
Open Problems for the Barbados Graph Theory Workshop 2017

An up-to-date version of this list is maintained at https://web.math.princeton.edu/~gjg2/
barbadosopenproblems2017.pdf.

Please send your open problems and comments to Gregory Gauthier (gjg2@princeton.edu) to
be included here.

The website for the workshop is https://web.math.princeton.edu/~pds/barbados17/index.
html.

1. Let a, b be vertices of a graph G, such that for every vertex v, there is an induced path
between a, b containing v. Can we test in polynomial time whether all induced paths
between a, b have the same length? (Alex Scott and Paul Seymour)

2.

This open problem is brought to you by:
5th International Combinatorics Conference (5ICC)

http://www.monash.edu/5icc

4–9 December 2017, Monash University, Melbourne, Australia.
Invited speakers include Maria Chudnovsky, David Eppstein, Jacob Fox,

Daniela Kühn, Alexander Scott, Paul Seymour.

A graph G is k-colourable with defect d, or simply (k, d)-colourable, if each vertex v
of G can be assigned one of k colours so that at most d neighbours of v are assigned the
same colour as v. That is, each monochromatic subgraph has maximum degree at most d.
Let’s focus on minimising the number of colours k rather than the degree bound d. This
viewpoint motivates the following definition [7]. The defective chromatic number of a graph
class C is the minimum integer k (if such a k exists) for which there exists an integer d such
that every graph in C is (k, d)-colourable.

Consider the following three examples: Archdeacon [2] proved that for every surface Σ,
the defective chromatic number of graphs embeddable in Σ equals 3. Edwards, Kang,
Kim, Oum, and Seymour [3] proved that the class of graphs containing no Ks+1 minor has
defective chromatic number s (which is a weakening of Hadwiger’s conjecture). Ossona de
Mendez, Oum, and Wood [7] proved that for s ≤ t, the class of graphs containing no K∗s,t
minor has defective chromatic number s (which implies the above two results). Ossona de
Mendez et al. [7] conjectured the following:

Conjecture [7]: For every connected graph H, the defective chromatic number of H-minor-
free graphs equals the tree-depth of H minus 1.

Here the tree-depth of a connected graph H is the minimum height (measured in number
of vertices) of a rooted tree T such that H is a subgraph of the closure of T . Here the
closure of T is obtained from T by adding an edge between every ancestor and descendent
in T . The height of a rooted tree is the maximum number of vertices on a root-to-leaf path.
The tree-depth of a disconnected graph H is the maximum tree-depth of the connected
components of H.

Ossona de Mendez et al. [7] showed that the defective chromatic number of H-minor-free
graphs is at least the tree-depth of H minus 1. The construction is from [3]. Let G(s, d)
be the closure of the complete d-ary tree of height s. We prove by induction on s that
every (s − 1)-colouring of G(s, d) has a vertex of monochromatic degree at least d. In the
base case, since G(2, d) is the star K1,d, every 1-colouring of G(2, d) has a vertex with
monochromatic degree d, as claimed. Consider an (s− 1)-colouring of G(s, d). Let v be the
dominant vertex in G(s, d). Say v is coloured blue. Then G(s, d)− v consists of d disjoint
copies of G(s− 1, d). If some copy of G(s− 1, d) contains no blue vertex, then G(s− 1, d)
is (s− 2)-coloured, and by induction contains a vertex with monochromatic degree at least
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d, and we are done. Otherwise, each copy of G(s − 1, d) contains a blue vertex, in which
case, v has monochromatic degree at least d.

Now, given a connected graph H, let s + 1 be the tree-depth of H. By definition, G(s, d)
has tree-depth s. Since tree-depth is minor-monotone, every minor of G(s, d) has tree-depth
at most s. Thus H is not a minor of G(s, d). As proved above, every (s − 1)-colouring of
G(s, d) has a vertex with monochromatic degree at least d (which is unbounded). Thus the
defective chromatic number of the class of H-minor-free graphs is at least s.

