
Università di Pisa
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Introduction

In the last decade Heegaard Floer homology, first introduced by Ozsváth and Szabó in
their seminal paper [OS04c], has been one of the central topics of study in low dimensional
topology. In its simplest version (called the hat version), it assigns to each closed oriented

and connected 3-manifold Y a F2-vector space ĤF (Y ) obtained as the homology of a chain
complex constructed by counting holomorphic curves in a certain space associated to Y . This
construction and its variants turn out to be very effective when studying 3-manifolds and the
geometric structures they carry. For example the Heegaard Floer invariants determine the
genus and fiberedness of knots ([OS04a],[Ni07]), give a Dehn surgery characterization of the
unknot ([KMOS07]) and provide invariants of contact structures ([OS05]). Heegaard Floer
invariants also have a very fruitful interaction with the 4-dimensional world, and using them
one can for example define powerful invariants of closed 4-manifolds ([OS06]) conjecturally
equivalent to the Seiberg-Witten invariants and numerical invariants of knots providing lower
bounds on their slice genus ([OS03b]).

Anyway, like all the Floer homology theories, these Heegaard Floer invariants have the
big drawback of being terribly difficult to compute. In fact, also for a simple manifold like
the Poincaré homology sphere it is not clear how to compute those invariants in a direct way
(i.e. without using surgery exact sequences or other tools), as it involves the count of really
complicated holomorphic curves.

A milestone in the study of such invariants was the algorithm designed by Sarkar and
Wang ([SW10]), providing a combinatorial way to compute the hat version of Heegaard
Floer homology. This was a great achievement for the whole theory, making it the first
effectively computable Floer homology theory.

An interesting problem that arises naturally from the whole construction is how to extend
such invariants of closed 3-manifolds to invariants of 3-manifolds with boundary. A practical
motivation for this has a computational nature. In fact, even though it is purely combinatorial,
the algorithm by Sarkar and Wang is far from being effective, as also for simple examples
as the Poincaré homology sphere one already has to deal with hundreds and hundreds of
generators and differentials. Furthermore, it works ad hoc for each example, so at the end of
the day it turns out not to be really useful nor for single specific manifolds nor for studying
infinite families of them.

In this sense, a natural way to address this problem would be to define easily computable
invariants of 3-manifolds with boundary which interact in a nice algebraic way with respect
to gluings along boundaries. Having such invariants, in order to compute the one associated
to a closed 3-manifold one would cut it along surfaces in simple pieces, and then reconstruct
everything on the algebra side.
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4 INTRODUCTION

Another important motivation for the extension of Heegaard Floer homology to manifolds
with boundary comes from the world of quantum invariants. In fact the hat version of Hee-
gaard Floer homology associates ([OS06]) to every smooth oriented and connected cobordism

W between Y1 and Y2 a linear map FW : ĤF (Y1)→ ĤF (Y2) which composes in a functorial
way, for instance if ∂W1 = Y1 ∪ (−Y2) and ∂W2 = Y2 ∪ (−Y3) then

FW1∪Y2W2 = FW2 ◦ FW1 : ĤF (Y1)→ ĤF (Y3).

These properties make ĤF a restricted 3 + 1 topological quantum field theory (TQFT),
where by restricted we mean that it is defined only on connected and non empty manifolds
and cobordisms.

Given 3 + 1 a (non restricted) TQFT, it is natural to ask in the framework of quantum
invariants if this can be categorified to a local 2 + 1 + 1 theory, i.e. if the assignment

{4-manifolds} −→ {elements of F2}
{3-manifolds} −→ {vector spaces over F2}

can be extended one dimension below, for example by

{2-manifolds} −→ {algebras over F2}

in a way such that the composition axioms of a 2-category are satisfied. In particular one
would recover invariants for 3-manifolds with boundary considering them as cobordisms be-
tween 2-manifolds.

In the present work we describe a construction moving towards this direction due to
Lipshitz, Ozsváth and Thurston, called bordered Heegaard Floer homology ([LOT11b]).
This associates

• to each surface with a suitable parametrization a differential algebra A(Z);
• to each compact 3-manifold Y with one boundary component parametrized by such

a surface two bordereded invariants over such differential algebra, respectively a left

differential A(−Z)-module ĈFD(Y ) and a right A∞ module ĈFA(Y ) over A(Z),
well defined up to respectively homotopy equivalence and A∞ homotopy equivalence.

Furthermore these objects will come with a pairing theorem which will permit to reconstruct
the Heegaard Floer homology of a closed manifold from the knowledge of the bordered in-
variants of the two parts in which it is cut by a separating surface.

