D. Becond-order Riemannian theta functions

1. The anelogues of Riemann's tneorems.

The d&iscussion of Riemann;s theorems dealt with the restrictions
of the first-ordér theta function and its translates to the Riemann surface
M canonically imbedded in its Jacobi variety J . Turning next to the
congideration of the restrictions of the second—ofder thets functions and
their translates leads to somewhat different and perhaps even deeper
questions. In this case it is necessary to consider a number of theta
functions simultaneously, the basis ee[v[t](w;ﬂ} € F(p_tgz) for
v € Eg/E z% or the vector gé[t](w) composed of these 2% pasic theta

functions. It is course clear that

BEIv[t](v(z) ) cr(p_t é2)=r(92r~t528) as a function of z¢ f,

vhere'r-c!ﬁ is the Riemann point, But in parallel to the discussion of
the first-order theta function it is in some ways more convenient to

consider instead the functions
(1) £ (2)= 8, [v|2r-t]{w{z)) ¢ T(p, c2E)
v,t 2 € P

for ve Z8/228. Note from the Riemann~Roch theorem that ¥( ptzas) = g+l

for all te ts. and since g+l S 28 there are certainly enough restricted

functions £ , to span the vector space r(pttas); they actually do span
L ] .

that space. )




Theorem 1. For any t ¢I® the 2% functions fv,t for vez r2 zg span
the {g+l)-dimensional vector space IV ptczg).

Proof. Restricting to the subvariety Mg J is clearly a linear
mepping from the space of relatively automorphic functions T(J,P.;EE)
on EZ to the space of relatively sutomorphic functions r(r-i.ptzzg) on fi,
and the mssertion of the theorem is that this mepping is surjective. Bince
the image is necessarily a linear subspace of TI(M, ptczs), it is enough
just to show that the image contains an open subset of 1"(M.pt ;23).

For this purpose choose a basis hl(z),....hg+1(z) for r(H'PtEEEJ and
let wi(z),...,wé(z) be the cenonical basis for I'(M,x); then consider eny
points zl,...,zée I such that

(2) renk {n(z,): 1cicen, 1<i<g)l = g and
(3) rank {v'4(z,): 1<d,4e} = &,

points which certainly exist since the functions hi(z) end the functions

w' i(z) both form linearly independent families of functions. The set of
points (zl,....zs) gatisfying these two conditions form an open subset

Ue f€_ the complenent of a proper holomorphic subvariety of the complex
menifold H &, It is clear from (2) that there is up to & constent factor &
unique function h = 5.7 c.hy ¢T(M,p,t°E) such that h(z,) = 0 for 1ci< g.
The set of multiples of h cen be vieved as & point in the g dinensional
yrojective gpace Pr(l{.pttzs) sassociated to the g=+1 dimensional vector

space T(M,p °8), and the mapping ¢: U » PI(M,p,t°E) thus defined 1s
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easily seen to be holomorphic since the coefficients ¢ satisfy eguations
zc ihi(z J) = 0 depending analytically on the points 2 5’ The divisor of h
is of the rormJgth) = zptesedz t z'1+...+z'8, and the only points of U
which msp to this function h must be g-tuples from along these 2g points.
That shovs that the inverse image under ¢ of any point is a finite point
set, and it then follows from general results in function theory that ¢

is an open mapping. The image ¢(U) is then an open subset of

tr(n.ptézs), and the proof will be concluded by showing that any function

T €T(M.pt:25) corresponding to & point in the image of ¢ is the restriction
of a function in T(J,pt£2).

Thus suppose (zl,...,zg) ¢ U end consider & function h eT(M,ptzzg) such
thet & (h) = zl+...+zg+z'1+...+zé. First it follows from (3) that
s=w(zl4...+zg) lWé, 8o by the Corollary to Theorem C1 the function
fs(z)te(r-s+w(z)) €r(ps:5) is not identically zero. Next the divisor

1
divisor such that &' = v(z'1+...+z'g) = t-v(zl+...4z8), and consequently

z‘lé...*z'g is uniquely determined by 2 +.-.+z€. so0 must be the unigque

s'¢ “18; 50 egain by the Corcllary to Theorem Cl the function fs,(z) =

B{r-s'+w(z)) € r(ps.tg) is not identically 0. Now rs(z)fs.(z) =

ﬁfr—s+w(z))B(r-s'+v(z))=t§2(s;'s) qa(w(z)+r - SZS' )is the restriction of &
second-order theta function, and since f'(z)f‘.(z)

GT(DSCF . Ds'ts) - r(ptzas) and vanishes at z)+...+4z, it is & constant

multiple of the function h{z). That suffices to conclude the proof.



Fron the preceding result it is quite easy to derive the analogue of
Riemann's theorens for the second-order thets functions,
Providing simple descriptions in terms of these functions for the
subvarieties of special positive divisors. This rests on the following
auxiliary description of these :uﬁvarieties. For any Vpoint tctg thoose
2 basis hl(z),..,h8+1(z) of the space r(nttzg). and let % (2) be the eolumn

vector of length g+l with entries hi(z). Then for eny divisor

(L) g*nlzl‘l'nzz?*.-.. where z, € M represent distinct points of M

of degree n =In, where zi € M represent distinct points of M introduce

Jd

the (g+l) x n matrix

(50 B (D= {8208 (2))see BN B2 B () B2 M)

here differentietion can be with respect to any local coordinates
wheisoever near the points 2, on H.

Lemme 1. With the notation Just establishea, k;t+w(3) eV; o Precisely
wvhen rank B (3)¢ nev.
t -

Proof. If m = rank Ht(f') then clearly
-
glm = ain 8 0 : B g (D) = 0)

1
= dim {SepB* 3Zeh,) 32} L

= y{ pt-v( a :2g-n)

= ¥l Pratew!S) SR g+l-n,
i _



where the last equality is an application of the Riemann-Roch theorem.

Therefore k-t+w(¥)e H': 5 precisely when
T -

v < ¥y{ pk-tﬂr(g) ‘n-2) = n-m,

thus yielding the desired result.
To apply this to the problen at hand, in terms of the divisor ins in

{L4) introduce the 28 x n matrix

(6) olt, )=
=
. n,~1
? 9
8{321t1 (V(Zl)),-a—z; §2It] ('H’(Zl)),--o.
3z

= B el (wlz0) 8 el (w(zy)) 50 en ],
1

where again differentiation cen be with respect to any loctal coordinates

wvhatsoever near the points z, on M. In these terms the analogue of

Riemann's theorem for the second-order thete functions is as follows.
Theorem 2. For any divisorﬁ of degree n of the form (L) and the

associated metrix (€),
W:__a = {t¢J : rank g_'(t-w(g).? < n-v}.

Proof. For any fixed point te € introduce a basis
hllz),...,hsﬂ(z) of the space ﬂptzzg), and note that the functions
- g =
tv't(z) = 92|v12r t1{w(z)) T (t)t_t2 )} can be vrif.ten as rv.t(;)

= :ﬁ:i L hi(z) for some constants e, i in terms of the 28 x (g+1)

matrix A = {8, : ve Z8/2 28, 1<i<g+l] this can be revritten equivalently
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vhere B(z) i the column vector of length g+l with entries hi(z). Bince

the functions f t(z) span T{ pttes) by Theorem 1, the matrix A must be of

E
renk g+l; thus the linear mapping A E8+1¢ E2 is injective. Wow

for the netrices {(5) and (6) it is elear that

— -t

pler-t,}) = A Bt(,_?;).

and since A is injective, rank §52r-t.59 = rank Htté?; therefore by the
preceding lerma kut*u(f) EW:_z precizely when rank g[Er—t.éi) < p=2.
Since the canonical point _k end the Riemann point r are related by
k=2r, this esztablishes the desired result.

It is instructive to examine the simplest cases of the preceding
theorem in more deteil. First if n=1 the auxiliery divieor is Jus}jﬁw l.2

1
and REl = (i, s0 the conclusion is thet

(7) renk 32[1"-?(21)](1:(21)) =1 for ell te Eg,zlc fi,

& result thet ie herdly surprising since by Theorem AlZ2 it is alwvays the
case that ﬁa(w)# 0. Kext 4f n e« 2 there are two possibdilities for the
guxiliary divisor, either _'?." 1.:14»1.:2 vhere 21#12 on M orﬁs 2.:1;
and ‘Hg = 0, the image of the origin D¢ ES, vhile 1% = . The conclusion

Tor the first euxiliary divisor is that whenever :115 z, on - 1Y then

D= ug = {teJ: runk{ﬁe[t-v(zl-tzz)](w(zl)), let-w(zl-s;e)}(u(ze))}q}



or equivalently

(8) 32(%(“\1(21-:2))). 32(%(1.4-?(22-21))) are linearly

dependent precisely vhen t = 0 €J.

Again this result is hardly surprising, since by Theorem Al3 the vectors
'52(1'.1) and 32(t2) are linearly dependent precisely vhen tln + t2 in J.
That these two vectors have no common 2eros, corresponding to the condition
that W% = ¢, is an immediate conseguence of the general condition that

32(t.) # 0. For the second suxiliary divisor the conclusion is that

o=wg- [ted; rank {8, [t-v(2z,)](w(z,)),
z, %3[‘&-\!(221)](\7(21)) w3(21)1<2}.

or eguivaelently

(9) 32(%1’.), tgjtlajgz(%ﬂwj(zl) are linearly dependent precisely

vhen ¢t = 0O¢J.

That these vectors are linearly dependent when t = 0 is quite clear, for 32
is an even function so 3332(0)-0; the interesting point is that these two
vectors are linearly independent otheﬁise,'but -again that is a consequence
of more general results already established. Indeed by the Corollery to
Theorem All the condition that the mapping [-52]: J + Pag-l be nonsingular
st a point t is precisely that the g+l vectors

-+ >, -+ . .
ee(t) , ale(t),...,age(t) are linearly independent, and the result



of Theorem AllL was that this condition holds except st the half periods, at

the point5<lt wvhere t 45 a lattice vector and hence represents the point

2

0 €J. Again the two vectors in {(9) have no common geros, since 32(t3¢ 0.

