A PROOF OF [\[RW24,](#page-3-0) THEOREM 5.5]

The proof of Theorem 5.5 in [\[RW24\]](#page-3-0) has three steps, and utilizes [\[RW24,](#page-3-0) Lemma 5.8], which is proven in [\[RW24,](#page-3-0) Section A]. We sketch a proof of [\[RW24,](#page-3-0) Theorem 5.5] assuming [\[RW24,](#page-3-0) Lemma A.3 (1), (2), (3)].

Let us first state the main technical result we need for Steps 2 and 3.

We usually denote elements in \mathbb{Z}^m with a boldface letter such as n , and its coordinates as n_i . The *i*th unit vector is e_i .

Claim 1. Assume assumption (ii) of $[RW24, Theorem 5.5]$ $[RW24, Theorem 5.5]$. Let

$$
H:=\max_{\boldsymbol{n}\in\boldsymbol{\alpha}+(2\mathbb{Z})^2}h(\boldsymbol{n}).
$$

Then, we have

- (1) $\widetilde{KhR}^h(K^{\mathbf{p}}(\mathbf{n})) = 0$ whenever $h > H/2$.
- (2) $\widetilde{KhR}^h(K^{\mathbf{p}}(\boldsymbol{n})) \simeq \widetilde{\text{gr}}\widetilde{KhR}^h_{Lee}(K^{\mathbf{p}}(\boldsymbol{n}))$ for $h = H/2$, as quantum graded vector spaces.
- (3) For i such that $n_i \geq 2$, the annular creation map (band map)

$$
\widetilde{KhR}^{H/2}(K^{\mathbf{p}}(\mathbf{n}-2\mathbf{e_i})\sqcup U)\to \widetilde{KhR}^{H/2}(K^{\mathbf{p}}(\mathbf{n}))
$$

is injective.

Let's recall how $\vert \text{RW24}, \text{ Theorem 5.5} \vert$ follows. Assume both assumptions (i) and (ii). Assumption (i) says that $h(\alpha) = H$.

- (1) follows directly from Claim [1](#page-0-0) [\(1\)](#page-0-1) since $w(K^p(\alpha+r,r)) = h(\alpha)$.
- (2) follows as in Step 2. The first part of (2) (the dimension of $\mathcal{S}_{0,0}^{Lee}$) follows directly from assumptions (i) and (ii) (using Claim [2\)](#page-1-0). The second part of (2) (upper bound of the dimension of $\mathcal{S}_{0,0}$ follows from Claim [1](#page-0-0) [\(2\)](#page-0-2), as in Step 2.
- (3) follows directly from Claim [1](#page-0-0) [\(2\)](#page-0-2) and [\(3\)](#page-0-3): recall from [\[RW24,](#page-3-0) Proposition 5.4] that

$$
s(X; \boldsymbol{\alpha}) = \lim_{\boldsymbol{r} \to \infty^m} (s_{\mathfrak{gl}_2}(K^{\boldsymbol{p}}(\boldsymbol{\alpha}+\boldsymbol{r}, \boldsymbol{r})) - 2|\boldsymbol{r}|) - |\boldsymbol{\alpha}| + 1.
$$

Let $x_r \in KhR_{Lee}(K^p(\boldsymbol{\alpha}+\boldsymbol{r},\boldsymbol{r}))$ be the canonical Lee generator of $K^p(\boldsymbol{\alpha}+\boldsymbol{r},\boldsymbol{r})$. By definition,

$$
s_{\mathfrak{gl}_2}(K^{\mathbf{p}}(\boldsymbol{\alpha}+\boldsymbol{r},\boldsymbol{r})) := q(x_{\boldsymbol{r}}) - 1.
$$

Then, Claim [1](#page-0-0) [\(2\)](#page-0-2) and [\(3\)](#page-0-3) imply that the annular creation map

