C. Yirst-order Riemannian theta functions
§1. Riepann's thecrenm

If M 4s a marked Riemann surface of genus g > O, the cancnical Abelian
dntegrals define s bolomorphic mapping w: N o £8 that Snduces the
Abel-Jacobi dwbedding w: K+ J of N 4in its Jacodb! variety J=zf/L, Tne
thete factor of automorply E(A,v) for the action of tbe lattice subgroupl
on I8 induces the factor of automorphy E(T,t) = pr(T):(T.z)‘ for the
action of the covering translation group T on ¥ as discussed in §B5.
Correspondingly amny theta functlon induces a relatively sutomorphic
functicn on ﬁ. and these induced functions are the mext topic of
@iscussion. To begin with the simple theta functlon or one of its
translates, since o{tew)=p]0|t](v)cr(p () as & function of w 4t follows

that
oloftl(viz)) €T (o &) = Flp,_,t%) s a function of zeM

where r<IS 43 the Riemann point; of course it is alwvays possible that
this fnduced functiocn of ze¥ vanishes identically, and this possibility
smast be kept 4o mind. In some ways it is more convenlent to consider
dnstesd the function

(1) £,(2) = olo]rtl(w(2)) €T (o T8)e

This function either vanishes fdentically, or is s noﬁtrivhl relatively

sutoporphic function with divisor



(2} ﬁrt) = 2 4oeet I, ©n M

such that
(3) ‘{ll"oot*lg) L '(:lhooo‘v(zg) w ¢t in J|

where the Abel-Jacodi mapping is extended to divigors s ususl. From this
observation it 1s quite easy to establish the Riemann vanishing theorem,
ebarscterizing the theta locus g[\m‘! : @(v)=0} 4in the Jacobi variety J.

Theorex 1. In & Jacobl wariety J,

&V
where r¢ .'!- is the Riemann point. )
Proof. It is enough Just to shov that ,-'i-“-"‘"g-l. for since W, end
bence :1---1118"_:l gre irreducible pubvarieties of J it then follows
automaticelly that ,gcr-v‘_l; eguivalently then, it 4s only mecessery to
shov that 17 olr-t)sD then LA AL
COnnidﬁr therefore & point te€J such that &{r-t)=D, and suppose at first
that ft(:)-elolr-t“v{:)) 4s pot identically gero. Then
It(zojﬂSIOlr-tHO)BB(r-t}BD for the base point 2z, € H, so that
ﬂ}(ft)-'z(',+z1+...+zs_1 . for some g-1l other-péin.ts zieﬂ by (2) and
tws;(z°+z1+...+zg_1) = w(zl+...+zg_1) by (3) and so that tcﬂg_l as desired_.-
Next if ft(z)?—.ﬂ there will be some divisor zl+...+zr such that

% (z)=el0 [z-t-wlz, ¢.o ¢z ) (w{z))f0,



L ] 3 _—
since the translate 8[0]r-t-t,l(v(z)) will be pontrivial for some point
tlca‘ and J-w‘ so that ¢, can be written as the image of some positive
divisor of degree at most g; it can be supposed that 121 1is the least

integer for which this is the case, and then
7»‘"1"'“’|"'*"’(=1‘---";..1“1\»;"-":”("(’o”"’

for 1 £1isr . Thus

f;?t)-zlq.'"!r‘zﬂl‘.'"‘zg‘
for some further points T 4sesee¥yy and by (3)
w{zl-l-...d-zs)'t*w(zl#.u'l'zr)

80 that teviz . +eeat2 )cw Cws_l as desired. That suffices to conclude

1 g-r

the proof.
Since the thets function is an even functicn necessarily
‘ 2= © e-.e = -H-Ws v O since 2r=k

L) k—V‘_l - ﬂ‘_l;g.
Put this is really Just a special case of the Riemann-Roch theorem in the
"eonetric form B(7.8). This can be used to revrite the Riemann vanishing
theorem in the form

(5) = - W 1 - V‘.l-r-

)
. = &=



-&a

Another direct eonsequence of this theore.;n is the folloving

Corollury. %¥he function f,(z) = elo]r-t](v(z)) s Sdentically zero
precisely when tﬂ;: = K- V‘_z.

Proof. It follows from the preceding theoren that £, (2)=8(r-tev(z))=0
for sll points s precisely vhen s-td-'-r(:)t__g = r-\f‘_l for all points EeEM,
hence precisely vhen t-v(z) ﬁg—l for a1l points ze€M; but with the notation
and results of SBT‘ this is Just the condition that t-wlcw‘_l. bence that
tcﬂ%_{jﬂ-ﬂi)-ﬂi. The geometric form of the Riemsnn~Roch theorem RB(7.8)
shows that H;-kphh; or slternstively this can be deduced by proceeding as
4n the first part of the proof but with the theta locus teken in the form
gws_l-r.

This corollary has & very interesting interpretation, vhich makes it 211
the easicrrto repember. As noted in (1), the restriction i
rt(z) = 8[0]r-t](w{z))erl pt:g), while dim T (pttg)= 1(pt:g)=1 precisely
when tﬁi, hence by the corollery precisely vhen ft(:) £ 0. Thus the
restriction :rt(z.) = 8]0|r-t](w{z)) 15 & basis for the vector &pace rl ptgs)
whenever this vector space is one dimensional, while the restriction
venighes $denticelly whenever the vector space r(rtzg) hag dimension
strictly greater than one 20 that the restriction eould not possibly be a
bagis. There are some ratber interesting questions that are suggested by

4his point of vievw.

Since the subvariety Hé_l_g J is the image of the connected and hence
irreducible complex manifold ngl under the Abel-Jacobi mapping, it follows

from simple general results in caﬁﬁlex analysis that Ws_l is an irreducible
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holonnrphic subvariety of J; hence frozm Theoren 1 the theta locus _gzis an
Srreducidle subvariety. This hsd, as poted in the &iscussion in part A, &
number of very eo.:;venient conseguences, all of which are thus alwvays
available in the case of Jacobi varieties.

¥he thets function generates the ideal of ths theta locus at each of its
points, .so the singularities of 9? are precisely the points vhere & and all
of its first-order derivatives vanish. 7o discuss these and the

higher-order derivatives, 4t is convenient to simplify the notation by

writing
© " Ve(w)
? cee flw) =
Jl JV NJI-.. a"ij

The singular locus of _’e_ {s then the subvariety
(1) g= {veg = 3,800 = 0, -1zs8]

More generally, the singular points of multiplicity v on the theta locus

are defined as the subvarieties

(8 ¢ V= {ves: 3 s(v)=3, , Olv)meeemdy ooey o(v)=0, 1<y g}

: 1v2 b § v
this provides the filtration Gla‘ezb-.- of the singularities of the theﬁ
Jocus into more and more extensive singularities. In these terzs there is
the folloving extension of Riepann's vanishing theorem; the first equality

bere is Riemann's singularity theorem.



Theoren 2. In & Jacobi verlety J,
v v -
g ur-W = {te .a(t-w{zlh..+zv-11-."-a.v))-0. al) zi.aicﬁ}

Proof. Bet Sv = [uJ:o(t+w{zl+...0:9-.1-...-3") =0, al2 ’i"i‘“ } for
tbe course of this procf, &s a notational convenience. HEote first thet

tcsv precisely when t-ﬁlv"lf vq_efrb‘l -1 hence precisely vhen
- v
r-te “3-19("9 uv) = ws__l

Yy B(7.13); therefore Svsr- ‘[fvg-l.

Fext 4f teS then e(t-w(zld-...-rzv—l.l-...-au)) 45 identically gero in
:1,9.1;';5. 8o the result of epplying the differential operator Y/ azl".'azu
for any index y in the range l<y<v and setting z, = &, for 1<icv i3
ddentically gero in o,;c {e - The differentation is a2s usual vith respect to
4+he canonicel coordinates on ﬁ, and the result of this calculation with the

obvious use of the chain rule for differentiation is the 1dentity

zj. O.li ai '.li
u ¥

) . a(‘h)w;_l(ll)u-\ri (au) =« 0, all l.icﬂ.

1}

The functions “;.(‘.1) for 1<i<g are linearly independent functions of the

variable 8, & btasis for T(xz), so this identity can only hold when
331000& Q(t) L D. 1_5"5”’ 15’11‘050°1BE"
B

that Lz, vhen tep’; therefore B 8
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Fipally it will be demonstrated bty induction on the index v that
g"ssv. e 4nitial case w0 is guite trivial, Just the definition of the
>
theta locus, 0 suppose that the assertion bas already been demonstrated

for all indices <v and consider a point ug‘j. If the function

£(z)s 0 tew( T4, 4ee et gmlelymececl v—l’ )

is ideptically gzero for all zi.u.ai.gﬁ then teS as desired; othervise
¢his function is not identically zero for some zi,s.aigﬂ. and iz a
relatively sutomorphic function fer(psl:s) vhere »=

petav{ Ti¥esetz -BoBi=ee '-.'v—l) . The function

L) ?
&l Z).-a-il- . .-a-;-:lf(z)

S LA R LIV P |

then clearly satisfies func. ~al eguations of the form

g{Tz) = p

r-t+w(.)(T) t(T,2)8g(2) ¢ n(T,2)

wbere h{T,z) is an expression involving at most w-2 derivatives of f£{z) and
scme derivatives of p.('r). vhich is a function of the varisbles z,.8,8;

since 8 is. However

? 3
— o g— r( ’)
"1 "v-z

iy LA LV h N |

L 9
= -én-z—l-..'-a—z—u—z- Q(t‘\f(l‘ﬁ*tit*z 2-.—.1p...-‘ 2))
|t = soeyT i
.0 1 ‘1' "2 V-2
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VoVl
gince ttg_ _597 80 by the inductive hypotbesis uswl and

0(t+w(z+zl+.u+zv_2-a ""“9-2” £ 0;

the same mrgument evidently applies to all sizilar derivatives of £ of
totel order at most v-2, 80 that actuelly b{(T,z) & O and consequently
geT{ pr-t-i-v(l)‘s)' This function g 4s tero vhenever ¢ = &, oOr =, again
Yy the inductive hypothesis since ’(“"(‘1‘"1"""v.z""l""“v-z”‘ 0;
moreover it vanishes &t 1_ea.:t to the second order at z=as, for

[] o 3 L)
- gl2} Bt ety ge— O(t-l-vw(z-tzl-h..41.“_1-:—-1--..-&9_1))

8z z=a =z azJ. azv—l 1=a,2,%8,

= 14y geeed 3111‘,_,1‘#1 5(1’-3'Vi(l)v;l(ll)...v'iv_l(nv_l)

gince by assumption tegv. Therefore if g 45 not identically zero then

a( E) = 2!“'[1" we u“'l‘bi"’l 9.1- - '+zg-1 .

for scme additiomal points L JRITTIE L end as in (3)

}

4L $acotd

putew(a) = w(aa-nl«e-.u#a w1¥iy g2

#o that

(9) r-'tr-w{ &“'H*e ° n‘@'&v_l )e Vg__ V'“io
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On the other hand if g s 4dentically zero then by the definition of that

Tunction
(10) I '".'1“_18‘1".1'_1 O(tﬂr(t—n))v‘&(ul)...v'lv-:(ll\_l) =0
for all xz¢F.

Thus for ary points a.nl.....nv_lcﬂ. either (9) or (10) holds. Hov {9)
when vieved ss a condition on these points descridbes & holomorphic
subvariety of ﬁv, wvhich is either all of ¥ or a proper subvariety. Ir it
45 211 of ¥’ then (9) means that r-tc‘wg_v_l(:‘) (-'Hv) = “vg-l ty B(7.13), and
hence tcr—'ﬁvs_l = Sv by the first part of this proof. If it is & proper
gubvariety then on the dense open complement ©f this subvariety (9} faile
so that (10) must bhold, and it then follows from continuity that {10) must

Bold for all points B,myseves 8 43 but then 311".1’-10(“#(:-:)) = 0D for

all indices 11,....19_1 and all points z,ecl, so that t+w{z-a.)e_§:'1 €5, 4 by
the inductive hypothesis, and clearly t-l-w(z-l.)esv_l for all z,a M implies
that tesv. In either case tesv. so that g"ssv and the proof is thereby
eoncluded. |

1t 4s worth noting that ty the Riemann-Roch theorem in the geonmetric

form B(7.8)

W_ sx-W%

&1 PR e s-1

so that Riemannn's singularity theoren can be stated in the form

v v v
(1) e =rV =¥y, T
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§2. Prime function expansion

‘I‘he'rt gre two ‘ﬁirections 4n which it is possible to proceed: one is to
geek to express the function tt(z)-blolr-t](w(z))c T( Dttg) in terms of the
previously S.ntrodu.ced gtenderd functions and gifferential forms on the
Riemann surface M, the other &s conversely to seek to express these
gtandard functions and forms in terms of f,(z). To begin with the first
direction, there is & sizple patural expression for ft(z) that serves Bs
well as & further pormalization of the prime function g{z,n). It should de
yecalled that the prime function and the constructions based en it, such as
the canonical coordinates on ¥ in terms of which ulli differentiaticn 1s to
be taken, have g0 far only been determined up to an arbitrary constant .
foctor.

Theorem 3. It is possible to normalize the prime function q{z,s) 4n

guch & manner that

Blrew(z-z)meee-2.)) o lgdfkgs qlzg.t,)

= det {v‘d(zk) : lgj.kgg] . 1<lil§g g(z.zi)

for 81l points 2,%, peceol s:ﬂ; the prime function iz then determined

| (&
wnigquely up to 8 factor & where € 2y de

Proof. For any ¢cE® ¢that does pot represent & point of H: the
functiem rt(z) = B!D[m—t](w{z))er(ptzz) 43 pot identically zero, by the
Corollary to Theorem 1. This function then has & well defined divieor
glf}...-&za en M for which w(zl+,..+zgl = ¢ in J; mctually 4t iz elearly
possible to choose representstive points zieﬁ such that Wz ¢..etz ) = ¢ in
' &

Eg rather than just in J = Egl£. With these echoices, the function



11151 q(z.zi) 43 & relatively sutomorphic function for the same factor of

autoporphy ptgg = pw(:.l-h.-ﬂ ):8 acE ft[z) and has the same diviscr as
Y £

rt(z). so must be & constant multiple of ft(z); thus

(1) O(H\r(z-zl—...:‘)) = c. “fq q(z.zi)
for some tomplex pumber ¢ that is independent of . This holds for any t
outside Ui, hence for any diviscr :l-b...d-z e for which v(zld-...ﬂs)g Hls. but
the constant e of course depends on the divisor so should be vieved ac a
e function c(zl.....zg) of the points 2t fIE., The identity (1) really defines
¢ as a meromorphic function of (z.zl....,zg)es!'lg with at most simple
poles at the subvarieties z = T2 q for TeT, 1<i<g; but since ¢ is
independent of = on a dense open subset of E‘?l it must be altogether
independent of T by the {dentity theorem for merocmorphic functions, and
45 therefore necessarily a holomorphic function of (zl.....zg)eﬁg.
Frem the known transformation properties of the functions |
e(-r-*w(:f...-tzg-:)) - OIDIr-(k-v{zzh-wzg-z))](V(zl)) and gz,,2) it

follows readily that replacing z, by 7z; in (1) yields the identity
e(ﬁ;,:zgooo.’s’ = pk_'(zz‘_."‘_")(!') :(T.ll)'-l etzlgtz.ooo .l‘,

= -1000 -1 (X Y] .
r(T.zl) :‘2('1‘.:1) ‘z‘( '.'n'.zl) t:(:1 S PTTTR ‘}



Yherefore a5 & funetion of :.J_ alone
5(21,22‘000.38) © nifz Q(!lgzi) € r (‘).

and this function vanishes at the divis& 220...'&:&. Whenever
v[ze-h..d-zs) f ‘i—l there i up to & constant fector & unique section of
${«) that vanishes st this divisor; if moreover the points ...,  &re
distinct then in terns of the canonical basis ¥ 4(z) for r(«) one such -

gection is clearly the determinent

-  => -
W(z.za....,zg) = det {v'(2) .v'(zz),..., v'(zg)}

-y ) .
where w'(2) demotes the column vector of length g baving entries w' 1(:z).

