
A PROOF OF [RW24, THEOREM 5.5]

The proof of Theorem 5.5 in [RW24] has three steps, and utilizes [RW24, Lemma 5.8], which
is proven in [RW24, Section A]. We sketch a proof of [RW24, Theorem 5.5] assuming [RW24,
Lemma A.3 (1), (2), (3)].

Let us first state the main technical result we need for Steps 2 and 3.
We usually denote elements in Zm with a boldface letter such as n, and its coordinates as ni.

The ith unit vector is ei.

Claim 1. Assume assumption (ii) of [RW24, Theorem 5.5]. Let

H := max
n∈α+(2Z)2

h(n).

Then, we have

(1) K̃hR
h
(Kp(n)) = 0 whenever h > H/2.

(2) K̃hR
h
(Kp(n)) ≃ grK̃hR

h

Lee(K
p(n)) for h = H/2, as quantum graded vector spaces.

(3) For i such that ni ≥ 2, the annular creation map (band map)

K̃hR
H/2

(Kp(n− 2ei) ⊔ U) → K̃hR
H/2

(Kp(n))

is injective.

Let’s recall how [RW24, Theorem 5.5] follows. Assume both assumptions (i) and (ii). As-
sumption (i) says that h(α) = H.

(1) follows directly from Claim 1 (1) since w(Kp(α+ r, r)) = h(α).
(2) follows as in Step 2. The first part of (2) (the dimension of SLee

0,0 ) follows directly from
assumptions (i) and (ii) (using Claim 2). The second part of (2) (upper bound of the
dimension of S0,0) follows from Claim 1 (2), as in Step 2.

(3) follows directly from Claim 1 (2) and (3): recall from [RW24, Proposition 5.4] that

s(X;α) = lim
r→∞m

(sgl2(K
p(α+ r, r))− 2|r|)− |α|+ 1.

Let xr ∈ KhRLee(K
p(α + r, r)) be the canonical Lee generator of Kp(α + r, r). By

definition,
sgl2(K

p(α+ r, r)) := q(xr)− 1.

Then, Claim 1 (2) and (3) imply that the annular creation map

KhRLee(K
p(α+ r, r) ⊔ U) → KhRLee(K

p(α+ r + ej , r + ej))

has quantum filtration degree exactly 1. This map sends xr ⊗ a or xr ⊗ b to xr+ej ,
depending on the convention. (It will always map the other one to −σxr+ej , where σ is
the map on KhRLee given by swapping the two strands that the dotted annular creation
map creates). Hence

q(xr+ej ) = q(xr ⊗ a) + 1 = q(xr) + 2,

which is what we wanted to show.
Note that we are assuming [RW24, Proposition 5.4] and a slightly stronger statement

for Claim 1 (3), so we don’t have to consider the irreducible S(r)-subrepresentations
again.
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Claim 2. Let A,B be real m ×m-matrices, where Aij ≥ Bij ≥ 0 for i ̸= j and Bii ≥ 0. Then
for any x ∈ Rm,

xT (A− 2B)x ≤ |x|TA|x|,
where |x| ∈ Rm such that |x|i = |xi|. Note that if x ∈ α + (2Z)m for some α ∈ Zm, then
|x| ∈ α+ (2Z)m as well.

Proof. This follows since (aij − 2bij)xixj ≤ aij |x|i|x|j for all i, j. □

Now, let us show Claim 1. We will show (1) and (2) of Claim 1 first, and deal with (3) at the
end. Consider the full induction argument (the proof of [RW24, Lemma 5.8]), and consider all
the links B that come up in the induction argument.

Notation 3. Let’s say in this particular induction step, we are going from framing f + ej to f .
Recall that B is the same as an f -framed n′ cable of K for some n′ ∈ Zm

≥0, 2|n′ −n, for all but
one link component, Kj of K. Instead of taking the n′

j cable of Kj , we insert the braid closure
Di

a,b (a = n′
j) to an fj-framed diagram, where Di

a,b is as in [RW24, Appendix A], but where
the σi’s correspond to negative crossings. Also, B might have an additional unlinked unlink
(which might be empty). We will write such B as B = Di

a,b ⊔k U (omit j,f ,n′). The link that
corresponds to Di

a,0 is an (f + ej)-framed cable (but the blackboard framing of the components
that correspond to Kj (in the diagram B) have framing fj) and Da−1

a,a−1 is an f -framed cable.
(Also note that we are treating the Di

a,b’s for different values of a, b, i, j,f ,n′ as different objects.)