The first case in wvhich something interesting hgppens is ns= 3, and
what heppens then is very interesting indeed. There are three possi-
bilities for the auxiliary divisor in this case, eitherfﬁ = 1.zl+1.22+1.23
where Z4.2p,23 BTE distinct points of ¥, or:§'= 2.zl+l.z2 where Zy,2, are
distinct points of M, drfi- 3.z1; and Wg i the Iimage of the Riemann
surface !1 canonically imbedded in J, while Witﬂﬁtw. The conclusion for
the first suxiliary divisor is that vhenever 21,22,23 are distinct points

of ¥ then

Uiz {teJ: rank{gz

vherej&= l.zl+1.22+1.23, or equivelently

[tew(2) ] (elz) )y B leewl D) 1 (w(2,)), Bylemw(B)](w(z5)) }<3)

(10) 8, (Glewlz-zpmz))), B Gleeelzmzpm2.)0), 8 (Gltenlzgmzy-2,)))

are linearly dependent precisely when tcﬂi.

whlle eince Wis ¢ these three vectors always espan at least & two-

-4
dimensional subspece of E2 g0 describe a three-dimensional linear

subspace for t.d%& and & two-dimensional linear subspace for tewl. This

nov is something quite special to the complex tori that arlee as the Jacobl
varieties of Riemann surfaces. For the second suxiliary divisor the
conclusion is thet vhenever Z) 42, &re distinct points of M then

W= {ted: rank{d, [+-v(N](w(z))), 1,2 b lt-v(N 1 (wlz))) v, (),

8%
8 leew($)] (wl2,))<3) |



vhere! = 2.2.41.2,., or equivalently
- 1 2

(1) B,Gle-vlz,))), B, 0,8 Glewlz)))v (), B(Fleevlzy22))))

are linearly dependent precisely when t € Hl.

vhile sgein the three vectors always span & linear subspace of dinension at

least two. Finally for the divisogﬁ:xB-zl the conclusion is that

ﬂfhd:nﬁﬁdbkhﬂ“ﬂﬁ”,%%%hdﬂﬁﬂhhﬁhwﬁﬁh

z, .kajkﬁelt-BW(zl)I ("("1))"3 (20w (2,04 3, '52[t-—3w( z, )] (w(zl))w“.j(zl) }<2}

or eguivalently

(12) 8,3 e-vl2)))), 1,3, Geewlz NI¥)(2,),

2 1 B Bz v (2 v (2] + 252, B (B lamwlz) )))v](2))

are linesrly dependent precisely when te'”i.

and again these three vectors always span a linear subspace of dimension at
least two. These last two formules are perhaps more appealing when

rewritten as the assertions that

) G0, £ 8,G0v (), §Gedzrz)) are 1tneary

dependent preclsely wvhen te Ui-v(zz). provided that 1, ¥z, on ¥, and

\Y

. 1 3,y
(12') 32(5':).1?‘13_1!2(-24)1:3(:1).

p ' ' 1
ﬁksl aakﬁe(ft)w.j (z))wp(z, )+ Ifsl 3J32(-§t)\r3( z,)
are linearly dependept precisely wvhen te Hi-mﬂzl).
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82. Translation by half periods.

The description of the gubvarieties of special positive divisors
provided by Theorem 2 in the simplest cese, that in which the auxiliary
divisor is formed from distinct points, is in terms of sope functions
Bélt}(ui) = 32[2ai](%¢) of the varisble te¢E®, where uiemg are points
determined by the auxiliary divisor. The loci so described are
subvarieties of E® invariant under the lattice subgroupjl. but the
defining functions az[v[2ui](%t;n) are not relatively automorphic functions
for this lattice. Their behavior undeer reflects the behavior of the
gecond-order theta functicons under translation by half pericds, & slightly
nore complicated matter than the scalar sutomorphy thet has thus far been
considered. It is useful to examine this behavior in some detail.here.

For this purpose introduce the function n{A,t) that associamtes to any

lattice vector A=p+nq{£and any point t€EB the value
t 1
(1) nla,t) = exp =wi q(t+§nq).

This is just a square root of the theta factor of automorphy E(A,t) es
defined in (A3.6), in the sense that n{1,t)% « E(A,t), and it is clear from
this that n{X,t) is itself a factor of auvtomorphy for the action of the

lattice groupé'on A3 up to sign. More precigely if Alupl+nql and

lznpad- Dq_z then ;
n(11+xe,t) = exp = iit(q1+q2)(t+%n(ql+q2))

= exp-nil®qy (t4pye M50 ) « Yo, (t4300,) - Top,)



and consequently

t

q [ )
(2) nlaeazt) = (-1) ° F2

"I( Al' t+ 12, 11( lz.t) .

In terns of this almost factor of automorphy the second-order theta
functions transform under half periods as follows.
Theorem 3. To every MLthere corresponds a unique 25:28 matrix y(a)

such that

Bolal(Glena)) = oy (3 nlase) x() tlald).
2

Proof. If Asp+flg €lthen

o 1v]a} (F(242);0)

e%’l al {t+1;20) by definition (A5.1)

B%Iu](t-ﬁﬂqun) exp witpev by Theorem A1

31-2“- + -g]u] {t;2R)« exp ti]tp-u-tq-(ﬁn*-%nq)] bty (A2.3)

92[ wglal (%t; f1) en{2,t) exp !iltp-u-tq-u]

Py (N nlat) §x,(3) ezlulc!(%t;n)

2 t



where this last summation is extended over 2312 ZE and
y gV a t,. .
(3} xvu(x) = xvu(pﬁnq) = Gu exp wi pev

When written out in vector notation this is just the desired formula, for
the 2% x 28 matrix y(2) given by (3), and this matrix is uniquely
determined since the component functions meking up the vector Gzlu](t) are

linearly independent functions of t.
A number of properties of the matrix function x(1) follow imnediately
Trom this theorem and the defining formula (3). First since y{3) is
- Eompletely determined by the functionz] equation of Theorem 3 it is essy to

see that the expression p 4 (2) n{2,t) x(2) must define a factor of
—u

2
sutomorphy for the action of the lattice group’L_on Eg, & matricial

factor of automorphy of rank 28; the functional eguation of Theorem 3 ecan
then be interpreted as the assertion that 32 !u](%t) as & function of t is

2 relatively eutomorphic function for this factor of automorphy, or

szlu](%i) € T(?‘lu nx-

2

&
The representation p y € Hom (L,T) 15 itself a factor of sutomorphy,
-—

ey

2 _ .
while the function n{A,t) is & factor of nutbmorphy up to sign in the sense

\

of (2}, and consequently it iz evident that

t t
’ %, * P Wb P
(W) xaeag) = (1) 0 T8 axa) = (1) 2 i) 4ay).
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This can also be deduced directly from the defining formula (3) bty &

straightforvard calculation. Since x(0)=I it follows from this that the

retrices x{1) are 21l nonsingular, indeed that 1 = det(-l)tq'Px(l)x(l) =
=(det x{ 3))2 so thet det x(1) = 21 for any A €l. It is further clear from
(3) that the entries in x(1) are all integers, indeed are only O or 21,
and that the value x(A) depends only on the residue class of A in L/2L.

Thus the function y can be viewed as a mapping
(5) x: L/2Ls {x ecL(2B,2): x =0, 41, or-1}

that satisfies (L), and this essentially determines the mepping uniquely.
Mappings of this sort have arisen in a number of quite similar econtexts, in
which a square root can only be defined by passing from a scalar to a
pmatrix gquantity; the spinor representation is in some sense of this sort.
In the present case, the squere root of the theta factor of sutomorphy does
not exist as a ecelar factor of automorphy but does es & metrix factor of
automorphy. Another useful property of the mapping x is as follows.

lemma 2. The mappling ¥x: l} -GL(?S,Z ) s irreducible, in the sense thet
ir A s eny 25x28 complex matrix such that Aex(A)=x{2)eA vhenever ael
then necessarily A =al for some acl.

Proof. This can be deduced quite easily directly from the defining

egquation (3) for the matrix x{A). Indeed by using (3) the identity
z&voxau( A= T X o ")Aau

Tor a lattice vecter A-p-rnqd./ can be written out as



- 14 -

o+ q t Vade] L
chwsu exp ®i'p.o = Iosa Aou expwl pev

or eguivalently

+ .
A . H
vorg = Awq'u exp wi pe(v-tq};

the indices of entries in the matrix range over Z8/2 28 wnile P.q range

over Zg. but that is clearly not & problem. In particular for g¢=0

| ) to. g
Av,utAv.u exp ¥l pe{vwy) for all peZF,

80 that Av = [ unless vy € 228, that is, unless w= y in ZEIE Zg; thus

the matrix A must be & diegonal matrix. Then for p= 0D and g = y - v

80 that A is & scaler metrix es asserted.

Theorem L. For any eel® the vector spece T(p 1 M x) of vector
—EG
valued relatively mutomorphic functions for this metriciel feactor of

automorphy is one dimensional, and lea! (%—t‘ 1s & basis.

Proof. The result of Theorem 3 is that 321_5](%1:}51‘(;: 1 M x), 8o it is
. : ot
2

only necessary to shov that every other; relatively automorphic function is

8 scalar multiple of 32[31 (%t). 1r Fe)er(p 1 " X) then set B(t) = $(2t)
-=a
Zz

and note thet for any lattice vector M=p+Dq e l._
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Blted) = ¥(2t422)

= p 1 (22) n{22,2t) x(22) BK(t)

-l
2

= p_ (2 E(a,)% R(t),
since it is clear from {1) that n{21,2t) = £(2,4)2 and wvas alresdy noted in
(5) that x(2))=I. The entries in the vector h(t) sre thus relatively
automorphic functions for the scalar factor of automorphy p_nte. so by
Theoren AR must be lineer combinetions of the second-order theta functions
qzlvln](t); in matrix notation ﬁ(t)=A-§2!n](t) for some 25x28 complex
metrix A, or eguivelently T(t)zA-gzlul(%t)- ¥ow replecing t 4in this last
equation by t+A and using the conditions that both }(t) and 521u1(%¢) are

elenents of T{p ; nx) leads easily to the condition that x(A)A = Ax(A) for
-§n
all X el. The preceeding leoma then showvs that A=al, so that

T(t)-a-ﬁzla]b%t) as desired.
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€3, Fay's trisecant identity.

The description of the subvariety W}E J in terms of second-order theta
functions provided by (1.10) can be viewed as an identity among theta
functions, the assertion that the three theta functions involved are
l1inearly dependent vectors whenever t = w{z) € 1i; a gomevhat more precise
description of this linear dependence reletion is the trisecant identity
thet wes implicit in earlier works but made explicit and used guite effec-
tively by J. Fay, (Theta Functions on Riemann Surfeces, Springer-Verlag 1973}

Theorem 5. For ell points z.zl,ZE.ZB,E 3

D= q(z,zl)q(z 2.) 8 (%V(z+z -z —23))

273" 72 172

V8. (2w z+z

+Q(z.za)q(23.zl 5 (5 2-21-23))

+qlzaz5)alz, ,2,) b (Gulzrzgmz -2,)).