In this case, after introducing the additionsl nonzero factor

L, (ycxcg WEyody)s 1t follovs that
= =

c(zl.za,....z )olgjfksg q(zJ.zk) = cl(sz....,zs)- w{zl.za....,zs).

where ':1(:2'""23’ is independent of z4. Hov this holds in a dense open
gubset of f£. The function c(xl.i.z ...e,zs) i ¢learly mymnetric in the
wariables zi, since 4t only depends on the divisor 21+...¢zs. 8o the left-
hand side of this fdentity is skev gymmetric in the variables g% the
function ‘H(zl,za,...zs) iz slso skev ymmetric, ®o cltza’""!g’ Bust be &

symzetric function of 21l the variables 21.22,.”.28. hence must be



dndependent of all these variables. This yields the desired formula except
for the undetermined constant factor c. Hovever the prime function can be
miltiplied by an ;.rbitru'y constant g this changes the canonical
ePordmu Yty the same factor ¢ bence changes the derivatives wi(zé) Yy
(&)

the factor c'l. 80 altogether changes the factor Y into c, ¢ 2 e« It &5 4n

{3
particular possible to choose ¢ so that ¢, ¢ 2 . 1, leaving ¢ deternmined

up to & root of unity as asserted, to conclude the proof.

Benceforth it will be assumed, generally without any further explicit
potice, that the prime function has been normalized as in the preceding
theorexm; that still leaves open the possibility of a further normalization
ty an appropriate root of unity. The formula of the preceding theorem can
be revritten as follows.

Corcllery. Whenever & point tef® 4s wvritten as the image

t= w{:l-&...us) for some points zieﬁ then

1£,(z) = ol0]r-t](w(z)) = Q(’:L"z""”g) ﬁl qlz.2,),

vhere

: -1 ) .
Q(zl,:a....z‘) - [1,<,.1’<lk.<.¢ q(:a.:k) } det{wa(zk) BEN RT3

4s a bolomorphic function on the cormplex mnifcld ¥ and is symzetric in
the wvariables zJ 80 can be viewed alternatively as a holomorphic function

on the corplex manifold ﬁ(‘) .



b=

Proof. The only point not evident from the p?eceding theorem is that
Q(zl.zz.....zg) %g & holomorphic function. It is:learl§ & meromerphic
function, with at nbst simple pole;-nlong the subvarieties :J-Tzk for T e T;
but the determinant vanishes along these same subvarieties, to cancel the
poles fiom the factors q(zj;zk) in the dénpminator, go the function is

actually holomorphic as asserted.

It is an iumediate cﬁﬁsequence of the corollaries to Theorems 1 and 3
that

(2) Q(zl!....zg) = 0 precisely when w(z1+...+zs) £ W; .

hence slternatively that Q(zl,...,zs) = 0 precisely when the divisor
z1+-...+zg lies_in th; subvariety G; c H(g) . ;t may be worth noting here
thai the formula for the function Q(zl.zz,....zg) in the preceding corollary
really defines that function outside the subvarieties zj-i'zk for T ¢ T, and
the values at points of these Subvafieties‘are then determined by continuity.
The 1imiting values can of course be obtained explicitly quite easlly. For
example when g = 2

v (2) vilz,) )

-1
Q(z,,z.) = q(z,,z,) = det » '
1°72 % 2 (wz(zl) wz(zz)

so in the limit as z, appraoches z,

vilzy) wylzy)
() Q(zl'zl)mdEt (w;(zl) "’5(:1) -

Yhere are of course similar results in general, but_they will be treated later
as the need arises. Tbe preceding theorem and its corellary can also-be used
g0 obtain similsr expressions for the partisl derivatives of the :hefa function

function, as follows.
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Theorem k. For any points Z,Tyseceefg qt ¥,

8
1 ( . ’ « I3 .( '( see ) ' ( )
l:saagm alzgory)] A S Zyteeetrg vy (e

. et §(s), "("1,'"'" (z‘ 1)]
where &' (z) denotes the eolumn vector of length § Wvith entries v (2).
Proo?. Differentiate the formula of the preceding theoren with
respect to the varisble & and then set z‘- z. The left-hand side clearly

becones

q(za,lk)] [ ;l(s 1q(za.r.)] [ aia[r-w(z toeutzg 1}}: {z).

On the right-hand side the factor q(z.zs) vanishes to first order wvhen

[1: J<kgg-1

T =2 e’ so the only pontrivial terzs that can arise vhen z = 2 & come from

dirferentiating this factor; the right-band side thus becones

llglllgs-‘.l qlz,2,)] © det (), F(z))seeead 2 ,) F(2)}
and the desired result follovs immediately.

1
Corollary 1. Consider a divisor ,.}-- :.l-t...-t- "g-l t Gg-l ~ G;-l‘ 8o

that t = r-v(,;)c 6~ 9_1 . There is up to a constant factor a unique

pontrivial Abelian differential that vanishes at &. and it is given Yy

-

g-1 N
vi(z) = I ), &t) vils)

= [1 < 3 <'k < &- -1 Q( o'-k, 1} det {w'{l) (31) ooy I (l.' 1)]
g-1
- {:-ll ‘(:'t )} L] Q ('.’1..... "-1,.

Proof. That there is up to a constant factor a unigque such
dirrerent.hl 43 just the sssertion that g 1) = ), and since

¥ =z ;) = (¢ ,ﬂ) ty the Riemann-Roch theorexm, thil condition $s precisely
”~



= 36 =
equivalent to the hypothesis that -t = W§) € ¥y =¥ Lo Ifxjeeee,
T2 represent distinct points on K this unigueness clearly means that
¢here is up to & constant factor & unique vector & ¢ 88 such that
C o 3'(3) ® 0 for J=l,ees, §-1, Bince any Abellsn differential ean be

written & « ¥ (3) for some wvector & & £E; thus the vectors
- (zl) evses 3'(:‘.3_1 are linearly independent, and det [ (s) .3(:.1).....
3‘{:‘_1)] gives the desired differentiel form. The equality of the first
tvo lines of the formula of the corollary is Just Theorem k, and that formula
thus bhas f.he desired property vhenever :1.....2‘_1 represent distinct
points of M; but the ﬁrst 1ine 45 & noptrivisl form even if there are
coincidences amohg the points zl"""'g-l' 80 long as t ¢ _;_l_l, and the
second line venishes Sdenticelly et ® = By for all parameter values
B seees B g0 80 v‘t(:) 4p the desired form even if there are
eoipcidences. The equality of the 1zt twvo lines ©f the formuls of the
corcllary follovs irmedintely from the definition ©f the function
Qlzyeees g Yo

9he partinl derivatives of the thetn functions appearing in the
preceding eorollary can also be expressed explicitly as follovs.

Corollary 2 Whenever & point ¢t & 8 4is written as -

¢tEre v{zf...d- Teo3) for scme points 2, ¢ M then

319{1'.) & Q&(!l' 82,.--.! 1)

where
Qi(gl' ‘32"""3-1, = .
11 | <2 vilz;) wilz,) eeo wilzgy)
i ("1} {l ( 3 <k ( s 1§(3493 ) ] et (omit FOW 1)

"1 v‘(l.2) - v' 2g-1)



4s a bolomorphic function on §E-1 ana is symmetric in the variables = 5
80 can be vieved alternatively as & holomorphic function on n(s-l)_

Proof, That 9,6t} bas the explicit form given follows immediately
f£roc the equality of the first two Yines ip the formula of the preceding
corollary, upon expanding the determinant in the second line by minors of
the first cclumn and noting that the functions vj(2) are linearly
dndependent so that their coefficients mst be equal in the resulting
4dentity. Again the functicos Qi(".l’""'g-‘.\.) are formally mercmorphic
functions with at most simple poles along the subvarieties '3 = 'I'zk for
T ¢ T, but the determinant vanishes along these gubvarieties to cancel the
singularity of the other factor.

As with the function Q(zl.....z ), the values of the function
Qi("l""’ ) are formally given by the defining formula only vhen all
the points zJ
easily determined limiting values. For instance vhen g = 3

' '
Ql(:l.zz) - q(:l.:z)'l det (:2::1’) :i:::))

so in the limit as I, approaches z,
wit(z,) wilz,)
Q(z,,2,) = get | 2,2 ?1)
3 8108 € ('2 (z,) vs(:l) ’

and similarly in general. It 4s clear from the statement of the corollary

are distinct, and are othervise obtained by contimuity with

that Qihl"'z"""g-l’ only depends on the image t-r-\r{zl-b...ﬂ.‘_l) e .
The function ©o(t) s the defining equation for the theta locus §, 80 the
partial derivatives 2,8(t) define the singular locus €' co; ty Riemann's



theorem . G_; = ﬁwi—l' bhence
(3) li:_l = {v(r.l-l»...u‘_l) 3 Q.t(’l'xz""";.]., =0fr 1<i<gl
Finally note thet the gefirition of the function Q(:l.:z....,zs) can be

rewritten &s
&-1

Q(zl.zz,.u .l‘) .131 q(:a .:‘)

0 ﬁ -1 .
[1 <J<kged alzy.n) ] det fv'y(z) 1<k <g}.
Upon expanding the determinant by minors of the last column and recalling

the definition of the functions Qi(zl.za....'.z s_'l) 4t follovs resdily that
_ g1

I
(x) Q[zl.za,...,zs) . 4=1 'q(zs.za)
= 121 Qi(zlr,zz.... 'zg-l) ' 1(:.8);
the reverssl of the order of the factors q( za .zs)' cancels the sign

(-1)5"1uiling from tbe expansicn of the determinent by minors of its g-th

eoluzmne Similerly upon expending the determinent by minors of rov 1 1t

follove that

Q(’l"a'"'"g) 1ckerzss q(zk.zz) = det {v'k(z'_) :1 <k, £5g]

S ™ v ) s ) gkt R 3}

=1
= - 3“1 % .
321 ( 1) w 1(33’ 1< kng 2 <& q(:k,z l., Qi(zl.oao,lJ_l‘SJ"_l.eoc.!s)

k&)

B . 3 ) ‘
'[I;kq_gg q(zk'zl) j=1 lgi-:;gq(zé’zk) Qi(zl.uu,zj_l,:aﬂ,.",zs)u'1(53).

R
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On the other hand 4f the matrix (' (z,) 222X, 22 g} is changed by
replacing rov 1 by rov £ for sope 2 #31 the resulting determinant 1s
gero, and the same calculation shovs that the 1ast line above wanishes if
v' 1(2.1) 4s replaced by V' l.(’.j) for a1l J. Altogetber therefore

(5) ‘i Q(:lglzgooo .I“

*“slix xce U3 ) QulEyaeeeityytgarenesatyd ¥ aley)e
) 34
The relations between the auxiliary functions Ql zl"?"""s, and
Qi(zl,:a....,zs_l) expressed by (k) and (5) will be used at various

subsequent points.
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§3. Yhe Csuss mapping.
Frop the functional equation for the theta function in the form

o(t+1) = E(2,t) 6{t) 4t follovs immedistely that the partiel derivatives
Diﬁt) - 3e(t)/ 3, smatisfy the glightly more eomplicated functional
eguations

(1) et + 2= & a,t) 3 6(t) + 2, £(2,7) o(t)

for all lsttice vectors i ¢ !.; ¥or points t ¢ g& representing points
in the thets locus 8cJ the last ternm 1n"(1) vanishes, 80 thxt the
functions) eguation reduces to the same form s that for the theta
function; the functions 3,8]8 can thus be vieved gs sections of the
restriction E|@ of the line bundle defined by the thets factor of muto-
zorphye It $s sometimes more convenient to introduce the vector

(2) 3sit) = {5, 81) s 224 g 6l

with these partiel derivatives as components; this vector then satisfies
Folt+d) = E(Nt) o $6(t) whenever t & 8c 8. Outside the singular
locus g," £ © the vecter %¥8{t) 45 nonzero so represents a well defined
potnt [$8(t)] e 25} | end the functionsl equation implies that
[$e(t+2) ] = [$e(t)]. There is thus @ well defined mapping

(3) []:e~¢ + 252

¢rom the (g-l)-dimensionsl complex mapifold @ ~ g_l £J to the {g-1)-4i-

wenstonsl complex manifold RSl which s called the Cmuss mapping

defined bty the theta function. To describe this mapping in more detail, it
@may be recalled that a holomorphing mapping betveen two complex mmnifolds
§s said to be finite if ¢he imverse image of esch point 4n the range is a
fipnite set of points in the domain. '
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Theorem 5. The Gauss mapping [$e] = e~g #®-1 45 o finite
bolomorphic mapping.

Proof. 7o any poinst tel-~ 31 there corresponds the Abelian
dirferentinl v'(:) - Ii 3, &z) v"(z) of Corollary 2 of the preceding
theorem, & well defined point in the g-dimensional vector space Mx) of
Abelian &differentials; in these terms the Gauss mapping can be described as
associating to t thbe set of all constant mitiples of wil g), vieved as o
point 4n the associated projective space Pr{od. By Corollary 2 this set
of Abelian differentials is characterized as those vanishing at the divisor
2, *ene 4»:8__1, where =t € V ~'H1 4s written as T-t =
vz, 4eeot 2 _1). The divisor of this diﬂ'erentm v (z) 4s
,} (V) = 2y #eeet Bgy ¢ Zg beest T2 for some further g-1 points
z‘..... "25 2 of M. Hov if t' ¢ 9 ~ 91 bas the same image as t under
the Gauss mepping then 4¢ will determine the same Abelian differentisl, up
to a nonzero constant factor; thus 17 ret' = w( :.1 dauet "5-1) then

zi....,z's_l must be some set of g-1 points from among the 2g-2 polnis

Zyeeees Tpp0 describing the divisor of \r'(:). It iz evident from these

cbservations that there are at most ( 3-1) distinct points of e 91
¢that have the same image under the Gauss papping. -
It 4s a genersl result in compléx analysis that & finite bolomorphic
zapping is an open mapping; this 18 the patural generalization of the
fariliar theoren that any pontrivial bolomorphic function of one complex
variable s an oped mapping, since guch a function is alvays at least
locally a finite sapping. A consequence of this is that the fmage Of the

Gauss mapping is an cpen sudst of 13'1. 8o in particular is nmot
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eontained within eny proper holomorphic subvariety of !3"1; this
gbeervation will be used later.

A more detsiled anelysis of the Gauss mapping is guite revarding. 4n
obvious first question is what happens ¢to this mapping mear points of the
subrariety € €@ ant there fs & standard approsch that nicely bandles
¢his guestion. Consider the holoeorphie subvariety Y € 6 x B&” -1
defined by
() Y= {{t,lv]) 58 «98-2 ; § o{t) &nd v are linearly dependentl},
where [v] ¢ !g"1 45 the equivalence class npresenﬁd Yty the poniero
wector ¥ t C5. The restriction of this subvariety ¥ ¢to the open
subset (2.. - g_l ) = 23"1 € 8x 2571 45 just the graph of the Gauss
mapping. Bince this pestriction can be vieved as the cooplexent in Y of
the subvariety ¥ n (g"l x P5°2) ¢ ¥, §t follovs resdily that its point
set closure is & bolomorphie subvariety !o € Y, indeed a union of
grreducible components of Y. Thus at least the graph of the Gauss mapping
peturelly extends to & bolemorphic subvariety !o € _g_ X !S'l; but this
gubvariety may bave the property that over & point of é there lie wpany
points of Yo' 4ndeed a whole subvariety of positive dimeﬁiioiﬁ in !o' 80
4hat the subvariety fauile there to be the graph of a well defined mapping
from 6 to #-1, Tnis 4s & guite faxmiliar situation in elgebraic er
anslytie seometry in several dimensions.