 $KhR_{Lee}(K^{\mathbf{p}}(\boldsymbol{\alpha}+\boldsymbol{r},\boldsymbol{r})\sqcup U)\rightarrow KhR_{Lee}(K^{\mathbf{p}}(\boldsymbol{\alpha}+\boldsymbol{r}+\boldsymbol{e_j},\boldsymbol{r}+\boldsymbol{e_j}))$

has quantum filtration degree exactly 1. This map sends $x_r \otimes a$ or $x_r \otimes b$ to x_{r+e_j} , depending on the convention. (It will always map the other one to $-\sigma x_{r+e_j}$, where σ is the map on KhR_{Lee} given by swapping the two strands that the dotted annular creation map creates). Hence

$$
q(x_{\boldsymbol{r}+\boldsymbol{e_j}})=q(x_{\boldsymbol{r}}\otimes \mathbf{a})+1=q(x_{\boldsymbol{r}})+2,
$$

which is what we wanted to show.

Note that we are assuming [\[RW24,](#page-3-0) Proposition 5.4] and a slightly stronger statement for Claim [1](#page-0-0) [\(3\)](#page-0-3), so we don't have to consider the irreducible $S(r)$ -subrepresentations again.

Claim 2. Let A, B be real $m \times m$ -matrices, where $A_{ij} \geq B_{ij} \geq 0$ for $i \neq j$ and $B_{ii} \geq 0$. Then for any $\boldsymbol{x} \in \mathbb{R}^m$,

$$
\boldsymbol{x}^T(A-2B)\boldsymbol{x} \leq |\boldsymbol{x}|^T A |\boldsymbol{x}|,
$$

where $|\mathbf{x}| \in \mathbb{R}^m$ such that $|x|_i = |x_i|$. Note that if $\mathbf{x} \in \alpha + (2\mathbb{Z})^m$ for some $\alpha \in \mathbb{Z}^m$, then $|\boldsymbol{x}| \in \boldsymbol{\alpha} + (2\mathbb{Z})^m$ as well.

Proof. This follows since $(a_{ij} - 2b_{ij})x_ix_j \leq a_{ij}|x|_i|x|_j$ for all i, j .

Now, let us show Claim [1.](#page-0-0) We will show [\(1\)](#page-0-1) and [\(2\)](#page-0-2) of Claim [1](#page-0-0) first, and deal with [\(3\)](#page-0-3) at the end. Consider the full induction argument (the proof of [\[RW24,](#page-3-0) Lemma 5.8]), and consider all the links B that come up in the induction argument.

Notation 3. Let's say in this particular induction step, we are going from framing $f + e_i$ to f. Recall that B is the same as an f-framed n' cable of K for some $n' \in \mathbb{Z}_{\geq 0}^m$, $2|n'-n$, for all but one link component, K_j of K. Instead of taking the n'_j cable of K_j , we insert the braid closure $D_{a,b}^{i}$ ($a = n'_{j}$) to an f_{j} -framed diagram, where $D_{a,b}^{i}$ is as in [\[RW24,](#page-3-0) Appendix A], but where the σ_i 's correspond to negative crossings. Also, B might have an additional unlinked unlink (which might be empty). We will write such B as $B = D_{a,b}^i \sqcup^k U$ (omit j, f, n'). The link that corresponds to $D_{a,0}^i$ is an $(f + e_j)$ -framed cable (but the blackboard framing of the components that correspond to K_j (in the diagram B) have framing f_j) and $D_{a,a-1}^{a-1}$ is an f-framed cable. (Also note that we are treating the $D_{a,b}^i$'s for different values of $a, b, i, j, \boldsymbol{f}, n'$ as different objects.)