The conjecture is true for H = Kt ([3]), for H = Ks,t or H = K∗s,t (where K∗s,t is formed by
taking Ks, subdividing each edge once, and t edges all adjacent to the s branch vertices)
([7]), and for connected graphs with tree-depth at most 3 ([7]), although the tree-depth 4
case is non-trivial and interesting. Mohar, Reed, and Wood [6] proved that the defective
chromatic number of the class of graphs with circumference k (that is, Ck+1-minor-free
graphs) is at most 3 log2 k, which is within a factor of 3 of the conjecture. This also
provides the best known result when H is a path.

Sergey Norin, Alex Scott, and Paul Seymour showed defective chi-boundedness:

Theorem 1 (Norin, Scott, Seymour). For all t there exists a constant f(t) such that, for
every connected graph H with tree-depth t, there is a constant g(H) such that H-minor free
graphs can be colored in f(t) colors such that monochromatic components have size at most
g(H).

The function f satisfies the recurrence f(t) ≤ 4f(t− 1) + 2, giving that f(t) is O
(
4t
)
.

(David Wood)

3. (a) Does every cubic bridgeless graph with n vertices contain a closed walk of length at
most 5n/4 that visits each vertex? The positive answer would improve the known
approximation ratios of TSP algorithms for cubic graphs. On the other hand, con-
structions found by Lukotka and Mazak, and by Dvorak, Mohar and myself show that
this bound would be tight up to an additive factor.

(b) Given a bridgeless graph G, consider the problem of finding a collection of cycles
C1, . . . , Ck covering all edges of G such that

∑k
i=1 |Ck| is minimized. Let m = |E(G)|.

It is known that an upper bound for the sum is 5m
3 , and if G is cubic, then the upper

bound can be improved to 8m
5 . Generally, 7m

5 is a lower bound; if true, it would imply
the cycle double cover conjecture.

(Dan Král’)

4. Prove that in a random bipartite graph with n vertices on each side of the bipartition, the
number of perfect matchings is 0 mod 3 with probability 1/3 asymptotically. (Stéphan
Thomassé)

5. A vertex coloring of a graph G is nonrepetitive if for every path with even number of
vertices, the color sequence in the first half is different from the color sequence of the second
half. This is a strengthening of the usual proper coloring, and also star coloring. We let
π(G) denote the nonrepetitive chromatic number of G; as every nonrepetitive coloring is a
proper coloring, we have χ(G) ≤ π(G). There exist bipartite graphs with arbitrarily large
nonrepetitive chromatic number.

An inclusion-exclusion argument shows that the number of nonrepetitive k-colorings of a
graph is a polynomial in k.

(a) Is there a simpler argument to prove that it is indeed a polynomial?

(b) The usual deletion-contraction doesn’t work. Can something be salvaged?
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(c) Compute the nonrepetitive chromatic polynomial of paths. This should imply Thue’s
1906 theorem that every path can be nonrepetitively 3-colored.

(d) Compute the nonrepetitive chromatic polynomial of trees. This should imply the
known fact that every tree can be nonrepetitively 4-colored.

(e) One of the main open problems about nonrepetitive coloring is whether there is an
absolute constant c such that every planar graph can be nonrepetitively c-colored.
Following Birkhoff, what can we say about the roots of the nonrepetitive chromatic
polynomial of planar graphs?

(Vaidy Sivaraman)

6. Let f(k) be the largest n such that the edges of Kn can be k-coloured so that each colour
gives a triangle-free graph. So f(1) = 2, f(2) = 5, and in general f(k) ≤ kf(k − 1) + 1
(because otherwise some vertex would have more than f(k − 1) neighbours in the same
colour). It turns out that f(3) = 16, so equality holds in this bound for k = 2, 3. Does
equality hold for all k? (Eli Berger, Maria Chudnovsky, Paul Seymour, Sophie Spirkl)

Comments:

1. This is just asking for the value of the Ramsey number R(3, . . . , 3), isn’t it?

I think this is a hard problem: it’s an old Erdős problem even to find the limit of
f(k)1/k. And it’s known that equality does not hold for your recurrence: the bound
for k = 4 would be 65 (corresponding to a Ramsey number of 66). But the argument
in this paper suggests that it should be at most 61: http://www.public.iastate.

edu/~ricardo/r3333global.pdf There is more relevant history here: https://www.

cs.rit.edu/~spr/PUBL/sur14.pdf (Alex Scott)

7. (a) Prove that the tree width of an even-hole-free graph G is bounded by a function in
the clique number of G.