The definition of such invariants is a natural prosecution for the work done for Heegaard
Floer homology, and involves the count of holomorphic curves in some spaces obtained by
cutting the spaces we used to define the closed invariants. There will be some serious analytical
and algebraic complications with respect to the closed case, but the spirit of the construction
(involving holomorphic curves with assigned asymptotics) is exactly the same. For this reason,
many of the proofs and constructions in the bordered case will be (more or less) simple
adaptations of the ones in the closed case, and for this reason we will not usually go too deep
into the details, which are often pretty long and technical. We prefer to pay more attention to
the new geometric phenomena that happen in the bordered case, and see (also with practical
examples) how everything fits in the algebraic context.
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Organization. This is the plan for the rest of the paper.
In chapter 1 we construct Heegaard Floer homology in the cylindrical reformulation due to

Lipshitz [Lip06]. This is meant to be an introduction to the whole topic, providing both the
basic topological and analytical tools of the subject and the key examples we will always have
in mind for the rest of the work. In particular, after having introduced Heegaard diagrams and
the topological constructions we are interested in, we will expose the theory of moduli spaces
of holomorphic curves we will need, discussing transversality and index theory and gluing and
compactness results. After this, we will be able to construct the Floer chain complex and
sketch the proof that its homology is indeed an invariant of the 3-manifold we started with.

In chapter 2 we discuss the construction of the bordered invariants ĈFD and ĈFA. While
the topological constructions are a straightforward generalization of those in the closed case,
much more complicated algebraic objects and analytical results are involved in the definition
of these invariants. In particular, while the type D module will be a classic differential module,
the type A invariant will be an A∞ module, which is an algebraic structure where (loosely
speaking) associativity holds only up to homotopy. Furthermore, the compactifications of the
moduli spaces we will construct will not have a nice structure as in the closed case, making
proofs much trickier (but the same in the spirit).

In chapter 3 we finally discuss the pairing theorem, which allows to reconstruct the Hee-
gaard Floer homology of the global manifold by the knowledge of the bordered invariants of
the two parts in which it is cut by a separating surface. We will discuss two proofs of this
key result, the first (more geometric) via time dilation, the second (more combinatorial) via
the aforementioned nice Heegaard diagrams.

Finally we briefly discuss some very recent developments and refinements of the theory
presented in this work.

Acknowledgements. The author would like to thank Dr. Christopher Douglas for all
the time spent thinking and discussing about these and other topics while visiting the Uni-
versity of Oxford. He would also like to thank Prof. Riccardo Benedetti, Prof. Paolo Lisca
and Dr. Bruno Martelli for all the support and the useful advices received throughout these
years. Finally, he is immensely grateful to all the people he has met during these five years.
Each of them has contributed to make this whole experience so intense and unforgettable.
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CHAPTER 1

Heegaard Floer homology

This chapter has the aim to introduce the reader to Heegaard Floer homology, first de-
fined by Ozsváth and Szabó in their seminal paper [OS04c]. There are many variants of
this construction, and we will focus only on the simplest one (called the hat version) which

associates to each closed oriented 3-manifold Y a F2-vector space ĤF (Y ). This is obtained
as the homology of a chain complex constructed by counting holomorphic curves in an al-
most complex manifold associated to the 3-manifold. Such an almost complex manifold will
depend on many choices, and so will the chain complex, but its homology will turn out to be
independent of all of them (as in the general spirit of counting invariants), returning us an
invariant of the original 3-manifold Y .

Our approach will differ from Ozsváth and Szabó’s original construction, and will be the
so called cylindrical reformulation due to Lipshitz [Lip06], which has the flavor of symplectic
field theory (SFT). Recall that a symplectic manifold (M,ω) ([MS04]) is an even dimensional
manifold M together with a 2-form ω which is closed and non degenerate. Any symplectic
manifold admits a lot of tame almost complex structures, i.e. J ∈ End(TM) such that
J2 = −Id and ω(JX,X) > 0 for every X ∈ TpM , and one of the most powerful techniques to
study symplectic manifolds (introduced by Gromov in his celebrated paper [Gro85]) consists
in the study of J-holomorphic curves inside them, i.e. maps u : (S, j) → (M,J) from a
Riemann surface with J-linear differential, i.e.

J ◦ du = du ◦ j.
Symplectic field theory, which analytic foundations were studied in [BEH+03], considers
J-holomorphic curves in symplectic manifolds with cylindrical ends, which basically means
that the ends of the manifold have the form N ×R and the symplectic form ω is R-invariant
on them. Such holomorphic curves may also have boundary on some specified lagrangian
submanifolds, which are half-dimensional submanifolds L ⊂M such that ω|TL ≡ 0.

The two formulations (the original and the cylindrical ones) are completely equivalent
and both have their benefits and drawbacks. In the Lipshitz’s version one counts holomorphic
curves in very simple low dimensional manifolds (namely products of a closed surface and a
disk), and so it has a much more visual flavor than the original one (which deals with high
dimensional and topologically complicated manifolds). In any case, the main reason we will
be using the cylindrical reformulation is that it behaves much better with the theory we are
going to develop afterwards, where we will cut 3-manifolds along surfaces.

