢han the specisl case (1) though; with more poles involved, meromorphic
differentials of both second and third kinds ere involved, &nd the formulaé
depend critically on more detailed properties of the Riemenn surface.

Consider then the theta function

&
(2) Qz(v(zl+--o+zn-a1---o_an)) =

= 92[2w(22+ covtz —By—e --an)] (v(zl))

as a function of the variable 2 alone. As in the earlier discussion, each

component of (2) is & relatively automorphic function for the factor of

sutomorphy

o 2=0p (28
21{( al-l- ow o-}-an_zz.. 'y -_zn) k+2w(a_1+ ' o+an_z,2... e o..zn)

= KCE ...;i C;a"'c';e)
n 2 n

where as ususl tz = pw(z); ig the standard factor of automorphy associeted
to the divisor lez. 7o obtain functions of zy that transform by the

canonical fector of sutomorphy « alone, the function (2) cen merely be

. . n 2 n =2
multiplied by the meromorphic factor [szzq(zl,zj) ][nk=1q(zl’ak) ]; the

pesult will then be a meromorphic function, with singularities at



most those of the divisor -2(al+---+an) on M. For symmetry hovever it is
better to consider instead the function

P 2 2 -2
(3) £= Bz(w(zf---+zn-a1-----an))[l:vq(zu,zv) q(au.av) Hul’lvq(zu.av) -

4the terms in this multiplicative factor that involve the variable z, are
3Just as considered above, but the factor is symmetric in all the variables
Zyseeeslps as well as in the variables By e eeBy and under the exchange of
z and a. The functionrf iz meromorphic in all its variables, with the
singularities in each variable corresponding to those in the variable Zqye
It is sometimes more convenient to consider instead the holomorphic function
(L) ;* = ; (w(z, +eoetz -8 eoe-a ) )| Walz ,2z Y2q(a_,a ).

2 1 n 1 n v TRV

p<y

*u

The components of £ a&s functions of any variable zy belong to the space of

relatively auvtomorphic functions ! xci --o;i Y.
1 n

It follows immediately from the Riemann-Roch theorem that
Y(K;E ..ocz )l: g+ on - 1
& n

whenever n > 1. If the points a, € M represent distinct points of M it

is possible to write down & convenient explicit basis for the vector space

T(KC2 ...caa ) in terms of the canonical Abelian differentials w&(z) and the

canonical meromorphic differentials wj (z), v, o (z) of the second and
B Ay

third kinds. To simplify the notation somevwhat, set
“3.(2‘) ® "al,a (z) for A= 1, e+s, n-1, and
n
{5}

v;‘l(z) = 'w;u(z) for =1, ***, h.



In thesze terms +the functions

n 2
w'(z) « Tglz,m )" for J=l, cce, &,
J w1 v

n
(6) ui(z) . nlq(z.a‘)2 for A=l, cee, D=1,
Lt

n
v'(z) « ¥ qglz,2 )2 for =1, ceey 0
u v
w1l

elearly belong to the space T (:ciltoocz ), &nd 0 long as &) ,eee,8

n -
represent di;tinct points of M they are also linearly independent. Indeed
the g functions on the first line are linearly independent, eince the
Abelian differentials wﬁ(z) are, and all vanish to at least the second
order at egch of the points ai; the 2i-th functicn on the second line on the
other hand has & simple zero at a, and &, but double zeros at the other
| points 8, while the y-th function on the last line 1s nonzero at 8, but
hes double zeros at the cther poiﬁts 8;, BO all these functions ere

linearly independent as desired. This provides & convenient basis for the

space r[::il---;i ), & basis that will be used consistently throughout the
n

discussion here. A slight disadvantage is that the use of the functions
ui(z) implies that the point &  is singled out, thus destroying the
complete symmetry of the bgsis in the variables Bly sevy B3 that is not a
gerious matter though, provided that it is kept in mind, and is more than
counterbalanced by the simplicity of this basis. It must also be kept in
mind that these functions are no longer linearly independent if there are
coincidences smong the points of M represented by a;; & basis theﬁ requires
the introduction of meromorphic differentiels having yet higher order

singularities.



Before turning to the differential expansion itself, it is convenient
to introduce one further bdit of notation. Let_@_n be the symmetiric group
on n letters, vieved as the group of permutations of the n indices
1,2, eeey N If k, £, m are any nonnegsative integers such that
k*f *m=n, let g(m,l,k) denote the subset of & consisting of those
permutations ¥ € En such that

2(1) < 2(2) < 20 < 2(m),

wm+1) < w(m2) < ooe w{m i),

s(m++1) < x(m+f42) < ose < x(n).

Clearly _Cf.(m,i,k) is just a particular set of coset representatives of the
subgroup Egm x€, x_GK 5§n ecting in the natural way on this index set.
In these terms, the general form of the differential expansion is as

follows.

Theorem 1. There are uniquely determined meromorphic vector-valued
functions

;m;z;k - :m;i;k
WiAid T CWpaeseatpd Naneradyd dgatt ey

n

of the points & 4000y 8, € ?1" indexed by nomnnegative integers k, £,m such
4hat k + £ + m = p and for any such triple by m indices W yee,ky € [1,n],
by £ indices A ,eeesdp € [1,n-1], and by k indices J ,ecesdy € {1,g], with
the following properties:

{1) the only singularities of these functions lie on the subvarieties
a.i-'I'aJ ofﬂ!f‘.l, for 1 # Jand T e}

(ii) these functions are symmetric in the m indices w,, in the £ indices

3.. eand in the k indices Ji;

i’



6.

