Vortices, Gauged Sigma Model, and Kirwan Map

Guangbo Xu

(Revised After the Talk at)
Rutgers Geometry and Physics Seminar
November 9, 2017
1. Sigma Model and Holomorphic Curves
2. Symplectic Vortex Equation
3. Quantization of the Kirwan Map
4. Open Quantum Kirwan Map
I. Sigma Model and Holomorphic Curves
• For many reasons people are interested in studying the space of smooth maps between two manifolds with respect to an energy functional.

• The simplest example is that of geodesics in a Riemannian manifold, which are minimizers of the energy functional

\[E(x) = \frac{1}{2} \int_a^b |x'(t)|^2 dt, \quad x : [a, b] \to X. \]

• \textbf{σ-model}: the theory of maps \(u : D \to X \) with Lagrangians

\[E(u) \approx \frac{1}{2} \int_D |\nabla u|^2 dvol_X + \cdots. \]

• If we include “superpartners” to the maps \(u \), then theories with supersymmetries become extremely simple and beautiful.
• Critical dimension: conformal invariance.
• Propagation of strings.
• $\mathcal{N} = (2, 2)$: X is Kähler, instantons are **holomorphic curves**.
• **Gromov–Witten Invariants** (correlation functions)
 \[\langle \alpha_1, \ldots, \alpha_k \rangle^X_{\Sigma} \in F, \quad \alpha_1, \ldots, \alpha_k \in H^*(X; F). \]
• **Quantum cohomology**
 \[\langle \alpha \ast \beta, \gamma \rangle := \langle \alpha, \beta, \gamma \rangle^X_{S^2}, \quad \forall \alpha, \beta, \gamma \in H^*(X; F). \]
• More generally, a **cohomological field theory** (CohFT)
 \[\langle \alpha_1, \ldots, \alpha_n; Z \rangle^X_{g,n}, \quad \forall \alpha_i \in H^*(X), \quad Z \in H^*(\overline{\mathcal{M}}_{g,n}). \]
A sequence of holomorphic curves may bubble off holomorphic spheres. Domain can also degenerate: a sphere with four markings can degenerate into a stable curve with two components.

Two different degenerations can be connected in $\overline{M}_{0,4}$. The associativity of quantum product essentially follows from this picture.

More general splitting axioms of CohFT also follows from this kind of relations in $\overline{M}_{g,n}$.
II. The Symplectic Vortex Equation
• Let X be Kähler/symplectic. Let K be a compact Lie group acting on X. A **moment map** is a smooth equivariant mapping $\mu : X \rightarrow \mathfrak{k}^*$ satisfying

$$d(\mu \cdot \xi) = \omega(X_\xi, \cdot), \quad \forall \xi \in \mathfrak{k}.$$

• If $0 \in \mathfrak{k}^*$ is a regular value of μ, then $\bar{X} := \mu^{-1}(0)/K$ is an orbifold or manifold, called the **symplectic reduction**.

• Many examples come from GIT (geometric invariant theory).

Example

$X = \mathbb{C}^2$, $K = S^1$ acts diagonally. Then a moment map is

$$\mu(z_1, z_2) = \frac{i}{\pi} \left(|z_1|^2 + |z_2|^2 - c\right).$$

For $c > 0$, $\bar{X} \simeq \mathbb{P}^1$. (All toric manifolds are obtained in similar ways.)
• Given \((X, K, \mu)\) and Riemann surface \(\Sigma\), variables of the symplectic vortex equation are gauge fields \(A \in \Omega^1(\Sigma, \mathfrak{k})\) and matter fields \(u : \Sigma \to X\).

• The **Yang–Mills–Higgs** functional reads

\[
\mathcal{YHM}(A, u) = \frac{1}{2} \int_\Sigma \left(|d_A u|^2 + |F_A|^2 + |\mu(u)|^2 \right) dvol_\Sigma.
\]

• If \(A = \phi ds + \psi dt\), then

\[
d_A u = ds \otimes (\partial_s u + X_\phi(u)) + dt \otimes (\partial_t u + X_\psi(u)).
\]

• The equation reads

\[
\overline{\partial}_A u = 0, \quad \ast F_A + \mu(u) = 0.
\]

• In general, given a nontrivial principal \(K\)-bundle \(P \to \Sigma\), \(A\) is a connection on \(P\) and \(u\) is a section of \(P \times_K X\).
For vector bundles, there is the so-called Hitchin–Kobayashi correspondence (Narasimhan–Seshadri, Donaldson, Uhlenbeck–Yau).

- Bradlow: HK correspondence for stable pairs (generalized by Banfield).