We renormalize $KhR(B)$ and $KhR_{Lee}(B)$ (in the homological degree) such that the canonical Lee generator of B where all the strands of B are oriented the same as K is in homological grading $g(n')/2$ where

$$
g(n') := n'^T (P - W + N_{+} - N_{-}) n'.
$$

Write the renormalized groups as $\overline{KhR}(B)$ and $\overline{KhR}_{Lee}(B)$, and call the above canonical Lee generator the *special Lee generator* and denote it as s_B . (We are being ambiguous about what the orientations are on the additional unlink $\sqcup^k U$, but this doesn't matter.) Note that \overline{KhR} is insensitive of the framing and the orientation of the link components of B.

Note that $\widetilde{KhR}(K^{\rho}(n)) = \overline{KhR}(K^{\rho}(n))$ (ignore the quantum gradings).

We show the following by inducting on B.

Claim 4. We have the following:

- (1) $\overline{KhR}^h(B) = 0$ whenever $h > H/2$.
- (2) $\overline{KhR}^h(B) \simeq \text{gr}\overline{KhR}^h_{Lee}(B)$ for $h = H/2$ (and so this holds for all $h \geq H/2$).

The base cases are $B = K^{\mathbf{w}}(\mathbf{n}') \sqcup^k U$ for $0 \leq \mathbf{n}' \leq \mathbf{n}, 2|\mathbf{n} - \mathbf{n}'$. The maximum homological grading of $\overline{KhR}^h(B)$ is at most

$$
\frac{1}{2}g(\boldsymbol{n}') + \boldsymbol{n}'^T N_{-} \boldsymbol{n}' = \frac{1}{2}h(\boldsymbol{n}').
$$

Condition [\(1\)](#page-1-1) is satisfied since $h(n') \leq H$. Condition [\(2\)](#page-1-2) is trivially satisfied if $h(n') < H$, and if $h(n') = H$, then Condition [\(2\)](#page-1-2) is satisfied since B has a positive diagram.

Now let us do the induction step. Recall that if $B = D^i_{a,b} \sqcup^k U$ (here, $a, b, i \in \mathbb{Z}_{\geq 0}$ and $i \geq 1$, $a > b$), then there is an unoriented skein exact triangle involving B_1, B, B_2 where $B_1 = E_{a,b}^{i-1} \sqcup^k U$ and $B_2 = D_{a,b}^{i-1} \sqcup^k U$. Assume both conditions [\(1\)](#page-1-1) and [\(2\)](#page-1-2) for B_1 and B_2 .

Let us figure out the grading shifts of the exact triangle. The special Lee generator of B maps to the special Lee generator of B_2 , so the map from B to B_2 has grading 0. Hence the exact triangle is

(1)
$$
\cdots \to t^d \overline{KhR}(B_1) \to \overline{KhR}(B) \to \overline{KhR}(B_2) \to t^{d-1} \overline{KhR}(B_1) \to \cdots
$$

for some d. Here, by $t^d A$, we mean $A[d]$ if we use the notation of [\[RW24\]](#page-3-0), i.e. $(t^d A)_k = A_{k-d}$. Note that we also have the same exact sequence in Lee homology. The following claim is the main technical lemma.

Claim 5 ([\[RW24,](#page-3-0) Lemma A.3 (4)]). We have $d \leq 0$. Furthermore, if $b < a-1$, then $d < 0$.

Proof. This is [\[RW24,](#page-3-0) Lemma A.3 (4)]. We repeat this proof (phrased differently) at the end. \square

Let's continue proving the induction step. Condition [\(1\)](#page-1-1) holds for B: let $h > H/2$. Equation [1](#page-2-0) in the relevant degrees read

$$
\cdots \to \overline{KhR}^{h-d}(B_1) \to \overline{KhR}^h(B) \to \overline{KhR}^h(B_2) \to \cdots
$$

but $h - d > H/2$, and so $\overline{KhR}^{h-d}(B_1)$ and $\overline{KhR}^h(B_2)$ vanish. Hence $\overline{KhR}^h(B)$ also vanishes.