(131) with the notation (3), there is the identity

-

f(zl,..., 23 By ey sn) =

n

m,ﬁ,

Siag Vi Pa) 0t Vi e

k+ f+m=n teﬁ?m,l X) w3
H(zﬂmﬂ)) u, atme)) ¥ (Eatm £e2)) 00 5 )

thet holds for &ll points By 24 € EL

Proof First suppose that Bys eoey By are fixed points of M that
represent distinct points of M, and to simplify the notation let

1 denote the g+2n-1 basis functions (6). ZEach component of

1,"‘, fg+2n-1

*a
the function f defined by (k) belongs to the space T(r:ilo--ti ) when
n

~t
viewed as a function of z, € M for any fixed poinis Zps eres Zps BO there

-

are uniguely determined vectors ay guch that
1

?(zl) = ):i oy £, (z,)e

i1 1
Y
Each component of the vector o, is evidently & holomorphic function of the
1 ,

. ~
varisbles Z5s %20 and when viewed es s function of Z, € M for any fixed

points 23,...,zn belongs to r(:ﬁilo-eti }; hence there are uniquely
n
<&

determined vectors nili such that

(z)) = §, o, ; £, (z;)
’12 121112
The process can evidently be continued, and there results an expsnsion

<

oy peeenr) = ] P ACAEEACE

11'.".’111 n



Y
vhere the vectors o, y b&re uniquely determined and are independent of

zl,...,zn. These coefficients of course depend on the points al,...,an,

and can be calculated by Cramer's formula in the usual manner; vhen viewed
~

as functions of the points aiE: M they are conseguently holomorphic so long

a5 the functions (6) are linearly independent, but at least extend to

-+
~ *
meromorphic functions on M®. Note that since £ is symmetric in the

->

veriables ZiaveeaZy the coefficients o, " must be symmetric in the
1'.. n

ipdices il,...,in.

This is of course easy and straightforward; the only complication
arises in teking into eccount quite explicitly the fact thet the functions
fl""'fg+2n-1 of the basis (6) really naturally split into three distinct
types, which mst be considered somewhat separately. That corresponds to &
decomposition of the index set I = [1,g+2n-1] as the disjoint union of
three subsets I' = [1,g), I" = lg+1,g+n~1], and I''" = [g+n,e o0 ,g+2n-1],

If in & typicel temrmn

(zll---fi (z, )

1 ...i il

there are k of the indices 11""'in 4n the range I', £ in the range I,
and m in the range I''', then there is a unique rearrangement of these
indices grouping together first the m indices in the range I''', next the )4
indices in the range I'', and finally the k indices in the range I', and in
each case leaving the indices in each range in the same order as that in

which they appeared initially. This rearrangement will have the form

-

£ ( Yoeof ( )
"1'(1)...1'(“) 1(1) Zx(1) 3 eln) Zu(n)



for some element % € f_'(m,-ﬂ,k), where §_r4yaseesi pyare ip I''Y,
LI | [
iw(m+l)""’it(m+£) are in I'', and 1‘(m+£+1),...i‘(n)are in I'; 4t is thus

in the form as in the statement of the theorem. As the indices 11,..., in
vary but k,£,m remain fixed, the positions of those indices that are in
Iv¢Y, I'Y, or I' will vary over all possibilities, hence ¥ will range over
the full subset gm,l,k), while for each rearrangement % the individuel
i{ndices will range over all possible velues. The result is precisely as in

the statement of the theorem, after dividing throughout by nu vg(zu,a\)-z.
¥

The formule derived above seems rather complicated, but is actually
guite natural; it is Just thet there are really guite a number of distinct
forms for the terms in this differential expansion. This can possibly best
be illustrated by vri‘t;ming out quite explicitly the first nontrivial case,

thet in vhich n = 2. The result is the formule

+ 2 o, 2 2
(1) Qe(w(zl+ze-al~az)) q(zl,za) q(al,az) [ @ q(zu.av) ] =
: ¥, w1

*2:0;0

= )a
u ¥

&,
< I u:I.§(13;1
T M

) *1;1;0

1] 1
v (zl)v mmu;,t

(22),+ , KVL(zl)ui(zz) + vL(za)u&(zl)] +

2 .
*0;2:0

Iv‘u(zl)vs(ze) + VL(za)wj(zl)] + ;u u! {z. ) (22) +

e
+ 7B (ot (2,) + uilz,)w(2,)] + 103032 (5 )wt (z,).
l,JA;J Al.JE -2 R | 33132 311322

The instances in which a nontrivial permutation ® € ggm,ﬂ,k) enters are
written out in square brackets. The expansion has much the same form as
the decomposition of a homogeneous quadratic polynomiel when the variables
are of three classes, corresponding to & dissection of the matrix
repregenting that polynomial into three pieces on each side. For n = 3 the
formula is mkin to the corresponding homogeneous cubic polynomiel or three

dimensional matrix, end so on.



9.

The expansion formla of Theorem 1 is of course & purely formal
result, but is a convenient basis for a more detailed and substantive
analysis. There is not a simple explicit expression for the coefficlent
vectors in that expansion for the cases n > 1, no real parallel to the
simple universal formula (1) in the case n = 1; but there are various
universal restrictions on these coefficients. The discussion of the

general form of the formulas can be consiﬁerably simplified by the

judicious use of guitable projection operators in the vector gpace E2 .
It may be helpful first to see another instance in vhich such projectlons
¢can be used, to clarify their role here. The KFP equation in the form of

Theorem D8 asserts that for any peint z € M the vector

I 300l Jl"'Jhe H(0) v (z)---w (z)

l1ies in the subspace of E2 gpanned by the vectors ;2(0) and aJ 3 B {0).

1t mctually says much more, indeed gives quite explicitly the ctéiflcients
of the linear relation among these vectors. From some points of view the
most interesting thing about this equation is just that there is such a
1inear relation, not vhat it is explicitly. The mere existence of such &

relation can be handled quite simply in terms of & suitable projection

4
operator; for it amounts to the condition that 1if P:E2 + T 45 eny

e
linear mapping such that P (0) = P2 (0) = 0 for all indices J,,J.»
Jy 3o 12

then

9 {0) ! (z)---uﬁ (z) =0
L

IJ ...Jh Jlncodh Jl

for all points z € M- The seme sort of simplification can be used to



10.

handle the differentisl expansions of the second order theta functicns.
The jidea is to assume that gomefhing is known aﬁﬁﬁ{ the expansion formula
of type n-1, and then to choose a projection operator that ignores
altogether the formule of type n-1 but indicates what edditional terms

appear in the expansion formula of type n.

LY

g n '
Theoremn 2 Iet P:l’:2 + @ be any linear mapping such that

Fs
Pez(w(zl+--~+zn_1~al—----an_l)] = 0

. ~Jt
for all polnts z,,.84 € M. V¥hen this projection is applied to the vectors

appearing in the expansion formla of the preceding theorem:

mid sk
i Pa '-? = 0 whenever m> 0;
(1) TS ?
*0:8:k
(11) Pa.*? = O whenever X, = Ai for 1. #1,_.