Our aim is to introduce the reader to the topic giving a geometric intuition of the phenom-
ena involved in the construction, in view of the main body of the present work developed in
the subsequent chapters. For this reason, we will usually sketch the interesting proofs without
entering the details, which are sometimes quite long and require many analytical tools (we
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10 1. HEEGAARD FLOER HOMOLOGY

refer the interested reader to the original paper [Lip06] for them). In any case, as many of
the definitions and proofs in the bordered case are simply slight generalizations of those in
the closed case, we will try to make clear the main ideas behind them in this setting, in order
to make the latter chapters easier to read.

The plan for the chapter is the following. In section 1 we will introduce Heegaard diagrams,
which are the combinatorial way in which we will present our 3-manifold Y . In section 2
we study the topological questions related to Heegaard Floer homology, while section 3 is
dedicated to the analytical ones, and it deals in particular with moduli spaces of holomorphic
curves. In section 4 we discuss a technical condition on Heegaard diagrams called admissibility.
In section 5 we finally define the Floer chain complex, and in section 6 we discuss the proof
that its homology is actually an invariant of the 3-manifold Y . In section 7 we discuss some
interesting refinements and variants of the construction.

1. Heegaard diagrams

In this section we introduce a classical combinatorial way to present 3-manifolds, see for
example [FM97]. From now by Y we will always mean a closed, connected and oriented
3-manifold.

Definition 1.1. A Heegaard diagram is a triple H = (Σ,α,β) where Σ is a closed,
connected and oriented surface of genus g, and both α = {α1, . . . , αg} and β = {β1, . . . , βg}
are sets of g disjoint homologically independent simple closed curves in Σ.

A Heegaard diagram uniquely specifies a 3-manifold by the following construction.

Construction 1.2. Consider the thickened surface Σ× [0, 1]. We can do surgery along
the g curves α × {0} and the g curves β × {1}, where doing surgery along a curve in the
boundary is the operation of attaching a 2-handle D2 × I identifying the S1 × I part of its
boundary to a regular neighborhood of the curve. By the homological linear independence
hypothesis, every surgery does not introduce new boundary components and lowers the genus
of the component on which we perform it by 1, so at the end we obtain a 3-manifold with
just two boundary components which are both homeomorphic to S2. Then we can obtain a
closed 3-manifold capping them off by attaching two balls D3.

Let us consider some simple examples of Heegaard diagrams.

Example 1.3. The following is a genus 1 Heegaard diagram describing the manifold S3.

α

β

The following genus 2 Heegaard diagram also describes S3 (the picture is drawn on a sphere
with 4 holes, and one has to identify the circles as suggested by the figure).
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α1 α2
> < >> <<β1

β2

Example 1.4. Given coprime integers (p, q), the lens space L(p, q) is the 3-manifold
obtained by identifying the boundaries of two solid tori D2 × S1 by a homeomorphism ϕ :
S1 × S1 → S1 × S1 as follows. Consider the longitude λ = {1} × S1 and the meridian
µ = S1×{1}, which homology classes generate H1(S1×S1). Then ϕ is any homeomorphism
such that ϕ∗([µ]) = p[λ]+q[µ], and the resulting manifold does not depend on the actual choice
of such a ϕ. In fact the way in which ϕ specifies how to attach the meridian disk D2 × {1}
is determined, and after this attaching operation one obtains a manifold with boundary S2

which can be filled in a unique way in order to get a closed 3-manifold. The following is a
genus 1 Heegaard diagram for the lens space L(2, 1) ∼= RP 3.

α β

More generally, to get a genus 1 Heegaard diagram for L(p, q) one has just to take as β a
curve in the homology class p[λ] + q[µ].

Example 1.5. This is a more complicated example.

> ←< →
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This Heegaard diagram describes the Poincaré homology sphere, which is the 3-manifold

Y = {(z, t, w) ∈ C3|z2 + t3 + w5 = 0, |z|2 + |t|2 + |w|2 = 1}.
This manifold is really interesting as it is the simplest example of homology sphere, i.e. it has
the same homology groups as S3 but non trivial fundamental group.

The following Morse-theoretic approach is really convenient to deal with Heegaard dia-
grams. We refer the reader to [Mil65] for a pleasant introduction to Morse theory.

Construction 1.6. Suppose we have a self-indexing Morse function on f : Y → [0, 3],
i.e. a Morse function such that for every critical point P we have that f(P ) = ind(P ) (the
index of the critical point), and suppose also it has only one maximum and one minimum. As
χ(Y ) = 0, f has the same number g of index 1 and index 2 critical points. Now f−1([0, 3/2])
is obtained by D3 by attaching g 1-handles, and so it is a g-handlebody, and the same holds
for f−1([3/2, 3]), so in particular f−1(3/2) is a genus g surface Σ.