Proof. It follows from (1.10) that the three vectors of second-order
theta functions in the statement of the theorem are linearly dependent
whenever 21.22.23 are distinct points of M, and by continuity they must of
1 0%p 0L F. On the
other hand it follove readily from (1.8) that tﬁe last two vectors of

eourse be linearly dependent fbr arbitrary points z,z

1 and

22¢23 on M, end then the first vector fe & uniquely determined linear

second-order theta functions are lineafly independent whenever zez

combination of thes. Thus for sll points 2,2y ,2,,%4¢ B for which z¢z) on M
end 22123 on M there are uniquely determined complex values

fatfzfz.zl,ze,zs) end fy= 3(2.21,22'23) such that
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32(%v(z+zl-22-z3))

(1) = 5,8 Gvlzrzyzgmz) e 18 (ulzezamz,-2))).
The values ’2’f3 are clearly holomorphic functions whenever well defined,
and extend to meromorphic functions on ﬁb with singularities at most along
the subvarieties z = Tzl and 22 = Tzafor all Tel; the problem Is now Just
to determine these functions explicitly.

Note first of all that the left-hand side of (2) is symmetric in z,

and z,, vhile the two theta functions on the right-hand side of (1) are

interchanged when 22 and 23 are interchanged; consequently

f3(z.zl.zz,13) = fa(z,zl,z3,zz}.
g0 it is really only necessary to exanine one of these two functions. Next
interchenging 2 with 25 and 2, with 24 ginultaneously leaves all three
theta functions unchanged, since 32(v) iz an even function, so that
(2) r,(z, 21,22.23) = rz(zz.zs.z,zl)-
On the cther hend interchanging z with 24 leads to the relation

1 1
32(-§w(z+22-zl-73)) = rz(zs.zl.zz,z? 32(?'(:-0:1-:2-:3))

415{33.21,22.:) !é(%vf=+=3-zl-=25).
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and comparison of this with (1) shows thaet

(3) ¢ (zs.zl.za,z) = 1‘2(2.21.22,23)"1

Similarly interchanging 2 with z, shows that

-1
(L) f2(z,ze,zl.23) = fa(z,zl,za,zB) .

Vhen 2 18 replaced by Tz the arguments in the theta functions are

. translated by the half-period %m(T). and the behavior of the theta
functions is es described in Theorem 3; 1if %—w(z) is viewed &5 the variable
gnd the expressions a = w(izlizztz3) vith appropriete signs are vieved as
characteristics, then these three theta functions are miltiplied by the
common factor n{w(T),w(z)) x{w{T)}) and in addition by the appropriate

factor P4 (T), so that (1) becomes
-1

2

(T 32(%—'-: 242, =2~ 3))

- Lelz ez -2.)
2 17273

= fz(Tz.zl.zz.ZB) o (1) 5 ( w(z+z 2.3))

- l-w(z -23-21)

8 (T2,2. 42,0257 {T) ﬁ (—w(z+z wz, =z })e
3 1223-05-;@;1-: RN N



Comparing this with (1) shovs that

(5) £,(T2,2y,2;.25) = pw(‘za_zl)(’r) £5(2,21125024)0

The symnetries descrided by (2), (3), (L) easily imply that the function £,
satisfies corresponding functionsl eguations under the action of the group
T on the other three variables; the divisor of 1, is consequently invariant
under the action of 1"" on ﬂh. 50 really can be viewed as & divisor on MI'.

As far as this divisor is concerned, it was already noted that f2 hes as

singularities at most poles along the subvarleties z = Zqs and z, = 23 in
Mh. On the other hand if f2(z.zl.zz,23) = D at some particular point
(z,zl ,22,23)e ¥ then from (1) it follows that the vectors

32(%\:(:-*: -22-23)) and f3(z.zl,22.23) 52(-;:%:(:-#: -31-22)) are linearly

1 3
dependent; but from (1.7) it is clear thet fa(z,zl,zz,z3) # 0, and from
{(1.B) as before it follows easily that either z = Z, or 2y ® 25 on M. Thus
= 2_on Mh. 1r

1 3
represent any distinct points of M then when f2 is viewed &s &

r2 has zeros at most along the subvarieties z = 2.2 and 2
Z)12p0%3
fTunction of the varisble z alone its divisor must be of the form

2:(:2) = vy°z,~v,¢ z, for some nonnegative integers v,,v,. Nov from (s5) it

is evident that Pulz =z ) is & factor of automorphy associated to this
2 "1
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divisor, vhile from the Corollary to Theorem B6 it follows that

Vo= W
4 is also B factor of automorphy associated to this

Plpzmy 2y
divisor; these two factor; of automorphy must therefore be analytically
eguivalent for arbitrary distinet points 244200 and from Theorems B4 and BS
it follovs readily that necessarily wWE v, = l, hence that f2 hes first-
order zeros and poles. The symmetries (2}, (3), {k) readily show that the

same is true wvhen Ié is vieved as & function of 23, g0 that mltogether

(6) f2(z,zl,zz,23) has simple zeros along the subverieties

z = Tzz, z3= Tzl and simple poles along the subvarieties

z = Tzl.z3 = T22 on ¥, and no other zeros or singularities.

Finelly note that vhen z = z_ then f3(z,zl,za,z) = 1. (z,2,,2,2,) = 0 50

3
that (1) becones

1
2,2) 32('2_'”( 22-21) ) ®

3 (32 —zz)) = fé{z,zl.z

22 71
and gince Eé is an even function clearly
1 fa(z,zl.za.z) e 1,

Rov it follows immedistely from Theorem E3, that properties (2) through

{7) characterize the cross-ratio function p(z.zB.za,zl). end conseguently

fa(z.zl,zz.zB} = fs(z.zl,z3,22) - p(z.za.za,zl);
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equivalently when the eross-ratio function is expressed in terms of the

prime function

N q(z-za) q(zB-zl)
q(z—zl) i(z--za)’
-

fz(z.zl,za.zs) = f3(z.zl.23.zz)

and with this (1) reduces precisely to the desired result, thereby
concluding the proof.

For sone purposes it is more convenient to rewrite the trisecant
formule in a slightly different notation , using 212250 8 485, in place of
to designate points of fl; the result is then

z, 210 250 2y

(8} Q( 21922) q(nl ,52) .52(-;-'8(:14:2-;1-;2))
= q(zl g&l) q( 22,32) 32(%1-?(214-&1-:2-;2))

1
-q(zl.aalq(za.al) a%(§w(zl+32~zz-a1))-
A rather less trivial alteration is to rewvrite this formula in terms of
first-order theta functions, using the addition theorem for thete

functions; the result in this case is as follows.



Corollary , For any point t €£% and any points Z) v Z558,,8,¢ i,

2 -
- 8(t) 6{tev(z +2_-a_-a_)) q(zl,zz)q(al,az)[ 1T q(zjazk) 1

1 2 1 2 j,k=1
( )
0(t+w(zlwal)) 0(t+w(zl—a2)) .
q(zl.aiT quraz)
= det < >
B(t+w(za-al)) e(t+w(22—a2))
alz,.e,) qolz,.a,) ).

Proof. Multiplying (1) by tgz(t+%w{zl+za-a1-a2)) and using Theorem A7

. lead immedistely to the result that
q(zl,zz)q(al,az) 8{t) 8(t+w(z1+22~a1—a2))
= q(zl.al)q(zz,az) 8(t+v(zl-a2)) 9(t+w{22-al))
-q(zl,az)q(zz.al) B(téw(zl-al)) 8(t+w(za—aé))

s (2 e )] 8({t+w(z,-n,)) 8(t+w(z,-a,))
3,625y %k Uz, ,8,) a(z,.8,)

= [

8(tewl(zy-2,))  Bltewlz en,)) _
q_( zl 'a'lT q( 22 1“-2) *
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and the assertion of the corollary is an immediate consequence of this.

Ir te _g_then the preceeding corcllery reduces to the assertion that
the deterninant iz identically zero. The functions
q(z,u)-]‘e(t-l-w(z-a)) eNp _tc) in that determinant are the semicancnical
functions as discussed in section Ci, and the determinant conditicn is
easily verified to reduce to the formula for the cross-ratio function
given in Theorem 05; thus {n a sense this last corollary is an extension of

Theorem 06 to general points t ¢IS.
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L., Limiting forms of the trisecant identity.
It i5 interesting to view the trisecant identity (3.8) as & relation
betveen holomorphic functicns of the variables Zy02, € Bl for fixed points

B .8, e ¥ , &nd to examine this identity more closely for velues %, near

J

B 1f 2z, =&, this identity is essily seeﬁ to reduce to a triviality;

B J J
but the relations that mrisge betveen the coefficients in the Taylor
expansion in povers of zJ - ‘J are Quite nontrivial. These can be

approached-most directly by differentisting (3.8) repeatedly with respect

to the variables z, , elwvays in terms of the cenonical coordinates on 0 ,

N

and then setting zJ E aj .

2pplying the éifferential operator a /321 5

The first nontriviel results arise from
Thecren 6. For any points z,m ¢ fI |

%(V(z - 8)) = glz,2)%w (2) §2(0) + — qlz,.8) ): 5 (D)u (z)w (a) .
_ s 335" Jylp @ ¥

Proof. The proof is & straightforvard calculation, and amounts to
aTplying the differential operator 321331322 to {3.8) and then setting

:J = aJ 3 but a few preliminary observations can simplify matters somewhat.
In the first line the differential operetors 3/321 end 3/3:2 can be
gpplied either to the prime func;ion q(zl.za) or to the theta function.
Bince ﬁa is an even functien iaqato) = 0 , 8o the only nﬁntrivial .
results arise from applying either both‘or neither of these two
dirferentini operators to the thete function. éet

52(%- ?(:1 ‘I, en - 12)) = 32 &8s & purely temporary eonvenience, and
note that
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azl IJ Jaz vilz,)

] ]

32323- JJdﬁzw(:)w(ze).
1772 “-

In the second line since gf{a,n) = 0 the only nontrivial results arise

fron applying ilazJ to q(zJ,aJ) ; recall also that

31Q(a.n) = 3q(z.a)laz]z_a = 1 , vhere differentiation is with respect to

the canonical local ecoordinate on M . The third line is much like the

first line, except that there are two prime functions with variable

argunents and the argument of the theta function involves -v(z,) rather

than #v{zz) B0 that differentistion with respect to z, lesds to a minus

gign. Altogether then

Q 390 3 (D) « ﬁ (0) v (a Wi (a))

G
% Ialaz 3505 173,72
= ?E(v(al -8,)) + 3q a4 ﬁelo)
12y
- g (0) w! (a,)w (a Y .
¥ 1"2 "r’ % 437352

vhere g = q(nl.az) * 3lq = aq(al.aa)lial » &nd so on. The coefficient of
EE(D) can be simplified by recalling from B6(11) that

2 Jog g = 20 0.0 ¢2aq 3
T, 88 b0 h B

 (a,) =
.