The Gauss mapping ean of ecourse be aeﬂned for the theta function
gesocinted to an erbitrary period matrix 8 ch, pot mecessarily the
perfod matriz of the Jacobi varfety of a Riemamn surface, and its graph
extends ¢o all eof 9;- u-above. ¥or & general period matriz 8 s&s it
wss noted earlier that g_‘; 4o empty, 20 the Oauss mapping is defined in

alief @ Bnd T = !o 45 precisely 4ts graph. On the other band for

=
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Jacobi varieties tbe situation 1s someviat @ifferent. The subvariety &
4s Srreducidle, so that ; ~ o; 4s a connected and bence {rreducidble
caxplex manifold of &imension g-1, and since the graph of the Gauss
mapping is s one-sheeted cover of g‘ - i 4t too is an irreducidle
subvariety of éimension g-1; 4ts closure !o 43 consequently an
drredusible subvariety of dimension g-1 as well. It & 3_1 then $ 8{t) = 0
oo that t x P51 £ ¥; thus € xPEREY. It Su Imown that ais € -l
o 17 g > b then ain (& x¥E1)e in gramrslrgineiny,
and it follovs that Y is pecessarily reducidle, with !o as one coEponent
but with at least another ecoxponent having dimension greater than that of
'Ioo

For Jacob! varieties this analysis can be carried furtber. 1t is
convenient to identify 251 with the projective space PX )
associsted to the space (k) of Abelian aifferentials on ¥, and hence as
4n the proof of Theorem S to viev the Gauss mpping as associating to any
point t =« ;0_ ~ i‘ the point [w;'(z)] ¢ PN &) represented bty the function
"'t.(") ¢ I (). Introduce then the bholomorphbic subvariety

;g M("n x PN x) defined by

{s) ;- {(z, ¢eeet 2 50 [v(2)]) & w1, px x):g(v') 23, tenst z‘_l].

The modified Abel-Jacodi mapping

(s-1)
2 deeet 2y EM o rovlzy 4oest 2 ) € 2V

1= 29

s.z:t.'m::uj a proper bolomorphic mapping
w 66D x2nO c0x 2,

and by Rexzert's proper mapping theorem the image of X wunder tkis mapping
w11l be & wvell defined bolomorphic subvariety Xc o =), This
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subvariety esn then be descrived alternatively as

(6) x= {(t,[v'(z)])e & x P ) : there g8 & Givigor By deect T 4 € sule-1)
guch that r-tew(z, ¢eect ;‘_1) and E‘(v‘) 2 Ey beoot :‘_1].

It 4s perbaps mot quite 20 obrious from this eharacterization that X dsa

bolozorphic subvariety ef ;: ex{x); but it §s elear that X € Y and

ehat the restriction of X to the open mbset (g~ g) = 25l 18 agutn

¢he Gauss mapping, 8o tbe elosure of the Gsuss mapping i 2lso an

grreducible subvariety X =¥, X |
¥he patural projection mapping %, t X < P «) 4s elesrly

surjective, since any montrivial function v'(z) ¢ I{x) bhas & well defined

- (2g-2)

divisor ,;(v'(z)_) By deeet 25 0 € M and (r-v(:il P :1‘-1) .

[v'{2)]) e X for axy ehoice of g-1 points :11...-. 5, of the divisor
&-1

| 2[7‘(:)). Indeed the inverse image t;l ([v*(2)]) 4s not only monempty but

2g-2
finite, consisting of &t nost( g-1/ pointse corresponding to the possible

eholces of g-1 points from the diviser E{v'(z) } It 48 kvovn that for
-any nonhyperelliptic Riemann surface of genus g >0 there exists an Abelian
differential v'(z) € I‘&) _ with a divisor consisting of 2g-2 distinct points
guch that no two different subsets of g-1 of th?se points represent
linearly equivalent divisers; for such a differential the inverse image

1',",1 ([+'(2) ]} conatsts of the maximm possidle mmber (2::1 of points,
and the same is clearly tﬁe ease for all points of BN «) 4n en open
peighborhood of [v'(z)}e It follovs from general results in eomplex
soalysis ¢hat the restriction of u, to amwy {rreducidie component of X is
what 48 known as & finite branched bolomorpblc eovering of its fmage. IP

an ppen peighborhoof o©f any point covered Yy tbe meximm mumber of points



¢he covering is a sizple unbranchbed covering, so each component of X
locally covers an open subset of RI«). Therefore sach 4rreducible
component of X 45 of éimension g-1 and is exhidited by =u, @58 finite
Branched holomorphic covering over all of PRI{x); that is iz particular
true of the component X, the closure of the graph of the Gauss mapping.
3¢t should be poted that 4f X 3$s reducidle then each irrefucidle component
arises from a particular subcollection of the (g-1)-tuples of points from
the divisor of amy Abelian differential, s subcollecton that must be
defined intrinsically and consistently over all the Abelian differentials;
there must then be at least two distinct vays of choosing (g-1)-tuples of
points from the the &iviscr of the Abelian Aifferentials for all such

differentials, & rather peculiar possidility that does actually occur.
for hyperelliptic surfaces.

The patursl projection mapping L X » g 4s also clearly
surjective, since any peint ¢ ¢ g = :\-V‘_l can be vritten
t = reviz, ¢ouet t, _y) for some divisor E; ¢ecct B, ¢ H(‘ 1) gnd there
will alvays be at leut one Abelian éifferential that n.nhhes st this
divisor. If t v é_‘l =7 -\f:_l this divisor 4s unigue, and v;(z) iz the
unique Adelfan &ifferential that vanishes at 4t; that is Just the
observation that over g__- 2—1 the Gauss mapping assigns to any ¢ -c_g_- 9_1
the point -2(:;1&)) e 2r(x)e If X d4s reducidle, one irreducidle T
gozponent !o 43 the closure of the graph of the Gauss mapping; any other
{rreducidle component !1 sust then have the property that '1(11) € i.
Recall from the preceding paragraph that both !e and 11 are pecessarily
(g-1)-2imensiona) ho‘.lmrphie subvarietfes. Using scme general properties
of t§e subvarieties ‘ - leads ratber easily to the result that there can

only be an 1rreduc_1b1e cozponest ©f X other than X, when the Riemand
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gurface ™ 43 hyperelliptic. The basic property meeded is & special case
of Martens's extension of Clifford's theorem, the result that

v
dim V‘ 3 &
hyperelliptic. In gddition there ig the cbpervation that over the subset

< g-l- 2v with equality only vhen the Riemann surfece M ds

v w1l vl vl
H‘_l -V the Abel-a‘ucobi smpping G‘ 1 -vl‘-‘ 1 H" 1 V‘ 1 is & bholo-

sorphic fibre bundle vith fibre gV, so that &im 8 ' n‘*l) ¢ g-1-v

ﬁth equality only when M s hyperelliptic. 8till further there is the

v wl
observation thet over G‘ 3 Bg—l
=l S
x(v) = U w:l'(tt zi.. 5)1
:.l L A zg-l £ Gs 1 Gg«-l

4s slso & bolomorphic fibre tundle with fibre !”, o that dim x( v) < el
with eguality only when M 1is hyperelliptic. How x( V. ‘.1 (a -~ a 1)

(I)U 1‘2) wse CAD ﬂnly be of

oo it is evident from this thet % (€)= X
dimension g-1 when ¥ 1is hyperelliptic. What has thus been demonstrated

43 that 4f M is not hyperelliptic the subvariety X ce xRN« defined

Yy {6) &s irreducidle, and is the closure of the graph of the Gauss mapping.

In the hyperelliptic case on the other band the subvarieties I( v)

are all
of dimension g-1 vhen nonexply, 80° do represent other irreducidble
coxponents of the subveriety X; 4in this case therefore it must be possible
¢0 choose (g-1) - tuples of points from the divisors of Abelian differ-
sentials in several essentially distinct ways. It fs worth moting
explicitl: ¢hat ¢he graph of the Ga.uss mapping distinguiahe-s betveen

ponhyperelliptic and Wyperelliptic surfaces M since for the former the

2g-2
£inite branched bolomorpbic mapping %, ¢ X, 2N «) 48 of order g-l)

while for ¢he latter the order iz strictiy less.



For the remainder of this section only nonhyperelliptic Riemann
surfaces M will be considered. It &s perbaps worth repeating for
exphasis that then the frrefucible submariety X € 8 x PN ) 4s the
elosure of the graph of the Gauss mapping, s° 4s descrided completely by
the thets function alone without any reference to the m;derl;'rins Riezann

surface N; but of course X on the other hand dnvolves the Riemann
surface M quite explicitly in its description. There are three auxiliary
subvarieties of Pr(x) that arise quite paturally and zerit some further
attention. Tbe first is the subvariety

(1 A= (NN,

tbe image under x, of the cozplement of the graph of the Gauss mapping in
4ts closure X. Egquivalently A ean be descrided as the holomorphic sub-
wariety of EI{«) coosisting of the equivalence classes of those
dirferential forms that vanish oo diviscrs lying in Gi-l' It follovs as
4n the argument in the preceding paragraph that dim A = g-2. Indeed

-\F _y is Xnown to be of &imension g-U, the Abel-Jacodi mapping

gl

1
6, ~ % +¥l ) =¥, 45 s bolosorphic fidre bundle vith fibre r

1 2
s0 that dim G‘-l G‘-l = g-3, and

;‘1’..,:1‘."”‘1‘0:_1 3 tr[:gl...q yea -

4s also a bomoporphic fibre bundle with fidre !1 80 that

iz A2 8in Au) = g-2; on the otber hand since A 43 a proper bolomorphic
subvariety of RI K = l"" pecessarily fim A < g-1. Rach

grresucible couponent of € ~ € =~ ) ~W ) Fields an grrefucitle

cozponent of dimension g-2 ©f A, and sinilarly each irreducidble coxponent
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of 0; -~ 8:’1 = rn(\l:_l -H:i) of dimension g-2-2v yields anotber
4rreducidble component of dimension g-2 o©f A. For v> 1 there are only
quite special Riemamn surfaces for wbich dim (¢ ~ ,e:*l) sttains this
mpaxizmal value; otbervise there result pubvarieties of A of @imension less
than g-2, either geparate eomponents OF serely gubverieties of other
eozponents.

gext 4t has been observed thst the mapping % © X «2N) is e

2g-2
finite branched bholomorphic eovering of ordex-( g-1) , and ginilarly the

gapping L= % 0 % ! X + 2N} 4s also & finite branched holomorphic

2g-2
eovering of erder g-1) « Any such mapping i3 & locelly bibolomorphic

mapping over &ll points cutside & holomorphic subvariety of pure dimension
g-2 4n Bri«); this gubvariety, called the branch locus, consiste

precisely of those points of PN &) over vhich there are fewer than

2g~
(g—l aistict points under the btranched bolomorphic covering BATPIng.

Thus there maturally srise the branch Joci B € BI{x) of the mapping

w,and 2 c P{g) o©f the mapping % = %, 0 %, » and 4t $s clear that

; € B. The subvariety ; € 2N can be characterized slternatively as
econsisting of the gquivalence classes of those differential forms -;"(!)
such that mot all divisors of order g-1 contained in the divisor of v'(z)
are distinct, or what is obviously the same thing, such that ¢the diviser of
+v'(z) does pot consist of distinet points; the subvariety B ¢ 2K )

gan be cheracterized correspondingly es consisting of the eguivalence

elssses of those differentisl forms v (2} such that mot all divisors of

order g~1 contained in the divisor of vi(z) are linearly inequivalent.



wo descride these branch loci in moTe detal), consider the subvariety

zc H("l) econsisting of &ivisors of the foros 2:1 +s, L I :._2-.

since 2 4s the image Of the obvious bolomorphic mapping

w830 L (8-2) 44 gq evigent that 2 gs an frrefucible bolosorphic

subvariety of w1 of aimension g-2. SBince aiz c: . " g3 the

1 1
4ntersection I N G‘ % 2-1
‘43 an irreducible variety s well, & dense open subset of Z. Nov to every

4s s proper mudvariety of g, hence 2 ~2 406G

point .9': 2 there corresponds s @ifferential form v'(2) ¢ N ), unique
up to & constast factor, such that e_ (v') 2 p ; that evidently yields a

holomorphic mapping © @ Z~2n G: 1 * X by delfining

s(9) = (3. lv‘(z)]) ex e W& =pr0,

and the copposite Io c0= 0:2~2n G: 1 + X 48 the holomorphic
mapping given Yy .

og) = (vl 3D, [r(2)]) B X eV, x 2ra.
Again although these sappings do not pecessarily extend to holeporphic

mappings at points of Zn G:_l their graphs extend to bhelomorpbic sub-

warieties of 2 x ; and 2 xX; in each case the closure of the graph is a
well defined Srreducible bolemorpbic subvariety of dimension g-2, %y an
argument so much like that used earlier that further details ean be onitted
here. The images of the closures of these graphs are clearly the une
polomorphic subvariety B, € BRI g), an Srrefucible bolomorphie sub-
wvariety of dimension g-2 ebntuued dn PN o). It is also clear from

tbe construction that

(8) P~BoaA=B~BaA=3 ~3nA

therefore ’o 4y an $rreducidle component of B and of B, and any other
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{rreducible emnents of B oref B are necesserily dyreducible

eomponents of 4.

¥or & general Riemann surfasce ¢be gubvarieties B a&nd ; are
drreducible and consequentl'y eoincide with ‘o' Phe determination of
those sp'ecm fiemann surfaces for which at least B has other irreducidle
compopents lying in A 4g an interesting problem, but jeads too far afield
¢o be pursued furtber here. Bovever it might be worthvhile Spcluding en
exazple of & Riemann gurface for which the locus B is geducible. There
gre Riemann surfaces M of genous 4 for which H; consists of a single
point e; these surfaces are three-gheeted branched coverings of the
Riemann sphere !1. and the divisors in G; are precisely the inverse
dmages of points of !1 wnder this branched covering. For axy divisor
x, + %, < x4 [ Gg there 38 & tvo-dimensional space of Abelian
difrerentﬁls vanishing at thet divisor, and the eguivalence classes of
these differentizls in BXY ¢ comprise the subvariety A; thus A 4s an
4rreducible twvo-dimensionsl subvariety of BN, & 2® bundle over
given by this constructiocn. Bov if ,3 (v') =z, Xt Xy E t.'% then
é"(v') s x, ¢ xzd-xs-o;ld-yz#ys vhere ¥, ¢ ¥p ¢ ¥3 ;k-t%-sl,
and wiz, ¢ X, ¢ x,) = wly, ¢ y¢ Ty)=e= v; That means that
[r'(2)] £ B, and thus shows that A ©B. On the other hand the covering
M o2 has three distinet points lying over & genersl yoint of 2, ao
4hat & gereral poinmt of A does pot lie in the mbﬁrlety By Thus for
guch & Riemann gurface # the subvarieties A and 39 are distinct
grrefucible subvarieties of B« and B= A v B. The pubvariety ; is

drreducible though, 80 that 2= Eoe
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The most interesting sssocisted subvarieties of 2r{ ) are thus
reslly A and ’e' and these are fully determined by the theta functioen
4¢self without mmy reference to the underlying Riemann surface. The most
convenient explicit descriptions do {nvolve the Riemann surface though; it
would be Merntlng to bave & EOTe cxplieit description in terms of the
theta ﬁmctionl- It may be recalled that A consists of those equivalence
classes of Abelian differentials that wanish on divisors
2, +z, *oeet :‘_1 [ ] G:-l‘ while !o 43 the closure of the set consisting
©f those Abelian differentials that vanish on divisors

2
eguivalently 4in terms of tangent dyperplanes to the canonical curve; this

p |
2:1 + g, 4oret ';.2 ¢ G'_lo It sbould be noted that Bo can be described

descripticn will mot be pursued further here though.
Some cbaervations in a slightly @ifferent direction arise as
consequences ©f the occasiopally useful result that i¢ w'(z) ¢ ¥ () is
*
an abelfan 8ifferential with divisor é{v (2)) = 2y ¢ 2; ¢oest 25, 5

consisting of distinet points on M then pot a1l (g-1)-tuples of points
from this divisor can represent & divisor in G:_lo To demonstrate this

puxilfary result, suppose to the contrary that v'(z) ¢ ) bas a divisor
3 w(z))=2, ¢ ;2 4oert 2, o OF distinct points z, on M and thlt
L YT s ’1

i
l“lil. ¢-1

¢
‘_1 for all indices 1 ( ’.1 € o0e € ‘. 1 £ ( 2‘-2. Thus
for ary such éivisor }- :‘1 tooet 5y 1 4t follovs from the Riezann~Roch

theoren that 1(:; ) - 1(;&) » 1; since t(ct,:'] can as usual be
, -
4deptified with the space of Kbelian uttcrentlm that wvanish nt.". there

are conseguently at least two linearly dndependent Abelian differentisls

>
that vanish at e Bov if w'(1) demctes the vector with entries V' 1(:.‘).
-



@ @
s geperal Abelisn differential ean be written 2 . w'(z) for & vector ¢ g IE.