(b) Solve Problem (a) for triangle-free graphs.

(c) Is there a polynomial-time algorithm for the Minimum Weighted Coloring Problem for
graphs with stability number 2?

(d) Prove the Erdős-Hajnal conjecture for odd-hole-free graphs.

(e) Prove that G is 2-divisible if and only if G is odd-hole-free.

(f) Prove that G is perfectly divisible if and only if G is odd-hole-free.

(g) Prove that there exists ε > 0 such that if G is an n-vertex graph that is P5-free and
C5-free, then ω(G) ≥ nε or α(G) ≥ nε.

(h) Prove that G is perfectly divisible if G is P5-free and C5-free.

Definitions and background: A hole is a chordless cycle with at least four vertices. A hole
is odd (even) if it has an odd (even) number of vertices. A graph is odd-hole-free (even-
hole-free) if it does not contain an odd hole (even hole) as an induced subgraph. The clique
number ω(G) of a graph is the number of vertices in a largest clique of G. The stability
number α(G) is the clique number of the complement G of G.

If Problem (a) is solved in the affirmative, then for every fixed k, there is a polynomial-time
algorithm to k-color an even-hole-free graph.

A weighted graph G is a graph where each vertex v is given a weight (integer) w(v).
The Minimum Weighted Coloring Problem asks for stable sets S1, . . . , Sr where each Si
is assigned a weight (non-negative integer) I(Si) such that (i) for each vertex v, w(v) ≤∑

v∈Si
I(Si), and (ii) the sum I(S1) + . . .+ I(Sr) is minimized.
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One might try to solve Problem (c) by substituting each vertex v by a clique with w(v)
vertices. But the size of the ”blown up” graph is O(W + n), where W is the sum of all
w(v), where as the size of the problem is O(n+ logW ).

The Erdős-Hajnal Conjecture states that for any fixed graph H, if a graph G is H-free,
then ω(G) > nε or α(G) > nε for some ε = ε(H).

A graph G is 2-divisible if for every induced subgraph H of G with at least one edge, there
is a partition (A,B) of V (H) such that ω(A) < ω(H) and ω(B) < ω(H). A proof of the
conjecture stated in (e) would imply χ(G) ≤ 2ω(G) for odd-hole-free graphs.

A graph G is perfectly divisible if and only if there exists a partition
(
A1, . . . , Aω(G)

)
such

that for each i, G[Ai] is perfect. An affirmative answer to the conjecture in (f) would prove
the Erdős-Hajnal Conjecture for odd-hole-free graphs with ε = 1

3 .

For problem (b), Maria Chudnovsky and Paul Seymour note that the graph formed by
taking C9 and adding a vertex adjacent to every third vertex is triangle-free, has no even
holes, and has a theta subgraph. This forecloses the approach of eliminating thetas to
bound treewidth.

Maria Chudnovsky proved that if G has no C5 and no P5, then G is 2-divisible. Chudnovsky
and Vaidy Sivaraman proved that if G has no bull and no odd holes, then G is perfectly
divisible. They also proved that if G has no bull and no P5, then G is perfectly divisible.
(Ch́ınh Hoàng)

8. Is it true that every even-hole free graph (that isn’t empty) contains an edge whose removal
does not create an even hole?

The problem is motivated by a similar problem for triangle-free graphs with no hole of
length divisible by 3, which would imply the 3-colorability of those graphs.

Paul Seymour notes that a similar conjecture using C4-free graphs instead of even-hole-free
graphs is false, as demonstrated by the icosahedron.