Al‘...’xz;jl’.-.‘Jk 1 2 l 2

Proof (i) The hypothesis clearly implies that each componest of the

E
vector pgztw(zl+...+zn_al_..--an)) when vieved &s & holomo;phic function of

~ .
the variables g € M vanishes at the polints z, = aj. That means thet each

s

component of the vector Pf(zl,.-.,zn; al,...,an) has as singularities at
most simple poles at the points z, = aJ, g0 that the differential expansion
does not actually involve any meromorphic differentials of the second kind,

or equivalently, any function vL(zi). The assertion that none of these

terms appear is precisely (1).



11.

(11) First mltiply the expansion formula of Theorem 1 by
n vg(zu,a\gz. so that all the functions that are involved are holomorphic,

and then apply the projection operator P; the result is an expansion of the

>
L]
holomorphic function Pf in terms of the holomorphic functions (6). Then

apply the differential operator a/azl and set 2, = &,. Since the

L
hypothesis on P implies that the function PBE(V(Z1+"'+znf‘17""an)) has &
zero at Z, = By the only possible nontrivial term that can arise on the

jeft-hand side is that in which the differentiation is applied to this
*u
theta function rather than to the other factors in Pf ; the result on the

left~hand side thus becomes

-+

(8) I V'(B PBE(V(zaﬂb coo-l-zn-aa-ooo-an)) .

s (ay) 3,

2 2 2
. [1qu(zv’al) ][1<5<vq(zu.zv) ][uqu(au.av) 1.

On the right-hand side the varisble z,8ppears in the factors q(zl,av)a, and
either in ui(zl) for some A or in w&(zl) for some J, since from pert (i) of
the proof there are no terms vL(zl) appearing in the expansion. The only
possible nontrivial terms that can arise are those in which the double zefo
of the factor q(zl,al)2 is cancelled, and since n > 1 that cen only happen
by differentiating one factor and multiplying the other by

a (zl)'to cancel the zero by e simple pole; these are the
n

c(z ) = w
W3y 8y
terms for which £2 1, %(1) =1, A =1, and in view of the known local

form of these functions the right hand side becomes
| 205k, .
(9) tzk :eﬁEO,t,k) 1{3 P uxz(z'(a))"'vdk(z'(n))'
£1  w(1)=1 A=l
2 2
[‘;Ilq(al,av) ][u'lqu(zu,nv) 1

vl
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for in canonical local coordinates near & = 8 it has been observed that
alz,a)w! {z) = [(z-a) + O(z—a)B][ A o] = 1+4+0{z-a). Then to the

a ’b, Z-~8, )
jdentity (8) = (9) apply the &ifferential operator 8/dz, and set Z, = & -
fhe left-hand side vanishes, since the factor q(za,al)2 has & double zero
et Z, = 8y On the right-hand side the variable z,2ppears in the factors

z e |
eith p B v .
q(ze,a“) , and in either ul(za) for some A or “3(22) for some j. The only

possible nontrivial terms that can appear are those in wvhich the double
tero of the factor q(za.al)2 is cancelled, &nd that can only happen by

differentiating one factor and multiplying the other factor by

L ' . -
ul(zz) = waran(zz) to cancel the other zero by & simple pole; these are the

terxs for which f—g 2, w(2) =2, A, =1, and in view of the known local

forms egain the vhole result is the identity

) PIO;E;ku.
£ ,e@?o,z,k) Ny MITN

£a?.'2 “(T)=1"(2)=2 Al=1'2=1

0= (2 03)) "% (Extn) -

L 2
« [ q(al,av) 1B q(zu,av) ]
w1l TARY
T 2 )
The expansions of this sort ere unique, since the differentials involved

-
are linearly independent, so all the coefficients Pugfﬁ
5

3

appearing here

:g;t;k
Dgesdgitgeyeesdy = 0
The coefficients are symmetric in the indices 11,...,§£, and the sanme

must vanish; thus P for all £ > 2, 2

g0 d3°

argument can of course be applied when setting z, = 2, = a, for

1= 2,...,0n - 1, and that suffices for the proof.
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%2. Dominent terms in the expansion.

g
Iet P 3 E2 + En be any linear mapping such that

*>
(1) Pe[w(zl+---+zn_1 - B o0 'an-l)) = 0
for all points Z.» By € iﬁ, and consider the result of applying this

pperator to the expansion of Theorem 1; the result is the formula

->

(2) Pe(w(zl+---+zn-a1-----an)) . [uqu(zu,zv)aq(au.av)a][ul’lvq(zu.nv)“z] =

£k
u

*0; ]
= 3 } Pa,’ 11(21(1)) oo ka(z'(n)),

x+f=n #e€(0£ ;k) A3 A3
in view of the result of Theorem 2. The number £ of singular differentials
appearing in eny term on the right hand side of (2) will be called the

order of that term, and the terms of meximal order actuslly appearing

nontrivially in (1) will be called the dominant terms; their common order

will be called the dopinent order. Thus the dominent order L is given by

*034;k
(3) L= mx{Z: P“ATJ’ ¢ 0 for some indices 1,)}.

I+ should be observed that the dominant order and the set of dominant terms

do depend on the particular projection operater P being considered. It was

*0;2:k

shown in Theorem 2 that Pnl-j = 0 unless all the indices Ai are distinct,
L]

>

80 since 1 S_li_g_n-l it is clear that Pa&in;o = 0 for mll indices Ai; thus

.the dominant order L must lie in the range 0 < L < n-1. The coefficients
of the dominant terms have & particularly simple form. Before discussing
that, it is convenient to establish the following auxiliary combinatorial

identity.
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Lemma 1. If LI =¥ are expressions that are
¥

19"‘in;319"° ’Jn

symmetric in the indices i and in the indices } separately end that satisfy

n+l

(L) X . =
121 jii"'iin_lhj l"jl""'Jl-l"’kil'"""n*-l

for all indices 11""'in-1'31""'5n+1’ then

0
() g,y = (D%,

Proof To simplify the notation set

(1,2,%00,n3n4),.0.,20) = % ]
il"."in’in+1’.."12n.