The ecndition that this differentiel vanishes at ; is just that

<% <& L4 L

% - w'(zi } = aeu® t - t‘(:1 } = 0, o there mst be at least two

1 8-1

L4 & ¢ <
liresrly independent vectors € wsuch that t {w'(zsl)..u,\r'(zi 1” = 0;
‘-

<& <
¢hst means that the g = g1 matrix {v'(z’l)...-.v'(:i }} bas rank at
g-1
moft g-2, and since that is the case for all such indices 11..-..18_1 it

L L &
fcllovs that the g = 2g-2 matrix {v‘(:l). v‘(zz). anegy "'('25-2” must
"
bave rank at most g2 as well. The 2g-2 points v'(z,) e 5 thus e

47 a common linear subspace L € £2 of dipension at most g-2, &nd

upon passing to the associated projective space it follovs that the 2g-2
<
polots [v'(z ] e B2l 3ie 4n @ common linesr subspsce [L] € pt-?

&

with dim [L] ¢ 8-3. The 2g-2 points [\r'(: ] then lfe on the inter-
section of the linesr subspace [L] with the canonical eurve [w'(M)] pe!
associated to the Riemann surface M. It follows readily from this that

¢he canonical curve must actually be contained entirely within L; fer if

-

[v'(;o)] is any point in the canonical curve nmot in [L] then that

point and [L] spen & linesr kyperplave [2] < c ¥-1, this hyperplane
mecessarily meets the canonical curve in precisely 2z-2 points since the

@egree of the canonical curve s 2g-2, and that is impossible since {E]

L .
peets the canonical curve 4o the point [v'(z )] togetber with the 2g-2
gther poln‘ts [I..] n [ (M)] On the other hand the canonical curve cannot

lie 1n any proper linear subspace of P& -1 since the canonicel Abelian



differentials are linearly dndependent, and this contradiction demcnstrates
¢he truth of the original ebservation. This argument of course only works
when g3 3, but when g <3 the set °’.’1 15 expty apd there is Feally
pothing o prove. It sbould be cbserved that the argument £a11s when mot
all of the points &, &re distinet on N; what bappens 4n suzh & case is
perhaps varth furtber exazination.

3t follovs froz this suxiliary result that the dmage of the Gauss

= pping [t 00~ 91 25"} cortains the eozplement of the branch
locus B € 253, Indeed if [\t‘(:)] crr{) = B8 48 mot

econtasped 4n the branch locus B then the divisor 3 (v'(2)) comsists of

distinct points, so for some g-1 ©f thex the divisor 814...0: -1 ¢ G;—l'

the image r-t«-v(zfu.&z‘_l) € Vo, -V:_l and then [v'(2)]= [! o (t)]

as Sesired.



gL. Benicsﬁonienl functions,

%y turo next to the prodlem of expressing the eanonical funttions and
ﬂit;rerentm forms on the Riemann surfece H in terms of the Riemannien
4beta functions, the eonverse of what ws done in section 2, coﬁsider the
function | _

oftev{z-a)) = £, utpy(e) & T (pr-tw{n)e] «rlp, &g o
bhere G= sron,l:"1 4g the pemicanonical factor of autonorphy associated to
the Riemann point r, B0 that e pktzs"z = ¢ 48 tbe eanonical factor of

putomorphys It follovs from Theorem 2 that o{tev(z-a)) = 0 for all

points %, 8 €N precisely vhen t ¢ 9}; 80 to avoid triviality it will

generslly be supposed benceforth that t ¢ 51. It may still be the case

though that f, o, (p) () O n @ for some fixed point & ¢ M; bty the
Corollary to Theorem 1 that happens precisely wben w-téw(a) € k- g2

hence vhen t eV¥ 5 ¢ via)er EW y-r = & Therefore

(1) < ¢ g = frteula) §0 for arditrary & ¢ N.

On tbe other hand 4f ¢ € @ ~ & then ret eV -t
= 7 &l -1

T = w{:l doast '5-1’ for a unique divisor 8, 4ecet 8, ©O M,

go that

therefore ¢ cﬂ‘_z ¢ wia)-r precisely vi:en a repregents one of the
points By 20
(2) ¢ted-~ 21 ay pit = '{".1 Foo0ut a‘-_l) for & unique divisor
By $oeot &1 en M, and 'rr_mm £0 precisely when a
represents one of the points of this divisor.



These twc cases are rather different 4n may ways, and the pecond is the
sore useful for the purposes &t bhand.

Whenever f ~t+u(a) Z 0 then as observed earlier this function is a
basis for the wvector space r(ptt‘e). so tat Yo t‘l” = 1 and hence
o0 1); moreover '3(’:-1.“(;)) .z 4eet z, Lo the unique positive
divisor of degree g ©on N such that retev{a) = w(z; 4eeet :‘)- b €4
1(9_‘0) = 1 then multiplying any montrivial functicn in r(p_tu) by
g{z,a) yields an element of o p_tt.u). hence & multiple of T . e 4o

and since this function vanishes at & pecessarily O = ¢ = o{t)

r-t-w(u)h)
30 that t © § Conversely if t ¢ § then O = o{t) = r-tw(n)(‘)' 8o
¢hst & xpust be ope of the points of the divisor z, doeaet '8 1 and hence

(z.u) le )(z) e Mp u). Thus for ¢t ce-a‘ and a any point

r-t+v(a
pot in the divisor (2) the function gq(z,a)” E AP C LN CYON o(teviz-a))
43 & basis for the one-dimensional vector space ba p_te). and as & varies

¢his function can only change by a constant multiple; vhen a belongs to

¢he divisor (2) this multiple is zero. The functions in N p tu). wvhich

wil]l be called the semicanonical functions, are thus enenthm descridbed

Yy the Rimnnnn theta functions, and in a rather interesting way. Indeed

{3} t¢=¢ 6~ 21 - -Kp_tu) =1 and qlz.,n)" -1 8(t + viz-s)) ¢ l'(p_‘te)

as & function of = for all points & ¢ M.
These runct.ioni then bave a variety of applications, such as the folloving.
Theorez 6. Yor any fixed point t & 2 ~ _g:' the cross-ratio function

oz M can be vritten.
o(t+v{z,~a,) ) ofteviz-a,))
plzy.r 00 08,) = vz, ,)) (el -4,))




Proof Whenever @&y .8, 8o ot represent points of the divisor (2}
associnted to ¢ then the functions q(:.ai)'lﬂ[tw(s-ai)) er{p o) are
aot identicelly gero, eo each 1s & basis for r(p_tu) and their guotient
4{p tberefore indepenfent of &; thus _

=1 S wd
qlz, .8y ) G(t-'-\r(zl-a )) CEAN Y ) e[t.w(ze-cl))

alzy )" D[tﬂr(:l-o. ) L1 )" to(teviz-e,))
or equivalently

(4)  oftevlz,-a,)) 8(tevl -a)) o aly e,) alz;.8))

O[t-ﬂr(zl-aa)) o{tev{z-a.)) alz, 85) alz,.e,)
The ruht-ma side of this lest eguation is egusl to the eross-ratio
function p{:l.l.z,l.l.az) ty formulas B(6.2) and that establishes the
desired result for all points &, 8, outzide the divisor (2); that result
¢hen bolds by the identity theorem for meroporphic functions.

Corollary 1. ¥For any fixed point t ¢ =B__ o gl the cancnicel mero-

morphic differentials of the second and third kinds caﬁ be written

wvi(z) = i.f'h log 6(tew({z-a)) ,
’ o(tev(z-2,) )
.1.‘ (2} e = dogg Terlea,))

Proof. Formula (k) 4n the proof of the preceding theoren can-be used

to write q(sl,nl) 4n terms of the other expressions appearing there; that
jeads f£irst to ¢the result that

2
&.1"1 log alz, .a) = --~;— log '(“"(’1"‘1))'

gince these are the only terms that involve both g, 608 a,, and by



by ]

Theoren B10 that yields the first assertion. Then from the theoren itself
=", log plzy ey 8p) = &, 108 “§gTrewlz,s,))

and in viev of B(3.L) that yields the second assertion.

It should be poted that the formulas of this corollary must be
dnterpreted ss identities betveen meroporphic functions of the variables
24848857 for some fixed values of & the function ¢ (t+v{2-2) ) vacishes
qdeptically dn z and the logaritimic terms are really wmaefined, but the
forzula rezains true by anslytic continuation. It 4s interesting to note
¢hat the formulas of this corollary can be revritten eguivalently 4o the
forn
(5) O(ﬁ-ﬂ z-2) )2 v (2)
= J[ Je(t.ﬂr( z-2) )akﬂ[t-l-v(z-s) )~ 8ftev{z-a) SJkO(tﬂ'( z-2) )] ¥ J(z) v, (2)

J.x

(6) () = I [o(tevlz-s,) 7! 2, o(tevis-a,))

"
et
:
- oftev{z-a ) T 3Jl[t+v(z-a2) )] v‘ah) .
Furtherpore from the first formula of the corollary it is clear that the

Aifference

v (2} - % log 8{t+v{z-a)) = ¢ (a)

4s independent of the varisdle s; thus -

1 105 oftev(s-a)) = v (2) - e, (a)
43 really just another pormalizstion of the canonical mercmorphic Abelian
Sntegral of the second kind. This observatico ecan be revritten YW

explicitly evalusting the expression ct(l) as follovs.
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Corcllary 2. ¥or any fized point t € §~ 9} the eanonical mero~
morphic integral of the pecond kind ean be written

w,(s) -%m o(tev{z-a) )

...1 L x (t)w {a) ¥ (n)-- E ) D(t)w" ()
IJ ? Olt) v (a)

Proof. Using the explicit expresaion B(6.9) for the cancnicel

4dptegral of tbe second kind shovs that

) & s ity
- 5 tlgim:h . G(td-w(z-a)]-gq(z.d ; qlz,n) IJ 3, e{t+v(z-n) "'3(‘) ]
qlz,8)
9pie expressien is independent of X, and can be evalusted explicitly Yy

taking the lizit as ® tends to a. The functions q{z,a) and 8(tev(z-a))
both have simple zeros &t z=s, and the first factor gbove clearly tends to
[Ii 6(t) v (l) ]'1 = v' (a)"l the second factor is possidbly most easily
enlunted by celculating the Teylor expansions of the separate terme in
povers of the canonical coordinate z-a, and since

g(tsvlz-a) ) = v (a) (z-8) + 2/2 [jIk A (n)v‘k(n) 4-2 2, oe)w"’ (a)1(z-a)°

+ 0(z-a)*
and -
" qlzy) = (5-s) ¢ O(s-a)>
¢he assertel pesult follows from & straightforvard ealenlation.

Hov dn & slightly different direction, for any points ¢t & @ and ‘a.b e M
/

¢he product ef the semicanosical functions q(s.n)'le(tw(m)) e Ke ta)
aod q(z,b)"lﬂ[-téw{z-ﬂ} g I{ ptﬂ) will be 2 holomorphie funetion belonging
to the wpace I‘(p_tc . 9,‘83 e Hoo) = K ), bence will be an ordisary

Abeldan differentisl. Just what this Avelian 4ifferential ig ean guite
eagily be determined a® follove.
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Sheoren 7, Yor wy poimts t e BSTS and e ¥,
alzaT etz ) oftev(s-a)) sfseats-d)) = qlad)™ of-tevla-d) ) ' ()

whers as defore

v () = T8 2,88) w la)e

Proof Comsider w fizef gotmt t s 8.~ € ©XF, aud recall that the
divisors of tbe sexictanonical functions qlza) 2 oftewl{s-2) ) ana
q(:.b)"lo[-tw{z-b)] are independent of & and b; the profuct of these
functions vill then be & differentis) form with & fivisor that is
dvdependent of & and b. Choose & Aifferential form IJI: ™ .1(’) with this
divisor, and note that
(M wlz,al gzt alteis-a)) sfteela-b)) = 2la®) Le v ,(2)

for a well defiped holmz;phic function £{a,b) on ;- It 48 clear that
£{e,b) ¢ N g ) as a function of &, wviile £(a,b) ¢ Np,c) as a function
of b; since q(a.b)"1 8(-t+v{e~d) ) has the same properties and ﬂptu) =1
4t pust be the case that

2{a,b) = ¢ gla,B)F aftev(sa-b))
where ¢ 33 independent of & and b. After replazding theléoe!"ricients 1::l
of the 4iffersntin) forn by ec,, the ldemtity {7) £an de revritten

q(s.&)'lq(:.b)-10(t4vf t-2) Jof-tev{s-2) ) = q(a.b)"ll [~tev(a-d) ) Ije;v' J(z).

Tetting d approach a bere and observing that

o qlad) ef-teven)) e =], g 00t) ¥ le)
yields the result that

alzaY Wtev{s-a)) ofseals-a))

- uf; th)) [}, 3, %2) v, (a))
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Bince the left~-hand side is clearly symmetric in z end & the sawe must ﬁe
¢rue for the right-band side, so that |
I TNOETIS AX OR P

for some constant LA and econseguently

q(z_,a)"z o{tev{z-a) ) 8(-tev{z-a))

= e [IJ 3 ®(t) w‘J(z)) (I, 3 &t} v'yla) )

Letting = approach & bere gnd observing that

1= alz.a)") 8ftev{z-a)) . alz,0)" o(-tev{z-a))

= - (I;3,0(t) "'.1(‘)) (L 3 8(t) v'y(a))

shovs that €, = 1 and thereby concludes the proof of the theorem.

-~

Corollery 13}“ For any points ¢ € g,c g€ and a €M,
q(z,a}"‘x B(tev(z-a) ) 8(-tew(z-a)) = «v' (z) v (o).
Proof This follove immediately from the preceding theorem upon
4eXing the limit as b approaches a, with the calculation as in the proof
©of that theorem.
This result 1s particularly symmetrical when ¢ is an odd balf
period, that is, when 2t=per e 'Lf vhere ltﬁ_.p ig an o0dd integer. By
Theorex Ak the function OJ0|t){w) 4 then an odd function of the variable WV,
so that O = 8[0jt] (0) = &(0) and necessarily t ¢ & -
Corollery 2. If t € 2 45 en odd balf-period then ¢ g __.; and
q(z.a)2 v (2) v't(") = eﬁtq'w(HD [B(tﬂr{:-a) ) 2]
where 2t = p4+ I & 3’.’.



Proof If 2t =p+ 0t l./ then from the functional eguation of
Thecren Al 4t follows that
o(-tov{z-2) ) = o(tsv{z-a) = 2t)
= o(t+v{s-s)) exp 2u¥ o (tev{z-a) - ] 24q)
« o(teviz-a)) exp 2xi¥q o (W{z-a) ¢ § P)s
and Af tq.p 4s odd ;then exp ﬁt'q.p = =]1. Bubstituting this into tbe
preceding corollary yields the desired result.
Jt t 4s an 0dd half period and t ¢ g then W' t( g) 4s a nDontrivial
gunction in I{«), and the preceding corollary shovs that all of its zercs

are of even order; it is therefore possidle to choose a single-valued
branch of Jv‘ t(lz) over M, yielding & well defined holomorphic function

oo M with a [I-invariant divisor. Actually if L is a point of M at
wbich ' t(lo) # 0 then for any choice of w't(un) 4t follovs from

Corollary 2 that it 4s possidble to take
1 t -
(B) {"'t(" -m e wi’q tV(l-l-o) Q(l.lo) 1 0[1.4\:(:.-30) ];

the tvo choices of ‘fv‘t(uo) _detemine the twvo possible ehgieeg o!‘/v‘t(z).
The function ¢£{z) = exp ntq.v(z) satisfies

>
2az) = e Vel )

dfztd-pa)

<
r(nJ:) = _e'i 5.189!(:.) -e 2(s),

Bence with the motation as 4o A(3.3) can be vieved as & function

te N % ’t-iph
consequently '

\,"t(" cT (uiq o3 e)s

(]
where o ¢ Eom (r,f ) must be distinguished from the sexicanonical




w&?»'

fuctor of automorply €= 8, t,g"lo Thus w‘t(z) ¢rensforns by & factor of
gutomorphy of the form 2{T,2) for e suitsble choice of sign. Wote that

Corollsery 2 readily yields the formula

q(z_.t),,;'t(z) ﬁ'a(s) = 2 ed?q-w(m) otev{z-2) )
for some choice of sign, & choice that is uniquely determined whenever
F‘:iz_) and J;:(:i are the same sgquare oot gunction evaluated &t the
points £ and &, end that can be vieved as yielding an explicit expression
for the prime function. whe cholce of aign is readily determined, as
follove.