We renormalize KhR(B) and KhRLee(B) (in the homological degree) such that the canonical
Lee generator of B where all the strands of B are oriented the same as K is in homological
grading g(n′)/2 where

g(n′) := n′T (P −W +N+ −N−)n
′.

Write the renormalized groups as KhR(B) and KhRLee(B), and call the above canonical Lee
generator the special Lee generator and denote it as sB. (We are being ambiguous about what
the orientations are on the additional unlink ⊔kU , but this doesn’t matter.) Note that KhR is
insensitive of the framing and the orientation of the link components of B.

Note that K̃hR(Kp(n)) = KhR(Kp(n)) (ignore the quantum gradings).

We show the following by inducting on B.

Claim 4. We have the following:

(1) KhR
h
(B) = 0 whenever h > H/2.

(2) KhR
h
(B) ≃ grKhR

h
Lee(B) for h = H/2 (and so this holds for all h ≥ H/2).

The base cases are B = Kw(n′) ⊔k U for 0 ≤ n′ ≤ n, 2|n − n′. The maximum homological
grading of KhR

h
(B) is at most

1

2
g(n′) + n′TN−n

′ =
1

2
h(n′).

Condition (1) is satisfied since h(n′) ≤ H. Condition (2) is trivially satisfied if h(n′) < H, and
if h(n′) = H, then Condition (2) is satisfied since B has a positive diagram.

Now let us do the induction step. Recall that if B = Di
a,b ⊔k U (here, a, b, i ∈ Z≥0 and i ≥ 1,

a > b), then there is an unoriented skein exact triangle involving B1, B,B2 where B1 = Ei−1
a,b ⊔kU

and B2 = Di−1
a,b ⊔k U . Assume both conditions (1) and (2) for B1 and B2.
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Let us figure out the grading shifts of the exact triangle. The special Lee generator of B maps
to the special Lee generator of B2, so the map from B to B2 has grading 0. Hence the exact
triangle is

(1) · · · → tdKhR(B1) → KhR(B) → KhR(B2) → td−1KhR(B1) → · · ·
for some d. Here, by tdA, we mean A[d] if we use the notation of [RW24], i.e. (tdA)k = Ak−d.
Note that we also have the same exact sequence in Lee homology. The following claim is the
main technical lemma.

Claim 5 ([RW24, Lemma A.3 (4)]). We have d ≤ 0. Furthermore, if b < a− 1, then d < 0.

Proof. This is [RW24, Lemma A.3 (4)]. We repeat this proof (phrased differently) at the end. □

Let’s continue proving the induction step. Condition (1) holds for B: let h > H/2. Equation
1 in the relevant degrees read

· · · → KhR
h−d

(B1) → KhR
h
(B) → KhR

h
(B2) → · · ·

but h− d > H/2, and so KhR
h−d

(B1) and KhR
h
(B2) vanish. Hence KhR

h
(B) also vanishes.

Let us check Condition (2) for B. If b < a−1, then H/2−d > H/2, and so Equation 1 implies
that

0 → KhR
H/2

(B) → KhR
H/2

(B2) → 0

is exact, and the same holds in the Lee version. Hence Condition (2) follows.
If b = a−1, then B has one more component than B2 (and so also one more than B1). Hence,

the map
KhRLee(B2) → td−1KhRLee(B1)

is a “nonorientable band map” which is zero, and so Equation 1 implies that the following
sequences are exact:

KhR
H/2−1

(B2) → KhR
H/2−d

(B1) → KhR
H/2

(B) → KhR
H/2

(B2) → 0,

0 → KhR
H/2−d
Lee (B1) → KhR

H/2
Lee (B) → KhR

H/2
Lee (B2) → 0.

Hence,

dimKhR
H/2
Lee (B) ≤ dimKhR

H/2
(B)

≤ dimKhR
H/2−d

(B1) + dimKhR
H/2

(B2)

= dimKhR
H/2−d
Lee (B1) + dimKhR

H/2
Lee (B2)

= dimKhR
H/2
Lee (B),

(the first equality follows from the induction hypothesis, Condition (2) for B1 and B2) and so
Condition (2) holds for B.