Replacing s, by z and s, by a then yields the desired result.
Thbis is a very interesting result indeed, nﬁd should de examined more
closely dbefore passing on to some other limiting forms of the trisecant

identity. First note that the components of the vector-valued function
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aE(wIz-a)) ere the 25 functions

6,101 (w(z - &) = g,[v]-2ula)}(v(2)) € Moy, ), P8) = TZe) .

The Riemann-Roch theorem shows that Y(;i:) = g + 1 ; the functions
q(z,a)auj(z) ere g linearly independent elements of r(:Ex) that vanish
&t the point & , while q(z.n)ew;(z) i an element of r(tix) that takes

the value 1 at the point & , and consequently

{1) the g+ 1 functions q(z.a)2ui(z),...,q(z,a)zwé(z) . q(z,a)zu;(z)

are & basis for the vector space r(;ix) .

The tesult of Thecrem 6 cen be viewed as yielding an explicit expressicn
for the functions &,[v|0](w(z - 2)) in terms of this cenonical basis. It
follows from Theorem 1 that the restricted theta functions necessarily span
the space r(;ix) ; 1t 45 an easy consequence of this that the g + 1
vectors §2(0) . ZjBljtb(o)wj(a),...,zja&JEE(O)vj(a) are linearly
independent for any point & ¢ 1.

To translate this identity intc one expressed in terms of first-order

theta functions, it is convenient to bave the following auxiliary result.

Lems 3. () *&(1) » 3(0) = o(0)? ,

2
) *B0) -3 4 Bl0) = 20(t)? 2 log 6t)
| 3,73,

= 20(¢)3, , o(t) - 22, o(t)s, 6(t).
392 dy

Proof. The sddition theorem for theta functions is that
tﬁg(t) . EE(I) = @{t + 8} 6(t - &) , and for the special cese s = 0 this

is just the essertion (e). Applying the differential operetor 32/35J asJ
1 Y2

t0 the eddition theorem yields



t
éz(t) .2 13232(53 e(t +3) ot -8) - 3J10{t + s) 3.129(1. -5)
- adze(t + 5) 3319(?. - 5) + o(t + 8) ’-’13;“ -8 ,

and for the special case s =0 this is Just assertion (b) since

2
———— 1og ©{t) = 8(t)""3, , 6t) - 6(t)™" 3, e(t) 3, €t) .
atJlataa 3395 3y Jo

Corollery. ¥or any points t € r€ and z,aefl,

alz.e)"28(t) et + vz - a)) Bt - w(z = &) =

= vifz) + I"l 13° 108 e(t)/atJlatJ; w&l(z) 1.-32(;)

Proof. This follows immediately from the preceding theorenm by
multiplying the formils of that theoren by tge(t) , usting the addition
theoren to rewrite the left-hand side, and applying Lemma 3 to revwrite the
right-hand side.

After multiplying the formula of the preceding Corollary by B(t)2
and taking the limit as t approaches a point in the theta locus, there
results the formula of Corcllery 1 to Theorem C7; thus the present result
can be vieved as an extension of“the preceding formula to genersl points
t ¢ o » beyond those in the theta locus. For these general points tiae
sort of expansions discussed in section ch involve not just the Abelian
éifferentials wj(z) Put alsoc the meromorphic Abelian différentials
v;(z) » 85 in this Corollary; these results can be obtained by extending
the discussion in section Ck, as well as by specializing the trisecent

ddentity.



This procedure cen be extended indefinitely, to yield a whole
hierarchy of results analogous to the ﬁxpansion given in Theorem 6. The
calculations rapidly become very complicated, and the general structure of
the formulas that arise is not térribly tlear from tﬁe direct eslculation.
An alternative approach to these formulas, by expansions in terms of
cenonical holomorphic and meromorphic differentials as mentioned briefly in
the preceding paragraph, seems better adapted to studying the general
structure of the formulas; this method will be developed in detail later in
section F. For the present though it is perheps more interesting to
examine some alternstive limiting cases of the trisecant identity, letting
points coincide in other peiterns.

Theorem T. For any points Z,8,485 ¢ ¥

q(z;al) @b(%-w(z + al) - V(aa))
= (qla,,e,) azq(z,az) - alz,8,) aaq(al,ae)) 32(% wiz - a,))
+ q(al.aa) q(z,az) IJ EJQE(% w(z - 81))— Vj(az) .

1 1 v
0 ):3132 3513262(5 w(z - 2)) val(a) uJa(a)

1 n L]
+ IJ 3332(5 vz - a))(wj(a) - 2w (2} vj(a))
+ (q(Z,a)'l ng(z,a) - Gqs(a.a)) ﬁEL% wiz = &) ;
where the prime function is written in canonicﬁl coordinates in the form

q(z,8) = (z = a) + (2 - 1)3 q3(z.u) .

Proof. Return to the trisecant identity as in Theorem 5, and conslder

the limiting velues es zy tends towards Z, - The first nontrivial



result arises from applying the differential operator @/ az3 and then

setting 23 =2, and is

0= -q(z.zl) ﬁz(-;- wiz ¢ 2, - 222))
+ glz,2,) 31q(22,zl) ﬁz(% vz - 2,))
- -;- alz,2,) alz;,2,) IJ 3332(% wiz - 2,)) v&(zz)
+ 32q(z.22) q(zl.zz) %(% viz = zl))
. %— alz.2,) alz,.2,) I,; 3 52(% Wiz - 2,)) wilz,) 3

this yields the first formule in the statement of the theorem. Rext
consider the limiting values in this formula as a, tends to L the
£irgt nontrivial result arises from applying the differentisl operator

32/ 3&.3 and then setting 8, =2, , although the calculation iz & bit more
involved then in the derivation of the first formula. As a preliminary
recell the expansion B6.3) of the prime functions in canonical

coordinates in the form
3 -
q(:l.le) - (al - '2) + (al - 12) q3(a1.a2) .
it 15 clear from this that

sl , %q(nl,az}l =0 , agq(al.ae)l

izq(al ,12) ] ama -

. ‘1-6q3( 2, .al)

and consequently that .
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{q(al,az) aeq(z.aa) - q(z.az) azq(&l.az)ll

mgru| o

8a"8

= 6q3(al.al) q(z.nl) - agq(z.nl) .

Vith this out of the vay the rest of the calculation is fairly

straightforvard, leading to the result that

1 L] ¥ 1 L]
ql(z.a:,_){fa‘jr.j2 &(5 vz - e )) wjl(al) vJalal) - 233'52(5 vz - a,)) wila,)}
= (6q3(nl.al) q(z,al) - agq(z.al) 52(% wiz - al))

1 '
- 23,q(z,e) I,Jajbz('é' v(z - a ) vilay)
- 2q(z,al) ):.j aJEE(-zI- viz - al)) vg(ul) .

which ylelds the second formula in the statement of the theoren since
q(z.a)-laz(z.n) & 2 log glz,.2)/a = wa(z) .

The interest in these formulas is that they are in a sense the
analogues of the trisecent formule of Theorem 5 for the case of
coincidences among the peints. More precisely, the trisecant formula arose
from viewing (2.10) as asserting that the three vectors of second-order
theta functions appearing in Theoren 5 are alvays linearly dependent, mngd
then merely evalueting the coefficents of this linesr dependence.

Equaetions (2.11) énd (2.i2) cen be viewed similarly, and Theorem 7 describes
the corresponding coefficient functions. It is interesting that these
goefficient runcfions become more complicated as:the Points in the divisors

involved in the description of !ll € J bave more coincidences.
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§5. A special limiting form: the KP equation

The general discussion of limiting forms of the trisecant identity
wvill not be pursued further just here; indeed as noted there are other
approaches to the formulas arising in the limit, leading to a clearer
understanding of their general structure. However there is one further
special case that should be considered in some detail, in a sense the next
case in which all four points are coincident. It can be approached by
applying to the formula of Theorem € the game analysis that led to its
derivation from the trisecant identity, namely by viewving it as an identity
for functions of z and comparing coefficients in the Taylor expansion in
povers of 2z — &. When 2= a thet forpule reduces to & triviality. The
first interesting case arises from spplying the differential operator

3“ / 3zh and setting z = a.

Theorem 8 For any point z ¢ M,

k 13233% 313233%&2(0)‘:' (a3, (205,204, )

132!5(0)(2w"'(z)w' (2} -BvS;(z)v"(z) + 2hq3(z z)w‘(z)wdz(z))

2
. 92(0) (1) (32, 0,9,(2,2) = 235a5(z02) + 305(z,)%),
vhen the prime function is written in canonical coordinates in the form

ql{z,2) = (z - a) + (z-a)3 qa(z,a).



Proof The desired result is a straightforward calculation, and
amounts to epplying the differential operator a"/ azh to the formula of
Theorem 6 and then setting 2 = &c On the left-hand side it follows from
the ehain rule for differentation that

al‘éz (wlz-0) )/ 2" =

- IJajljzjsahé;(v(z—a) )wjl(z)wja(z)wse’(z)vjh(z)

+ 6 IJ 33152‘13§2 (w(z-8) ) vj;(z)v&a(z)wj.a(.z)

+ 2333132a2(1f(z—a)) [hu&i'(z)wsa(z) + 3w (z)wl'(2) ]

i d2
+ EJ ajﬁz(w(z-—a.) }dj"‘(z),

"and ajézto) = 3J1J2JB§(O) = 0 since ﬁz(v) is &n even function of w. On

the right-hand side note that from B(6.3) the prime function has the
expansion
q(z,a)2 = (z-a)2 + 2(z-a)hq3(z,a) + (z-a)eqa(z,}a)2
4n ecannonical coordinates near 2z=a, and conseguently
-gzq(z,a)g = 2(z-8) + B(z~a)3q3(z,a) + O(z-a)h,
32

— q(z,a)2 = 2 4 214(2-11)2113(2,&) + 0(3—&)3,
oz ’ ' '

3
.§__,§ oz,2)%= LB(z-a)q,( me) + 0(z-2)2,
2z

X
a2t

q(Z.a)2 = h8q3(z.a) + 0(z-a);



- 33 -

therefore the only nontrivial terms in the gecond part arise from applying
the operators #/ 2% or ah/azl‘ to the factor q(z,a)2 and the
remaining differentiation if any to the remaining factor. On the other
band from the expansion B(6.3) of the prime function note that

1q(z,a) =1+ 3(2-3)2113(2 a) + (z—a)331q3(z,a),

2q(z a) = -1 = 3(z-a) qB(z,a) + (z-a.) (z a)