Corollery 3. If ¢ ¢GF s sn odd half-period and % § g then

for exy choice of & branch of the function ‘/ w't(z)

t
e = ¢ TEHED) ontan)) [ T S

where 2t = p <+ ﬂqt;_.r

Proof. It follows from {8) that

t
Jv' (2 Jv' (e) = \r't(no)'l q(z.ao)"l q(s.ao)'l e q'v,(”“"z“o)
o{tev(z-a_)) o{tevia-s ).
Using the argusent &% in the proof of Corollary 2 and then the result of
Theoren T shovs that

sfeovizay)) Slwlaa)) e of-tevlagn)) o(-tewlage))

« 8(-tev{s-2)) o(tevln -e)) e wbq [v{2z-20) ¢ p)

€
e ala 0] alagas) ale,e)™ ofrevie-n)) ¥ eg) o u[v(2a20) ¢ B)
gubpiituting this inte the preceding for=mula then yields the desired presult

@inte exp ﬁtq.p @ =1 for the odd helf-period €.
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¢ 4t s desonstrated that there alvays exist nonsingular odd half
periods then the formula of the preceding corollary can be used as an
explicit expression for the prime function. It should de noted though that
the prime function &» implicitly 4dovoked 4n that formuls to the extent that
the derivatives v't(r.) are taken with respect to the canonical
eocrdinates. The result 1s that this does nmot really determine the

pormelization of the prime function, which is still only settled up to a

. ;i
factor of a (2)- th root of unity. On the other band Klein's prime forz
ean be written correspondingly 4n the form
t
ra) = e Tavlz=) e to o)) / Jom) oo

where JI‘(:) -Jw' t(l) \,Tz- 43 at least to some extent an intrimsically

defined quantity, a half-order differential.

The preceding results arose from a consideration of the product
p(t+w(z-a))é(t-w(z-a)) , and something can also be said about the quotient

f(z,8) = 8(t-w(z-2))/68(t+w(2~2}) . 1If te é;-'gg then

1

for some uniquely determined divisors xl+...+12_1 and y1+...+*yg_1 on M.
1t 1s clear from the discussion in the first part of this section that for a
general value of a the function ‘£(z,a2) is a well defined meromorphic
relatively automorphic function for the factor of the factor of automorphy
Pae with divisor yf'"”s—l-xl-"'-xg-l , and since clearly

£(z,a) = 1/f(a,z) this function has the corresponding properties as a

function of & for a general fixed value of z . To be more precise note

from the Corollary to Theorem 3 and Corollary 1 to Theorem 4 that



bl

A
. ’ g-1
(9 o(the(z-a)) = Qa,x)s-c00x y)a(z,8) TT alz,x;)
' _ {=1
@atna) G Sty
= v (a)g(z,a -
:;n; q(a.xi)

Beplacing &t by =t has the effect of interchanging the divisors

x1+...+xg_1 and vy ...+ys_1 s B0 since u_'_t(a) = —w;(a) it follows that
8‘1 q(z,y,)
ao) B(-t+w(z-a)) = —w a)q(z,a) TT

=1 q(a.yi) )

From these two formulas it follows immedistely that

g-1 q(z,y,) qa,x ) g-1
(11) B(tru(z-2)) _ _ z i) = i ~ T plzia,y4e%) o
8(t+w(z-a)) =1 912e%g0 4 3'31 1=1

since the cross-ratio function satisfies B(6.2). On the other hand inter-

changing z and a din the first formula yields

g-1 q(a,x,)
(12) o(t-w (z-a)) = w' (z)q(a.z) J‘E z.x ) .

80 that alternatively

-

' 2
(13) 8 (ew(zma)y . _ ¥e(® B 8lax)
& (etw{z-a}) wl‘:(a) & qlzx )2 .
. + 4

In both cases the quotient is written as the quotient-of a f:;.nct:lon of =z

by the sawe function of a , aside from the sign,



§5. Prime function expansion for theta derivatives.

There are various possible extensions of the prime function expansion
discussed in section 2, one of which is an analogue of the formula of
Theorem 3 and its corollary but for the first partial derivatives of the
thets function rather then for the theta function itself. While this expan-
sion is just a simple conseguence of that of Theorem 3, the explicit formulas
are necessarily slightly more complicated; so it may be clearer first to
discuss the general form of such an expansion, and then to deduce the expan-
gion quite independently.

For this purpose consider again the functional equation (3.1) setisfied

by the first partial derivatives of the theta function, and note that after

mltiplying by 8(t+N)~L = g(a,t)"1 e(t)™! that equation can be written

(1) e(e+n? 3, 8+ )

e(t)'laje(t) + &3- log E(A,t).
3

For a lattice vector A= ptR g € L it is clear from A(3.6) that

L7

) N
(2) 3, log g(a,t) = 'L{}qj -2nd BJ(A).

where B¢ Hon (L,%) is neturally induced from the homomorphism By e Hom (1,2

of B(T.L) when Lis viewed as the sbelianizstion of T, and in these terms (1)
cen be rewritten

(3)  o(tsN ™13, 0(t+2) = o(t) o, olt) - 218, (N).

The meromorphic differential form o(t)"t 3 8(t) on €€ thus trensforms as

an Abelian integral on J = E’:"‘/ i.: under the action of é s its rrest.riction to
any translate of the Riemann surface M imbedded in J 1if well defined must
therefore be & meromorphic Abelian integral om M. As before the most

natural restriction to consider is as in 8(r-t + w(z)). The Corollary to
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Theorem 1 shows that 8(r-t + w(z)) 20 in ¢ precisely when t ¢ Wé; 80 vhen-
ever t g’W the expression o(r-t + v(z)) A (r-t + w(z)) is & well defined
meromorphic Abelisn integral on M. Horeover whenever t ¢ Wl then
t o= wlz, +eeat zg) for a unique divisor z; +...+ z on M, and this is pre-
cisely the divisor of the function e[r-t + wiz) ]; if the points 2:1‘.....,2g on
M are distinct the meromorphic Abelian integrel of interest must have as
singulerities at most simple poles at these g points on M. There must thus
be an expansion of the general form

(4  e(r+wlzez) —eue- 2 )Tl 3 plr+wlz-z) =eoe- 2 ))

kil f (zl,...,z ) wzk(z) + % gjk(zl,...,z Y w (z) +4 cj(zl,...,zg)

where IK° 4 1K c 3 are well defined meromorphic functions on M€ with singu-

larities at most at those points (zl,...,zs) e M® for vhich either

w(zl et zg) [ WJS“ or zl = sz for eome T £ T and ¢t # m. There are various

ways of evaluating these coefficients, leading to the following result.

Theorem 8. For any points Z,ZysveesZy € M

- .-zg) T2 2, 8(r+wlz-z,=20 .-zg) )

8(r+w(z-z,

Q (Z gsoa g +Z '--o,z ) g
_% v (z) -2 1 k-1°*"k+1 I oz ’z y1
k=1 zk Q(zl,--u ,ZB) i=] k

ik

5 Llmeemepteentg) R g
k=1 Q(zl'ooo‘zs)z azk 4= k*

i#

vhere Q(zl,...,zg) and Q‘J(zl’""zg-—l) are the holomorphic functions on M(g)

and m81) described in the Corollary to Theorems 3 and k.
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Proof. The Corollary to Theorem 3 asserts that
E
n glz,z,),
i=l

and upon taking the logarithmic derivative of this forwuls with respect to

B(rﬂr(z-zl —.ee— zg)) = Q(zl,..-,zs)

the variable 2y and recalling Theorem Ell it follows readily that

- 0(r+w(z-2y —ouem zg)]‘l ] 8, 0(r+v(z-2z; ~cco- zg)] v (z,)
L

d
= vzk (Z) + '5-2—]‘103 Q(Zl,--.,zs}.

g -1
Multiply this by QJ(zl,-n.,zk-l’ zk+1,|oo,zs) 1111 q(zk,zi) and
i¥x

gun the resulting formula over all values 1 < k < g; it then follows readily
from (2.5) that

—Q(zl,f..,zg) 8(r+wl(z=zy =eue- zg))'laja(ﬂv(z-z1 ——eem zg))

-1

k=1 [wzk

-1
i q( zk!zi) ;]
i=1
i#k

(2) + a%k log Q(Zl,'o-gzg)] Qj(zl’..‘ 'zk-l'zk-i-l""zg)

from which the desired result is an immediate conseguence.

The formules as given in the preceding theorem exhibit guite
explicitly the extent to which the coefficients become singular either when
w(zl +o0at zg) E ng, in which case Q(zl,...,zs) = 0, or vhen z , = Tz , in
which cese q(zl,zm) = 0, It is interesting to note that the coefficients
Eyx in {4) must all vanish jdentically, since no ordinary Abelian integrals
actually eppear in the expansion formula of the theorem. That can also be
seen quite directly, by examining the periods of all the Abelian integrals
appearing in the expansion (k) under the transformations Al,...,Ag; for the
left-hand side of (i) has mll these periods zero by (3), the canonical

Abelian integrals w, (z) bave all these periods zero from the normelization
k .
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chosen, but no nontrivisl linear combination of ordinary Abelisn integrals
vk(z) can have all these periods zero. After this observation has been
made, & similer argument can be used to determine the coefficients fﬂk
directly. The period of the left-hand side of (%) under the transformastion
B, 15 give in (3), while the periods of the cmnonical Abelian integrals

v, (z) were determined in Theorem Bll, and it follows readily that
k

(5) —5'j }:f (zl,...,z)v L2y )

This system of linear equation; in the unknown functions ka(zl...-,zg) can
be solved explicitly by using {2.4), to yield the same expressions for
these coefficients as can be read from the formila of the theorem. Alter-
patively these coefficients can be determed directly merely by gxamining
the residues of the meromorphic functions appearing in (4) at tﬁe various
poles z,; for upon mltiplying (L) by q(z,zk) and taking the limit as z

tends to z, it follows easily that
(6) BJ B(r—w(zl +oast zk_l 4+ zk“"l +oeot zg))

(zl. .o g).

That this is the same-expression for these coefficients as given in the
formula of the theorem is evident from the Corollsries to Theorem L, A1l
the terms in the expansion (4) except for the constant term cj(;l,...,zg)
have thus been calculated directly in ancther way; but for the constant
term‘tﬁe essiest approach seems to be through the expansion formula of
Theorem 3 as in the preceding proof.

For some purposes it is convenient to eliminate the Bingularities

appearing in the formula of the preceding theorem end to rewrite that



- LB -

formula as follows.

Corollary, For any points 2,2y,eses2; € M

GJ G(rﬂf(l&-zl -oyum Zs)) = i Qd(zl,-.- ’?k‘-l’ zk+1.-..,zg)

k=1
€ qlz,z) 2
I q ' i Q(Z.Z ) w (Z) + 108 Q(z prve 4 ) .
i=1 (li zk’zi') k zk mk 1 €
i#k

Proof. This follows immediately from the formula of the preceding

theorem upon multiplying throughout by

-4
8(r+w(z=zy =oeo- zg)) = Q(zl,...,zs) iI[l alz,z,)

end regrouping the terms.

The preceding theorem and its corollary provide a prime function
expansionrror the first partial derivatives of the theta function analogous
in some ways to the expansion of the thets function itself given in Theoren 3
and its corollary, although somewhat more complicated. From this result it
is possible to obtain some useful information about the second partial

derivatives, in much the same wey that Theorem 4 and its corollaries were

derived from Thecrem 3.

Theorem 9. For any polints z.zl,...,zg_1 e M,

3 3y, 8(r-vlz; +oeet zg—-l)) wolz) =

k=1
et & alz,z,)
= z Q (z geen,yL +Z gree T ,Z) b4 1 z'zl
Wb Ut Kk-1'Zkel g-1

=1 qtz »Z 5
gk £ 2

. [wzk (z) + 55; log Q(zl""'zg-l)]

+ Qi(zl""’zg-l) )) vz(zl) - 55 log Q(zl,...,zs_l.z)

where Q(zl....,zs) and Qi(zl""'zg-l) are the auxiliary functions elready

considered.



Proof. Differentiate the formula of the preceding corollary with
respect to z and set zs = z. The left-hend side clearly becomes the left-
hand side of the desired formula. On the right-hand side for 1 & k < g-1
the corfesponding term is the product of g(z,zg) and a function that is
holomorphic in £ and zs; the only contribution to the final result arises
from differentiating the factor q(z,zg), gince q{z,z) = 0 while alq(z,z) =1,
and that readily yields the first terms on the right-hand side of the
desired formula. On the other hand for k = g the term has the form

) gil alz,z )

]
Q. {z, 4eresz £ qlz,z ) w_ (z) + glz,z Y= log Qlz,,eee52z ).
PATTEY ey g % glimg T T e
Here

3 2
q(z,zg) wzg(z) q(z’zg)'EE; log q(z,zg) = 3;; Q(Z,Zg)

= "l -3 (Z—zg)z Q3(zlzg) + (z-zg)3 32q3(z’zg)'

in view of the expansion B(6.9) of the prime function in terms of canonical

coordinates on M; thus the zero of the factor q(z,zg} is cancelled by the

simple pole of the function w, (z) at z = Zgs and the product takes the
&

velue -] at z = zg, but the derivative with respect to z vanishes at z = zg.
Therefore for. the first part of this term the contribution to the final

result ariges from differentiating the remaining factors, and

g-1 g-1 g-1
3 By alzz) %y alz,z ) | _2 log alz,z )

ez E;l"ar;;:zl) g=] qzzg,zs) 2 =1 qlzé.zl)

=Y :
%1 =) | ) v
#=1 qlzg,zz) =1 *

by Theorem Bll. For the second part of this term the contribution to the



final result erises from differentieting the factor ql{z,z E)' and with that

the desired formle arises as stated.

Corollary 1. For any points Z,2),eeesZs q € Mlet t = r-v(zl+...+zg) ¢ 6

% aJke(t) w'J(z) v, (z) =

J. k=1

B 2| 3 g1 -1

= 1 alz,2,)0 = |Qz,2{,000,2 Yy 1 qflz,z,)
=1 £ az A e R - o AP L
e-1 A g-1 -2

= n qfz,z,)|=— |v.,.(2) @ alz,z,)
g=1 I I e )

, g-1
= —vy' (z) + 2 '-r,‘b(z) !21 wz(zl .

vhere Wi (2) is the differential form of Corcllary 1 to Theorem L.
Proof. To obtain the first of these equalities, multiply the formula
of the theorm by W' i(z) and sum the result over the range 1 ¢ 1 £ & Note

from {2.4) that for 1 < k € g-1

iil Qi(zl,.-- ,zk_l,zk_'_l,.-.,zg_l,z) w' 1(2)

g-1
= Q(zls' .e |zk_1lzk+ll"' .zs_l.z,z) !:1 Q(zgz l) Q( Z,Z)
L2k

=0

since q{z,z) = 0, vwhile

g-
121 Qi(zls"' '28‘1) v 1(7-) = Q(zli""zg_liz) t]=11 Q(z'z l);
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therefore

14
) aika(t) W' i(z) W' k(z)

i,k=1 B
g-1 - {1 &3 y =2 ( .
= Q(zl‘ocn’zg-l‘Z) Fnl q(z,zl le ‘wz(z!‘ - "a; 108 Q Zlg-..,zgnl,z)
. g-1
= Q(2zy,00052,_452) | T alz,z N -
1® el =1 £

-

=1
which evidently yields the first equality. It follows from Corellery 1 to

? g-1 |
* -5‘; log 1 Q(Z,ZL) - log Q(zls"'lzg_lsz) *

Theorem 4 that
g-1 g1

-1 -2
Qlz,2, yeeesz ) o T glz,z )" =w' {2} X qalz,z )" ",
" g-1 =1 £ 1 =1 £
which immediately yields the second equality, and
g-1
Ea v (z) . I q(z,zl) 2
=1
g-1 i - g-1 _
=| I q(z,zl) 2 -a—:- v{_’(z) + v;;(z) Ea log I q(z,zl) 2
-1 =1

then clearly yields the third equality and concludes the proof.