It will be demonstrated by induction on m thet
(6) (1,+00,n3n+1 000,20} =

m
= (—l) ;(1,...,n-m,Jl,-.-,jm;n—m-l'l,u.,n,jml,...,jn)

where the summation is extended over all those permutations Jl""'Jn of
the indices n+l,...,2n such thet jl<-oo<3m and Jm+1<°°'<3n‘ or
equivalently, is extended over the (B) distinct ways of splitting the
ipdices n+l,««s,2n into two subsets, one consisting of m indices Jl""’Jm
and the other of the remaining n-m indices jnﬁl""'Jn' Thé case =0 is of
course irivial, while the case m=1 is the hypothesis (4); on the other hand
the case m=n is the desired result (5). '

It is then just & matter of proving the inductive step, so assume that
(6) holds for some index m in the range l<m<n-l. For any index i in the
range n-m<i<n interchange the indices n-» and A in (6), =nd note that by
the assumed symmeiry the result can be revritten
{1,e0e D3R+l c0e,20) =

= (..1)“’;(1,... R SSUS W PPN LS R S,eee Mad L veeesdy)
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where % indicates that A is to be deleted. Add these egquations for the mtl
possible values of A to obtain on the one hand the result that
(m"’l)(l’ooo‘n"ni‘l,--o .2“) =

= (“1)m} lggim(l’...‘n—n—l,l.;jl'Oa.'Jm;n—m.ooo,‘i,olo,n,Jml,--o.Jn)‘

and on the other hand note as a comseguence of the hypothesis (L) applied
to the string of indices (1,...,n—m—l,Jl,...,Jm;n-m,...,n,3m+1,---,3n) that

0= zﬂ (1,...,n-m—l,l,jl,--.,Jm;n—m,.u’i,...,n,jm‘.l,..-,jn)
A=n-m

n " .
+ \pzﬁ-l(l’...’n-m-l’Jl'...’Jm’J v;n"m;"'nntjmll"'nj v""h’n) ’

combining these two observations yields the formula
{m+1) (1,000, 030+l 000,20} =

(-1)™*13 !)1: (1ye00,0 ;
= - s°*%a ‘m"lnjli"'sjmndvsn'm;"'on’3n+1""'3vi"'tjn)'

J 1l
n n
There are (n-m)\m/ = (m+1){z+1) summands on the right-hand side of this

lest identity, corresponding to m¥l copies of the (n-i»l) weys of splitting
the indices n+l,...,2n into two subsets, one consisting of §+1 indices and
the other of the remaining p-m-1 of them. Thus aside from the fector m+l
this is precisely the case m+l of the formula (€}, thereby establishing the
inductive step and completing the proof of the theoremn.

With this result in band, the dominant terms in the expansion (2) can

be described as follovs:

Theorem 3.1If P is any projection operator for which (1) hoids then the
dominant order L of the expansion {2) satisfies 2L < n. There are constant

vectors

41;3 ‘il,o-a,iL"JIﬁl,-o-’Jn 28
3 = [ . x € BT
x s PSR RRRL L
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with indices in the range 1<i,3,k<g such that the coefficients of the

dominant terms in (2) have the form
.-o-k ;k ’.o-,k

AL M
Jlﬁl‘...."n
vhere al""'lL gre distinct integers in the range 1<)<n-1 and Preyseseoby

k
* %
PuP;L;n-L = I ¢ A1

o _. 1
Asd i "’Ll(‘l) ooy (&),

n

are the ordered complementary integers in the range liuén-., so that

Al""’lL’uL+l""’un is a permutation of the integers 1,...,n and the 'H
+133
are uniquely determined. The vectors §{  are symnetric in the L indices

i, in the n-L indices J, and in the n-L indices k separately; moreover they

satisfy the further symmetry conditions

Ei;,jk = (-l)LEi;k,

I“eil"" Wy gadgiipeecesty ooty
wL

l‘1.+1,. s «, k

n

and in the extreme case that 2. = n these vectors ere gymoetric under the

interchange of the sets 1,3,k if L is even and skew symmeiric if L is odd.

Proof Choose arny L indices ;§51<--- op<n and let ¥£TL+1<"'<TL5 n be
the complementary set of indices, so that the o's and t's together comprise
the full set of indices 1,...,n. Multiply the expansion (2) by

n q(zu,z\)2 go that all the terms appearing there can be considered as
U ¥ .
bolomorphic functions; then apply the differential operator BLlaza ---aza
1 L
to the result and set 25 % L The hypothesis for the projection
i i
s
pperator implies that Pe[w(zl+---+zn-a1---=-an)) vanishes whenever

zu = ao for eny i, 8o the only possidble nontrivial terms that can arilse

i i
on the left-—hand side are those in which all the differentiantion
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is applied to that function; the result on the left-hand side thus becomes

IJ Jl(a )-..w (a ) @ oo J Pez(w(z +..'+zt‘*at ......g1 )) .

! L a1 n sl n
» [naqla o, ) ][ I qle, .2 ) q(a o ) -

J<k J Jrk J k J

[inq(zt ,ztk) q(a ,n‘k) }e

The only possible nontrivial terms that can appear on the right-hand side
are those in which the double zeros of the factors q(zo .aa )2 are

i i
cancelled, and that can only happen by differentiating one factor and

multiplying the other bty & suitable differential u'l(zc } to cancel the
i

other zero by & simple pole. All except the dominant terms then vanish,
since the other terms all have strictly fever than L meromorphic

differentials u'(zo }, and among the dominant terzs the only ones that can
A i

possibly be nontrivial are those for which :(l)zul,...,w(L)nqL,
'(L+1)=TL*1""’“(H)=Tn' There are however two cases that must be

considered separately. (i) If o;<n then u} (z_) has e pole at z_ =&
L Ai o, o, o

only when Ai=ui for each 1. 1In that case the right-hand side becomes

L N= L
( ) .e ov'
):3 51 41 n-L TL

[nq(a .8 )][nq(z a2 -
32k %y % Ty
2
o[ male_,a )2 q(a iz )]
R S
(41) If g =n then for 1<i<l-1 as before uj (24 ) has a pole at z_=a_ only
- 1 1 % %
vhen A;=0,; but ua(z )= w;l. (zn) has a pole at z =a_ for any value of A,

although with residve -1. Thus in this case the right-hand side becomes
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- E 0 L; !:-L w (z )o-.w' (z ) .
23" %oy serop '51"’-’ oL Y1 el Jp-1 Tn
nqla_, ) n gf . ) .
[a¢ks % “oy ][a.kq z‘a Sy :

« [ 1 qla. .8 )%
quaaa% an " ")