3132!1(2.&) = -G(z—a)q3(z.a) + 3(z-2)? [32q3(z,a) 1q3(z e)]

+ (z-2)32 2q3(z 8),

and consequently that

a2

q(z,a)zw‘(z) = q(z,a)2 > log q{z,8)
= q{z,a) 3, q(z a) - alq(z e) azq(z a)
=1+ 2(z-2)3 ( 2q3(z,a) - lq3(z,e.)) +
L
+ {z-2) (3182q3(z.a) + 3q3(z,a)2) + 0{z-8)°.
To gimplify this last expression recall that q3(z,a) = q3(a,z), and observe
upon applying the operator 8/3z and setting 2z=a that
{1) alq3(a,a) = a2q3(a,e.).
It therefore follows that
32q3(z,a.) - alq3(z,a) = (z-a) ¥(z,a)
for some holomorphic functlon !(z,a) near 2=a. After differentisting
this equality first with respect to =z then with respect tc¢ a eand
setting z=a it further follows that
alaaqs(a,a) - 3§q3(a,a) = ¥(a,s)
3,20,(a,8) = 2,3,0(a,8) = -¥asa);



consequently
(2) 312q3(a.a) = 322q3(a,a)
and
Using this observation leads to the result that
(3) q(z,a)aw;(z) .14+ (z-a)" (32, 3,94(a,8) - 2312q3(a,n) + 3q3(a-.a)2)

+ 0(z-a).
Then combining all these resuita leads in turn to the formula

v (a)% (a)vw! (a)w! (a)

Iaaaljzjﬂﬁz(‘” PR Pl M}

+ ):J 33132%(0) (hwj'l'(a)wse(a) + 3#51(&)?3'2(33)

= LI Ez(o) [33132q3(a,a) - 2312,13(3.3) 4 3q3(&’a)2)
+ IJ adljzﬁz(o) [6v3'1l(;)w32(a) + 2hq3(a,a)w31(a)v31(a) )s
which yields the desired theorem.

As will pe demonstrated later, the only linear relstions amcng the

- - . . >
vectors 6,(0), 3 3 (0) are the obviocus symmetries 3 6(0) =
2 J.d, 2 J.d
1v2 . iv2
-+ s + - -
3 5 (0); thus the 1 + (& 1) vectors 8.(0) end 3 8{0} for
Jpdy 2 2 2 J1da

1<

<3y ;:32 < g are linearly independent. A first observetion arising

_ from Theorem 87is that the situation is quite different for higher
derivatives;.the formle of that theorem is & nontrivial linear relstion
smong the derivatives of order four or less, Indeed on a nonhypereliiptic
Riemann surfece there are T{g-1) linearly independent functions among the

products w! (z)w! (z)w! (z)w! (2) so this formula mmounts to T(g-1)

jndependent linear combinations of the fourth-order theta derivatives at

the origin expressible as linear combinations of lower-order derivatives;
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on & hyperelliptic Riemann surface there are only Lg-3 linearly independent
functions amoné those products. Alternatively the formule of Theorem 8 can
be viewed as expressing some functions in F(Kh), some explicit fourth degree
homogeneous polynomials in the Abelian differentials w;(z). in terms of other
explicitly given functions in r(:p). In particular it must be the case,

4in view of the linear independence already noted, that

VB;'(Z)V:’a(Z) + v&;'(z)w"’l(z) - BVB:'L(z)v"j'a(z)
() 5
+ 24 g (z,z)w! {2)w! (z) ¢ r{«")
3 22y YR,
and

3 2
(5) 38,3,0,(2,2) - 23 a5(2,2) + 3q3(2,2)" ¢ ().
These can be rewritten in terms of the prime function itself upon obeerving
that
(6) @ 3a(z,2) = -2 Ch qlz,2) = 3,3 2q(z z) = 3 3q(z z) = 6g.(z,2)

1 Q\2, 1 % ’ 1 % ’ ) »’ - D
as a simple consequence of the expansion of the prime function used
earlier.

The differential expression (4) is & rather familisr one in complex

analysis, for in the special case Jl = 32 it really reduces to the
Schwarzian differential operator. It may be recalled that the Schwarzlen

differential operator D2 48 the nonlinear operator defined bty

| Tee ' 2
(1) (O.w){2) = 2v' (z)vw' 't (z) - 3w''(z)
(o,¥) o
2

17242 1
= =2 w(z) %-2-2 v'{z) *
When applied to the composition (v o w) (2) = v(w(z)) of two functions
this operator satisfies the characteristic p}operty
(8) (v &) (2) = (D¥) (W) v (2)2 + (D) (2).
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The set of those functions w such that D2w = ¢ 1is therefore closed under

composition, so forms a pseudogroup of mappings; indeed it consists

gz + b
precisely of the linear fractional meppings w(z) = ¢z + d where &,b,c,d

are constants. In these terms, (4) in the speciel case 1hat Jl= 32 cen
be rewritten
(9 W) Rheylaa) + () & N
This in turn yields a rather easy wey in which to derive the formula for
the effect of a transformstion T € T on the function q3(z,z); the direct
wvey is just to use (6) and the functional equation for the prime function,
but is & mwore elaborate calculation. Thus set fﬁ = Dzwj Rs & convenient
abbreviation and note from (9) since v“j(z)2 eT (:?) that

2hg (Tz,T2) + f,(T2) = oT,2)° ehaylz,2) + 1,()
Yow the Abelimn integral wj(z) gatisfies the periodicity condition
vd(Tz) = wj(z) + EB(T)’ or equivalently. vy o T = TJD wj where Tj denotes
+he translsticn by ub(T), a special linear fractional transformation;
therefore by (8)

£,(12) = T ()% + (D) (2) = £y(a),
wvhere T'(z) = K{T,z)_l. Combining these last two displeyed formulas yields
(10)  2hqy(Tz,T2) d1,2)72 = 2bgy(z,2) - (0,0 (2).
A function q3(z) satisfying a functionsl equation of this sort is called &

projective connection on the Riemann surface M, the edjective projective

referring to the fact that the Schwarzian differential operator defines the
linear frectionsl or projective transfbrmationﬁ; such 2 connection
trensforms in such & manner that when added to fﬁ = Davd the result
transforms by the feactor of automorphy :(T,z)a. Condition (L) shows that

there is & similar result for the modified Schwarzian differential operator



applied to & pair of functioms. It would be interesting to have a more
explicit description of the projective structure on M determined bty the
projective connection q3(z,z) .

7o revrite this another way, recall from B(6.7) that the canonical
coordinates were chosen so that T'(z) = :(‘I'.z)'l = c('I',z)'a, vhere
oT,z) = pr('I') t(T,z)s'l ig the standard semicanonical factor of auto-
morphy; consequently using the second form of the defining equation (7) for
the Schwarzian derivative yields
d2

(p,7) (2) = -2 o(T,2)"t az? ofT,z).
This yields a more natural version of (10) in the present context.

This too can be expressed as an identity in terms of first-order thete
functions, and for that purpose the obvious extension of Lemma 3 is
regquired. The formula is somewhat more complicated than the ones involved

in Lemms 3, and tc handle it more readily 4t is convenient to introduce

some further formel notation. 1If E:j 3 it & tensor with some

1..'
symmetries, and if it can be made fully symmetric in its indices by summing
over some m permutations of its indices, let }m[EJ 3 ] denote the

result of this symmetrization. This description is somevhat vague, dbut in

all instances in which the notation will be applied here it will de quite

evident what is meant. For instance, if EJ 5.9 = wvhere
1Y2"3

a 8
13293
".1132 = “.1231 then the symetriutio? involved is evidently given by

Saloy st 0™ %005t %0585, %00,
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with this convention, the desired result is as follows:

Lemme 4. For eny point t e cé,

1
&,(¢). 33132533u§2(0) = 208(t) 2 1323331‘9(1:)
-2 Sh[a elt) 2 "2333 e{t) ]
§3[3.11.12°“) 20,48

Proof. Again this is & straightforvard conseguence of differentiating

the addition theorem for thete functions in the form tﬁz(t) . %(s) =
= g(s+t) ©(s-t); it is merely a matter of applying the differential

L
= = denti
.opera.tor 3y 3‘}132%% 8 /aleasJEasdsa 3 to this didentity and

setting s = O. The product rule for differentiation can be written as

35 {els+t) B(B—t)l]= ) 2 o(s+t) -3 elst),
JuwItt =y 3 h Al

wvhere the summastion is extended over all ways of decomposing the set of
indices J = {313233314} es & union of two subsets. The sum over those
terms in which J'= ¢ consists Just of the single term o s+t) aJe(s-—t).

There are 4 terms in which J' has one element, and the corresponding sum

can be written §h[3 ol s+t) 3
-~

L
&{s-t) |. There are (2)= & terms in

which J' hes two elements, and the corresponding sum can be written

ols+t) 3, . 8(s-t)] eince 3, , o(s+t) and 3, , &(s-t) are

both symmetric expressions in their indices. There are L4 more terms in

2s fs

.3132 J3J
which J' has three elements, and & finsl term in which J ' has four
elements, and they cen be handled in the same way. When &= 0 the terms
4n which J' has no elements or % elements reduce to the same form, as do
the terms in vhich J' has either 1 or 3 elements; for aJ,, gl-t) =

= % J,,e{t). the sign being -+ 4f J'' hes an even pumber of elements
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and - otbervise. That yields the desired result.

Corollary 1. For any points te l‘. s s N,

Idlazsaa,,{a(*’)aa .3,0(t) = b2 0(\‘-)3, 5 8(t) ¢ 32

1°° Y}, . 339 G(t)ad L 6(t)} 'ial(t)...v‘ (z

9y

- {e(¢)a 8{¢) = 2 e(t)a 0(1’.)} e ’ - Ty'? v
L3, 3,354 = % {2v 1mv (2) = 3wty ()" (2)

v g (z,2)w, (), ()} ®3) ®2)?
slzeivty (B0
where

wz) = 1/2 (b1) Baltzqs(:.:) - 2312q3(z.z) + 3q3(:,z)2}.

Proof. This follovs directly frem the preceding theorez Yy
multiplying the formila of that theorem by “&(t). The left-hand side is
evaluated by using Lemma b; 1t is only necessary to observe that

Iash[' o(t) 3 dt)] V'Jl(:hr' 32( z)tr'%(z)v'ah(z)

- h}:Ja 8(t)? ’(t)'.31“)'.32(’)"33(:,v"’ls(‘)'

:2333
and sizilarly for the other term. The right-band side 15 evaluated by
using lemma 3. Dividing throughout by a common factor 2 yields the stated

result.