Corollery 2. For any points z,zl,...,zg_l eMlet t =r -\r(zl+---+zg_1)-
Then for 1 £ 1 < g-1

J,E"—l 28(t) ¥y(zy) ¥y (2)
3 &
5 &z aeessz, q08) T oalzz)h o
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Proof. In this case, multiply the formula of the theorem by v:'l.(zm)
and sum the result over the range 1 < 1 £ E. Note from (2.4) again that

for 1 ¢k g gl

% Qi(zl,...,zk_l,zk+1,....zs_1,z) W' 1( zm)

i=1
g-1
= Q(zl,..-,zk_l,zk+1,...,zg_l,z,!m) rEl q(Zm,zz) q(zm,Z)
ik
g~1
= w8 Qlz.,00e,2 2) qfz,z,.) | 1 alz,,z,)
5?; 1l *Cg-l? k =1 k'
L#k
while
g ]
izl Qi(zl,..- ,zg_l) w i{ zm)
g~1
= Q(Zl,oc-,zg_lg%) 'Fnl Q( Zm,z!) = 0;
therefore
2. olt) v, (z) =
1,k=1 ik i“'m
g-1 i R
E - se 11 Zz ) w z + —_— "e e .
Q(zl, ,zs__l,z) Ry qf 'Z, Lzm( ) B, log Q(zl, 21 z)

-

& 2
= Qlz.,eeesz 402)| 1 qlz,2,)| o= 1og |alz,z ) Qlz, 400052 ,2)
1 g-1 =1 L azm 'm 1 g~1

from which the desired result follows 1med1£tely.

It should be noted here that by using the formula of Corcllary 1 to

Theorem L4 the preceding result can be rewritten

(-4
(1) J,l}::sl aake(t) “"J("i) w'k(z)
)
=== v _(2);
ni"tz
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gctuelly since by that seme gorollary

w' t(Z) zkil Bks(r-v(zl dooet zg—l)) w' k(z)

the preceding result in the form (7) can be derived slternatively merely by
differentieting this expression for the function v't(z) with respect to the

variable z i°

Corollary 3. For any points ZyseeesZg y € M let t=r ~ w(z, +oo.t ?g—l)'

Then for 1 £ 11,12 < g-l

g
):1 ajke(t)_ v (zil) v‘k(zia)

3=

i g-1
1

= 8,7 Qlz. 0005z sz, ) I aqlz, ,z,)

pef,

%! ( ) w (2, )

= § QlZ seve,2 w2
12 J=1 J 1 S"’l 3 il
g

= 6 1 V'; (Zi )-
i 1

. Proof. Taking the limit as 'z approaches z ' of the formule of the

preceding corollary shows that

BN CERARNCS

J.E=1
( ) alea) - 1 |
= "'11m 3 Q z ,-.-,Z - 'z « z.2 e n q(z A )
L 321 1 g-1 Tm =1 e
2%m -

g-1
"= 51 Q(z ;-.ﬂgz gz ) ﬂ q_(z ‘z ).
m 1 g-1"m o=1 m" £
£v¥m
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For the special cese that 41 = m this can also be derived by taking the
limit as z approaches 2z, of the formula of Corollary l. This is the first
desired equality, and the remaipder follovs by obtaining explicit

expansions for the function Q(zl,...,zg_l.zm). Note from {2.L) that
0= i QJ(zl""'zg—l) w'd(zm)
3=1
and hence

g~1
(8) Q(zl....,zg_l,zm) !:i q(zm,z!)

2¥m

1im  qlz_,z Y1 Q2. yeeeyz_ ) Wiz )
= g’ = 31 g1’ J 8

= i QJ(zl‘.O.'ZS-l) “'3 (zm)c
=1
The second‘desired equality follows immediately from the first upon using (8),
and the third follows in turn upon using the results given in the Corollaries

to Theorem L.

€6. The second-order Gauss mepping

The cbservations made in the preceding section can be combined to

yield some interesting properties of the second derivatives of the theta

functions. The first of these properties can be described-gquite
conveniently by introducing ih apalogy with the differential form

w' (z) = g 3.08{t) ' (z) the double differential form
t 3=1 J J

(1) w't(zl.zz) = 3,§=1-33k9(t) w'J(zl) w'k(za) ]

for any fixed point t ¢ t® this is & well defined holomorphic function of
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the wvariables Z) .2, € ﬁ, is symmetric in these wvariebles, &nd is & holo-
‘morphic differentinl form on M in each variable 2z 5 separately for a fixed
value of the other varisble. Although both w' t(z} end v' ‘b( zl,za) are well
defined for en arbitrary point t ¢ U5, they are perticularly simple and
interesting for special values of t; for instance w;;(z) WBE characteriied
alternatively for pointe t € B ¢ % in Corollery 1 to Theorem L, end an
analogue for the double differential w't(zl »25) is as follows.

Theorem 10. For & point t & 8 c €% the double differential v',(z,,z,)
has the following properties:

(1) ' _(z,z) = 0 for all z € M precisely when t ¢ e c e;
t = =

L] "~

(11) if t ¢ _63' c © then w' (z,8) = 0 for a1l 2 ¢ M and some fixed & e M
precisely when r-w(a) € (wlg_2 +t)u (Wls_z—t).

(441) if t ¢ 9} cgenda e M is & point for which r-w(a) ¢ (W;__2 +t)u
(Wz_a -t) then r-t-w(e) = w(e.1+...+ag_2) for & unique divisor sy+...ta .
moreover there is up to a constant factor & unique nontriviel Abelian
differential vanishing at the divisor 2a + & +...%a, and it is just w{_‘(z,a).

Proof, (1) Ift ¢ 8= r-W _y then r-t=v{a, €...+ ag-l) for some points

e M, and by Corollary 1 to Theorem 9

'}
g-1 : -1
(2) - w't(z,z) = I g (z,al)z %z' v't(z) gII q(z,&!')_2

=1 =1 *

Ir v (z,z) = 0 identicslly in z then clearly
- t

5'1 ' 2
(3) w' (2)= I gfz,a,)
gr¥=c =1 £

for some constant e = c(al,...,ag_l):, not involving the varisble g. When 2
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is repleced by Tz for any T € T then the left-hand gide of (3) is multiplied
by the canonical factor of automorphy pk(T) t{T,2) 28-2 ynile the right-hand

side is multiplied by the factor of automorphy °2w(a1 Houot a's 1) c(T,z')2g-2 =

= pk-2t(T) C(T”)as—zi clearly then (3) can only hold vhen either c¢ = 0 or

Py (T} =1 for a1 T e T. In the first case, that in which ¢ = 0, it follows
from (3) that 0 = w't(z)-= IJBJB(t) v'J(z) = 0 identicelly in z; so since
the Abelian differentiels w' J("‘) are linearly independent necessarily

aJ 8(t) = for all J, and hence t ¢ ;_.} <8 In the second case in particular

exp 2m . 2t (BJ) =1, sc that 2t = n e 7%. Now from the functional

37 Pt
equation for the theta function it is evident that 33 ¢(5-n) = SJ 8{s) for

21l s ¢ 02, so in particular aJ ot) = aJ o(3n) = BJ o in-n) = QJ o{-3n) =

3,1 a(-t) = -aJ 8(t), the theta function itself being even; thus again BJB(t) =0
for all J eand hence t € 9__1 c _9__: This argument is really a reprise of one
used earlier, for the conclusion is & consequence of the fact that the
half-period t is an even half-period. Altogether these remarks show that
if t ¢ ©end W t(z,z) = 0 identically in z then actually % s“:ezl. On the
other hand if t € & then of course W' t(Z) = 0 identicelly in z and from

(2) it follows that w‘t(z,z) = 0 jdentically in z.

(41) Irt ¢ 9_1 = r-ﬂz ) then for eny specified point & € M there
A -
vill be some divisor &, +e.st 8,2 ©8 fl for vhich r-t = wia+a +...¢ a.s_z).

By Coroilary 2 to Theorem 9

. 2 | o
- W t(!ga) "g Q(&,Bl,---,ag_2.2) q(zsa) .:1 Q(zoaz)
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and by the Corollaries to Theorem b this can be rewritten
. 3 %:
4 — \ |
= t(z.a) = £ QJ(a’Ej.‘...‘agﬂ2) VJ(Z)e
J=1
Since the functions w' 3(2) are linearly independent, it is clear that

¥ =
w 1;(z,na.) is idgntically gero in = precisely when ”g("‘l““'“g—z”“ )
for £J £ 8-

To analyze this last condition, it may be clearest to congider first

the case in which 8,8 000,28 represent distinct points in M; the

g-2
definition in Corollary 2 to Theorem 4 then has the form

1 1 1
w l(a) W 1(51) ees W 1(5'3-2)

_ g-2
(4) Q.(a,a,,.c0,82_ )} =¢ 1 qgfa,a )"l det (omit row J3)
J 1 g-2 I | g2 £ w (&) % (a.) cco w' {a_ )
g g1 g g2

where cJ ¢ T iz = nonzero value depending on 8ysvves ag_z but not on &.
The condition that r-t = w{ata, +...+ & ) € W = k- W _ means that
- 1 g-2 &~2 g-1

T(Kf;l c—l vee ca._l } > 1, so there are at least two linearly independent

El1 g~

Abelian differentisls that vanish on the divisor & + &, +...% ag__a;
conseguently the vectors v (e), \?‘(al),..., ?r'(ag_z) mst be linearly
dependent. The determinants in (4) then &ll vanish, so the only nontrivial
terms that arise upon differentiating (k) ere those for which the deter-—

minant is differentiated; thus

. -2 ‘1 vit{a)  wy{e;) eeo wile,)
(5) - Qa8 ,000m ) =c, | I qla,n)"|det {omit row J)
B2 T g TS v (a) w‘z?:l) e W)

As a consequence of this, w' t(z,a) = ( identically in z precisely when the
determinants in (5) vanish for 1 £ § £ g, which is in turn equivalent to
the condition that the vectors ' '(a), 3‘(al),..., 3'(ag 1) are lipnearly

dependent. WRow there are two distinct subcases that must be coﬁsidered.
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+ +
The first is the case in which the vectors w'(a;),ece, w‘(as_2) are them-

selves linearly dependent, 80 2 < ¥ (:;'1...;'1 )= y(;al... L, )+ 1,
o't a5-2 -2
or equivalently r-t - w(a) = v(al +ooet as_e) £ “2-2‘ In this case the

> - »>
vectors w''(a), w' (a.l),..., v'(a 8-2) are of course linearly dependent, so

that w‘t(z,a) = 0 identically in z. The second is the case in which the

+ *
vectors v' (al) seney Wia 5_2) are linearly independent. There are then two

linearly independent Abelien differentials that venish at the divisor

>
8y oot as_z, end both vanish as well at the point & since w'(a) is

> > +
linearly dependent on the vectors w'(al),..., w' (as_z). The vector w''(ea)

- +
is also linearly dependent on the vectors v' (al),..., w'(ag_z) precisely

when these two differentials actually vanish to second order at the point a,

- =1 -2 =1 -1 = -2 -2
so vhen 2 = (GG e £ )= osta)rn ) V(o) & s
or equivalently when r+t-w(a) € W;_z. Thus "' t(z,a) = 0 identically in z
precisely when either r-t-w(a) ¢ WJS'_2 or r+t-w(a) ¢ 'H’;_E, corresponding to
the two possible subcases. '

In general write ata) +.c.t a8, o = (w1} + wb, +..e+ v, where b=a
and b, by,ess, b Tepresent distinct points of M. The value QJ(a.,al,..-,as_z)
4g then defined es the appropriate limit of the formal expression given in
Corollary 2 to Theorenm b, ﬁs discussed earlier. Since the derivatives with
respect tc a are also involved, though, it is better to view a iteelf
as varieble and to write & + &, +eoet ‘5-2 =a+ Vb <+ ‘fl.bl +oaot “rbr’

keeping in mind that what is of interest is the limit as & tends to b.
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Tn these terms then it is & straightforward matter to see thet

(v) (4.

) L]

r -\Jg“l Vi(a) Vl(b)-n‘fl (b) Vl(bl)--o
'Hg(&) Vg b vtbvg b wg(bl)lno

where 'boxb, Vo = Vs and c,j e & is & nonzerc velue that is independent of a.

In this formula it is possible to expand the Ffunctions w' 1(&) in power
geries in the canonical coordinates near b; the initiel terms in this
expansion will lead to nothing in the determinant, and the result is easily

gseen to be expressible in the form

e, T “Vi! (a-p) "V
I gqla,b ) —
< (,a’al""'ag-z) v L qla,b)”

,w§vﬂ)(b) + 0(a-d) w'y(b) ... "iv)('”’ "'1'(‘“1)-“‘

« det .
wé‘»l)(b) + 0{a-Db) Vlg(b) cee ;V)(b) w'g(bl)u..

The hypothesis that r-t = w(( wl) b+ vlbl +ooot vr'br) 3 wg—l means that

-+ +( \’"1) k4 Vr
the vectors w'(b),eee, W (p), w ('bl),..., w (br) are linearly

dependent, so that the preceding formula can actually be revritten as

. -
Q;] (a,al,... ’&3—2) = -(—\;%)-!

1].1 q(a.bz) v!J (&-b):

=1 a(a,b)

Vl(wezb)(a-b)+0(s-b)2 Vi(b) .es w:(L")(b) "'J'.(bl) cue

. det (omit row j)
wéwz)(b)(a-b)-to(a—‘b)a vé(b) eos Vév)(b) Vé(bl)"‘
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This is & well defined holomorphic function of the varieble & near the
point b, since the factor (a-b) Yq(a,b)”V is, and vanishes at & = b; the
derivative N (a,al,...,a }/ & in the limit as = 't.ends- to‘ b is

obviously obtained by replacing the fector (e-b)Vq(e,b)”Y by its limiting

( V"2)(b)

value 1 and replacing the first column of the matrix by w With

these observations having been made, the proof of the desired result

proceeds Just as in the preceding special case. The two subcases are those

> >
4n which the g-2 vectors w'(b),ese, w( ")(b) N (bl),..., (v )(b ) are or
are not linearly dependent, with the same arguments and results as in the

special case, 50 nothing further needs to be added.

L

1
(111) Suppose thet t € § = r-W;_l, end that & € M is a point for which

r-w{a) ¢ (WJS'_2 +t) v .(Wé_z ~t). Since r-t € Vé_l then r-t-w(a) € LAY

so it is possible to write r-t-w(a) = w(al +ooet 33’2) for some divisor

8y

determined. Now by the Riemann-Roch theorem ¥( -:; ; i... ;;1 ) =
5 - g-2
Yz L SPTEY - Y= ¥{p :5'1) > 1, so there ere &t least two linearly
a ag_z r-t
independent Abelian differentials that vanish at the divisor a+al+...+a.g_2;

+eaat as 9 and since r-t-wia) ¢ Wl this divisor is uniquely

some nontrivial linear combinetion of these two will vanish to the second
order at &, so there must exist at least one nontrivial Abelian differential

vanishing at the divisor 2a + &, +eest & Since r+t-wia) ¢ Hl

1 g-2°
necessarily y[nca'ac';i cos f;;a) = Y[prtag'a . ;;1 « Pyt sﬂ) =

-
= y(p Ht—v(a)‘g ) £ 1, so that this lest Abelian differentisl is uniquely

determined up to a constant factor. For this particular point =& e N
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the differential form U_E(z,a.) in the 'éariable‘ z is pontrivial by

part (ii) of the present theorem, as just _demcnstra‘ted. On the other

hand since t € _g_l then it follows from part (i) that

£

w%(z,z)‘ = j,zl ajka(t) vj(z) v&(z) = 0 for all z € M,

and'upon differenting this identity in 2 it further follows that

-

24
J,EFI 3Jk9(12) VB‘(Z) V'k(z) =0 forallz eM;

conseguently w{(z,a) vanishes to at least the second order at the point z=a_
It follows from Corollé.r;r 3 to Theorem 9 that w' t(a',j ;a) =0 for 1 <J < g2
as well, so if B,B,5y5005 ag_g represent distinct points of M  the desired
result has been demonstrated.