After cancelling out those factors that appear on both sides of the

equation, in case (i) the identity reduces to

(T) XJV:] (Bu ). wJL(adL) a.} .C'J PB (w(z'[lr‘_l"...*ztn-a'tm].-..hn'l’n)) *

e [malz_ 2 )2q(a " )2 ] =
J<k J Tx J k

0 Lin-L 2
= ¥ Pa v (z ) ooy (z Y « | 1 qlz, ,e_)7],
% o3d % T4 Ini oL J.k T3 Tk

while in case {(ii) it becomes

&

Pe(v(zt ‘F"""ZT —E.T w-ns—a_T )) °

{8) IJV (g )‘--w (a )3
I+l n 14l n

L Jloile

e malz_ ,z_)%ala_,e )2] =
j<k Ty T, T T,
- - I Po *0;L;n-L Net aee ¥ (z Yeoou! (z Y+l mqlz_ ,e )2].
Geeedp Xt Upr d1 I Jpe Tm gk 3 Tk

First consider the identity (T) in more detail. The differentials v&(z)

are linearly independent, so this identity determines the coefficients

Fo 0 L; ? -L uniquely. It 1s then clear that these coefficients are
- =14

holomorphic functions of the variables By peeesBy € ﬁ. It ie also clear

that each component of any of these coefficients belongs to T{k) es =&

function of the veriables &a oves B 3 the pame is true as a function of
1
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the remaininé variables &, TR Fay but that is not quite s0 obvious so
I+l n .

will be demonstrated. For this purpose note that the result of epplying

the differentisl operator aL/an ---an to the functional egquation
1 L

>
gatisfied by 82[1}(w) when the varisble w is translated by some lattice

vector in L is a rather complicated formula, but one that can be viewved as

the assertion that aJ B [<](w) satisfies the same functional equation

a*e s JL
->
as qzlt}(w) modulo lover order derivatives; consequently each component of

aJ 3 It](w(z)) belongs to I‘(pk 4 g) modulo lowver order derivatives.
*e e L

It then follows as in the discussion at the beginning of the preceding
section that each component of the left-hand side of (7) belongs to

r(:;ﬁ ---;i ) pas & function of each variable B since the lower order

tL+1 Tn i

derivatives all vanish upon applying the projection operator P. The

coefficients of Pup 2.3 -L then evidently belong to T(x) as & function of

each variable 31 a5 asserted.

i
Altogether then it is evident that there are some constant vectors
-, »¥ ,o-u,k , ,o-o.k -4
nk. -1 1 171l n ¢ PEa
G,J ﬁl,OQO ’GL.Jl‘oou .Jn-L
guch that
#
0 Lin-L . eee
(9) Pag’y = 1,0 o,j"kl(al) v n(a )e
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Upon substituting this into the right-hand side of (7}, replacing Jy by ka

on the left~hand side, comparing the coefficients of the Abelian

differentials w; {a_)eewip (2 ) on the two sides of the equation,and

o o L
then writing zy in plece of z, and &, in place of B there results the
i i
identity
' * | 2 2
(10) 3, ..y PO (lzp, eeectzmay yoeeeme )]« [halzgz) alay.e,)” )=
g o.
1 L
*x
= ' . ooy ' cs oy .
RS "o 23V {z;.5) an&L(zn)wk (2, ,,) wkt (e )
* Ty fo 751 n
o [ 1 alzy0e)?);
J,k
this holds for eny fixed indices ku ""'ku for which uL<n. The right-
1 L

hand side here contains both these fixed indices &nd the indices of

summetion kr ""'kr , & notation that is convenient and should not
I+l n

reelly be confusing; it clearly indicates vhich emong the n upper indices

&>
in the vectors noF'J are variable end which are fixed, an important peint
-

since the extent to which these vectors are symmetric in their indices has
not yet been considered. The situation is particularly simple in the

special case that uiti and hence tiwi as well; met

v kyeeckpikp g etk S Eyceckiky ok,
(11) & 5 eeey = M ieaa
1I+1 n :

and note that (10) then takes the form
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(12) akl x PO 9 (wlz,, *°"*zn'ab+1_""an)) [Jfkq(z k)zq(aj.ak)z] =

+ k. eesk i seni
=1E Peeowy (o)
I+l n YL+l

(24 . (ap, ) eeevy (ap)e

n
. [ I q(z 'a )2]-
3k
JoX
It 4s clear from the symmetries on the Jjeft-hand side of (12) that the

*k;1
vectors £ 3 are symmetric in the indices i, in the indices J, and in the

indices k separately. FPurthermore interchanging the veriebles 2 and & has

-+
the effects of multiplying the left-hand side of (12} by (-l)L, since eg(w)
is an even function of w, and interchenging the indices i and 3} on the

right-hand side; consequently
+k3i
= ‘_1 lj
E (-1)%
Comparing (10) and (12) and keeping these symmetries in mind shows finally

thet

.e ves k eeek 3k esek

*hyeeskpkp vk, 29 % Ty Ta

[13) n seep 3§ eee] =& J c-oJ
SRR RD) 25 Rt 141°°*9n

whenever cL<n.

With these results, & great deal of the desired thecrem has
essentially been established. In particular a comparison of (9) and (13)

shovs that
X eesek 3k seek
*0;L;n-L 9 % w1 Tn,
w {a )eeow! (o ).

SAC U A N

&>

thus demonstrating that these coefficients have an expansion of the form

+x;i
asserted in terms of the vectors § 5 Moreover these vectors have been

shown to be symmetric in the separate sets of indices i,j,and k, and to
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behave in the asserted manner upon the interchange of the gets of indices i
and j. There remain only the last symmetry conditions and the ineguality
2l<n yet to be proved, and these follow from &n analysis of the case (11)

paralleling the preceding analysis of case (1).