After choosing a Riemannian metric on Y , we can obtain a set α of g disjoint homologically
independent simple closed curves by intersecting Σ with the ascending manifolds of the index
1 points. Doing the same with the descending manifolds of the index 2 points, we get a
collection β of g disjoint homologically independent simple closed curves, and so we obtain
a Heegaard diagram. It is easy to see that the manifold associated to this diagram following
construction 1.2 is exactly Y .

Next we describe some basic operations on Heegaard diagrams. It is simple to see that
each of them leaves the associated 3-manifold unchanged.

Definition 1.7. A Heegaard move on a Heegaard diagram H = (Σ,α,β) is one of the
following operations:

• isotopy: moves the families of curves α or β by a one parameter family in a way
such the curves of each family remain disjoint at every time;
• handleslide: a handleslide of αi over αj replaces αi with a curve α′i disjoint from
α such that αi, αj and α′i bound a pair of pants inside Σ disjoint from the other
α-curves.

αi αj

α′i

Similarly one defines a handleslide of βi over βj ;
• stabilization: chooses a point in Σ\ (α∪β) and makes a connected sum at this point

with the genus 1 diagram of S3 of example 1.3. This operation increases the genus
of the surface by 1.

Remark 1.8. As isotopies do not change the associated 3-manifold, we will always suppose
without loss of generality that all intersections between our curves are transverse.
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The following is the main result regarding Heegaard diagrams.

Proposition 1.9. Any 3-manifold Y can be represented by a Heegard diagram. Fur-
thermore, any two such Heegaard diagrams can be related by a finite sequence of Heegaard
moves.

The first statement comes from construction 1.6 and the existence of a self-indexing Morse
function with only one maximum and one minimum (see [Mil65]). As also every Heegaard
diagram can be obtained from a self-indexing Morse function by construction 1.6, the second
statement follows almost immediately by handle calculus (see [GS99]), paying attention to
some special issues (we refer the reader to [OS04c] for the details).

Example 1.10. The second Heegaard diagram of example 1.3 is obtained by the first one
by a stabilization and a handleslide.

In the rest of the present work, we will always be interested in pointed Heegaard diagrams
H = (Σ,α,β, z) where z is a point in Σ \ (α ∪ β). There are clear adaptations of Heegaard
moves for pointed Heegaard diagrams. In particular pointed isotopies are isotopies which
do not cross the basepoint z, and pointed handleslides are handleslides such that the pair
of pants region involved does not contain z. Proposition 1.9 can be extended to pointed
Heegaard diagrams thanks to the following lemma.

Lemma 1.11. Given a Heegaard diagram (Σ,α,β) and two basepoints z1, z2 ∈ Σ\(α∪β),
the pointed Heegaard diagrams (Σ,α,β, z1) and (Σ,α,β, z2) can be connected by a sequence
of pointed isotopies and pointed handleslides.

From now we will always consider only pointed Heegaard diagrams, and drop the ‘pointed’.

2. Generators, homology classes and domains

In this section we describe the topological aspects of the construction of Heegaard Floer
homology. From now on, given a 3-manifold Y , we will always describe it by means of a

Heegaard diagram H. To this, we will associate a chain complex ĈF (H; J) constructed by
counting special holomorphic curves in (Σ× [0, 1]×R, J). We now describe the generators of
such a complex and the topology of the curves connecting them (in a sense to be defined).

2.1. Generators. Given a Heegaard diagram H = (Σ,α,β, z), a generator is a g-tuple
{x1, . . . , xg} of points of Σ such that each α-curve and each β-curve contains exactly one of
the xi’s. We denote the set of generators of H by S(H).

Example 2.1. In example 1.3 both Heegard diagrams for S3 have only one generator.
The diagram for L(p, q) of example 1.4 has p generators, and the diagram for the Poincaré
homology sphere of example 1.5 has 19 generators.
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2.2. Homology classes of curves. Having fixed two generators x,y ∈ S(H) we are
interested in curves in the product space Σ × [0, 1] × R with some special boundary and
asymptotic conditions, which we make now clear. We will consider complex curves, so the
underlying space will have real dimension 2.

Our ambient manifold Σ× [0, 1]× R comes with the projections πΣ : Σ× [0, 1]× R→ Σ
and πD : Σ × [0, 1] × R → [0, 1] × R (denote by (s, t) the coordinates of the last projection).
The α and β-curves determine 2g cylinders inside it, α× {0} × R and β × {1} × R.