To revrite this corollary in anotber way, choose fixed points = ¢ H,

2 ¢ 15, and introduce the points U,V,V ¢ B5 defined 4y

(1) Uy = v ,(2), Yy = v ,(2), W, =21/2 (v"',(:) + 12q5(z,2)v" ,(2) )

In terms of auxiliary variadbles x,y,t ¢ I consider the ¥olomorphic
function £ on §° defined Yy |

fHxy,t) = lUx ¢+ Vye Wt o)
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It is clear thet

e/ = 3 D:U. «0a U, ,
Jl.-' Jn Jlﬂﬂ. Jn Jl Jn

and similarly for the other partisl derivatives; thus the formula of the

preceding corollary can be revritten in terms of the function f, end upon

setting o/ ax = S agf/axa =L . snd so on, takes the following form.
Corollaery 2. With the notation as ebove, the function f setisfies

the partisl differential equation

_ 2
O—ffxxxx-hfxfxxx-!-Bf xx-thfxft-—hf £
2 £2
+3ff -3¢°-9¥1.
3 Yy 3 y

Proof. This is & straightforward translation of the equation of the

preceding coreollary, with WJ replacing the terms involving w"‘J and

g indi d.
qsv 3 gs indicate

This result can be revritten yet again in terms of one of the stendard
nonlinear partial differentlial equations, the Kedomcev-Petvie¥vili or XP
equation, as follows

Corollary 3. For any point z € f and with the vectors U,V,W e L8

s in (11) the function

32

ulx,y,t) = 2 52 log &xU + yV + t W+ 7)

is a golution of the partiel differentiel equation

]
3w, = 5% (bu, - 6uu, - “xxx)'

Proof. It is e straightforward cnlculatibn to verify that this

equation reduces to that of the preceding corollary.
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6. Multisecant identities

The argument used to prove the trisecant jdentity extends quite easily
to yield an analogous identity derived from the description in terms of the
second-order theta functions of the subvarieties Wr for r > 2. Explicitly
the result is as follows.

Theorem 9. If 3 < n<g+ 2 and xl,...,xn_a,zl...,zn are any points

Lo

of M then
n-2
n 1 glz,,x.)
L g, 1t1(wlzy)) =0
s B Atz
I
k=1
k#i
where t = w(xl teort X o = Ty meees zn).

"~

Proof 1If Zysee a2y ¢ M represent distinct points of M &nd 8; zl+...+ z

>
then by Theorem 2 the n vectors 6, [s-w(@] (wl(z;)) for 1 g1 <n ere

) e W

linearly dependent precisely when 5 € W ne?

n-2 . Thus if E=w( xl+ esatX

and t = s-v(ﬁ) gs in the statement of the theorem then the n vectors

n-2

L

8,(t)(wlzy)) for 1 g4 gn ere linearly dependent; by continuity they

—~

remain linearly dependent for arbitrary points 249X 3 e M, whether there ere

coincidences or mot. On the other hand, with the same notation, if the

first n-1 points ZyseseZpy € M represent distinct points of M. and

/ + * /
ﬁt z)+eee+z, o then the n-1 vectors €, [t]wlz)) = o, [s-wlz ) - w(d) J(w(z,))

for 1¢1i¢nl are linearly dependént preceisely vhen s-v(zn) € Hn_3;
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thus if

“on-2 | =
X = {(z,x) = (zl""'zn‘xl""xn~2) e M : either z, 2, on
M for 1 1<J<mnl or v{xl tooot X o - zn) E Wn_a}

then X 1is & holomorphic subvariety of M2%2 and the n-1 vectors

- ~
Bz[t][w(zi)] are linearly independent whenever (z,x) e M2 Lx. It
f£ollows that there are uniquely determined holomorphic functions fi(z,x)

on 1«;2“""2 ~ X such that

-+ n-1 +
(1) e[t ](vz))= 12 £,(z,x) 8,[t }(w(z,) ),
=1

-where again t is es in the statement of the theorem, and since these

functions fi(x,t) are determined in terms of the theta functions by Cramer's

rule they evidently extend to meromorphic functions on M2n—2 with

singularities st most slong the subvariety X, provided of course that X is

e proper subveriety of o2

To examine thie subvariety X in more detall note first that if

n2 g+ 3 then Wn_3 = J and hence X = M2n—2; in this case the preceding

analysis is vacuous. On the other bhand if 3 < n < g + 2 then Wn-3 is a

proper subvariety of J, and clearly w{xl toast X 5 - zn) eV, 4 precisely

‘when u{xl+...+xn_2) = w(z + ?i+"°+yn-3] for some points y, € M; this lest
condition in turn means that either v{xl 4ooat xn_e) e*wi 5 OT
'w(xl+-..+xn_2) € Wh_z -Hiﬂ2 and z. f Xy for some index 1. Thus if

3 < n g g+2 the subvariety X cen be written'ss the urion X = X, U x2 uX

b 3
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of three proper subvarieties of M2n-2’ vhere

X, = {(z,x) € w2n2 zy =z, for 1gi<jgn-1}

X, = {(z,x) e u2n-2

z = x, for 1gign-2}

Xy = [(z,x) € w22 w(x tesetx, o) € Wi_z}.

Here xl and X2 are subvarieties of pure codimension one, with the obvious
{rreducible components. As far as X3 is concerned, the situation is somevhat
more complicated and requires some further general knowledge of Riemann
surfaces. In the special case n = 3 considered in the two preceding sections
this complication does not arise, since then Wi_z = Wi = ¢#. 1In the specilel
case n = g+2 on the other hand Wi_z = Wz = k'wg-E so that Wi_z ie of pure

dimension g-2 = n-k in all ceses. In the middle range h§n§g+1, or

equivalently 2<n-2 < g-1, it is a result of H. H. Martens (On the varieties

of special divisors on a curve, J. reine angev. Math. 227 (1967), 111-120)
that dim Wi_a ézn—h with equality holding precisely when M is a hyper-

elliptic Riemann surface. Now X is just the product X, = ﬁn><§i where

3 3 2
2 . ~(n-2) . .
Gn—2 {xl +...+ X o€ M : w(xl +...4+ xn_z) 5 Wi_a}. The Abel-Jacobl
X ~1 : -
mapping w: G > -+ Wi_2.over the dense open subset Wi_a ~ W2 2 is a

- Ii~-

holomorphic fibration with fibre Pl, so that part of Ei—E has dimensicn
equal to 1 + dim Wi_a,-and the part over Wi_a is a proper subvariety so is

of still smaller dimension; thus' altogether dim X = m+1 + dim Wl <203,
with equelity only when n=g+2 or §ingg+l and M is hypefelliptic. In general
therefore x3 has codimensicn at 1easf 2, sO 1s_a removable singularity set for
anelytic functions and hence cennoct really be part of the singuler locus for &

meromorphic function; the only cases in which X3 has codimension 1 and hence
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can be part of the singular locus are n=g+2 or L<ngg+l and M is
hyperelliptic.
In these exceptional cases it is necessary to describe the subvariety

X31n e bit more detail; actually it is enough just to describe for general

1
points XpreeesXp o those points x, such that X+ X, +eeet X, o, € Gn—2' In

cese that n=g+2 note that v{xl Hoaet xg) £ Wt = kéWg_E precisely when there
aAre some Poin‘ts yl'cc-,yg—e Buch that V(x1+..-+x8 + y1+-.o+yg“2) = k’ or
equivalently such that xl+...+xg + y1+...+yg_2 is the divisor of en Abelisn

differential. If XyseessX 8TE general, in the sense that v(x2+...+xg) ¢ Wé_l

L

- t+here is & unique such divisor X5 +ouet X+ xi +aaet xé_l, and x, can only be

fin M

one of these other g-1 points. If L <n g+l and M is hyperelliptic with

hyperelliptic involution E : M + M thgn it is known that X_+ X _+...%x e G

1l 2 n-2 n-2

precisely vhen X, = Ex, for some i#j; thus if x2,...,xn_2 are general, in the

J

~

1l .
gense that xi%Ex for 2<i<j<n-2, then X %, Feoot X o5 € Gn-2 precisely when

J
x.= Ex_, for some index in the renge 2<i<n-2.

1 i
¥With these observations out of the way, it is-a reasonably straightforward
matter to determine quite explicitly the functions fi(z,x) in {(1). Firét it is
clear that interchanging the variables Z4 end zihas the effect of interchanging
the functions rl and fi’ in the sense that
(2) fi(zl""’zn’xl"'"xn-a) = fi(zi’z2""’zi-l'zl'zi+1,...,zn'xl""’xn—2)5
thus it is really enough jJust to determine the function f - It is mlso clear

1
. from (;) that the function fl is comp}etely gymmetric in the variables

Xy yerenXp o end aleo in the wariables ZyaeessZy 5 8O to a considerable extent

it is enough just to examine fi as 8 function of say the variables X 9Z1 920020

Furthermore interchanging the variebles zy and z, has the effect of inter-
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changing the function f, and llfl, in the sense that

(3} l,fl(zl""'znxl"'°’xn—E) = fl(zn’zz""’zn-l’zl’xl"'°’xn—2)'

Kext, as in the proof of Theorem 5, the effect of a transformation T e T
acting on any of the variables appearing in the function fl can be deduced
quite easily from an application of the results of Theorem 3 on the effect
of transleting & theta function by e half-period. To consider the verieble

z, first, set t = ' - w(zl) and rewrite (1) as
- +
82[—t'-29(zn)] ( wlz)))=1y(zy) 8 [£r] (wlz))+ -o0 .
->
Replacing z, by Tz, in 6, [«] ( v(zl)] transforme that thete function into
->
aa[a] (wlzy) + WoT)) =

-

=p 3, (T n(T), wlz,)) x(dT)) 6;[a] (wlzy))s
the common factors in all these transformetions can be divided out, and it
follows readily that
() 1,(T2,) = "t'w(zn)(T) £, (zy) = Pz +2 ) (1) £,(z,).
Sipilarly for the other variables it follows that
(5) fl(TZ.E) = pv(zn-zl)(T) fl(zz)g
(6) fl(TZn) = p-t'?(zl"'zn) (T) fl(zn)s
(n £,(x)= p"’(zl" y (Tfy (z,),

n

for any transformetion T € T.

