Fun facts about triply-graded homology

Joshua Wang

October 10, 2025

1/13

The HOMFLYPT polynomial is a rational function $\overline{P}(L) \in \mathbf{Z}(q, a)$ for each oriented link L satisfying the skein relation

$$a\overline{P}\left(\bigcirc \bigcirc \right) - a^{-1}\overline{P}\left(\bigcirc \bigcirc \right) = (q - q^{-1})\overline{P}\left(\bigcirc \bigcirc \right)$$

and normalization $\overline{P}(unknot) = 1$.

The HOMFLYPT polynomial is a rational function $\overline{P}(L) \in \mathbf{Z}(q, a)$ for each oriented link L satisfying the skein relation

$$a\overline{P}\left(\bigcirc \bigcirc \right) - a^{-1}\overline{P}\left(\bigcirc \bigcirc \right) = (q - q^{-1})\overline{P}\left(\bigcirc \bigcirc \right)$$

and normalization $\overline{P}(unknot) = 1$.

Torus knot examples:

$$\overline{P}(T(2,3)) = \begin{pmatrix} -a^4(1) \\ +a^2(q^{-2}+q^2) \end{pmatrix} \qquad \overline{P}(T(2,5)) = \begin{pmatrix} -a^6(q^{-2}+q^2) \\ +a^4(q^{-4}+1+q^4) \end{pmatrix}$$

$$\overline{P}(T(3,4)) = \begin{pmatrix} a^{10}(1) \\ -a^8(q^4+q^2+1+q^{-2}+q^{-4}) \\ +a^6(q^6+q^2+1+q^{-2}+q^{-6}) \end{pmatrix}$$

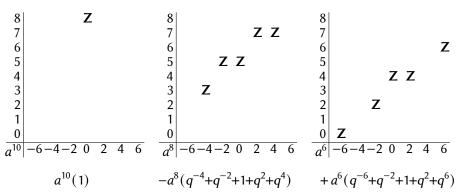
The triply-graded homology $\overline{H}(L) = \bigoplus_{i,j,k \in \mathbb{Z}} \overline{H}^{i,j,k}(L)$ of an oriented link L, defined by Khovanov–Rozansky '05, satisfies

the coefficient of
$$q^i a^j$$
 in $\overline{P}(L) = \sum_{k \in \mathbb{Z}} (-1)^k \operatorname{rk} \overline{H}^{i,j,k}(L)$.

The triply-graded homology $\overline{H}(L) = \bigoplus_{i,i,k \in \mathbb{Z}} \overline{H}^{i,j,k}(L)$ of an oriented link L, defined by Khovanov-Rozansky '05, satisfies

the coefficient of
$$q^i a^j$$
 in $\overline{P}(L) = \sum_{k \in \mathbb{Z}} (-1)^k \operatorname{rk} \overline{H}^{i,j,k}(L)$.

 $\overline{H}(T(3,4))$ viewed in "a-layers":



Today, many algebraic geometers, representation theorists, and algebraic combinatorialists are interested in triply-graded homology.

Today, many algebraic geometers, representation theorists, and algebraic combinatorialists are interested in triply-graded homology.

There was a series of conjectures, now mostly proven, relating $\overline{H}(L)$ to objects outside of topology $(q, t\text{-}Catalan numbers, Hilbert schemes of plane curve singularities, Cherednik algebras, the Hilbert scheme of points in <math>\mathbb{C}^2$)

October 10, 2025

Today, many algebraic geometers, representation theorists, and algebraic combinatorialists are interested in triply-graded homology.

There was a series of conjectures, now mostly proven, relating $\overline{H}(L)$ to objects outside of topology $(q, t\text{-}\mathrm{Catalan}$ numbers, Hilbert schemes of plane curve singularities, Cherednik algebras, the Hilbert scheme of points in \mathbb{C}^2)

Gorsky '10 conjectured a relationship between $\overline{H}(T(n, n+1))$ and Catalan combinatorics, proved by Hogancamp '17.

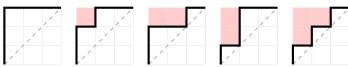
Today, many algebraic geometers, representation theorists, and algebraic combinatorialists are interested in triply-graded homology.

There was a series of conjectures, now mostly proven, relating H(L) to objects outside of topology (q, t-Catalan numbers, Hilbert schemes of plane curve singularities, Cherednik algebras, the Hilbert scheme of points in \mathbb{C}^2)

Gorsky '10 conjectured a relationship between $\overline{H}(T(n, n+1))$ and Catalan combinatorics, proved by Hogancamp '17.