Let (S, ∂S) be a possibly disconnected compact surface with boundary with 2g punctures
(i.e. points removed) on the boundary (p1, . . . , pg, q1, . . . , qg). If x = (x1, . . . , xg) e y =
(y1, . . . , yg) are two generators, we are interested in proper continuous maps

u : (S, ∂S)→
(
(Σ \ {z})× [0, 1]× R, (α× {0} × R) ∪ (β × {1} × R)

)
such that

• u is asymptotic at the {pi} punctures to the chords (x × [0, 1] × {−∞}), i.e (up to
reordering) limw→pi πΣ ◦ u(w) = xi and limw→pi t ◦ u(w) = −∞;
• u is asymptotic at the {qj} punctures to the chords (y × [0, 1] × {+∞}), i.e (up to

reordering) limw→qj πΣ ◦ u(w) = yj and limz→qj t ◦ u(w) = +∞;

• u extends at the punctures to a well defined map with values in (Σ\{z})× [0, 1]×R,
where R = [−∞,+∞] is the compactification of R.

We say that such a curve connects x and y.

Definition 2.2. Denote by π2(x,y) the set of relative homology classes of maps connect-
ing x and y, i.e. two such maps are equivalent if they induce the same element of

H2

(
Σ× [0, 1]×R, (α×{0}×R)∪ (β×{1}×R)∪ (x× [0, 1]×{−∞})∪ (y× [0, 1]×{+∞})

)
Notation 2.3. The notation π2(x,y) comes from the original formulation of Heegaard

Floer homology, where one considers homotopy classes of disks rather that homology classes
of curves.

Remark that given generators x,y and w in S(H), there is an obvious concatenation map

∗ : π2(x,y)× π2(y,w)→ π2(x,w)

obtained by juxtaposing topological curves. Indeed, given a curve connecting x to y and a
curve connecting y to w, one can construct a curve connecting x to w by gluing the +∞ end
of the first with the −∞ end of the second.

2.3. Domains. There is a nice interpretation of homology classes of curves π2(x,y) in
terms of their projection on the surface Σ.

Let {Di}ni=1 be the closures of the regions in which the α and β-curves cut the surface Σ,
and choose zi ∈ int(Di) (choose z in the region containing it). A domain is a formal linear
combination with Z coefficients of such regions. Given a homology class B ∈ π2(x,y), for
every i = 1, . . . , n there is an intersection number

nzi(B) = #
(
u−1({zi} × [0, 1]× R)

)
where u is any representative of B for which the count makes sense, and it is well-defined
because of the boundary conditions. Note that by definition we always have nz(B) = 0. Thus
to each homology class we can associate its domain

B 7→ D(B) =
∑

nzi(B)Di
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which is clearly independent of the choices of zi ∈ Di. This map obviously respects the
concatenation product, i.e D(B1 ∗B2) = D(B1) +D(B2).

Given a domain D, we can consider its boundary ∂D as a 1-chain in Σ, and in turn this
can be decomposed as a sum over its α and β-components:

∂D =

g∑
i=1

∂αiD +

g∑
i=1

∂βiD.

Definition 2.4. Given generators x = (x1, . . . , xg) and y = (y1, . . . , yg) be generators one
can suppose that after relabeling xi, yi ∈ αi and yi, xσ(i) ∈ βi for some permutation σ ∈ Sg.
The set of domains connecting x and y, which we denote P (x,y), consists of the domains D
such that

• ∂αiD is a 1-chain with boundary yi − xi.
• ∂βiD is a 1-chain with boundary xσ(i) − yi.

In fact, it turns out that this is a good way to describe homology classes.

Lemma 2.5. If π2(x,y) is non empty, then for B ∈ π2(x,y) we have that D(B) ∈ P (x,y),
and D : π2(x,y) → P (x,y) is a bijection with the subset of domains D ∈ P (x,y) with
nz(D) = 0.

With this explained, for the rest of the chapter we will always confuse a homology class
with its domain and viceversa. We conclude this section with two definitions regarding do-
mains which will turn out to be relevant in what follows.

Definition 2.6. A domain D is positive if all its coefficients are non negative. A domain
D is periodic if ∂αiD and ∂βiD are all 1-chains with trivial boundary.

Remark 2.7. In particular, if there exists a generator x ∈ S(H), we can identify the set
of periodic domains with P (x,x).

3. Moduli spaces of holomorphic curves

Having studied the topology of curves in Σ × [0, 1] × R, we now turn to the analytical
aspects of the construction. We first define the special types of almost complex structures on
this ambient manifold we are interested in, and then discuss the properties of holomorphic
curves. We then turn our attention to moduli spaces of such curves, addressing transversality
issues, index theory and how these can be compactified.

3.1. Almost complex structures. Given a Heegaard diagram H, choose a point zi
in the interior of each component of Σ \ (α ∪ β) as in the previous section. Let (s, t) be
coordinates on [0, 1] × R and A be a volume form on Σ. Let ω = A + ds ∧ dt be the split
symplectic form on Σ× [0, 1]× R.