To turn then to a corresponding detailed analysis of (8), the

- preceding considerations have at least established that the coefficlents

+ 0;L;n-L
Pa 0, %)
the result of Theorem 2 thet the index A can be restricted to vary over the

appearing there have the form (§)}. It should be noted in view of

indices TL+1""’Tn' To proceed as in the preceding case then, upon

substituting (9) into (B), replacing § by k  on the left hand side,
i

comparing the coefficients of the Abelian differentiels

vi (e, Yeoouy (e ) on the two sides of the eguation, and then writing

o 1! q °
z4 in place of z_ =and &, in place of a_, it follows that
Ty i Ty
M 2 2
3 ... PO (Wlzptererzay poeeema ) )] B alzyiz)%lag,ey) )
o . 3<k
1 L
I * kl . . ® kn )
= - n a8 LN ...w (z ) .
W O Xdy°dp, J1 ‘141 o1, B
i
® wig‘ (alﬁl)...viir (a )[ il q(zJ,a ) ]
I+l n

Eere o;=n, and for the special values uixl,....or_lzlpl, TL+1=L"°"Tn=n'1
this reduces using (13) to

-+
2
akl."kL_lknPea(w(szuﬁz ‘5'1,\»1"'"""::))[ I q(zJ .zk) t;;(a..j ,a.k)‘?]

_ ) * kl'"klr-l UL A ka.-1“x+1"'kn o
(z

A=L JkL"'kn_ S o e o dn o dpmlEagdee ()

n

N ooy 2
v (aMI) wkn-l(&n) [JI’qu(zJ, ak).]-
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From a comparison of this with (12) it follows that

o kyoesky (Kogkpewsk o Bel o+ kyeesky gKpikpeetky Ky ey
(1%) ¢ J ,,,J-I: s R
1+l n »L i+l
vhich is another of the symmetry conditions on the vectors Ek;j.

The finel assertions of the theorem follow quite easily from (14) and
Lemms 1. TFirst if 2L = n then the sets of indices i,j,k in the vectors
TR
E ’J contain the same number L = n-L of indices. It was elready noted that

->.
Ek’i (-1)L£ J, and it follows from (1L) and Lemma 1 that

- _
Ek’j = (-1)L€i g, thus these vectors are symmetric or gkew-gymmetric in the

sets 1,3,k according to the parity of L, as desired. Finally if 2L>n then
write r-(kl,....kL) = {x',k"), vhere k' consists of the first 2L-n indices

and X" of the last n-L indices of k. It is clear that the vectors Ek ;

satisfy the hypothesis of Lemma 1 in the indices k",i for any fTixed indices
x',j, and it therefore follows from that lemms that

* . 1 orgok"
k,i=(1)nLEki,k_

LI - P
consequently
-* kl."kL;iIﬂ'lu'in
! ey,
IR S M ."k2L-niI.r+1."i LIS R
Jpa1® * *dn
RS M 2**Bornire1 eF1 koL "t
Jlﬁ-l. . Jn
B R R P M
d141*"%g
- " Eim1ka"'kL’k11m2"'1n
JIﬂ'l. . o
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k31
The vectors £ ,J are thus symmetric in kl end 1L+1' and since they are
symmetric separately in the indices k and i they must actually be fully
symmetric in the n indices k,i together. Hovever in that case it is clear

ki

from {14) that € ’J e 0 for a1l indices %,J,k, contradicting the assumption

that L is the dominant order. That serves to conclude the proof.

At least one of the muxiliary results obtained in the course of the

proof of the preceding theorem merits some special attention.

Corollary. If P is any projection operator for which (1) holds and
L is the dominant order then the coefficients of the dominent term ere

charaecterized by the condition thet

kl‘..kL 2(w(zlﬁl+---+z "a‘L.;.l"°"‘B ))[ gkq(zj‘zk) Q( J’ak) ][ i1 q(zJ k) 2]

+ k w--k 31

coni
:IE 1

141 n _.,
W

)-anu' (z )v'
Ja1"%n Jea1 n

(2149 3 i

(g,  )eoowt (& ).
n 141 1+l in &n

Proof The assertion of the corollary is Just formula {12) in the proof
of the preceding theorem. Since the differential forms Hj(z) and wg(a) are

Jinearly independent functions, it is clear that this formula determines the

IO
wectors € 'J uniquely, as desired.

It is possibly worth pointing out explicitly that the preceding results
hold as stated even in the special case that the dominant order is L=0; in
+hat case the expansion involves merely the ordinary Abelian differentials,

and corollary 1 is just a restatement of the expansion formula.
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%3. The primary and binary expansions: dominant terms.
As already noted, in the special case n = 1 the differential expansicn
considered in the preceding sections takes the particularly simple form
'2_ ] l ] 1
(1) 32(w(z-a)]q(z,a) = 32(0) wh(z) + 2§k ajkﬁa(o) Vj(z) Vk(a)-

The vectors ajkﬁ(o) are gymmetric in the indices J,k, but satisfy no other
linear relations; indeed the following holds.

Theorem 4, For any Riemann surface of genus g > 1 the 1 + (g;l] vectors
32(0) ajk§2(o) for 1 £ § £ k < g ere linearly independent.

Proof, Suppose to the contrary that there are some constants t:,(:‘jk = ckj'
not all of which are zero, such that

0=c 5, (0) + 3,.8.(0).
¢ % gk 3k “3x%2

Since 52(0) # 0 not all of the constants c,, can be zero. Multiplying this
{dentity by 1;32(*!:,) and using the result of Lemma D3 shows that

p=co(t)®+2] [o(t) 2, 8(8) - 3,6(¢) 3,(t)]

fx Ok
for all points t ¢ Eg; so in particular
(2) 3} 3,0(t) 3,6(t) = 0 vhenever alt) =
PRELE

Now whenever t represents & point in 9 ~ 2} the vector 3 o(t) = {aje(t)
1<3seg)e ¢® is nonzero sc represents & point [3 8(t)] ¢ Pg_l, and the
mapping from 2=~l2} to Eg-l thus defined is the Gauss mapping discussed in
section C . The main result established there was that the Gauss mapping is
finite, hence that its image is & nonempty open set in 2-1. Hovever (2)
smplies that the image of the Gauss mapping lies in a nontrivial quadratic
cone in Es_l, so cannot be an open subset of Pg'l; that contradiction

establishes the theorem.
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The next case n = 2 is much more complicated and better illustrates the
general differential expansion, so is worth examining in some detail. The
general form of this expansion as given in Theorem 1 was written out quite
explicitly in eguation (1.7), end can be simplified as in Theorems 2 and 3 by

the use of & suitable projection opersator. Consider then & linear mapping

g
P 4O
such that'

(3) »8,(0) = Padk'éz(O) =0 foralll<J, k<&

the kernel of P must thus contain the linear subspace of dimension 1 + (g+1

2
spanned by these vectors, and by (1) and Theorem b this can be restated equi-

valently as the condition that
(L) P'52 (w{z-a)} = 0 for all points z,a € M.
With this operator the expansion takes the following form.