For example, given a holomorphic line bundle $L \to \Sigma$ and holomorphic sections $\phi, \psi \in H^0(\Sigma, L)$, there is a unique metric H on L such that

$$\ast F_H + \frac{i}{\pi} \left(|\phi|^2 + |\psi|^2 - c \right) = 0.$$

It is equivalent to a vortex (A, u) for $X = \mathbb{C}^2$ and $K = S^1$, where A is the Chern connection of (L, H) and $u = (\phi, \psi)$.

Theorem (General case, Mundet)

Given a Kähler manifold X acted by a reductive group $G = K^\mathbb{C}$. A gauge class of vortices over Σ is equivalent to a holomorphic G-bundle $P \to \Sigma$ with a holomorphic section $u : \Sigma \to P \times_G X$ such that (P, u) satisfies certain stability condition. (The stability condition depends on the metric on Σ and μ.)
• **Gauged GW** Over compact surfaces, formally counting vortices defines a correlation function (Hamiltonian GW invariants)
\[
\langle \alpha_1, \ldots, \alpha_k \rangle^X_\Sigma \in F, \; \alpha_1, \ldots, \alpha_k \in H^*_K(\Sigma, F).
\]

1. **Mundet 2003**: HGW for \(K = S^1 \) and \(X \) compact symplectic.
2. **Cieliebak–Gaio–Mundet–Salamon 2002**: general \(K \) with \(X \) aspherical.
3. **CohFT over \(H^*_K(X) \)**: unfinished project of Mundet–Tian for \(K = S^1 \).

• **Gauged Ham.Floer** (Xu 2016) For general \(K \) and aspherical \(X \), using vortex equation on the cylinder perturbed by a \(K \)-invariant Hamiltonian, one can define a Floer homology over integers.

• **Gauged Lag.Floer** (Frauenfelder 2003) For certain (non-invariant) Lagrangian in \(X \) that descends to \(\bar{L} \subset \bar{X} \) which is the fixed point set of an anti-symplectic involution.
• From physical perspective, 2D $\mathcal{N} = (2, 2)$ SUSY allows more general Lagrangians which contain the so-called “F-term”.

• Geometrically, it means we may have a holomorphic potential function $\mathcal{W} : X \to \mathbb{C}$ which is G-invariant. The field theory (GLSM) based on such targets was invented by Witten 1993.

• When G is trivial or a finite abelian group, this gives an orbifold Landau–Ginzburg model. For example, for $\mathcal{W} : \mathbb{C}^n \to \mathbb{C}$ quasihomogeneous polynomial, there is the FJRW (Fan–Jarvis–Ruan and Witten) theory.

• There are many works on rigorizing GLSM. Besides the algebraic geometry approaches, Tian and I are developing a symplectic approach of GLSM, based on the analysis of gauged Witten equation

$$\bar{\partial}_A u + \nabla \mathcal{W}(u) = 0,$$
$$\ast F_A + \mu(u) = 0.$$
III. Quantum Kirwan Map
Quantum Kirwan Map

- There is a classical map (surjective over \(\mathbb{Q} \))
 \[(\text{Kirwan Map}) : \kappa : H^*_K(X) \to H^*(\bar{X}).\]
- It is natural to ask the following.

Question

Does \(\kappa \) intertwine the theory upstairs with the theory downstairs? For example

\[
\langle \alpha_1, \ldots, \alpha_k \rangle^X_{\text{HGW}} \overset{?}{=} \langle \kappa(\alpha_1), \ldots, \kappa(\alpha_n) \rangle^\bar{X}_{\text{GW}}.
\]

- The question should be answered by using the adiabatic limit:
 \[
 \overline{\partial}_A u = 0, \quad \ast F_A + \epsilon^{-2} \mu(u) = 0.
 \]
- This is the equation of motion for \(\| d_A u \|_{L^2}^2 + \epsilon^2 \| F_A \|_{L^2}^2 + \epsilon^{-2} \| \mu(u) \|_{L^2}^2 \).
- As \(\epsilon \to 0 \), \(\| \mu(u) \|_{L^2} \) is small, \(u \) approximates a holomorphic curve in \(\bar{X} \).
Bubbling in the Adiabatic Limit and Affine Vortices

- As $\epsilon \to 0$, bubbling classified by Gaio–Salamon 2005:
 1. Energy blows up rate $\gg \epsilon^{-2}$ \Rightarrow holomorphic spheres in X bubble off.
 2. Energy blows up rate $\ll \epsilon^{-2}$ \Rightarrow holomorphic spheres in \bar{X} bubble off.
 3. Energy blows up rate $\approx \epsilon^{-2}$ \Rightarrow affine vortices bubbles off.