Definition 3.1. An almost complex structure J on Σ× [0, 1]× R is admissible if:

(1) J is tame with respect to ω;
(2) in a small cylindrical neighbourhood (such that it does not intesect (α∪β)×[0, 1]×R)

of each {zi} × [0, 1]× R, J is a split complex structure jΣ × jD;
(3) J is translation invariant in the R direction;
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(4) J( ∂∂t) = ∂
∂s ;

(5) for every (s, t) ∈ [0, 1]× R, T (Σ× {(s, t)}) is a J-invariant subspace.

Let us explain the motivation behind such a definition. The first condition assures bounds
on the energy of holomorphic curves depending only on their homology classes. Recall that
given a holomorphic curve u : S → (M,J), its energy is the integral

E(u) =

∫
S
u∗ω

which can also be interpreted as the area of the curve with respect to the Riemannian metric

gJ(X,Y ) =
1

2
[ω(X, JY ) + ω(Y, JX)].

This is a fundamental concept in symplectic geometry because energy bounds permit to
construct nice compactifications of moduli spaces via the celebrated Gromov’s compactness
theorem [Ye94]. We will return on this later.

The second condition assures that homology classes of holomorphic curves are positive
(in the sense of definition 2.6), see lemma 3.3.

The last conditions are required to work in the setting of symplectic field theory. In
particular, condition (3) and (4) make Σ × [0, 1] × R a symplectic manifold with cylindrical
ends, while condition (5) is a technical condition needed to apply the results of [BEH+03].

Remark 3.2. The cylinders α× {1} × R and β × {0} × R are lagrangian submanifolds.

3.2. Holomorphic curves. We are now ready to define holomorphic curves with respect
to an admissible almost complex structure J . Fix two generators x,y ∈ S(H).

Let S be a compact possibly disconnected Riemann surface with boundary with punctures
on the boundary labeled by + or −, and fix an admissible almost complex structure J on
Σ× [0, 1]× R. We consider J-holomorphic maps

u : (S, ∂S)→
(
(Σ \ {z})× [0, 1]× R, (α× {1} × R) ∪ (β × {0} × R)

)
such that:

(1) for every + puncture q, limw→q t ◦ u(w) = +∞;
(2) for every − puncture q, limw→q t ◦ u(w) = −∞;
(3) for every t ∈ R and i = 1, . . . , g, u−1(αi×{1}× {t}) and u−1(βi×{0}× {t}) consist

each of exactly one point;
(4) u has finite energy in the symplectic field theory sense;
(5) πD is non constant on every component of S;
(6) u is an embedding.

Let us make some comments on the conditions we have just defined. The first three
conditions imply that every such curve defines an element of π2(x,y) for some x,y ∈ S(H).
In particular the third one implies that the limits at − and + infinity are chords of the form
(x × [0, 1] × {−∞}) and (y × [0, 1] × {+∞}), and in fact is equivalent to it (using the fact
that non constant harmonic functions are monotone).

The fourth condition, which is of purely technical nature, is needed to apply the results of
[BEH+03] and we will always consider it as implicit. On the other hand, condition (5) implies
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that πD : S → [0, 1]× R is a g-fold branched covering. This follows from the well-known fact
in complex analysis that non constant holomorphic maps are open.

The last condition is imposed by technical reasons in order to get manifolds as moduli
spaces. We will return on this in the next section.

Given a homology class B ∈ π2(x,y), we denote M̃B(x,y) the space of holomorphic
curves connecting x and y which induce the class homology B. Here we always consider such
maps up to reparameterization of the source, i.e. we consider u : S → Σ × [0, 1] × R and
u′ : S′ → Σ× [0, 1]×R to be the same if there exists a biholomorphism ϕ : S → S′ such that
u′ ◦ ϕ = u. We have the following.

Lemma 3.3. If M̃B(x,y) 6= ∅, then B is a positive domain.

Proof. This comes from the property (2) of the definition of an admissible almost com-
plex structure (definition 3.1). In fact, near all the strips {zi}× [0, 1]×R the almost complex
structure is integrable, so two curves intersect there positively or are one contained in the
other. In particular because of boundary conditions u(S) is not contained in any {zi}×[0, 1]×R
and viceversa, and so all nzi(B) are non negative. �

The space of holomorphic curves M̃B(x,y) admits a natural-R action by translations in
the t coordinate (because of property (3) of definition 3.1). So one can define the moduli
space of holomorphic curves connecting x and y in the homology class B ∈ π2(x,y) as the
quotient of this action, namely

MB(x,y) = M̃B(x,y)/R.

These are the objects we wish to use to define differentials in ĈF (H; J).

3.3. Transversality. First of all we discuss to which extent the spaces M̃B(x,y) can
be given a natural smooth manifold structure. The basic idea is easily explained in the finite
dimensional case. Given a vector bundle over a manifold E → X, if a section s : X → E is
transverse to the zero section then its zero locus s−1(0) is a smooth manifold (this is basically
the implicit function theorem). Note that the transversality condition at a point p can be
reformulated as the surjectivity at each point of the linearization Ds : TpM → Ep.