With the proof in this special case in mind, the extenslon to the
general case 1s reasonably clear and straightforward. Write a + 8y +eoot &, 2
{vwl) b+ vb, #ouet vr'br where b = & and b,bl,.-., br represent distinet

171
points of M. By Corollary 2 to Theorem 9

-

g-2 % o
1 alz,a)7H| v (z.0)
=1
6T q(z.a | =2 la ) alz.e) 5T alza)
- giz,a oy BB, geooy B 2} alz,e n qlz,a
#=1 t & "1 B-2 =1 ¢

[

= "ﬁj [Q(a,al,..., a.g_z,z) q(z,a) ] .
This is & holomorphic function of =z, since Q(a,al,..., ag_z,z) end qlz,.a)

are holomorphic in all their varisbles, so clearly the differentiel w]t(z,a)
+0°°+ 28 o L

in = wvanishes st the divisor &y B‘g-a = b + ulbl Foset vr’br To

examine ite further zeros, recall that the value of the function Q(a.,e.l,".,

a.gm2,z) when there are coincidences among the points of M represented by
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its arguments is determined by taking the appropriate limit of the
expression given in the Corcllary to Theorem 3. For the present suppose
that a and z are independent variables and that a, +...+ 8,2 =

Wb+ vlbl Fooot vr‘br as before; a straightforward calculation shows that

Q(a.el,..., 2,2) = ¢ g{z,a)" lq(z.b)' qla,b)”" lllq(z ,b,) Jq(a,'bd)-v‘j} .
Ja:

(6)
+ + + Q(v) + w{\}
. det {w'(z), w{e), v {b),eee, v (b), w'(bl),..., w (br)]

where ¢ ¢ € 15 independent of z and a but does of course depend on

By yeees B g0 The hypothesis that r-t=w({wl) brub, oot vb ) € Wl

(v)

F ), (o) ennsd T (1)

implies as usuzl that the vectors V(b)Y yese, W
are linearly dependent, while the hypothesis that r-t-w(e) = w{ vbtv b +...+

vrb.r) £ %—2 implies correspondingly that the vectors ¥ (b) ,...,w("+l)(b)

+ v
v' (b ),..., w T (b ) ere linearly independent; t.hus w 1)(‘::) must lie in

+ +
the {g-2)-dimensional epan of the g-2 vectors w'(b),..., w( v)(b), w'(bl),..

«{v)
w T (b )« FNow in the determinant appearing in (6) expand the functions

+ +
v'(z) and w'{a) in power series in the varisbles z-b and a-b respectively,

in terms of the cancnicel local coordinate near the peoint be In these

expansions the initial terms.- those for which the coefficients involve

-+ +
W (b) yeee, W ) (p), will contribute nothing to the determinant, since

these vectors lie in the span of the remaining columns; thus-(6) cen be

rewvritten
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o

e )“vj (z-b) V1 (a-p) V1

r -v
1 q(z,b'j) dlale,b

((w1))2 {322 J

Q(a,ﬂlgcou, 33_2,2) &=
5 alz,a) glz,b)Yq(a,n)"

. det J92) 4y 4 J3) (g -z;‘l;— + 0{z-b)2,

:( \N‘z)(b) % ;( V*’3)(-b) %;g + O(a-h)z,

* + +{ v )
;'('b),..., v(")(b), v‘(bl),..., v T (’br) .

Fext multiply this by g(z,a), apply the operator 3/3 to the result, and

) vflq(a )Y has

teke the limit mas- & tends to b; since the expression (a-b
a simple zero at a=b the only nontrivial result arises from the differenti-

ation of this term, and the result is that

8“2 )_1 .
- £]=11 q(z,al wt(z,a) =
c r -VJ —VJ“ (z_.b\ﬂ’l
£ e 1 glz,b,) “glb,b,) i
(w)tF a2 9 . alz,b)"

¥

S IME LTSN TR P TPRS LA SN

-+ o < =+{v.)
w' (b)) gene, \r(“)('b), v‘(bl),...,v ol (br) »

where the left-hand side is written out in terms of the original divisor

a + 2y *ouot 15_2 while the right-hand side is rewritten in terms of the
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distinct points b,‘bl..... br of thie divisor and their multiplicities. The
deterzinent clearly venishes at r=b, since its first two columns then
coincide, end the factor {z-db) ‘”Iq(z,'b)'” also vanishes st z=b; consequently
the entire expression has at lesst a double zero at the point z=b=a, sC
that trt"(z.a) vanishes at the divisor 2a ¢ &5 +oost 33_2 ac desired and the
proof is thereby concluded.

In general & double differentiai w'{z,a) iz a holomorphic function
on MxM thet is en Abelian differential on M in each varisble separately
end that is symmetric in the varisbles z mnd a, Any such double '
differentiel cen of clburse be written out quite explicitly in terms of the

cenonical Abelien differentisis in the form

1) Wz,e) = s .
WIAZ,R )J:k kaj(z)v (a) .

for some uniquely determined ccmplex constants, end the symmetry of the

double differential is equivalent to the symmetiry condition p 3k = Pk,j'

‘ The constants ;p:’:k cen: be viewed es describing a2 quadratic form

I Jkpjk jxk gessociated to the double differen‘t;a.l and conversely to

each guedratic form in g va.na‘bles there is associated a double differential
(7). It is evident that the double differential w'(z,a) has the edditionsl ..
property that ‘_};"(z,z) = 0 for all z ¢ M precisely vhen the associa.ted.
qudﬂr'atic form belong; to the Petri space .1:2 of quadratic forms venishing

on the canonital curve; such double differentiels will therefore be called

Petri double differentimls. To any basis pi(x) =Y 3k ,pjkx Jxk for the

Petri space P, there thus corresponds a basis wi(z,g) = Iak P v'(z)w (e)

L 3 d

for the Petri double differentials. ] . *
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Fow Theorem 10(3i) asserts that the particulsr double differentials

3

vi(z,8) for points % € & sre Petri double differentials, S0 can be
- .

written
® vi(z) = ] 4y (v)(a,0)

in terms of any choice of basis w;-(.z,a) for j.he.?space of Petri double
differentiels. The coefficients Qi(t) are uniquely determined so must
as usual be holomorph_ic functions of the wvarisble t ¢ Eg. When t is

translated by a lattice vector A ¢ L then a(t+x) = £{x,t)e{t) so that

ajke(t+x) = E(A,t)ajke(t) + aje(t)akz(x,t)

+ ake(t)a (a,t) + 8(t) ajka(l.t) ;

JE

in particular ajka(t+x) = g(a,t) 33ke(t) vhenever t € 6% , end

-

conseguently

¢i(t+A) = E(A,t)¢i(t) provided t € g} .

Furthermore ¢i(t) = 0 for a1l indices i and some point t ¢ _Ql precisely

when w;_'(z,a) is identically zero in z and a, hence precisely when

3 ka(t) =0 for all § , k B0 that t ¢ 92 .- The functions Qi can be

J
,
used to define a holemorphic mspping

a1
Q:g:l-ea——-o}’a

b=

from the subset @ ~ g ©J into the projective space of dimension d,-1

where da = dim P,. This can be viewed ms m concrete description of the
o

mepping that associates to the point t ¢ Q_l the matrix 3 ;]ke {(t), teking
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into eccount the special properties that this matrix has been ghown to

have; it will thus be called the gecond~order Gauss mapping, to follow

the terminology used in section 3. Although the second-order Gauss
mapping has really only been de:inéd in the complement of the proper

subvariety 6 of the analytic variety'gﬁ, just as for the ordinary Gauss

%

mspping its. aph_can be extended to a well defined analytic variety

1. The closure of thé image of the Gauss mapping is conse-

. d.,~1
quently & well definéd analytic and hence elgebraic subvariety of P 2 .

over gll of

no, 9

The result of Theorem 10{iii) shows that the second-order Gsuss
mapping cen be described Just in terms of the stendsrd function theory
* on Riemann surfaces, without any reference to theta functions. It is'in
meny weys the analogue for the second-order Gauss mapping of the result
of.Corollary 1 to Theorem L4 for the first-order Gauss mapping, the
deseriptions of thg Abelian differentiel w%(z) not involving thete functions.
The usefulness of this will become apparent in the subsequent discussion.
The second-order Geuss mepping is a very interesting auxiliary tool that
is still not terribly well understood. It is not bhard to see directly
from the Corollaries to Theorem 9 that the matrix ajka(t) hes rank < b
at 2l]l peints t € 23, but & more interesting proof will be given in the
next section; something can be said as well about the rank of that matrix
at points t € €, but that will not be needed here so will not be pursued
further. The deepest general result kngwn is the proof by M. Green
("Quadrics of rank four in the ideal of the canonical curve", Invent.
Meth. 75 (1984), 85-10k) of an clder conjecture that the image of the

second-order Gauss mapping does not lie in any proper linear subspace of
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the space of Petri double differenfia}s. The question of the extent
o0 which the imege of the second-order Gauss mapping lies ?n nontrivial

guadric cones is more imteresting in the present context, and will be

discussed lster.
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7. Semicanonical functionms of gecond order,
A natural and useful extension of the discussion in section 4 involves
the consideration of the function a[t+v(zlf22 -al—aa)). As a function of

the variable 2y alone for instance this is just

-1
T e rip t8) = Moz, 8y b, O)s
r-t+w(al+32—22) r—t+w(ai+32-.-2.2) -tta, "8, "z,
*where ft(z) € r(ptcg) is &s in (1.1) end © = prcg'l is the semicanonicel factor
of automorphy associated to the Riemann point r € 2. The related
expression
-8 2 -1
(1) e(t+w(zl+zz 8y aa)] q(zl,za) q(al,aa) , 5:1 q(zJ,ak)
k ]

ie a well defined meromorphic function of the variebles (zl,zz,al,aa) £ u
for any fixed point t e ;g. If zz,al,az represent distinet points of M
this.expression is & well defined meromorphic function of the single
remaining variable z, € ﬁ; as such it is & meromorphic relatively sutomorphic
function for the factor of automorphy P_yOs & meromorphic semicancnical
function in the terminology introduced in eection L, with §ingularities at

most simple poles at the points r;i end Ta,. The expression (1) is symmetric

in the variables z; and‘ze, go has the corresponding properties as & function
of the variable 253 it is moreover invariant when the z's are interchanged
with the a's and t is replaced by ~t, since the theta runctiﬁn is an even
function of its argument, so has analogous properties as a function of L3N

or of a,. The expression (1) is a patural extension to pairs of varisbles of
the semicanonical function &(t+w(z-a)) q(z,a)'l, and can be reduced to the

letter function as follows.
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Theorem 11. For any point t £ L° and any points z,,2,.8).8; € M
-l
- 8{%) B-(t+wtzl+z2”a1"a2)) alz, ,2,) ala,,8,) j,ﬁ-l q(zj o, )

a[t+u{z1ma1)) q(zl,al)'l e{tev(z -2,)) é(zl.a27"l

= det -1 ' -1
e[t+v(z2—a1)) q(z2,al) B[t+v(za—a2)) q(zagae) .

Proof. As already observed, for sll points (zz,al,aa) e 5 outside the
proper holomorphic subvariety D = {zz,z Pal} U {z2 € raa} ufeggjer 2,} the
~ expression (1) &s a function of the varisble z, € M is & well defined mero—
morphic relatively automorphic function for the factor of automorphy P40 and
has as singularities at most simple poles at the points ral u Ta.; the residue

gt the point 8y is

alz ,z,) ale, & l)
1im B(t+w{zl+z2—al«a2)) o S ! 2‘
2,48y alz, .e,) alz,,8,) alz,,e,)
T e(t+w(z2ma2)) q(zz,a2)°l,_

and the residue at the point 8, is
alzy,2,) ale;,e,)

1im  e(vewlz,+z,8,-8,))

29*8 afzy,e) alzp,e)) alz,,8,)

= 4+ e(t+v(z2-al)) q(zz,al)"ls
On the other hand the functien B(t+w{zlfal)) q(zl,al)-l is also & meromorphic
relatively automorphic function for the facter of automorphy P40 with
singularities at most simple poles at the points ral, and its residue &t the
point &, is clearly just 6(t); moreover e(t+w(zl~a2)) q(zl,ae)"'1 is yet another
meromorphic relatively sutomorphic function for the same factor of automorphy,

with singularities at most simple poles at the points ra,, and its residue at
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the point a, is also just 6(t). Conseguently s0 long es 8(t) # O the
expression (1) differs from
(2) -a(t)'le(t.-w(zz-aa)) q(zz,aa)'l . 8{tevlz,-8,)) q(zl,al)"l

o 6(e) o(tulzrar)) alspua)™ « Beewlzg-a))) alzy.ep)™
bty an element of I{p_,0), & holomorphic relatively automorphic function for
the factor of automorphy p_,o. Note that Y(p_to) = 7(pr-t;g-1) > 0 precisely
when r-t ¢ “3-1 = r - §, hence uheﬁ te8, 80 that the expressions (1) and (2)
must actually be equal whenever t ¢ g; That thus establishes the desired
identity for all points {t,zl,zz,al,az) e 08 x # outside the proper holo-
morphic subvariety § x # x D; end it then holds for all points of 8 x B by
continuity, to conclude the proof.

. Corollery 1. For any polnt t e € and any points 2,8 ¢ M

8(t+w(z-a)) 6{t-vlz-2)) o(z,8)72

= - w{zvi(a) + a(t)wi(z.) + 8(1) A (2)

in terms of the differential forms wy(z) = IJBJB(t)HB(z) and wi(z,8) =

Ej X ajke(t)wj(z)ﬁi(a) considered before.

Proof. Multiply the formulas of the preceding theorem by q(zl,al) q(zE,ae),
apply the differentiel operator azlazlazz, and teke the limit in the result &as
2z tends to &, and Z, tends to 8, On the left-hand side this yields
Y a(z,,2,) ala, ,8;)

' ' q(zl,zz) q(al.ae)
-6(t) 22:21 JE ajke(t+w(zl+z2—al-a2))vh(zl)vk(za) Tz, 8, Wzy08))
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q(zl,zz) q(al,aa)

+ § aje[wv(zlﬂz-al-aa) )V:’(zl) CIERCR ICIENCYy wzz(zl) - wzz(al)]
w alz,2z,) ala, ,8;)

“"} 3,6(vewlz vz e -0)) JWy(zp) 7, 18,) W2y 08,) _(“’zi(zz) "’zl{&z))

) alz;,2,) ale,e))
278178 q(zl,aa) q(za,al)

+ 8(tewlz 4z [wfza( z, )+ (wzef zl)-wze ( a'l))(wzl( za)-wzl( a,))}]

= - 8(t) {-—v%(al,ae) + 040 = B(t)uéz(zl)}

and on the right-hand side it yields

a2
321322

1lim
Z 4By

o (t+w( zl-a.l) ) o(t+wl zz-aa) )

alz8,) alzy.m))
alz, .a,) alzy,8)

- 8[t+w(zlfaz)) B(t+w{za-al))

= 1im 2 aje(t+w(zl—al))w5(zi) ake(t+w(za—&2))wi(zz)
208, | Ok
3,z ,2,) 3alz;.e))

- e[t+w( zl‘a2) ) e (t‘H-T( 22-—&1) ) Q( Zl ,82) qr 22 ial)

+ terms with a fector q(zl,al) or q(zz,ae)}
= vila,) wila,) + 8(t+wla-a))) o(trvlay-s,)) ala,,e,)? .
Comparing these two expressions yields the desired result upon the obvious
ghange of notation.

For points t' E g this result reduces to the fox;mula given in Corcllery 1
to Theorem T; it can therefore be viewed &5 an e#tension of that earlier
result to & statement that is wvalid for more general values of the
pammetér t than just points in the theta locus. In this interpretation the
differential forms w{_’( z) and w%(z,a) gre defined for all values t e E> by

the formulas V'L(Z) = }:3338(1:) v“’(z) and g:;(z,a) = gkadke(t) w.'j(z) wfk(a.); both

were considered earlier primarily for epecisl values of the parameter t. In

an slternative interpretation, the expresson 8(t+w{z-2)) 8(t-w(z-a}) q;(z,a)"";2 %+
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+ v%(z) u%(a) ie holomorphic in t, &and by Corollery 1 to Theorem T it vanishes
. at the locus 8(t) = 0; this expression is therefore divisible by 6(t), and the

formule of the present corollary exhibits the quotient and indeed provides
;’%J—g"ﬂf‘-ﬁ"h‘
explicitly the second order theorem in an expansion in powers of e(t).