- An affine vortex is a solution to the vortex equation over \mathbb{C}.
- Not conformal invariant, but only translation invariant.

Example
A vortex in \mathbb{C}^2 over Σ is equivalent to 2 sections $\phi, \psi \in H^0(\Sigma, L)$. It defines a map $[\phi, \psi] : \Sigma \to \mathbb{P}^1$ if ϕ, ψ have no common zero.

By the HK correspondence, for any ϵ, there is an vortex $(A_{\phi,\psi}^\epsilon, u_{\phi,\psi}^\epsilon)$ on Σ.

Xu 2015: If in a sequence a pair of zeroes of ϕ, ψ come together in a rate $\ll \epsilon$, then a sphere in \mathbb{P}^1 bubbles off; if the rate $\approx \epsilon$ or $\gg \epsilon$, then an affine vortex bubbles off.
Properties and Classifications

1. Gaio–Salamon 2005, Ziltener 2009: Affine vortices have well-defined limits at infinity as a K-orbit in $\mu^{-1}(0)$.

2. Ziltener 2009: Optimal energy decays at ∞ (slightly worse than holomorphic maps $\nu : \mathbb{C} \to \mathcal{X}$).

1. Taubes 1980: $X = \mathbb{C}$, $K = S^1$. Affine vortices \approx polynomials.

2. Xu 2015: $X = \mathbb{C}^n$, $K = S^1$. Affine vortices $\approx n$ polynomials.

3. Venugopalan–Woodward 2016: HK correspondence for affine vortices, when X is either a compact Kähler manifold or a linear space, acted by a reductive $G = K^\mathbb{C}$.
• If there is no affine vortices, or if they “do not contribute,” then we can prove a statement like (Gaio–Salamon 2005, under certain conditions)
\[
\langle \alpha_1, \ldots, \alpha_k \rangle_{HG}^X = \langle \kappa(\alpha_1), \ldots, \kappa(\alpha_k) \rangle_{\bar{X}}^\bar{X}.
\]

• In general Salamon conjectured that using affine vortices one can define a quantization of \(\kappa \), called the quantun Kirwan map
\[
\kappa^Q = \kappa + \text{higher order term} : H_k^*(X; F) \to H^*(\bar{X}; F)
\]
which indeed intertwines the two theories.

• **Difficulty**: Hard analysis (redevelop everything parallel to pseudoholomorphic curves) unfinished project of Ziltener; Venugopalan–Xu 2016: *local model for moduli space of affine vortices*.

• **Algebraic case**: when \(X \) is projective, proved by Woodward 2015.
• Let V be a vector space over F. A **CohFT algebra** on V is a collection of compositions $m_n : V^\otimes k \otimes H^*(\bar{M}_{0,n}) \to V$ satisfying certain splitting axioms.

• Quantum cohomology of \bar{X}: on $\bar{H} = H^*(\bar{X}; F)$, \bar{m}_n defined by genus zero GW invariants of \bar{X}.

• Equivariant quantum cohomology of X: on $H := H^*_K(X; F)$, m_n defined by genus zero equivariant GW invariants. This is defined via the moduli space of holomorphic spheres in X modulo K-action.

• **Nguyen–Woodward–Ziltener 2014**: κ^Q is a collection of maps

$$\kappa_n : H^\otimes n \otimes H^*(\bar{M}_{n,1}; F) \to \bar{H}$$

which is a morphism of CohFT algebras. Namely, satisfying another type of splitting axioms.
• The axiom of morphism of CohFT algebra is dictated by the moduli space $\mathcal{M}_{n,1}$ of configurations of n points in \mathbb{C} modulo translation.

• Points coming together form spherical components.

• The algebraic conclusion of the degeneration picture is exactly a morphism of CohFT algebras.
• There are similar type of degenerations on the level of solutions.
• Besides sphere bubbling caused by energy concentration, a sequence of affine vortices can also degenerate in the following way.

\[
\text{Nonzero energy} \quad \text{growing size} \quad \text{growing distance}
\]

\[
\text{growing size} \quad \{ \text{nonzero energy} \} \quad \text{growing distance} \quad \{ \text{nonzero energy} \} \quad \text{growing size}
\]
IV. Open Quantum Kirwan Map
• Counting holomorphic disks with boundaries in a Lagrangian submanifold $\bar{L} \subset \bar{X}$ defines the so-called **Fukaya algebra** $Fuk(\bar{L})$.