Our case has the same spirit and in particular one would like to see the space of holo-
morphic maps u : S → Σ × [0, 1] × R from a fixed source as the zero locus of a section of
a vector bundle. This is technically much more complicated because one has to work with
infinite dimensional spaces (see [MS04]). Roughly speaking, one can construct a Banach
vector bundle E → X as a Sobolev completion of the bundle over the space of smooth maps

u : (S, ∂S)→
(
(Σ \ {z})× [0, 1]× R, (α× {1} × R) ∪ (β × {0} × R)

)
with fiber over u the vector space Hom

0
C
(
TS, u∗T (Σ × [0, 1] × R)

)
of J-antilinear bundle

homomorphisms TS → u∗T (Σ× [0, 1]×R) respecting some conditions at the boundary. The
∂ operator

u 7→ du+ J ◦ du ◦ j
is a section of this Banach bundle, and space of holomorphic maps is exactly the zero set
of this section (one has to note that actually by some regularity theory the completion does
not enlarge this zero set). Then, in order to apply the implicit function theorem for Banach
spaces, one needs to study the linearization D∂ : TuX → Eu. This turns out to be a Fredholm
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operator (i.e. has finite dimensional kernel and cokernel) with a well defined constant index
indD∂ = dimKerD∂ − dimCokerD∂ depending only on some topological data.

What one expects is that a sufficiently ‘generic’ choice of the almost complex structure J
on Σ× [0, 1]×R achieves transversality, i.e. D∂ is surjective, so that the space of holomorphic
maps u : S → Σ × [0, 1] × R is a manifold of dimension indD∂ by the infinite dimensional
analogue of the implicit function theorem. For this, there are technical issues that arise for
example when dealing with multiply covered components, i.e. curves with components that
factor through a branched covering S → S′. In this case one can easily show by index consid-
erations that it is generally impossible to achieve transversality (see [MS04]). Furthermore,
as we are interested in moduli spaces of such curves, one should put also some attention to
the reparameterization group of the source. In any case we have the following positive result.

Proposition 3.4. For a generic choice of the admissible almost complex structure J , the

spaces M̃B(x,y) with x,y ∈ S(H) and B ∈ π2(x,y) are smooth manifolds.

In this setting a generic subset of a complete metric space (and in particular of the space
of smooth almost complex structures on Σ× [0, 1]×R, which is a Fréchet manifold) is a subset
containing a Baire subset, i.e. a countable intersection of open dense subsets. Baire’s lemma
tells us that each generic subset is dense, and a countable intersection of generic subsets is
still generic.

We now focus on the dimension of these spaces, which as we have said is locally given
by the index of the linearization of the ∂ operator. This has a really nice combinatorial
interpretation in terms of domains.

We define the Euler measure e(D) of a domain D. Endow Σ with a Riemannian metric
such such that α and β-curves are geodesics and always intersect orthogonally. Then for every
i we define the Euler measure of a region Di to be

e(Di) =
1

2π

∫
Di

κ

where κ is the curvature of the metric. It follows from the Gauss-Bonnet formula that if Di

has on the boundary k acute right angles and l obtuse right angles then

e(Di) = χ(Di)− k/4 + l/4.

We finally extend this notion to all domains by linearity. We have the following result.

Proposition 3.5. The index of D∂ at a (non necessarily embedded) curve u : S →
Σ× [0, 1]× R in the homology class B ∈ π2(x,y) is given by g − χ(S) + 2e(D(B)).

When considering embedded curves (which are the curves we are interested in), this index
can be expressed purely in terms of the domain B. Given a domain D and an intersection
point x between α and β-curves, let nx(D) be the average of the multiplicities of the four
regions (possibly with repetition) which have x as a corner. If x = (x1, . . . , xg) ∈ S(H),
denote nx(D) =

∑
i nxi(D).

Theorem 3.6. The index of D∂ at an embedded holomorphic curve representing B ∈
π2(x,y) is given by

nx(B) + ny(B) + e(B).

In particular, M̃B(x,y) has expected dimension nx(B) + ny(B) + e(B), and each curve in it
has Euler characteristic g − nx(B)− ny(B) + e(B).
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Before studying how sequences of holomorphic curves may degenerate, we provide two
simple local examples to get acquainted with holomorphic curves. Here, and in all the rest of
the present work, we will always use a product almost complex structure jΣ×j[0,1]×R, as when
dealing with simple domains (as the ones in our examples) one can prove that transversality
can be always achieved by product almost complex structure after a small perturbation of
the curves (see [Lip06]).