For & point t e_glthe jeft-hand side of the formuls of Theorem 1l
vanishes, 80 the theorem itself reduces to the assertion that the

determinant on the right-hand side venishes identically in the variebles zd,ak;

this ie just the result (4.4) obtained earlier in the discussion of senicanonical

functions. However something nontrivisl can be derived from the theorem

by epplying the differential operator BlatJ throughout, since Bje(t)

may not venish. If t € 91 then all these new formulas are also triviel,

—_—
—

but the situation can be salvaged by applying the differentiel operator

e
9 /Btdatk .

merit & bit more discussion here.

The results in this case are sufficiently interesting to

Corollary 2. For any point t e,gl E_Eg,'any points 21’22'31'52 £ ﬁ,

end any indices lcsj, k28

- 3,,8(¢) o(t+i(z,+z,-8,-8,)) alz;,2,) ale).e;) uﬂil q(zu,av)'l

= fJ(t;zl.al) fk(t;zz,aa) + fk(t;zl.al) fa(t;za.ag)

= fj(t;zl'EE) fk(;;gz,al) - fk(t;zl{aa) fj(t;zz,al)

where fJ(t;z.a) = fj(-t;a,z} = q(z,a)—;aaq(t+w(z—a)) are holomorphié
functions of z,e € M that represent elements of P(pr.tcs-l) as functions of

z and elements of T(p Cg-l) as functions of &.

r+t
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Proof. Consider egain the formula of Theorem 11 for arbitrary points

+ ¢ &8, and to simplify the motation set a = q(zp,av) B(t+w(zu~av). Then

v
apply the differential operator aalatJatk to that formula, and consider the

result for a point t € 6. Since 8{t) = 2,8(t) = 3,6(t) = O vhen t ¢ o' the
only nontriviel term that remsins on the left-hand side is that in which the
differentiation is &1l epplied to the factor 6{t), yielding 3Jk6(t). On the
other hand the right-hand side is the determinant G110sn = Byp8n7 e Now from

Riemann's theorem, Theorem 2, it follows that uuv = 0 for all values of zu,au

" whenever t € g}; so the only nontriviel terms that remain on the right-hand
" gide are those in which each factor is differentiated at least once, namely

the terms ajall quaz + akull 8Ju22 - 33012 8k§21 - 3k012 33“21' The result

gltogether is the formule of the corollary, since ajall = fj(t;zl’al)

and so0 on.. The function f,(t;z,a) is cleerly a holomorphic in the variebles z

J ~

and &, since 3,6(t) = O for ¢ € g, and it follovs quite readily from (5.3)

J
+hat ms a function of z it transforms as & relatively automorphic function for

the factor of automorphy p g—l’ since @{t+w(z-a)) = 0 for all z,a. Finally

r-t®
gince 6{t) is an even function of t necessarily aje(t+w{z—5)] =

- 838[-t+v{a-z)), and that suffices to conclude the proof.

For a point t ¢ g} ~‘§? not all of the terms 3 ke(t) vanish, so it
= -

J
follows from the preceding corollary that the functions fj(t;z,a) are not all

¢rivial. Indeed for the specisl case ] = k the formula of the corollary can



- Th -

be revritten
' 2
-a“e(t) o t+wl 7‘1'*22"31"&2)) q(zl,za). q(al,az) u,1\1-=1 q(zu,a.v)"l
(3)

fj(zl,al) rJ(zl,az)

= 2 det
fJ(ze,al) fJ{zz,az)

upon setting fa(i,a) = fJ(t;z,a) for simplicity, since the point t is bere

viewed as fixed, and it is evident from this that fJ(z,a) must be & nontrivial
function on M x ¥ whenever aJJ 8(t) # 0. Furthermore note that for fixed
points a,,8, the function 8(t+w( zl+z2—al—a2)) venishes identically in z,,2z,
precisely when t-v{a.l+a2) +W, ce=V_,-T, hence by B(9.12) precisely when
rt - w(afae) 3 wg_l eV, = wg_3

provided that g > 3; this cannot happen for all points 8,85, for by B(9.12)

_ a2
again that would mean that r+t e Hg__30 (-—W2) = Wz_l hence that t € -r + Wz_l = 8.
1f G[t+w(zl+22—a1-a2)) does not vanish identically in z,,z, ead
q(a.l,a.a)a p Je(t} # 0 then the determinant in (3) does not vanish identically in

2,2, elther; that means thet the two functions fa(z,al), fj(z,aa) are linearly

independent. Thus fJ(z,al) fJ(z,a.a) are linearly independent elements of

T{ pr_tr,g'l) as functione of z precisely when a“e(t) # 0 gnd 8, ,8, Iepresent

distinet points of M for which r+t - v(a1+a.2) ¢ WS_B; there are alweys some

points ’_‘1’32 for which this lest condition is satigfied. It should be
remarked that y( pr_ttg'r) = 2 vhenever t € __9:1 ~ _9:2. 80 ra(z,al) and fJ(z.a_.a)
are a basis for r(pr_ttg'l) vhenever they are linearly independent functions
of g, On the other band if 2 3 Ja(t) = 0 then it follows readily fram (3) that

rJ(z,a) = gJ(z) hJ(a) for some functions gy € r{ pr—tcg-l) and b, ¢ T(D“tﬁg-l).
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&nd if'akke(t) = 0 as well there arise in this way the two functions

Ey08y © T(prﬁtcg#l) and hj'hk £ T(pr+t§g_l). In this case the formule
of Corollary 3 cen be written as the identity
-1
- ajke(t) e(t+w{zl+zaual—32)) q(zlgzz) q(al,a2) ug q(zu,av)
(&)
gj(zl) 83(22)
g, (z) g(z;)

hJ(al) ha(aa)

hk(al) hk(az) s

= det det

end it is clear from this that whenever anB(t) = akka(-t) = 0 but ajke(t) £ 0

then By vy form & basis for'r(pr_ttgnl). Since not all the derivatives ajke(t)

vanish there is always some basis for T(pr_tcg_l) obtained in one of the two
uays'just_indicated from the functions fj(z,a) = qﬁz,a)_l aje[t+w(z-a}].

As an slternative approach, for any vector ¢ = (cl,...,cg) e T8
consider the function fc(z,a) = IJchJ(z,a), which is again an element of

e

r_tcg'l) as & Tunction of z and an element of r(pr+t;g-l) es a function

of &. In these terms it is easy to see that Corollary 2 ié equivalent to the
assertion that

(5} -} ajkﬁ(t)cjck B(t+w(zl+z2-al—az)) q(zl,za) q(al,az) I aqflz ,av)"l
Jk eV v

rc(zl‘al) fc(zl‘az)
fc(za,al) fé(zz,aa)
for &1 ¢ & B It is clear from this formule that fc(z,a) = g(z) n{a) for

= det

g-1 g-1
gsome functions g e r(pr_t; Y and h ¢ r(pr*t; ) precisely when

Ijkajke(t)cjck = 0. Somevhat more interesting end not quite so obvious is the

essertion that fc(z,a) = 0 for all points (z,8) & ﬁ:&ﬁ;grecisely when -

Ikajke(t)ck: © for mll indices 1 < J £ g Indeed if O = gz,a) fc(z,a) =

= ZJ ey BJB[t+w(z-a)) jdentically in z and & then upon differentiating this
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identity with respect to z &and setting a = z it follows that
0= c 3.6(t)w!(z) for a1l z, hence that },c,d, 6(t) = 0 for all k
Ijk 323k ) ( ) ’ z 3%5x (t)
gince the differentials wk(z) are linearly independent. On the other hand
ir Ikajke(t)ck = 0 for all indices } then’fd(z,a) = g(z) h{a) by the preceding

observation; now

9.8(t+s(z-8))
=] ec,8,68(t)wla) =0

gle) n(a) = £ (a,2) = i‘i‘; IJCJ alz,s) Tk 3%

for mll points & e ﬁ, so that either g vanishes identically.or h does and

in either case fc(z,a) = g{z) h(s) vanishes identically. As a conseguence

of this the rank of the matrix ajke(t) is equal to the number of linearly

P~

independent functions from amcng'the fj(z,a) viewed as functions on M"ﬁ,

since this is just g minus the dimension of the space of all vectors

c e o satisfying the two conditions Just .shown to be eguivalent. If

gl,ge are a basis of'r(p & 1) and h »hy Te 8 basis of T(p +t;g 1)

t
then eny function f, (z,2) cen be written f, (z,8) = ngcj gk(z) h,(e)

from some unigquely determined constants ckg thus there are at most L

3=
linearly independent functions from among the fj(z,a), and hence
rank ajke(t) < 4. It has slready been noted that if t e sLﬁ'el then for
=

any fixed a the functionms fa(z.a).span r(or_tcg'l).-so it is evident that

rank 3, 6(t) 2 2. Actually since the Petri functions vanish on the

Jk _
canonical curve, & quadric of rank £ 2 really amounts to & linear condition,
and the canonical curve is not contained in any proper linear subspace, it

follows readily that rank'adke(t) 2 3. These observations can be summarized

gs follows.
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Corollary 3. ¥For anmy fized point t E Q_l ad _9_2 the rank of the metrix

a;}ke(t)' which is either 3 or b, s equel to the mumber of limearly
independent functions on H xM from among the g functions
q(z,a)mlaje(t‘*ﬂ(z—a)) for 1 < J < g; s functions of z alone the latter

span the two-dimensionsl space I‘(prd_tcg"l) for any fized & & M.

Another conseguence of.the second corcllary in a slightly different

direction is also worth noting.

Corollery L. For any point t € _(_—3___3' and any points all,az,bl,hz EM
S 1
vile),8,) vil(py,bp) - vila b)) wiley,by) - vi(a,,b,) wilay,b,)

-1 .
= q(al°?'2) w'l';+w(al--aa) (bl) w‘t,-—-w(al—az).

(v,)

* W;:W(al-az) (ba) v{:-v(al-aB) (bl)} *

Proof. When multiplied by q(zl,s.l) q(zz,az) the formule of

Corollary 2 tekes the form

alz;.2,) alay.e;)
E(zl,aa) qlay2z 2)

BJ ka( t) 8(t+w( zl+z2-a1e-32) )

= 9, 8 t+wl zl—a.l) ) 8, 8(t+wl z,-8,) )+ 8,08 {(tewl zlwal) ) 3 8 wew( z2-32) }

CEMC alz,.8,)
T qlz ) alzyeey)

{ 3, 8(tewl z,-8,)) o 0(t+v(z,-8,})

+ ake(t*-v(zlwaz)) ajﬁ[tW(za-al)}_‘- )
Apply the differential operator 321 92,92, to this formuls and take the limit

as z, + &, and 2, s s, Bince 8(t) = aje(t) = 0 for t ¢ 6 the only montrivial

terms on the left-hand side are thoge for which only the gecond thets factor is
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differentinted; the factors q(zl,al) and qf 2.2,;2) must be differentiated . -
to obtain something montriviel on the right-hand side. The result is easily

seen to be

B(t) I I 8(t) vil(a,) v (a,)

=1 { 2, 8(t) vy(ay) A 8(t) wylap) + By 8(L)Y, (-1) a2, ot v'(aza)
- alay )" {a o(tevlay-a,)) 3 8(t-vla;-2,))
+ 3, 8(t+v(a,-8,)) aJe(t-v(nl-a ))}.

Multiply this by w:,‘(bl) vi(bz) and summing over J and k ylelds the desired
result. .

It may be recalled from Theorem 10 that wft(z,z) = 0 whenever t ¢ 91, -1
in the limit as 'bl and b, tend to z the formula of the preceding corollary

2

becomes

: | L | -2 ‘| L |
(6) "’1-.("‘1) vt(Z.a23 = -'1(31'32) "tw(al.az)(” "’t—v(al-azsﬂ'

an interesting result in itself. To see its significance note that if
tE el ~ 92 then for general points 8148, € M there are uniguely determined
divisors of degree g-2 on M defined by the conditions
r-t—v{al) = w{xy +eeut X ). x-rt.-w(al) = w(x] 4oeut xs 2),
r-t-wia,) = wly, +eset ys_a), ret-v(ay) = wly] +eeot Yp2)s
these cen be combined in four weys to yield cemonicel divisors, by adding
tvo terms in which t cancels. It is easy to see from Corollery 1 to

Theorem L that
(n;""gr
(9'( tla -, Y Ea e, e X bt x4 Y] 4eeet Ty oo

P vl ‘2)) = 4ay X bt X, Ty beet Yoo,

keeping in mind the observation that w‘(z) = v (:.). On the other hand from

>

Theorem 10 it follows that
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S (vilz,8,)) = 22y % X3 Feeet X 5 F X Faeek X o
fi[w%(z,az)] =28, Yy teret Y ot Yy Feeet yé_z?
gince in this case w%(z,a) = wit(z,a). The two sides of (£} thus correspond
to two different ways of grouping the kg-l points involved bere into sums of
tﬁo cénonical divisors.

A related result in & slightly different direction, the analogue of

Corpllary 1 to Theorem T for semicanonical functions of second order, is as

follows.
Theorem 12. For any point t ¢ Ef c t® and any peoints Z1sZ538 48, € #
2 42 2 -2
8(t+wlz +z -, -a,)) B{t-w(z +z-a,-8,)) alz,,z,) a(a, ,a,) ; g—l q(zj,ak)
=

= ]
Ui(zl’ZZ) w%(al,ag)

where v%(z,a) gjzk ajke(t) VB(;) vl (a).

%

Proof. If € ¢ g? then it is evident from Theorem 2 that both sides of
the asserted‘equality vanish identicelly, so the desired result holds

trivially; for the remainder of the proof it can therefore be supposed that

1 2 ' ‘
t € EL g;, hence that rit e W;*l Wz_l. The functions B(ttw{zl+z2 -alwae))

do not then vanish identically in the variables Z,3%598 5By, 5O for general

veluee of z e, they are pontrivial holomorphic functions of the variable z

280 1’

but these functions of zy have zeros et the points e and L The expression
{1) is consequently a nontrivial holomorphic relatively automorphic function

for the factor of automorphy P 49 when viewed as & functicn of z it vanishes

1%
at Z, because pf the factor q(zl,zz), hence hes the divisor z, + %, tooot xg_z
on M where

(T) r»t-v{za) = w(xl oot xg-E)'
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1
2’

Xy +oaot xg_2 on M is uniquely determined by (7). The anslogous expression

The point z, can be taken &0 that r-t-w(za) ¢ Hé_ so the divisor

but with t repleced by -t is an element of r(pto) vanishing at the divisor

Z, + ¥y teset ¥, o OB M, vhere z, can also be taken so that r+l - w(zz) ¥ W;_E
as well, so that the divisor ¥y +ooat yg_z 4 determined uniquely by the
snalogue of (7). Now the product of these two expressions is an element of
r(p_to . ptc) = 1{¢2) = T(x), hence an Abelian differential on M, and vanishes
at the divisor 222 + X +oset xs_z on M; it then follows from Theorem 10 that
this product, which is Just the left-hand side of the formula of the present
theorem, is a constant multiple of the differential form v{(zl,za) in il’
where the constant depends of course on 22,31,32. From this and the obvious
gymuetries it is quite evident that the left-hand side of the formula of the

3 ] ]
present theorem is actually equal to ¢ “i(zl’z2) “i(al’QE) vhere ¢ is

independent of the variables zl,zz,al,ae; thus

B(t+w{z1+22-al-a2)) . 9(t-w(z1+22—a1-a2)] . q(zl,zz)g q(a.l,s.a)2
alzy.8;) alzp.8)) alzy8) alzp.8)) alzy085)7 aley.2,)%

t
= ¢ ui(zl,za) wt(al,aa).
To evaluate the constant ¢ here simply take the limit as zl +—al end 22 -+ 32;
the first term on the left-hand side evidently tends to

' 1 = u'
J.Ik aJkB(t) "".1(9'1) vi(e,) vi(e,,8,)
as does the second term, 80 that ¢ = 1 and the desired result is thereby

demonstrated.