• It is an A_∞ algebra, i.e., a cochain group $C(\bar{L})$ of \bar{L} with compositions

\[\bar{m}_0 : F \to C(\bar{L}), \quad \bar{m}_1 : C(\bar{L}) \to C(\bar{L}), \quad \bar{m}_2 : C(\bar{L}) \otimes C(\bar{L}) \to C(\bar{L}), \ldots \]

In the best case, $\bar{m}_0 = 0$, \bar{m}_1 is a differential, \bar{m}_2 is associative, and $\bar{m}_k = 0$ for higher k. This notion is a real analog of CohFT algebra.

• (Fukaya–Oh–Ohta–Ono) Consider the moduli space of holomorphic disks with $k + 1$ marked points. Then for $a_1, \ldots, a_k \in C(\bar{L})$, define

\[\bar{m}_k(a_1, \ldots, a_k) = (ev_\infty)_* \left[(ev_1 \times \cdots \times ev_k)^*(a_1, \ldots, a_k) \cap [M_{k+1}(\bar{L})]^{\text{vir}} \right]. \]

• $M_{k+1}(\bar{L})$ behaves like a manifold with corners. The virtual fundamental chain is defined in a very sophisticated way using Kuranishi structures.
• An important property of A_∞ algebra is \textbf{unobstructedness}. It is called weakly unobstructed if there exists some $b \in \mathcal{C}(\bar{L})$ such that

$$\sum_k \bar{m}_k(b, \ldots, b) \equiv 0 \mod F \cdot \text{PD}[\bar{L}].$$

• On the solution set $\mathcal{MC}(\bar{L})$, define the \textbf{potential function}

$$\bar{W}(b) = \sum_k \bar{m}_k(b, \ldots, b)/\text{PD}[\bar{L}] \in F.$$

• Detect nontrivial Floer cohomology; mirror Landau–Ginzburg model.

• FOOO proved for the toric case \bar{W} is (implicitly) related to the Givental–Hori–Vafa potential. For Fano toric manifolds, they coincide.

• More explicit relation was proved by Chan–Lau–Leung–Tseng for semi-Fano toric manifolds.
• If $\tilde{X} = X//K$, then $\tilde{L} \subset \tilde{X}$ can be lifted to $L \subset \mu^{-1}(0) \subset X$.

• (Woodward 2011) Consider K-orbits of holomorphic disks in X. The evaluations at boundary markings are still in $L/K \simeq \tilde{L}$.

Example
$X = \mathbb{C}^2$, $K = S^1$, $L = S^1 \times S^1$. A holomorphic disk $u : \mathbb{D}^2 \to \mathbb{C}^2$

$$u(z) = \left(e^{i\theta_1} \frac{z - \alpha}{1 - \alpha_1 z}, e^{i\theta_2} \frac{z - \beta}{1 - \alpha_2 z} \right)$$

descends to a disk in \mathbb{P}^1 if $\alpha_1 \neq \alpha_2$. (Upstairs is more regular!)

• Using these object (quasidisks) one can define another A_∞ algebra $Fuk^K(L)$ on the same cochain group $C(\tilde{L})$.

• For the toric case, Woodward verified that the quasimap potential function coincides with the Givental–Hori–Vafa potential.
• Woodward 2011: potential function upstairs and downstairs should be related via affine vortices over \mathbb{H}.

Theorem (Woodward–Xu)

(For X, L satisfying certain conditions, including the case that \tilde{X} is a rational semi-positive toric manifolds) there is $c \in QH^*(\tilde{X})$ and an A_∞ morphism from $Fuk^K(L)$ to $Fuk^c(\tilde{L})$. Namely, there are multilinear maps $\phi_n : C(\tilde{L})^n \to C(\tilde{L})$ satisfying axioms of A_∞ morphisms.
Remarks

Remark

1. Transversality is treated by Cieliebak–Mohnke’s stabilizing divisor technique. Charest–Woodward firstly developed this version of $\text{Fuk}(\bar{L})$.
2. Gluing affine vortices, Xu 2016
3. Similar results are obtained by Fukaya via the natural Lagrangian correspondence $\mathcal{X} \xrightarrow{\text{Lag}} \bar{\mathcal{X}}$.

Corollary

1. The map $\tilde{\phi} : b \mapsto \sum_k \phi_k(b, \ldots, b)$ maps $\mathcal{MC}^K(L)$ into $\mathcal{MC}^c(\bar{L})$ and
 \[\bar{W}^c(\tilde{\phi}(b)) = W^K(b). \]
 So unobstructedness of $\text{Fuk}^K(L)$ implies unobstructedness of $\text{Fuk}^c(\bar{L})$.
3. Provides a simple way to identify unobstructed and Floer nontrivial Lagrangians in GIT quotients.
Thanks!