Cornuejols conjectured that if G is a bipartite graph with no holes of length 2 (mod 4), then
there is an edge that can be deleted to produce a graph with no holes of length 2 (mod 4).
(Paul Wollan; contributed by Marthe Bonamy)

9. A Clique-stable set separator of a graph G is a family F of bipartitions of V (G) such
that, for every clique K and stable set S of G, either K ∩S 6= ∅ or there exists a cut (B,W )
in F that separates K and S, meaning that K ⊆ B and S ⊆W . Note that every graph with
n vertices has a clique-stable set separator of size nO(logn). A class C of graphs satisfies the
polynomial CS-separation property if there exists a polynomial P such that every G
in C admits a CS-separator containing at most P (|V (G)|) cuts. Not every graph has the
polynomial CS-separation property, due to E Göös 2015.

Open question by Yannakakis (1991): does the class of perfect graphs satisfy the polynomial
CS-Separation property? A positive answer to this question is a necessary condition for the
existence of a compact extended formulation for the stable set polytope in perfect graphs.

Chordal graphs have the polynomial (even linear) CS-Separation property because they
have a linear number of maximal cliques. A graph is weakly chordal if G contains no hole
and antihole of length at least 5.

F. Maffray asked whether the class of weakly chordal graphs satisfies the polynomial CS-
Separation property. The answer is yes, due to two results:

Theorem 2 (Bonamy, Bousquet, Thomassé). Let k be an integer and let Ck be the class
of graphs with no hole of length at least k and no anti hole of length at least k. Then Ck
satisfies the Strong Erdős-Hajnal property, meaning there exists c > 0 such that every graph
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in Ck contains two disjoint sets of vertices V1, V2 of size at least c|V (G)|, such that V1 is
complete or anticomplete to V2.

Theorem 3 (Bousquet, Lagoutte, Thomassé). If C is a hereditary class satisfying the Strong
Erdős-Hajnal property, then C satisfies the polynomial CS-separation property.

(Aurélie Lagoutte)

10. Consider the minor containment relation. Then:

• {K3,K1,3}-free = linear forest (disjoint union of paths)

• {K4,K2,3}-free = outerplanar

• {K5,K3,3}-free = planar

• {K6,K3,4}-free = ?

There have been papers on K6-free graphs, most notably the paper by Robertson, Seymour
and Thomas on Hadwiger’s conjecture for k = 6. Also, there are some results on K3,4-free
graphs. If you forbid both, maybe something nice happens? A nice structure theorem?

I was led to this when looking at the Colin de Verdière invariant µ:

• {K3,K1,3}-free = graphs with µ ≤ 1

• {K4,K2,3}-free = graphs with µ ≤ 2

• {K5,K3,3}-free = graphs with µ ≤ 3

• {K6,K3,4}-free - Pattern breaks

Results by Robertson, Seymour and Thomas and by Lovász and Schrijver imply that:
Petersen family-free = linklessly embeddable = graphs with µ ≤ 4. (Vaidy Sivaraman)

11. A matching in a hypergraph H is a set of disjoint edges and a cover in H is a set of vertices
meeting all edges. Let ν(H) be the maximal size of a matching in H and τ(H) the minimal
size of a cover.

An old conjecture of Tuza [8] is that given any graph G the minimal number of edges
needed to cover all the triangles in G is at most 2 times the maximal number of edge-
disjoint triangles in G. In other words, Tuza’s conjecture is τ(TG) ≤ 2ν(TG), where TG is
the 3-uniform hypergraph with vertex set E(G) and whose edges are triples in E(G) that
form a triangle. The best known bound is τ ≤ 2.86ν [5]. The only known tight examples
for which 0 < τ(TG) = 2ν(TG) are when G is K4 or K5.

We suggest the following generalization of Tuza’s conjecture. For a 3-uniform hypergraph
H = (V,E) let H(2) be the pair hypergraph of H, namely the 3-uniform hypergraph
whose vertex set is

(
V
2

)
and whose edge set is {

(
e
2

)
| e ∈ E}. It turns out that the family

of pair hypergraphs has many forbidden structures (for example, a pair hypergraph cannot
contain a copy of the Fano plane).