The singularities of the function f,(z,x) must be contained within
those components of X of pure codimension 1, and in consequence of {3) the

3

zerot must be contained within those components of pure codimension 1 in the

subveriety thet arises from X wupon interchanging Zy and z . Holding s8ll

variebles except z, fixed but in general position thus yields & well defined
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meromorphic function fl(zl) with poles at most et the pointe ZosesssZ, o and

zeros at most at the points XyseensXy o) when XyseeosX o ere fixed and

1
Xytesetx o ¢ Gn-2

This function must then have a divisor of the form

the component X3 plays no role in fl as & function of Z,-

ﬁ(fl(zl) ] = ].ll'xl tacat %_2.:{“-2 - \.\2.22 - e~ \.'n_l-zn_l
for some integers u; 2 0, v; 2 0. It follows from (L) that the fector of

BUtomoTPY Py (s 47 ) (T) represents this divisor, and hence that
1l ™n

ulw(xl) teaat U o w(xn_z) - uev(zz) —eeem Vo w(zn_l) =
= w(xl) - w(xn_e) - v(zz) — e w(zn_l) in J;

but since this holds for arbitrary general points xi,zJ it must be the case
thet y, = v = 1, hence that

éi(fl(zl)] = X heeot X 5 - 2y meees Zp g
Similarly

f;tfl(ZE)) =2 = Zq,

E’i(fl(zn)) = Zgteeet Zp g = X 7T ¥poa,
When all the variebles except X3 are held constantythere is a slight
difference, eince the portion of X3 that is of codimension 1 must also be

- 1

+aken into account. If n=g+2 and w(x2 +oout xn~2} i‘wg-l there iz up to a
constant factor & unique Abelisn differential vanishing at X, oot xn o} ir
its divisor is Xy oot X o f'yl +aoet yg-l then the points X, = ¥, can be
either poles or zeros of the function fy(x;). If % ¢ n < g+l and M is
hyperelliptic with hyperelliptic involution E then the points x, = Exy for
2 ¢ 1 € n-2 cen also be either poles or zeros of fl(xl). Thus this function

has the divisor
g-1 ne2
g,}(fl‘ﬁ’l S BRI Wl A 121 &Yy * 2:2 By « EXy

where v > 1, “@ 2 1, uieo unless n=g+2 and then is some integer of any
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eign, 31=O unless 4 <ngegtland M is hyperelliptic and is then an
integer of any sign. Hovever from (7) and the argument as above it sctuslly
follows that

E&(fl(xl)] =z, =2
Combining these cbservations then evidently yields the result that fi(z,x) s
s function on M2 pag gimple zeros along the subvaerieties z, = Txi for
l1<ign? and the subvarietiles z, = 'I‘zi for 2 £ 1 ¢ n-1, and has simple
poles along the subvarieties Z, = Tzi for 2 ¢1¢ n-1 and the subvarieties
z, = Txi for 1 <1 ¢ n-2.

Now the meromorphic function

* n=2 n-1

(z. ,x,) alz_,z,)
£ {(zyx) = n L%y i n*%x
1 J=1 alz ,x, k=2 qlzl,zkﬁ

has the same divisor on Ebn—2 as does the function fl(z,x), and a comparison
of the transformational properties of the prime function under T with
equations (L) through (T) shows that f;(z,x) and fl(z,x) transform the same
wey under T'. It therefore follows that fl(z,x) =c f;(z,x) for some constant

¢ %o, and it then follows from (2) that
n-2 -
f,z)=c .| B q(zi’xa) . wlzpez) |
J=1 glz_,x k=1 qzz 2 5
n™d k#1 1Tk
Substituting this into (1) end mltiplying by the cbvious factor then yields

-2 n

8,[t] (w(z)) - [ng q{zn,xJ{] kgl q(zn.zk)'l

-

n-1 = -2 N
= - 121 ¢ o [t] (v(zi)) ,jfl q(zi,xd) kfl q‘(z\i'zk)-l .

kei
It is cleaer by symmetry that ¢ =1, and that yields the desired result and

n-1

concludes the proof.
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The preceding theorem of course ircludes the trisecant identity,
Theorem 5, &5 & speclal case; the actusl formula of Theorem 5 arises by milti-
plying the formula of this theorem by q(zl,zz) q(zz,zB) q(zs,zl) to reduce
all the coerficienis to holomorphic functions. It may be helpful to see the

next case, the guadrisecant formule, more explicitly as well:
alzy ) alzye) *
q(z,2,) q(21'23) Tzg.5,) e, (iw(xl+x2+z1-z2-z3-zh))
q(zz.xl) Q(ZE,XQ)
+
d(zz,zl) q(22,23) q(zz,zh)
Z X z
. qlzs, 1) af 3,x2)
q]zB,zl) q(ZB,za) q(zB,zh)
q(zh,xl) q(zh,xa)
+
alzy ,z,) q(zh,zB) alz),z,)

(B} o=

+

6, (Qw(x1+x2+22—zl-z3~zh}]

e
;
8, (?"(xl*x2+z3""1'22‘zh) )

-+
By (Belxytxpreymz,-25-2) )
This too cen be rewritten with purely holomorphic coefficients by

maltiplying through by H5<k q(zJ,zk). Doing so and changing notation

slightly leads to the equivalent version:

4
(9} alzy,25) alzp.24) ale;.8,) ale;.e3) aley,es) @ (3w(z

+z.4
5 z 4z

1*7p*2378178p23) )
+
= alz),2,) alzy.8,) alzg.e)) a(z5.85) ale,.e3) 6, (3w(z 4z m2 48 -05-2,) )

-+
- q(zl'EE) q(zasaa) q(ZB’al} Q(ZB'QB) Q(5-193-3) 32 [%w(zl+22—2.3—al+a2-53))

Pre
+ alz;,85) qlzy.85) alzg.e,) alz4.8,) alsy,8,) 8 (wlz +2,mz -0 ~apas) )
The trisecant formula is jJust the one extreme cese n=3 of Theorem Q. T'The

other extreme case n=g+2 of that theorem can be rewritten in an interesting

"~

alternative manner, effectively replacing the individusl points xl,...,xg e M

by the single parameter w(x, +...+ ng £ €5, an erbitary point in ©%; the
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result is as follows

o~

Corollary 1. For arbitrary points t ¢ £® end Zyseees zg+2 eM

g2
) O(r—t-v(zl-l-...«l-zi_l +z, gt .+zg+2))

i=1 ng+2
Gz, 2.}
=1l 17k
kel

Proof. From the Corollary to Theorem C3 It follows that

5, 8] (vz)) = o.

-4
Q(xl,xa,...,xs) J:; q(zi’xd) = e(r+w(zi) - wlxg +e.et xg))

= 8fr-t+w(z,) - wlz | +ee0 ¢ 28*2))
where t = w(xl - Xg = Zy —ess = zg+2). Multiplying the formula of Theorem 9
Yy Q(xl,xz,...,xg) end using this observation leads to the desired formula.
Yote that this formule only involves the points xl,...,xg in the varisble <%,
and by suitable choice of the points xl,...,xE the varisble t can be given

any desired value in CE.

-+
For any fixed point t ¢ £% the vectors 6 [t] (w(z)) span a linear space

g ~
Lt's E2 as the point 2z varies throughout M, and it fellows from Corollary 1

o~

that dim Lt = g+l. Indeed for any fixed values zl,-..,zg+1 e M representing

distinct points of M en appliction of Theorem 2 shows as ususl that the

- +
vectors 6,[t] {w{z;) Jyeees Balt][w(zs+1)] are lineerly independent whenever

t + v(zl T zg+1)) e‘wg_l J that is, vhenever B[r—t-w(zl 4ooet zg+l)) + 03

’ ->
if that is the case the formuls of the Corollary shows that elt] (w(z)) 18

expressidle as a linear combination of these g+l vectors, whence the assertion
' \
-+
as desired. Alternatively of course the components of azlt)fw(z)] Y

functions of z £ M are relatively automorphic functions for the factor of
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automorphy ‘kth2g‘ indeed by Theorem 1 span the {g+l)-dimensional space of
guch relatively sutomorphic functions, and it is reasonably evident that this
too shows that dim Lt = g+] for all points t ¢ r®. These vector EDHCES Can
be viewed as determining a vector bundle of rank g+l over the Jacobl variety;
that leads to a number of interesting questions, some of which I have discussed
elsevhere in terms of generalized theta functions, but they are in a rather
different direction from that being pursued at present so will not be considered
ymch further here. What is more relevant here is the significence of these
observetions to the ﬁuestion of how Theorem 9 extends to indices n > g+2.

As was clear from the proof, the formula of Theorem 9 is really uniguely
determined aside from an erbitrary common factor 1in the renge 3 £ n < gt2.

On the other hand for n > g+2 there are linear relations among the vectors

~

-+ -+
let] (v(zl ) Joenns 6211;] (w(zn)] for arbitrary paerameters t € EF and z, €M,

but there are n-{g+l) linearly independent such relations; indeed for each

index i > g+l the formula of Corepllery 1 provides & linear relation among the

+ + +
vectors 8t J(v(z) )ieee, Bzft](w(zg+1)), 8,{t }(w(z,)), and these are a basis

for the space of these lineasr relaticns. It is poésibly worth observing for
emphasis that in these assertions t, ZyseeesZ Bre viewed as seperate pera-
meters and the identities as functional identities; for some fixed values of
these perameters there mre of course further linear reletions among the
gorresponding vectors.

It is interesting and uséful to note that among thoée various linear
relatiéns in cases where n > g+2 is precisely the relation of the form in

Theorem @ for that value of n. The easiest ﬁhy to demonstrate that is by =2

direct linductive sargument; that incidentally provides another proof of the
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multisecnt identity, really deriving the general case inductively beginning
with the trisecant formule that had esrlier been proved. This alternative
proof is actually simpler than the other proof used here; but it is in some
ways less satisfactory, gince it does not show the unigueness for ceses n X g+2,
nor does it really show so clearly Just vhy the formula necessarily has the
form it does have. Which proof serves better is somevhat & matter of personal
preference though, and there are possible adventages in having verious proofs
aveilable.

Corollery 2. The formula of Theorem 9O holds for &ll indices n 2 3.

Proof. For the case n=3 the formle is the trisecent formula demonstrated
in Theorex 5. That case will thus be es given, and the formula will be proved
ty induction on the index n. For that purpose consider for any index n 2 3

the function

+ n q(zi,xl) e q(zi,xn_E) +
£(x,2) = izl‘alzi,zl) e ; .o q(zi, zn) ez[t]C"(Zi)]'

where i denotes the omission of the i-th term in the product and

t=w&xl teest X 5 = 2y mece= zn). This is & well defined meromorphic function

of the variables XsseesXy o Zyssees 2, € M, and the desired result is the
assertion that it vanishes identicelly; that is the case for n=3, and will be

demonstrated for n 2 3 by induction on n.