Theorem 5. If P is any projection operator satisfying (3) then there are
uniquely determined constant vectors E ii in the range of P and holomorphic
functions ﬁjk(a ,8,.) on M x M with values in the range of P such that

12

F ge(v(zl +z, -8 - 52)) q(zl, 22)2 q{al,aE)e [J Eil Q(Zj, ak)-g]

vil(al)w'kz(az) [nggaE(zl)wé(zz) + w;l,ae(z2) “3(21)]

)

Jklk2

K K
t 32

1 ¥
+ IJk Ejk (e ,8,) "j(zl) wilz,).
Here E ii are gkew-gsymmetric in the indices 1,j,k and are determined by the

condition that

3 PBa(v{z-a)} q(z,a)_2 = -gj t ii vy (z) wb(a);
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the functions Ejk (al,az} are symmetric in the indices j,k and in the

variables a,,85-

Proof. It follows from Theorems 2 and 3 that if n =2 and P is & pro-
jection operatoer gpatisfying (k) then for the coefficients in the expansion
(2.2) necessarily Pﬁ ;43X _ o yhenever m > 0 or £ > 1; thus the only non-

343

trivial terms are P & 03%;% and P & °3gi§2. ¥or the first of these the index 3

Just takes the value A = 1, 50 can really be ignored, and by Theorem 3 again

p 3 03131 7t k1k2 v o (a.) w (a))

j= b F ) 5t ke
172
ok,
where the vectors E 3 are skew symmetric in the three indices J,kl,kg.
Setting P & Oj 5 then yields an expansion of the general form
2

desired, although one for which it is as yei only known that the coefficients
33132(31’32) are meromorphic functiocns of the variables al,a2 £ ﬁ, although
symmetric in the indices 31,32 and in the variables 2y 5850 However on the left-
hend side and in the first line on the right-hand side of this expansion the
only singularities are at most simple poles along the subvarieties zy = Tay
since the theta function term vanishes whenever zJ = Te.k as & consequence of

the hypothesis (4); the same must be the case for the second line on the right-
hend side, and it is evident from that that Eﬂljg(al’ae) is actually holomorphic.
Finally by the Corollary to Theorem 3

3P 32(w(z-a)]q(z,a)-2 = iIJ [ ki WB(Z) wila),

and since ¥ kj =1 ii this gives the final result desired and thereby

concludes the proof.
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It may well be the case that E kgkz = 0 for all indices J’kl’kE’ BS can
always be achieved by epplying a further projection operator with all these
vectors in its kernel; in view of the last assertion of the preceding theorem
that smounts to the condition that

(5) BJPﬁg(v(z-a.)) = 0 for all points z, & ¢ M and indices J.

That theorem as stated then becomes somewhat less interesting, but can be

analyzed further to yield the following.

Corollary, If P is any projection operator satisfying (4) and (5) then

Kk,
3135

there are uniguely determined vectors t in the range of P such that

2
Pb (w 2%25- al-ae)) q(zl,22)2 q(a1,32)2 [ n q(z‘j ,ak)-z]
3,.k=1

k
= E :132 k (al) WL (32) J (zl) wj (ze).
3132]‘11“2 12 1 2 1 2

These vectors satisfy the symmetry conditions

-Ek'.l.k -Eklk2=-g 2k1 -E

L]
J2 3231 J J k1k2
and it is further the case that
klk2 klk2

3k
= T 2 E 1 1 w (z) wd (a) w (b) Vi (b)
Il % 1 e A

3 o P8,(w(z-a)) a(z,8)™° V*'a(b) "fﬂg(b)

for any points z.a,b € M.
Proof. In view of the results of the preceding theorem, it is clear that
the additional hypothesis {5) implies that the dominant order of the differen—

tiel expansion is L = O; the explicit form of the expansion and the symmetry
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conditions satisfied by the coefficient vectors are then an immediate con-
sequence of Theorem 3. In this case the Corollary to Thecrem 3 reduces just
to the differential expansion itself, rather than the final assertion of the
present corollary; but the latter result can be derived directly and easily.
Multiply the differential expansion formule Just obtained by q(zz,aa)e, apply

the differentiasl operator aalazg, and take the limit as z, tends to 853 the
left-hand side reduces to that of the final assertion as desired after the
obvious change of notation, as an immediate consequence of the assumptions (L)
and (5), while differentiating q(zz,a2)2 introduces the factor 2 on the right-
hand side. That suffices to conclude the preof.

The corollary can of course be reformulated as the assertion that in the

Kk
J

K. k
I (al,&L y= ¥ EJ132 w (a,) wl'ce(az)

343 2 k.1
12 k K, 1

| Koky

dyds

" formula of the theorem if & = 0 for ell indices J,k ,k, then

for some uniquely determined vecters E with the symmetries as stated.

£

Now in sddition to these symmetries the vectors E :13 are subject to some
1v2

further linear constraints that follow almost immediately from the formulas of
the corcllary. In view of the presence of the factor q(al,az)a, the left-hand
side vanishes identically in Z1925 whenever 8y = 8,5 since the functions

wt (z,) v\ (z,) are linearly independent it follows that
1 4

(6) 1t :1:2 vi (a) w (a) =0 forallece M and 211 3, ,3,.
Kk, d1d2 % 2 172
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k
E kl 2 must
2
consequently lie in the Petri space:fe of quadratic forms vanishing on the

For any fixed indices Jl’JQ each component of the vector

canonical curve. To make this explicit choose a basis pi(x) = IJ 3 pj 3 X xj
192 Tl 9y dp

for the vector space.fg; the coefficients Pj ; are to be symmetric in
1’2

the indices J,.J,, end pi(x) form & basis for the space of quadratic poly-

nomials p(x) for which p(w'(z)) = {J 3, I (z) ud (z) =0 for all
12 1 2 l P4

points z € M. It may be recalled from the discussion in section BlO that

g‘él) if M is hyperelliptic,
(1) a,=am®,=¢ 5
( 5 ] if M is nonhyperelliptic.

