A PROOF OF [RW24, THEOREM 5.5]

The proof of Theorem 5.5 in [RW24] has three steps, and utilizes [RW24, Lemma 5.8], which is proven in [RW24, Section A]. We sketch a proof of [RW24, Theorem 5.5] assuming [RW24, Lemma A.3 (1), (2), (3)].

Let us first state the main technical result we need for Steps 2 and 3.

We usually denote elements in \mathbb{Z}^m with a boldface letter such as n, and its coordinates as n_i . The *i*th unit vector is e_i .

Claim 1. Assume assumption (ii) of [RW24, Theorem 5.5]. Let

$$H := \max_{\boldsymbol{n} \in \boldsymbol{\alpha} + (2\mathbb{Z})^2} h(\boldsymbol{n}).$$

Then, we have

- (1) $\widetilde{KhR}^{h}(K^{p}(\boldsymbol{n})) = 0$ whenever h > H/2. (2) $\widetilde{KhR}^{h}(K^{p}(\boldsymbol{n})) \simeq \operatorname{gr}\widetilde{KhR}^{h}_{Lee}(K^{p}(\boldsymbol{n}))$ for h = H/2, as quantum graded vector spaces. (3) For *i* such that $n_{i} \geq 2$, the annular creation map (band map)

$$\widetilde{KhR}^{H/2}(K^{\mathbf{p}}(\mathbf{n}-2\mathbf{e}_{i})\sqcup U)\to \widetilde{KhR}^{H/2}(K^{\mathbf{p}}(\mathbf{n}))$$

is injective.

Let's recall how [RW24, Theorem 5.5] follows. Assume both assumptions (i) and (ii). Assumption (i) says that $h(\alpha) = H$.

- (1) follows directly from Claim 1 (1) since $w(K^{p}(\alpha + r, r)) = h(\alpha)$.
- (2) follows as in Step 2. The first part of (2) (the dimension of $\mathcal{S}_{0,0}^{Lee}$) follows directly from assumptions (i) and (ii) (using Claim 2). The second part of (2) (upper bound of the dimension of $\mathcal{S}_{0,0}$) follows from Claim 1 (2), as in Step 2.
- (3) follows directly from Claim 1 (2) and (3): recall from [RW24, Proposition 5.4] that

$$s(X; \boldsymbol{\alpha}) = \lim_{\boldsymbol{r} \to \infty^m} (s_{\mathfrak{gl}_2}(K^{\boldsymbol{p}}(\boldsymbol{\alpha} + \boldsymbol{r}, \boldsymbol{r})) - 2|\boldsymbol{r}|) - |\boldsymbol{\alpha}| + 1.$$

Let $x_r \in KhR_{Lee}(K^p(\alpha + r, r))$ be the canonical Lee generator of $K^p(\alpha + r, r)$. By definition,

$$s_{\mathfrak{gl}_2}(K^p(\boldsymbol{\alpha}+\boldsymbol{r},\boldsymbol{r})) := q(x_{\boldsymbol{r}}) - 1$$

Then, Claim 1(2) and (3) imply that the annular creation map

 $KhR_{Lee}(K^{p}(\alpha + r, r) \sqcup U) \rightarrow KhR_{Lee}(K^{p}(\alpha + r + e_{j}, r + e_{j}))$

has quantum filtration degree exactly 1. This map sends $x_r \otimes \mathbf{a}$ or $x_r \otimes \mathbf{b}$ to x_{r+e_i} , depending on the convention. (It will always map the other one to $-\sigma x_{r+e_j}$, where σ is the map on KhR_{Lee} given by swapping the two strands that the dotted annular creation map creates). Hence

$$q(x_{\boldsymbol{r}+\boldsymbol{e}_j}) = q(x_{\boldsymbol{r}} \otimes \mathbf{a}) + 1 = q(x_{\boldsymbol{r}}) + 2,$$

which is what we wanted to show.

Note that we are assuming [RW24, Proposition 5.4] and a slightly stronger statement for Claim 1 (3), so we don't have to consider the irreducible S(r)-subrepresentations again.