We conjecture that Tuza’s conjecture is true for every pair hypergraph, namely, that in every
3-uniform hypergraph H we have τ(H(2)) ≤ 2ν(H(2)) (Tuza’s conjecture is the special case
where H is the hypergraph of triangles in G). See [1] for many more details on this problem.
(Shira Zerbib)

12. Let a family {Si} of tournaments be defined as follows. S1 is the tournament on 1 vertex.
For i > 1, Si is obtained by blowing up two vertices of the cyclic triangle into two copies
of Si−1. Prove that for every integer i > 1, there exists f(i) such that every tournament T
with domination number at least f(i) contains an isomorphic copy of Si.

This problem is taken from [4].
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Here, a tournament is a complete oriented graph. The domination number of a tournament
T is the smallest size of a subset S of the vertices of T so that every vertex in V (T ) \S has
an in-neighbour in S. The chromatic number of a tournament is the minimum number of
sets into which V (T ) can be partitioned such that each set induces a transitive tournament.
(Anita Liebenau)

13. Let f(t) denote the maximum chromatic number of Kt-minor-free, triangle-free graphs.
What is the asymptotic behaviour of f(t)? In particular, is f(t) < t for large enough t, i.e.
does the Hadwiger’s conjecture hold for triangle-free graphs for large t?

Some background:

Kühn and Osthus proved that Hadwiger’s conjecture holds for graphs of girth at least 5.

Combining results of Kostochka and Thomason on density of Kt- minor-free graphs with
the theorem of Shearer on independence number of triangle-free graphs, one can deduce
that every Kt-minor-free, triangle- free graph G on n vertices satisfies α(G) ≥ cn

√
log t/t

for some absolute constant c. Thus at least the independence number is large enough.

The best lower bound on f(t) that I know of is on the order of t2/3 up to a polylog factor
and comes from a random construction. (Sergey Norin)

14. A graph G is k-bend if it can be represented on some underlying grid as follows. Each
vertex corresponds to a path in the grid (no restrictions on the whereabouts of the endpoints
of these paths); each path takes at most k turns; and vw is an edge of G if and only if the
paths representing v and w intersect in some non-trivial interval (not just a point). Every
graph is k-bend for some k.

The clique chromatic number of a 0-bend graph is at most 2 (because 0-bend graphs are
interval graphs). The clique chromatic number of a 1-bend graph is at most 4 (Bonomo,
Mazzoleni and Stein). Can this bound be lowered to 3 (that would be best possible, because
C5 is 1-bend and 3-clique-chromatic)? How about k-bend graphs in general, is their clique
chromatic number bounded by some function of k? (Maya Stein)

15. Given an ordering v1, . . . , vn of the vertices of a graph G, we say that vi r-strongly reaches
vj if j ≤ i and there exists a vi-vj path of length at most r such that all internal vertices
are to the right of vi in the ordering. The r-strong coloring number of G is the minimum k
such that there exists an ordering where each vertex r-strongly reaches at most k vertices.
Note the 1-strong coloring number of G is the degeneracy number.

Open problem: Suppose that a class of graphs C is such that there exists ε > 0 such that
graphs in C have separators of size O

(
n1−ε

)
. Does this imply that there is a fixed constant

c such that graphs in C have r-strong coloring numbers O (rc)?

The converse is known to be true. (Sergey Norin)

Given a graph G with n vertices, we say that S is a separator if every component of G\S has
at most 2n

3 vertices. We are interested in classes of graphs, closed under taking subgraphs,
with separators of sublinear size; that is, there exists 0 < δ such that every graph G in the
class has a separator S of size O

(
n1−δ

)
.

Let C be a class of graphs closed under taking subgraphs. A result of Dvorak and Norin
states that there exists δ > 0 such that graphs in C have O

(
n1−δ

)
separators if and only if

there exists a constant c ≥ 0 every graph G in C, the average degree of an r-shallow minor
of G is O(rc).

We say that H is an r-shallow minor of G if H can be formed from a subgraph of G
by contracting edges that induce graphs with each component having radius at most r.
(Gwenaël Joret, David Wood)
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16. Conjecture ([9]): For all k, there exists a function f(k) such that for all graphs G, if the
connectivity κ(G) ≥ f(k), then there exists a spanning, bipartite subgraph H ⊆ G such
that κ(H) ≥ k.