Let us check Condition [\(2\)](#page-1-2) for B. If $b < a-1$, then $H/2-d > H/2$, and so Equation [1](#page-2-0) implies that

$$
0 \to \overline{KhR}^{H/2}(B) \to \overline{KhR}^{H/2}(B_2) \to 0
$$

is exact, and the same holds in the Lee version. Hence Condition [\(2\)](#page-1-2) follows.

If $b = a-1$, then B has one more component than B_2 (and so also one more than B_1). Hence, the map

$$
\overline{KhR}_{Lee}(B_2) \to t^{d-1}\overline{KhR}_{Lee}(B_1)
$$

is a "nonorientable band map" which is zero, and so Equation [1](#page-2-0) implies that the following sequences are exact:

$$
\overline{KhR}^{H/2-1}(B_2) \to \overline{KhR}^{H/2-d}(B_1) \to \overline{KhR}^{H/2}(B) \to \overline{KhR}^{H/2}(B_2) \to 0,
$$

$$
0 \to \overline{KhR}^{H/2-d}_{Lee}(B_1) \to \overline{KhR}^{H/2}_{Lee}(B) \to \overline{KhR}^{H/2}_{Lee}(B_2) \to 0.
$$

Hence,

$$
\dim \overline{KhR}_{Lee}^{H/2}(B) \le \dim \overline{KhR}^{H/2}(B)
$$

\n
$$
\le \dim \overline{KhR}^{H/2-d}(B_1) + \dim \overline{KhR}^{H/2}(B_2)
$$

\n
$$
= \dim \overline{KhR}_{Lee}^{H/2-d}(B_1) + \dim \overline{KhR}_{Lee}^{H/2}(B_2)
$$

\n
$$
= \dim \overline{KhR}_{Lee}^{H/2}(B),
$$

(the first equality follows from the induction hypothesis, Condition (2) for B_1 and B_2) and so Condition [\(2\)](#page-1-2) holds for B.

In particular, the map

$$
\overline{KhR}^{H/2-d}(B_1)\to \overline{KhR}^{H/2}(B)
$$

is injective. If $B = K^p(n)$, then $B_1 = K^p(n - 2e_j) \sqcup U$, and so this is exactly Claim [1](#page-0-0) [\(3\)](#page-0-3). (Note that $d = 0$ in this case.)

Proof of Claim [5.](#page-2-1) Use the same notations a, b, i, j, f, n' as Notation [3.](#page-1-3) Recall that $B = D^i_{a,b} \sqcup^k U$ and we are going from framing $f + e_i$ to f.

By the *ith strand*, we mean the *i*th input strand of the *braid* (not the braid closure) $(\sigma_1 \cdots \sigma_{a-1})^b \sigma_1 \cdots \sigma_i$ of which $D_{a,b}^i$ corresponds to the braid closure (here, σ_l 's are negative crossings). In particular,

the leftmost σ_i swaps the first strand and the $i + 1$ th strand. Note that the *i*th strand might not close up to a link component (but it will be a part of a link component) in the braid closure (and so in B). Also note that it does close up in $D_{a,a-1}^{a-1}$.

Let $I \subset [a] := \{1, \dots, a\}$ be a set of strands such that $1 \leq |I| \leq a/2$, and say that the *i*th strands for $i \in I$ form a sublink of $D_{a,b}^i$. Let B^I be this sublink, and let s_B^I be the canonical Lee generator of B where everything is oriented as K but this sublink's orientation is reversed. Let $C = D_{a,a-1}^{a-1}$. The main idea is to compare the number of crossings between B^I and $B^{[a]\setminus I}$, and the number of crossings between C^{I} and $C^{[a]\setminus I}$, which gives

(2)
$$
\mathrm{gr}_h s_B^I - \mathrm{gr}_h s_B \leq \mathrm{gr}_h s_C^I - \mathrm{gr}_h s_C.
$$

Indeed, the crossings that differ come from the braid, and these are all positive in $C^{[a]\setminus I}\cup (r(C^I)),$ where r means the orientation is reversed. If $b < a - 1$, then inequality [\(2\)](#page-3-1) is strict.