Claim 2. Let A, B be real $m \times m$ -matrices, where $A_{ij} \ge B_{ij} \ge 0$ for $i \ne j$ and $B_{ii} \ge 0$. Then for any $\boldsymbol{x} \in \mathbb{R}^m$,

$$oldsymbol{x}^T (A - 2B)oldsymbol{x} \le |oldsymbol{x}|^T A |oldsymbol{x}|,$$

where $|\mathbf{x}| \in \mathbb{R}^m$ such that $|x|_i = |x_i|$. Note that if $\mathbf{x} \in \mathbf{\alpha} + (2\mathbb{Z})^m$ for some $\mathbf{\alpha} \in \mathbb{Z}^m$, then $|\boldsymbol{x}| \in \boldsymbol{\alpha} + (2\mathbb{Z})^m$ as well.

Proof. This follows since $(a_{ij} - 2b_{ij})x_ix_j \leq a_{ij}|x|_i|x|_j$ for all i, j.

Now, let us show Claim 1. We will show (1) and (2) of Claim 1 first, and deal with (3) at the end. Consider the full induction argument (the proof of [RW24, Lemma 5.8]), and consider all the links B that come up in the induction argument.

Notation 3. Let's say in this particular induction step, we are going from framing $f + e_i$ to f. Recall that B is the same as an **f**-framed n' cable of K for some $n' \in \mathbb{Z}_{>0}^m$, 2|n' - n, for all but one link component, K_j of K. Instead of taking the n'_j cable of K_j , we insert the braid closure $D_{a,b}^{i}$ $(a = n'_{j})$ to an f_{j} -framed diagram, where $D_{a,b}^{i}$ is as in [RW24, Appendix A], but where the σ_i 's correspond to negative crossings. Also, B might have an additional unlinked unlink (which might be empty). We will write such B as $B = D_{a,b}^i \sqcup^k U$ (omit j, f, n'). The link that corresponds to $D_{a,0}^i$ is an $(f + e_j)$ -framed cable (but the blackboard framing of the components that correspond to K_j (in the diagram B) have framing f_j) and $D_{a,a-1}^{a-1}$ is an **f**-framed cable. (Also note that we are treating the $D_{a,b}^i$'s for different values of a, b, i, j, f, n' as different objects.)

We renormalize KhR(B) and $KhR_{Lee}(B)$ (in the homological degree) such that the canonical Lee generator of B where all the strands of B are oriented the same as K is in homological grading $q(\mathbf{n}')/2$ where

$$g(n') := n'^T (P - W + N_+ - N_-)n'.$$

Write the renormalized groups as $\overline{KhR}(B)$ and $\overline{KhR}_{Lee}(B)$, and call the above canonical Lee generator the special Lee generator and denote it as s_B . (We are being ambiguous about what the orientations are on the additional unlink $\sqcup^k U$, but this doesn't matter.) Note that \overline{KhR} is insensitive of the framing and the orientation of the link components of B.

Note that $\overline{KhR}(K^{p}(n)) = \overline{KhR}(K^{p}(n))$ (ignore the quantum gradings).

We show the following by inducting on B.

Claim 4. We have the following:

- (1) $\overline{KhR}^{h}(B) = 0$ whenever h > H/2. (2) $\overline{KhR}^{h}(B) \simeq \operatorname{gr} \overline{KhR}^{h}_{Lee}(B)$ for h = H/2 (and so this holds for all $h \ge H/2$).

The base cases are $B = K^{\boldsymbol{w}}(\boldsymbol{n}') \sqcup^k U$ for $0 \leq \boldsymbol{n}' \leq \boldsymbol{n}, 2|\boldsymbol{n} - \boldsymbol{n}'|$. The maximum homological grading of $\overline{KhR}^h(B)$ is at most

$$\frac{1}{2}g(n') + {n'}^T N_- n' = \frac{1}{2}h(n').$$

Condition (1) is satisfied since $h(\mathbf{n}') \leq H$. Condition (2) is trivially satisfied if $h(\mathbf{n}') < H$, and if $h(\mathbf{n}') = H$, then Condition (2) is satisfied since B has a positive diagram.

Now let us do the induction step. Recall that if $B = D_{a,b}^i \sqcup^k U$ (here, $a, b, i \in \mathbb{Z}_{\geq 0}$ and $i \geq 1$, (a > b), then there is an unoriented skein exact triangle involving B_1, B, B_2 where $B_1 = E_{a,b}^{i-1} \sqcup^k U$ and $B_2 = D_{a,b}^{i-1} \sqcup^k U$. Assume both conditions (1) and (2) for B_1 and B_2 .