This conjecture holds up to a log n factor [10]. (Thomassen; contributed by Michelle Del-
court)

17. A random d-regular graph is typically d-vertex-connected. For all k, does there exists a
function f(k) such that an f(k)-regular random graph G has a spanning, bipartite subgraph
H ⊆ G such that κ(H) ≥ k asymptotically almost surely? (Michelle Delcourt)

Solution (Sergey Norin) with f(k) = 2k−1. Note that if G has n vertices and d ≥ 3, almost
surely every set X with |X| ≤ c(d), then X induces at most |X| edges and almost surely if
|X| ≤ n

2 then X has at least 1
10 |X| edges going to V (G) \X.

Take any maximum cut, and suppose that the corresponding graph is not k-connected.
Then, there is a set of size at most k− 1 separating a component of size at most n

2 . Switch
sides of the cut for X. Consider the case |X| is bounded. Let S be a cutset of size k − 1,
and let Z = (V (G) \X) \ S.

Let α be the number of edges with both ends in X. There are at most k− 1 + |X| −α from
X to S. and there are at least |X|d− k + 1− |X| − α edges from X to Z. After switching
edges, we gain the edges from X to Z and lose the edges from X to S. Since we had a
maximum cut, we have |X|d ≤ 2(k− 1 + |X|). So |X|(2k− 1) ≤ 2(k− 1 + |X|). But this is
false when |X| ≥ 3, because 3(2k − 1) > 2(k − 1 + 3) so 6k − 3 > 2k + 4. The |X| ≤ 2 case
can be solved as well.

18. We say G is Ramsey for H if for every 2-coloring of E(G) there exists a monochromatic
(not necessarily induced) copy of H. We say that H1 and H2 are Ramsey equivalent if for
every G, we have G is Ramsey for H1 if and only if G is Ramsey for H2.

Question: can you find nonisomorphic trees T1 and T2 such that T1 is a Ramsey equivalent
of T2?

What we know: Kk is Ramsey equivalent to Kk disjoint union some smaller cliques (at
most one Kk−1), but Kk is not Ramsey equivalent to Kk minus an edge. Also, paths and
stars are not Ramsey equivalent to any other nonisomorphic graph.

What we don’t know: are there any connected nonisomorphic Ramsey equivalent graphs?
(Anita Liebenau)

19. Let A be a family of subsets of [n]. We say that A is intersecting if A ∩ B 6= ∅ for all
A,B ∈ A. It is easy to see that |A| ≤ 2n−1 and that any intersecting family can be
extended to a family of size 2n−1.

We say that A is 3-matching-free if for every distinct A,B,C ∈ A, A,B,C are not all
pairwise disjoint. It is easy to see that we can find a 3-matching-free family of size 3

42n (fix
two points and consider all sets with at least one of those two points), and a straightforward
argument shows that in every maximal 3-matching-free family A, either A or Ā is in A,
giving a lower bound of 1

22n (and one can construct a maximal 3-matching-free family of
size 1

22n+1 by adding ∅ to any intersecting family containing [n]). It is unknown whether a
better lower bound for the size of a maximal 3-matching-free family not containing ∅ exists.
(Peter Keevash)

20. For fixed t and k � t, what is the maximum number pt(k) of t-covers in a k-uniform
intersecting hypergraph H with τ(H) = t?

Here τ(H) is the minimum size of a vertex cover of H.
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The problem is motivated by the following question: what is the maximum number of edges
in a k-uniform intersecting hypergraph on [n] with τ(H) = t? The case t = 1 is the Erdős-
Ko-Rado theorem. When t = 2, the optimal construction consists of picking a special edge
e and vertex x /∈ e, and taking every edge containing x, exactly one vertex of e, and k − 2
vertices elsewhere. This gives

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1 edges.

Solving the first problem gives an answer to the question: taking H to be k-uniform,
τ(H) = t − 1, intersecting, number of t − 1 covers in H is maximum. The reduction is
due to Frankl in the case t = 3, and in the case t = 4 and t = 5 by Frankl and Ota and
Tokushige.

Conjecture (Frankl): pt(k) = kt −
(
t
2

)
kt−1 +O(kt−2). (Liana Yepremyan)
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