~ * +
If Xpaeees Xy os Zyseees Iy 8TE fixed points on M t@en f{x,z) = f(xl) is

~t

evidently & well defined holomorphic function of the gingle variable Xy € M;
in the defining formula t =8 + w(xl) vhere L £ is & constant insofar as

the variable Xy 45 concerned. Note that replacing Xy by Txl for some T € T



- 52 -

has the effect of replecing t = 5 + v{xl) byt + A=5 +v(xl) + X where

2= u{T), and by Theorem 3
B [t Al(ula)) = &y [svw(z )] (Gulxy) + 2)
= p—-is—v(zi)(T) n(2, '\f(xl))‘x(l) Ba[t](%l'(zi)];

since q(zi, Txl) = q(zi,xl) c(T,xl) nw(zi)(T)‘ 4+ follows readily that each

-
gseparate summand in the formula defining the function f, and consequently that

function itself, transforms by

-+

£y = o 3 (D) &lTuxy) a(Tag) KD 2lxy),

where n(T,xl) n[l,v(xl)) end x(T) = x{( ) for 2= u(T).

-

Now if Xy F 2y the first summand in the formula defining the functien f

vanishes, and the remainder of that formula is easily seen to reduce precisely
to the corresponding formule in the case n-l for the variebles Xnseves X oo

Zyreees z.% but then by the induction hypothesis that remainder vanishes, so

-

the function f(xl) has & zero at the point x, = z,, and by symmetry must also

neve zeros &t the points Xy = Zysees Xy = zn. The function

-+

+

g(xl) = q(xl,zl)_l - q(xl,zn)_l f(xl)
is therefore elso a holomorphic function of.the variable Xy and it evidently
transforms by
' <

g(Txl) =

°—v(zl+---+zn)(T) c('r.xl)-n - o ;s(T) C(T,xl)n(‘r,xl) W1 . g ("1)

=P} AT c(T,xl)l-n n{T,x,) x(T) g(xl‘).



- 53 w

vhere a= w(x2 +oaeet X5+ Zg teeot zn). The proof will be concluded by

&>

ghowing that any holemorphic function g satisfying this lest condition must
vanish identicelly, and that can possidbly most easily be sccomplished by
restricting the transformations to the subgroup T = fr er: x(T) =1} for
which the condition reduces to & scaler condition. It is evident from {2.5)
that the velues x(T) for T € T 1ie in & finite group of matrices, so that T

is a normal subgroup of finite index in Tj the precise value of this index is

unimportant, but if it is say m then the quotient space Mo = M/Ib is a
Riemann surface that naturally appears &s &n m-cheeted unbranched covering
. space over M. The Riemann-Hurwitz formula shows incidentally thet MO hes

genus g_ = g + (z-1) (g-1). Since x(T) = 1 vhenever T e T_ it is evident that

>
each component g,(x,) of the vector g (x,) satisfies
i*"M 1

g,(Txy) = b 35 (D ©Tx)?™ n(Tix) gylxy)
for 21l T € ro, hence is & holomorrphic relatively automorphic function for the
factor of sutomorphly p_ la cltn n ;3 n mst thus be & well defined factor of
eutomorphy for ro. The representetion p of course describes & flat factor of
automorphy, one of Chern cless zero. The factor of eutomorphy g for the full
group T corresponds to the divisor 1.zo on ¥, so admits e relatively euto-
worphic function with that divisor on M; the same function can of course be
vieved as a relatively automorphic function for g considered as a factor of
automorphy for the subgroup ro c T, and then clearly corresponds to the
divisor (T/T).2 on M,. Thus g as & factor of eutomorphy for I, has

»

Chern class m. Since n is & factor of automorphy for Ty and 42 = ¢ it is
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clear that n has Chern cless %'m; es & minor sidelight, it follows

thet m is even. Altogether the factor of automorphy p_ 1o cl—n n hes

Chern class (1-n) m+ 3m= - (n-'i) m < 0, 8o cennot admit any montrivial

holomorphic relatively sutomorphic function; thus each component gy vanisghes

-

identically, hence g = 0 and the proof is thereby concluded.

"

The miltisecant identity cen xlso be rewritten in terms of first-corder
theta functions. To simplify the ootation introduce the auxiliary mero-
morphic functione

(10) Q(zl,...,zn; al,...,an) =
n I
1<, k<m alzy.,) / 1¢3<k<m q(z,;’zk) alayey)

of the variebles zj, g, € M for n=1, 2,.++. In case n=l this is to be

interpreted as meaning that Q(zl;al) = q(zl,al), 50 the function is then
actually holomorphic; but for n > 1 it is meromorphic, the singulerities
being simple poles along the subvarieties z‘j = 'I'zk and aj = Tak for J # k
end T £ T'. Note thet for any fixed indices £, m _this function can be
decomposed into the product

(11) Q(zl,...,zn 3 al,...,an) -

I n |
[lg,j ,k<n ‘l(z‘j ’E‘k)] [lgjén q(zJ ’am)_l ngkén q(zz,ak)] q(zl,am)
J#L,k4m Iy k#m
= 1 I - g4m 1 1
l}é“kén Q(ZJ ,zk)] [1§3<kén q(aJ .ak)] (-1} [1;,3;:: t';(z,b.zJ )} [1_<_k.<.n q(am.ak)]
J. k¥t 3. kW 3L X #n

Y

gmin-1 .
= ("’1) Q(z",am) Q(zl.!lll,z!‘_l. z£+l,--.,2n; a.l,...,am_l,a.ml,...,am)-

a ) 1

I
(z,, (z ..}
[1$J_<.n B 2y2% ‘ [1<k5n Q2 y8y ]

Jer W Egerglc ke $Ep%x
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In these terms the multisecant formuls is equivalent to the following result.

Corollery 3, If n 2 3 and Xypeoes Xy 3 Bpscess e, y 8re arbitrary

points of M vhile & s any point of g8 then

ﬂ(s) e(s-o-v(zl L T Zn_l - Bl - an ™ Bn_l)) l Q(zl.o--g zn-l; al'...g an-l) =

- n-)-:l (-1)3-1 9(5'*“(2:1-1‘51)) (s+vwlz, +eoet 2, o -8y - o - 8, -o-8a )

=1 q(zn_l;ai) Q(zl,--., zn_z; é\l,lo-, zi‘-on, Ennl)
vwhere ﬁi denotes the omission of the term Bye

Proof. Multiply the formls of Theorem 9 by

+ -+
tﬁelt](s+w(zn)) = tez( %t+s+w(zn)) and use Theorem AT to rewrite the result in

the form
n
Iqlz, ,x,)}
0= b RNt 8(s+wlz -2,)) e{tes+wlz _+2,))
izl nk#iq zi,zk) ( n i n

n-1
= 3 njq(zi.xj)

A . 6(s+w(zn~zi)) Bs+wlx *esetx o= Zi=eoe zi""_zn-l))
T #3324 2%x

+ IIJ q(zn.xj)
L 402007y

where 21 denctes the omission of the term Zye Now change the nctation,

9(5) 9(s+w(x1+.--+xn_2 + zn - 21 - g Zn‘_l))

replacing Xy by 2y for 1<i<n-2, 2, by 8y for 1<i<m-1, and z by Zo.y0 B0 that

the preceding formula can be rewvritten.



- 56 ;f

o(s) 8(s+wlzy +eaet 2z 4 -8y - e -2, 3))=

-

1 I '
Bl {1@;:;-2 alay,zy) [1_5_1@-1 o zn-l’a’k)]
- |

- I . B
i=1 [199-1 ale;.ep) [1;39—2 alzy_y 2, )]Q( 2p10%4)
k+L B
. e[s+w(z 1= )) e(s+v(zl teort z o -8y =e- ﬁi - an_l})

-

-1 g oe(eewlz - Y)
&« I (""1) Q(z ﬂaegz 2 LB oe-a I} . -1 i
i=1 1t b 1;Mgl‘ ..1 Az _, ey )

8 (s+w{z;

i 4u vt Zn;z ""ﬂl - ™ a‘i,‘_"" ﬂn_l))

Q(zl soses zn 2, ai seeey By arers an—l)
 after an application of (11)5. That y;elds the desired result.

The fgr@ula of the preceding corollary is rather like thet for the
expansicgnaf'a determinant by cofactors of one row or column, which suggests
that the éxﬁféééions invoiveﬂ can be written as suitable determinents; that

is indeed the case, BS follows:

Corollarz L. If n21and zyyeees 2, éli.-., s ere erbitrary points

of M vhile s is any point of t® then

n{n-1)
2
—l) )D—l B(S"’w(z 4'--0"’@ - 5.1 et X ol B. )‘ / Q(zl,...,z H 1’---,& )
e{s+w(z, -2, )
& det (:(: 2 ?k )
3%k

.j k=lgecehie

Proof | The proof will be by induction on the index n. The result is
“quite wrivially trie in the initial case n=1,‘so it is only necessary to
demonstrate the inductive step. Assuﬁe therefore that the corollery holds
for the ease n-1 where 2<n<g+l. If D(zl,..., z al,..., e } denotes the

determinent on the right hend side of the formula to be demonstrated in the
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case n, the expansion of this determinant by minors of rovw }J#=n has the form

D(zl,..., z Blgte-. ﬁ. ) = , : .
+1 P RO o -
!i ("'1)n e(s*’"{Z "B-i) ) D(zl';.:. o zn_l" al gveR g ai,s Oﬁi{ an) .

i=1 qlz ,si)
By the inductive hypothesis
D(z geney zn 1, 51’..,, 1‘...’ G ) = z:}‘ .

. ) .(_n-ﬂ‘c_,(__z'e‘.l Ly e(s:(zn.m: ygee ey ety ;)
L. 1,51,...,a1,...,g

] w

and substituting this into the prereding Sformala yielﬂs the result that

D(zl,..., 2.3 Byaveis B ) =

(-1)n"""(n21) 0”2 3 (-n¥t :,ai[sfwu - ))
1=1 alz s&i)

ey

B(S"‘V(Z +¢..+Z ) l-e,l-..--ai-—...-a ))

Q(zl,...,z Ry al,...,ai,...,a ))
A comperiscon of this last formulas with the formule of Corollary 3, which is
valid whenever n 2 2, shows that D(zl,..., z.s al,....a ) has the form
asserted for the case n and thereby concludes the proof. In the ‘specisl
case n = 2 the preceding result gives thé expreésionAﬁf-the original o
trisecant formile in terms of the first-order thets functions, as hed been
derived earlier in the Corpllary to Theorem 5. It is worth resteting here in
terms of first-order thete functions the observation mede earlier in terms of
second-order theta functions, namely that this formula isressentially unique
in the range l<n<g+l, while for n>g+l there are additional formulas

reflecting further lineer relatlons among the vectors cf gecond-order theta-

functions.