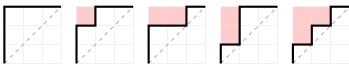
Catalan numbers $C_n = \frac{1}{n+1} \binom{2n}{n}$ count mountain ranges $\mu \subset [0, n] \times [0, n]$.

For each mountain range $\mu \subset [0, n] \times [0, n]$, let $A(\mu)$ be the area above it:

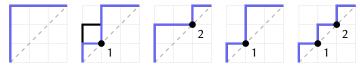


5/13

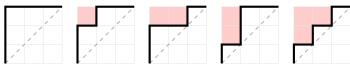
For each mountain range $\mu \subset [0, n] \times [0, n]$, let $A(\mu)$ be the area above it:



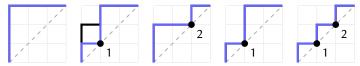
With μ fixed, imagine a blue path starting from the northeast corner, traveling west and south, bouncing between μ and the diagonal.



For each mountain range $\mu \subset [0, n] \times [0, n]$, let $A(\mu)$ be the area above it:



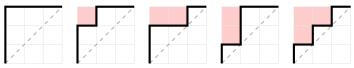
With μ fixed, imagine a blue path starting from the northeast corner, traveling west and south, bouncing between μ and the diagonal.



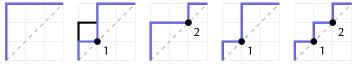
The sum of the locations where it hits the diagonal is the *bounce* $B(\mu)$.

5/13

For each mountain range $\mu \subset [0, n] \times [0, n]$, let $A(\mu)$ be the area above it:



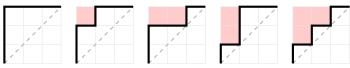
With μ fixed, imagine a blue path starting from the northeast corner, traveling west and south, bouncing between μ and the diagonal.



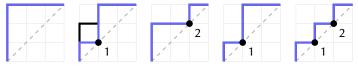
The sum of the locations where it hits the diagonal is the *bounce* $B(\mu)$. The q, t-Catalan number $C_n(q,t)$ is the weighted count

$$C_n(q,t) = \sum_{\mu} q^{\binom{n}{2} - A(\mu)} t^{B(\mu)}$$
 $C_3(q,t) = q^3 + q^2 t + q t^2 + q t + t^3$

For each mountain range $\mu \subset [0, n] \times [0, n]$, let $A(\mu)$ be the area above it:



With μ fixed, imagine a blue path starting from the northeast corner, traveling west and south, bouncing between μ and the diagonal.

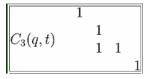


The sum of the locations where it hits the diagonal is the *bounce* $B(\mu)$. The q, t-Catalan number $C_n(q,t)$ is the weighted count

$$C_n(q,t) = \sum_{\mu} q^{\binom{n}{2} - A(\mu)} t^{B(\mu)} \qquad C_3(q,t) = q^3 + q^2 t + q t^2 + q t + t^3$$

Originally defined by Garsia-Haiman '96. This version by Haglund '98.

Examples from A. Garsia's "The Macdonald Polynomial Web Page":



represents

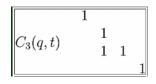
$$q^3$$

$$q^2t$$

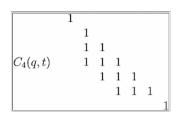
$$qt qt^2$$

$$t^3$$

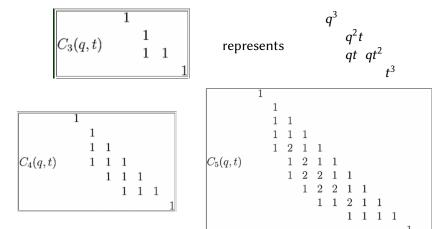
Examples from A. Garsia's "The Macdonald Polynomial Web Page":



represents $\begin{array}{c} q^3 \\ q^2t \\ qt \ qt^2 \\ t^3 \end{array}$



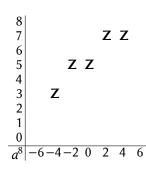
Examples from A. Garsia's "The Macdonald Polynomial Web Page":

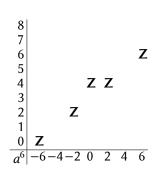


Theorem (Haiman '98, Garsia–Haglund '01): The *q*, *t*-Catalan number is *q*, *t*-symmetric and *q*, *t*-unimodal.