p i
dp T Kk

It follows from the symmetry

Mk

In terms of this basis it must then be the case that E = 2. ﬁ i

for some uniquely determined vectors ﬁ j

12
k
properties of the vectors E 3132 that
1
i Kk
I W P (a) w' (a) = § % (a) v, (e)
13, 2 k1k2 "3, 5'2 59, 1l "3,
\ 3 _
= 3 f 1 2 uj (&) wj (a) =
IR kky 4 o

for all & ¢ M and all kl,kz,and since the polynonials pi(x) are linearly

independent
3 *;‘J "’3 (a) v (a) =0 for all & ¢ M and all .
5152 1¥2 *“1 2
+ 1 + 1 3
It must consequently also be the case that n = E n, P for some
3y, 4 3135

i

uniquely determined vectors ﬁ 3 Altogether therefore
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e ?l.; BN 3
2 g, 1 ‘172 Pk,
+ i2
for some uniguely determined vectors n il in the range of F, and from the

k
symmetry properties of the veciors f :13 it is evident that

i

2 1
{9) = =7
il i2

Sk

This cuts down considerably on the possibilities for these vectors E 1.1

It is worth pausing here to examine in some detail the significance of
the preceding results, and in the process to establish some further useful

notation. The vectors 32(0) and ajkﬁeto) taken together span & linear sub-

g
space Ll c E2 , wWhere 51 = dim L1 = 1+ (g;l) as a consequence of Theorem L.

The identity (1) eesily implies that Ll can be described eguivalently as the
spen of the vectors ﬁz[w(z—a)] gs z and a vary throughout M. From & function-
theoretic point of view this means that there are precisely 61 1+ (g+1)
linearly independent functions among the restricted second-order theta
functions Be[vIO](w(z—a)] viewed as functions of the two varisbles

(z,8) e MxMfor ve 29 2 78. On the other hand from a geometric point of

view, in terms of the two-sheeted mapping 52 : J + K from the Jacobi variety J

4
to its associated Wirtinger variety K £ P2 -1 defined by the second-order

g
25=1
theta functions, this means that 32(W1-Wi) €K n [Ll]' where [Ll] c P is
g
the projective linear subspece associated to the vector subspace Ll c E2 5

moreover [Ll] is the smallest linear subspace with this property, since it is

the linear subspace spanned by &ll the points of the subvariety

o=
52[ -¥W ) c ) 1
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The analogous results for the binary differential expansion are somevwhat

more complicated and consequently somewhat more interesting. Let L. be the

2
span of the vectors ﬁe(w(z1+22 - al—ae)) 8s 2, and a, vary throughout M, and
set 62 = dim L2. Thus there are precisely 62 linearly independent functions

among the restricted second-order theta functions Bz[vlo](w(zl+ze—al~a2))
viewed as functions of the four variables (zl,zz,al,az) £ ﬁF for v £ Z8/2%F,

) 21
On the other hand geometrically 32(Wé— 2) cKn [L2]’ where [L2] c B is

23
the projective linear subspace associated to the vector subspace L2 < m2 .

and [L2] is the smallest linear subspace with this property since it is the

g
linear subspace spanned by all the points of the subvariety 32[Wé~ 2) < L,

The complications arise in attempting to describe L2 in terms of some
natural basis, or even in attempting to determine the dimension 62 explicitly.

Of course L, © L2, so that L

1 € contains at least the 61 linearly independent

2

vectors §2(0) and Bjkgz(o) for J < k. One approach to the description of L,

is to factor out the subspace L1 and to see what can be said about the

guotient space. Introduce therefore the neatural linear projection

g o8
(10) P, : © o+ 1,

heving kernel precisely Ll' It then follews from Theorem 5 that Pl(LE) is
k

32 together with the vectors B

spanned by the vectors E ,ae) for all

jk(al

points ai ¢ M. The vectors E. 3 are guite canonicaliy determined, and since

they are skew-symmetric in their indices there are at most (% ) linearly

independent vectors among them; thus if Lé C range Pl is the linear subspace

spanned by these vectore then dim L[ < (g).' There remains the question of the
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extent to which the vectors 'E Jk(al ,a.2) span something beyond the space Lé, and
that can be approached by factoring out the subspace Lé and examining the
quotient space. Introduce therefore the further natural linear projection

1 . 1 ]
(11) Pyt {range Pl) + {range Pi) / L}

having kernel precisely I.?'. It follows from the Corollary to Theorem 5 that

%,

1
P2(P1(L2)] is spanned by the vectors £ 1,3,

symmetries as noted, and also to a further set of linear ceonstraints, which

these vectors are subject to the

together amount to the fact that they can be expressed in terms of the more
primitive vectors 7 i. These latter vectors are also intrinsically determined
after & choice for the basis of the Prym spacefe has been made, and are
symmetric in their indices. Since these indices are in the range 1 < i, J ¢ d2,
where d, = dim :6:2 is given explicitly in (7), it follows that there are at

d,.+1
most ( - ) linearly independent vectors among them; thus dim Pa'(Pl(LE)) <

4.+1
(S ). The whole situation can be summed up reasonably perspicuously in the
*

following disgram, in which L, = Pl_l(L'e).

*

CE N I, £ 1
P14 ' '
* * kK,
' = =
0 ¢ Ly =L,/L < L/L,  (Ly/L = spen 3 3 °)
Py % ¥ +
0 0 L. /L L. /L, = 3 i
s € Lyfl,  (Ly/L, = span 1 4]
It has been noted that dim L,/L, < (3) and dim L./L, <\ 2 ] so that
2'71 = \3 2°72 = \»p

d, + 1
g 2
(13) 5,8 + (3)+ ( s /)



3L
*
The splitting of the extension from Ll to L2 through the intermediate space L2
is an additional intrinsic structure. To describe the space L2 in much the
seme way that the space Ll was described initially simply choose some vectors

in I.2 that have as their images under the appropriate projections the wvectors

'E k?j'kg and '1"1 i; there are of course many weys in which such choices can be
made, and more will be said about that later. If these choices are also

Ky %o > 1
denoted by 3 and n 3 which is really not confusing since it is usually

clear from the context what is meant, then

L, = span i 62(0), ajkﬁz(o)}

14 ¥ ( ( E-klkl
(14) L, span { §,(0), ajkﬁzo), ] ]

L e |
5 span { -62(0), 3Jk§2(0), £ g “j}'

These vectors are sometimes, but not elways, linearly indeperndent modulo the

L

i

symmetries as noted.