Let us figure out the grading shifts of the exact triangle. The special Lee generator of B maps to the special Lee generator of B_2 , so the map from B to B_2 has grading 0. Hence the exact triangle is

(1)
$$\cdots \to t^d \overline{KhR}(B_1) \to \overline{KhR}(B) \to \overline{KhR}(B_2) \to t^{d-1} \overline{KhR}(B_1) \to \cdots$$

for some d. Here, by $t^d A$, we mean A[d] if we use the notation of [RW24], i.e. $(t^d A)_k = A_{k-d}$. Note that we also have the same exact sequence in Lee homology. The following claim is the main technical lemma.

Claim 5 ([RW24, Lemma A.3 (4)]). We have $d \leq 0$. Furthermore, if b < a - 1, then d < 0.

Proof. This is [RW24, Lemma A.3 (4)]. We repeat this proof (phrased differently) at the end. \Box

Let's continue proving the induction step. Condition (1) holds for B: let h > H/2. Equation 1 in the relevant degrees read

$$\cdots \to \overline{KhR}^{h-d}(B_1) \to \overline{KhR}^h(B) \to \overline{KhR}^h(B_2) \to \cdots$$

but h - d > H/2, and so $\overline{KhR}^{h-d}(B_1)$ and $\overline{KhR}^h(B_2)$ vanish. Hence $\overline{KhR}^h(B)$ also vanishes.

Let us check Condition (2) for B. If b < a-1, then H/2 - d > H/2, and so Equation 1 implies that

$$0 \to \overline{KhR}^{H/2}(B) \to \overline{KhR}^{H/2}(B_2) \to 0$$

is exact, and the same holds in the Lee version. Hence Condition (2) follows.

If b = a - 1, then B has one more component than B_2 (and so also one more than B_1). Hence, the map

$$\overline{KhR}_{Lee}(B_2) \to t^{d-1}\overline{KhR}_{Lee}(B_1)$$

is a "nonorientable band map" which is zero, and so Equation 1 implies that the following sequences are exact:

$$\overline{KhR}^{H/2-1}(B_2) \to \overline{KhR}^{H/2-d}(B_1) \to \overline{KhR}^{H/2}(B) \to \overline{KhR}^{H/2}(B_2) \to 0,$$
$$0 \to \overline{KhR}^{H/2-d}_{Lee}(B_1) \to \overline{KhR}^{H/2}_{Lee}(B) \to \overline{KhR}^{H/2}_{Lee}(B_2) \to 0.$$

Hence,

$$\dim \overline{KhR}_{Lee}^{H/2}(B) \leq \dim \overline{KhR}^{H/2}(B)$$
$$\leq \dim \overline{KhR}^{H/2-d}(B_1) + \dim \overline{KhR}^{H/2}(B_2)$$
$$= \dim \overline{KhR}_{Lee}^{H/2-d}(B_1) + \dim \overline{KhR}_{Lee}^{H/2}(B_2)$$
$$= \dim \overline{KhR}_{Lee}^{H/2}(B),$$

(the first equality follows from the induction hypothesis, Condition (2) for B_1 and B_2) and so Condition (2) holds for B.

In particular, the map

$$\overline{KhR}^{H/2-d}(B_1) \to \overline{KhR}^{H/2}(B)$$

is injective. If $B = K^{\mathbf{p}}(\mathbf{n})$, then $B_1 = K^{\mathbf{p}}(\mathbf{n} - 2\mathbf{e}_j) \sqcup U$, and so this is exactly Claim 1 (3). (Note that d = 0 in this case.)

Proof of Claim 5. Use the same notations a, b, i, j, f, n' as Notation 3. Recall that $B = D_{a,b}^i \sqcup^k U$ and we are going from framing $f + e_j$ to f.

By the *i*th strand, we mean the *i*th input strand of the *braid* (not the braid closure) $(\sigma_1 \cdots \sigma_{a-1})^b \sigma_1 \cdots \sigma_i$ of which $D^i_{a,b}$ corresponds to the braid closure (here, σ_l 's are negative crossings). In particular,

the leftmost σ_i swaps the first strand and the i + 1th strand. Note that the *i*th strand might not close up to a link component (but it will be a part of a link component) in the braid closure (and so in *B*). Also note that it does close up in $D_{a,a-1}^{a-1}$.