In particular, the map
KhR

H/2−d
(B1) → KhR

H/2
(B)

is injective. If B = Kp(n), then B1 = Kp(n − 2ej) ⊔ U , and so this is exactly Claim 1 (3).
(Note that d = 0 in this case.)

Proof of Claim 5. Use the same notations a, b, i, j,f ,n′ as Notation 3. Recall that B = Di
a,b⊔kU

and we are going from framing f + ej to f .
By the ith strand, we mean the ith input strand of the braid (not the braid closure) (σ1 · · ·σa−1)

bσ1 · · ·σi
of which Di

a,b corresponds to the braid closure (here, σl’s are negative crossings). In particular,
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the leftmost σi swaps the first strand and the i + 1th strand. Note that the ith strand might
not close up to a link component (but it will be a part of a link component) in the braid closure
(and so in B). Also note that it does close up in Da−1

a,a−1.
Let I ⊂ [a] := {1, · · · , a} be a set of strands such that 1 ≤ |I| ≤ a/2, and say that the ith

strands for i ∈ I form a sublink of Di
a,b. Let BI be this sublink, and let sIB be the canonical Lee

generator of B where everything is oriented as K but this sublink’s orientation is reversed. Let
C = Da−1

a,a−1. The main idea is to compare the number of crossings between BI and B[a]\I , and
the number of crossings between CI and C [a]\I , which gives

(2) grhs
I
B − grhsB ≤ grhs

I
C − grhsC .

Indeed, the crossings that differ come from the braid, and these are all positive in C [a]\I∪(r(CI)),
where r means the orientation is reversed. If b < a− 1, then inequality (2) is strict.

We also have the following, where F is the diagonal matrix with entries fi.

grhs
I
C − grhsC =

1

2
(n′ − 2|I|ej)T (F −W +N+ −N−)(n

′ − 2|I|ej)

− 1

2
n′T (F −W +N+ −N−)n

′

≤ 1

2
g(n′ − 2|I|ej)−

1

2
g(n′).(3)

(Recall that the difference of the homological gradings is the same as the difference of the writhes
divided by two.)

Let’s now verify the claim. We consider two cases: the map KhRLee(B) → KhRLee(B2) is
either a merge map or a split map.

If it is a merge map, then tdKhRLee(B1) → KhRLee(B) is a split map. The image of the
special Lee generator sB1 of B1 is sIB for some subset I ⊂ {1, · · · , a} such that 1 ≤ |I| ≤ a/2.
Then, the above inequalities give

grhs
I
B = (grhs

I
B − grhsB) + grhsB ≤ 1

2
g(n′ − 2|I|ej) = grhsB1 ,

and so d ≤ 0. If b < a− 1, then the inequality is strict, and so d < 0.
If it is a split map, then KhRLee(D2) → td−1KhRLee(D1) is a merge map. The canonical

Lee generator of B2 that maps to sB1 is again sIB2
for some subset I ⊂ {1, · · · , a} such that

1 ≤ |I| ≤ a/2. Here, one of the two strands that the rightmost σi of (σ1 · · ·σa−1)
bσ1 · · ·σi swaps

is in BI
2 , and the other one is in B

[a]\I
2 . The crossing corresponding to this rightmost σi is not

in B2 (as B2 corresponds to (σ1 · · ·σa−1)
bσ1 · · ·σi−1). Hence, we have

grhs
I
B2

− grhsB2 ≤ grhs
I
C − grhsC − 1,

and this inequality is strict if b < a− 1. Thus, we similarly get

grhs
I
B2

≤ 1

2
g(n′ − 2|I|ej)− 1 = grhsB1 − 1

and so d ≤ 0. If b < a− 1, then d < 0. □

Remark 6. In fact, d < 0 if the framing of the component Kj of B that we are considering is
not minimal, because inequality (3) would be strict. This is not weird: when we iterate [RW24,
Lemma A.2] to get [RW24, Lemma A.1], the highest t-degree of Rn,n′,p−w comes from letting
ni decrease to n′

i when the framing is maximal, i.e. when we go from pi to pi − 1.
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