 $\overline{H}(T(3,4))$ viewed in *a*-layers.

8 7] .	Z		
6 5				
5				
4				
4 3 2				
2				
1				
0				
$\overline{a^{10}}$	-6-4-2	0 2	4	6





 $\overline{H}(T(3,4))$ viewed in *a*-layers.

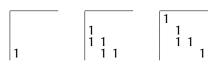
8	Z	8			8		
7		7		ΖZ	7		
6		6			6		Z
5		5	ΖZ		5		
4		4			4	ΖZ	
3		3	Z		3		
2		2			2	Z	
1		1			1		
_0		0			_0 Z		
a^{10}	-6-4-2 0 2 4 6	a^8	-6-4-2 0	2 4 6	$a^{6} -6-$	-4-2024	6

There is a nice change of gradings we can apply to triply-graded homology: (also, only record ranks).

 $\overline{H}(T(3,4))$ viewed in *a*-layers.

8 7	Z	8 7		ΖZ	8 7		
6		6			6		Ζ
5		5	ΖZ		5		
4		4			4	ΖZ	
3		3	Z		3		
2		2			2	Z	
1		1			1		
0		0			0 Z		
a^{10}	-6-4-2 0 2 4 6	a^8	-6-4-2 0	2 4 6	$a^{6} -6-$	-4-202	16

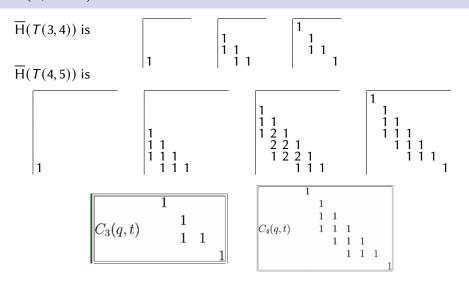
There is a nice change of gradings we can apply to triply-graded homology: (also, only record ranks).

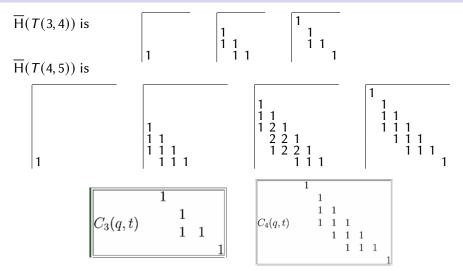


$$\overline{H}(T(3,4))$$
 is
$$\begin{bmatrix} 1 & & 1 \\ 1 & 1 & & 1 \\ 1 & & & 1 \end{bmatrix}$$

$\overline{H}(T(3,4))$ is		1 1 1 .	
$\overline{H}(T(4,5))$ is	1		
		1 1 1	1 1 1
1	1 1 1 1 1 1 1 1 1	1 2 1 2 2 1 1 2 2 1	111

8 / 13

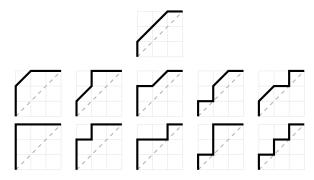




Gorsky conjectured that the bottom *a*-layer of $\overline{H}(T(n, n + 1))$ is the q, t-Catalan number $C_n(q, t)$!

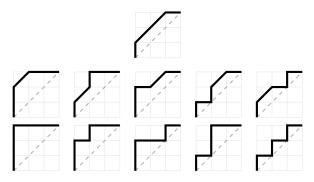
8/13

Gorsky also conjectured that the higher *a*-degree *q*, *t*-polynomials are weighted counts of Schröder paths (related to *q*, *t*-Schröder numbers)



9/13

Gorsky also conjectured that the higher *a*-degree *q*, *t*-polynomials are weighted counts of Schröder paths (related to *q*, *t*-Schröder numbers)



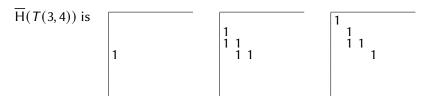
The number in layer $k \in \{0, ..., n-1\}$ is equal to the number of k-dim facets of the (n-1)-dim associahedron. Total = nth Hipparchus number (150 BCE).

Here are the ranks of \overline{H} , \overline{Kh} , and \overline{HFK} for T(n, n + 1).

n	$rk\overline{H}$	$rk\overline{Kh}$	$\operatorname{rk}\widehat{HFK}$
1	1	1	1
2	3	3	3
3	11	5	5
4	45	9	7
5	197	17	9
6	903	31	11
7	4 279	57	13
8	20 793	105	15
9	103 049	193	17
10	518 859	355	19
11	2 646 723	653	21
12	13 648 869	1 201	23

The last few computations of rk Kh are conjectural (Shumakovich-Turner).