Let $I \subset [a] := \{1, \dots, a\}$ be a set of strands such that $1 \leq |I| \leq a/2$, and say that the *i*th strands for $i \in I$ form a sublink of $D_{a,b}^i$. Let B^I be this sublink, and let s_B^I be the canonical Lee generator of B where everything is oriented as K but this sublink's orientation is reversed. Let $C = D_{a,a-1}^{a-1}$. The main idea is to compare the number of crossings between B^I and $B^{[a]\setminus I}$, and the number of crossings between C^I and $C^{[a]\setminus I}$, which gives

(2)
$$\operatorname{gr}_h s_B^I - \operatorname{gr}_h s_B \le \operatorname{gr}_h s_C^I - \operatorname{gr}_h s_C.$$

Indeed, the crossings that differ come from the braid, and these are all positive in $C^{[a]\setminus I} \cup (r(C^I))$, where r means the orientation is reversed. If b < a - 1, then inequality (2) is strict.

We also have the following, where F is the diagonal matrix with entries f_i .

(3)

$$gr_{h}s_{C}^{I} - gr_{h}s_{C} = \frac{1}{2}(\boldsymbol{n}' - 2|I|\boldsymbol{e_{j}})^{T}(F - W + N_{+} - N_{-})(\boldsymbol{n}' - 2|I|\boldsymbol{e_{j}}) - \frac{1}{2}\boldsymbol{n}'^{T}(F - W + N_{+} - N_{-})\boldsymbol{n}' \\ \leq \frac{1}{2}g(\boldsymbol{n}' - 2|I|\boldsymbol{e_{j}}) - \frac{1}{2}g(\boldsymbol{n}').$$

(Recall that the difference of the homological gradings is the same as the difference of the writhes divided by two.)

Let's now verify the claim. We consider two cases: the map $\overline{KhR}_{Lee}(B) \to \overline{KhR}_{Lee}(B_2)$ is either a merge map or a split map.

If it is a merge map, then $t^d \overline{KhR}_{Lee}(B_1) \to \overline{KhR}_{Lee}(B)$ is a split map. The image of the special Lee generator s_{B_1} of B_1 is s_B^I for some subset $I \subset \{1, \dots, a\}$ such that $1 \leq |I| \leq a/2$. Then, the above inequalities give

$$\operatorname{gr}_{h} s_{B}^{I} = (\operatorname{gr}_{h} s_{B}^{I} - \operatorname{gr}_{h} s_{B}) + \operatorname{gr}_{h} s_{B} \leq \frac{1}{2} g(\boldsymbol{n}' - 2|I|\boldsymbol{e_{j}}) = \operatorname{gr}_{h} s_{B_{1}}$$

and so $d \leq 0$. If b < a - 1, then the inequality is strict, and so d < 0.

If it is a split map, then $\overline{KhR}_{Lee}(D_2) \to t^{d-1}\overline{KhR}_{Lee}(D_1)$ is a merge map. The canonical Lee generator of B_2 that maps to s_{B_1} is again $s_{B_2}^I$ for some subset $I \subset \{1, \dots, a\}$ such that $1 \leq |I| \leq a/2$. Here, one of the two strands that the rightmost σ_i of $(\sigma_1 \cdots \sigma_{a-1})^b \sigma_1 \cdots \sigma_i$ swaps is in B_2^I , and the other one is in $B_2^{[a]\setminus I}$. The crossing corresponding to this rightmost σ_i is not in B_2 (as B_2 corresponds to $(\sigma_1 \cdots \sigma_{a-1})^b \sigma_1 \cdots \sigma_{i-1}$). Hence, we have

$$\operatorname{gr}_h s_{B_2}^I - \operatorname{gr}_h s_{B_2} \le \operatorname{gr}_h s_C^I - \operatorname{gr}_h s_C - 1,$$

and this inequality is strict if b < a - 1. Thus, we similarly get

$$\operatorname{gr}_h s_{B_2}^I \le \frac{1}{2} g(n' - 2|I| e_j) - 1 = \operatorname{gr}_h s_{B_1} - 1$$

and so $d \leq 0$. If b < a - 1, then d < 0.

Remark 6. In fact, d < 0 if the framing of the component K_j of B that we are considering is not minimal, because inequality (3) would be strict. This is not weird: when we iterate [RW24, Lemma A.2] to get [RW24, Lemma A.1], the highest t-degree of $R_{n,n',p-w}$ comes from letting n_i decrease to n'_i when the framing is maximal, i.e. when we go from p_i to $p_i - 1$.

References

[RW24] Qiuyu Ren and Michael Willis. Khovanov homology and exotic 4-manifolds, 2024.

$$\square$$