We also have the following, where F is the diagonal matrix with entries f_i .

(3)
\n
$$
gr_{h} s_{C}^{I} - gr_{h} s_{C} = \frac{1}{2} (\mathbf{n}' - 2|I| \mathbf{e}_{\mathbf{j}})^{T} (F - W + N_{+} - N_{-})(\mathbf{n}' - 2|I| \mathbf{e}_{\mathbf{j}}) - \frac{1}{2} \mathbf{n}'^{T} (F - W + N_{+} - N_{-}) \mathbf{n}' \leq \frac{1}{2} g (\mathbf{n}' - 2|I| \mathbf{e}_{\mathbf{j}}) - \frac{1}{2} g (\mathbf{n}').
$$

(Recall that the difference of the homological gradings is the same as the difference of the writhes divided by two.)

Let's now verify the claim. We consider two cases: the map $\overline{KhR}_{Lee}(B) \rightarrow \overline{KhR}_{Lee}(B_2)$ is either a merge map or a split map.

If it is a merge map, then $t^d \overline{KhR}_{Lee}(B_1) \rightarrow \overline{KhR}_{Lee}(B)$ is a split map. The image of the special Lee generator s_{B_1} of B_1 is s_B^I for some subset $I \subset \{1, \dots, a\}$ such that $1 \leq |I| \leq a/2$. Then, the above inequalities give

$$
\mathrm{gr}_h s_B^I = (\mathrm{gr}_h s_B^I - \mathrm{gr}_h s_B) + \mathrm{gr}_h s_B \le \frac{1}{2} g(n' - 2|I|e_j) = \mathrm{gr}_h s_{B_1},
$$

and so $d \leq 0$. If $b < a - 1$, then the inequality is strict, and so $d < 0$.

If it is a split map, then $\overline{KhR}_{Lee}(D_2) \rightarrow t^{d-1}\overline{KhR}_{Lee}(D_1)$ is a merge map. The canonical Lee generator of B_2 that maps to s_{B_1} is again $s_{B_2}^I$ for some subset $I \subset \{1, \dots, a\}$ such that $1 \leq |I| \leq a/2$. Here, one of the two strands that the rightmost σ_i of $(\sigma_1 \cdots \sigma_{a-1})^b \sigma_1 \cdots \sigma_i$ swaps is in B_2^I , and the other one is in $B_2^{[a]\setminus I}$ $2^{[a] \setminus I}$. The crossing corresponding to this rightmost σ_i is not in B_2 (as B_2 corresponds to $(\sigma_1 \cdots \sigma_{a-1})^b \sigma_1 \cdots \sigma_{i-1}$). Hence, we have

$$
\mathrm{gr}_h s_{B_2}^I - \mathrm{gr}_h s_{B_2} \le \mathrm{gr}_h s_C^I - \mathrm{gr}_h s_C - 1,
$$

and this inequality is strict if $b < a - 1$. Thus, we similarly get

$$
\mathrm{gr}_{h} s_{B_2}^{I} \le \frac{1}{2} g(n' - 2|I|e_j) - 1 = \mathrm{gr}_{h} s_{B_1} - 1
$$

and so $d \leq 0$. If $b < a - 1$, then $d < 0$.

Remark 6. In fact, $d < 0$ if the framing of the component K_i of B that we are considering is not minimal, because inequality [\(3\)](#page-3-2) would be strict. This is not weird: when we iterate [\[RW24,](#page-3-0) Lemma A.2] to get [\[RW24,](#page-3-0) Lemma A.1], the highest t-degree of $R_{n,n',p-w}$ comes from letting n_i decrease to n'_i when the framing is maximal, i.e. when we go from p_i to $p_i - 1$.

REFERENCES

[RW24] Qiuyu Ren and Michael Willis. Khovanov homology and exotic 4-manifolds, 2024.

$$
\sqcup
$$