October 10, 2025

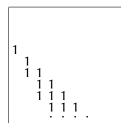


$\overline{H}(T(3,4))$ is	1	1 1 1 1 1	1 1 1 1 1 1
$\overline{H}(T(3,5))$ is	1 1	1 1 1 2 1 1 1	1 1 11 11 11

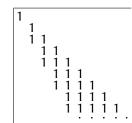
$\overline{H}(T(3,4))$ is	1	1 1 1 1 1	1 1 1 1 1
$\overline{H}(T(3,5))$ is	1 1	1 1 1 2 1 1 1	1 1 11 11 11
$\overline{H}(T(3,7))$ is	1 1 1 1 1 1	1 1 1 2 1 1 2 1 1 2 1 1 2 1	1 1 11 11 111 111 11

There is a well-defined stable limit $\overline{H}(T(n, \infty)) := \lim_{m \to \infty} \overline{H}(T(n, m))$ with appropriate grading shifts.

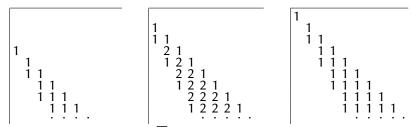
There is a well-defined stable limit $\overline{H}(T(n, \infty)) := \lim_{m \to \infty} \overline{H}(T(n, m))$ with appropriate grading shifts. $\overline{H}(T(3, \infty))$ looks like



```
1
1 1
2 1
1 2 1
2 2 1
1 2 2 1
2 2 2 1
1 2 2 2 1
1 2 2 2 1
```



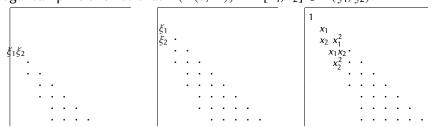
There is a well-defined stable limit $\overline{H}(T(n,\infty)) := \lim_{m\to\infty} \overline{H}(T(n,m))$ with appropriate grading shifts. $\overline{H}(T(3,\infty))$ looks like



Hogancamp '15 showed that $\overline{H}(T(3,\infty)) \cong \mathbf{Z}[x_1,x_2] \otimes \Lambda(\xi_1,\xi_2)$.

There is a well-defined stable limit $\overline{H}(T(n,\infty)) := \lim_{m\to\infty} \overline{H}(T(n,m))$ with appropriate grading shifts. $\overline{H}(T(3,\infty))$ looks like

Hogancamp '15 showed that $\overline{H}(T(3,\infty)) \cong \mathbf{Z}[x_1,x_2] \otimes \Lambda(\xi_1,\xi_2)$.



Triply-graded to Khovanov

Hogancamp '15 proves that $\overline{H}_N(T(n,\infty)) \cong \mathbf{Z}[x_1,\ldots,x_{n-1}] \otimes \Lambda(\xi_1,\ldots,\xi_{n-1}).$

13 / 13

Triply-graded to Khovanov

Hogancamp '15 proves that $\overline{H}_N(T(n,\infty)) \cong \mathbf{Z}[x_1,\ldots,x_{n-1}] \otimes \Lambda(\xi_1,\ldots,\xi_{n-1}).$

Gorksy-Oblomkov-Rasmussen '12 conjecture that if you equip this graded algebra with the differential

$$d_2(x_k) = 0$$
 $d_2(\xi_k) = \sum_{\substack{i,j \ge 0 \\ i+j=k}} x_i x_j$

its homology is $\overline{\mathsf{Kh}}(T(n,\infty))$.

Triply-graded to Khovanov

Hogancamp '15 proves that $\overline{H}_N(T(n,\infty)) \cong \mathbf{Z}[x_1,\ldots,x_{n-1}] \otimes \Lambda(\xi_1,\ldots,\xi_{n-1}).$

Gorksy-Oblomkov-Rasmussen '12 conjecture that if you equip this graded algebra with the differential

$$d_2(x_k) = 0$$
 $d_2(\xi_k) = \sum_{\substack{i,j \ge 0 \\ i+j=k}} x_i x_j$

its homology is $\overline{\mathsf{Kh}}(T(n,\infty))$.

If you instead use the differential

$$d(x_k) = 0$$
 $d(\xi_1) = 0$ $d(\xi_k) = x_{k-1}$

the resulting homology should be $\widehat{\mathsf{HFK}}(T(n,\infty))$.