Example 3.7. The following index 1 domain determines a unique holomorphic curve in
the moduli space connecting x to y.

y

x

By the Riemann mapping theorem each simply connected proper open set of U ⊂ C admits
an uniformization from the unit disk ∆ ⊂ C→ U . Then, to obtain a map ∆→ Σ× [0, 1]×R
one needs a holomorphic map ∆ → [0, 1] × R with the right boundary conditions. i.e. the
α-part of ∂∆ shall to go Rez = 1 and the β-part of ∂∆ to Rez = 0. After factoring out
the 1-dimensional reparameterization group of the source and of [0, 1]×R, one remains with
exactly one holomorphic curve in the moduli space.

Example 3.8. The following domain B ∈ π2(x,y) has index 2.

y

x

w w′

There is a 1-parameter family of holomorphic disks connecting x to y obtained by uniformizing
the domain when it is cut along the black segment (which may also go symmetrically on the
β-curve). So in this case MB(x,y) ∼= (−1, 1).

3.4. Compactification and gluing. Finally we discuss how sequences of holomorphic
curves may degenerate when approaching the ‘ends’ of the moduli spaces MB(x,y), intro-
ducing the compactness and gluing results that we will need.

We first describe some types of degenerate curves. In our setting both the map u and the
Riemann surface S can degenerate, giving raise to different phenomena.
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A holomorphic building is a list of holomorphic curves v = (u1, . . . , un) (each defined up
to R-translation) such that the asymptotics at +∞ of ui coincide with the asymptotics at
−∞ of ui+1, i.e. ui ∈ MBi(xi, xi+1) for i = 1, . . . , n− 1. We call n the number of stories of
v.

A Deligne-Mumford degeneration occurs when the complex structure on the Riemann
surface S degenerates along circles and arcs so that they become ‘infinitely long necks’, giving
raise to the so-called nodal curves. Those are more precisely collections of Riemann surfaces
(S1, . . . , Sk) with identifications between some pairs of interior marked points or between
some pairs boundary punctures (actually one also requires that the curve is stable, i.e. every
component has only finitely many automorphisms).

Example 3.9. We study the moduli space of complex rectangles, which are Riemann
surfaces which are topologically a disk with four punctures on the boundary. By the Riemann
mapping theorem each such surface admits a uniformization as a disk and, actually, as a ‘usual’
rectangle with edges of length a and b. Two such rectangles are biholomorphic if and only if
log(a/b) ∈ R has the same value, so the space of complex rectangles is homeomorphic to R.
The degenerations happen when one of the two sides becomes infinitely longer than the other

←→←− −→

and in the Deligne-Mumford compactification one obtains a pair of triangles with an identified
boundary puncture.

Remark 3.10. Each nodal curve determines a smooth surface by solving all the singu-
larities. For example, for a pair of identified interior marked points this is done by the local
operation of solving the nodal singularity

{(z1, z2) ∈ C2|z1z2 = 0} −→ {(z1, z2) ∈ C2|z1z2 = ε}.

A bubbling happens when the energy of a holomorphic curve all concentrates is a single
point, factoring out a holomorphic sphere in that point. Note that those are generally not
Deligne-Mumford degenerations as the source of smooth curve with a bubble is not stable.
As we are dealing with curves with boundary, there may also be disks degenerating at the
boundary, to which we refer to as boundary degenerations.

The notion of convergence for holomorphic curves is somehow complicated, so we will
not point it out in detail. Intuitively, it takes account both of the topology on the moduli
space of Riemann surfaces and the C∞ topology on the set of smooth maps. For example,
convergence to a multi-story holomorphic building roughly means that some parts of the curve
go to infinity respect to other parts. In any case the phenomena we have just pointed out
(maybe more of them at the same time) are all that can happen. This is captured by this
version of the celebrated Gromov’s compactness theorem.
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Theorem 3.11. Any sequence of holomorphic curves uk : Sk → Σ × [0, 1] × R inducing
the same homology class B ∈ π2(x,y) has a subsequence converging to a holomorphic build-
ing of nodal curves with bubblings and boundary degenerations. Furthermore a sequence of
holomorphic curves can converge only to one such holomorphic building.

This exploits in a fundamental way the choice of a tame almost complex structure (see
definition 3.1), which assures an energy bound on the curves {uk} depending only on the ho-

mology class B. This permits to construct a compactification for each moduli spaceMB
(x,y),

obtained as the closure ofMB(x,y) in the bigger compact space of possibly degenerate curves.
Notice that the last statement of the theorem just states that compactifications of the moduli
spaces are compact.

The nice thing of the whole theory is that degenerations in low dimensional moduli spaces
are much controlled.

Proposition 3.12. Fix B ∈ π2(x,y) with ind(B) ≤ 2, and choose a generic admissible
almost complex structure J . If a sequence of holomorphic curves {uk} representing B con-
verges to a nodal holomorphic building (v1, . . . , vl), then each curve vi is a genuine embedded
holomorphic curve.

Proof. We give a sketch of the proof.
Bubbling and boundary degenerations are impossible because both π2(Σ× [0, 1]×R) and

π2

(
Σ× [0, 1]×R, (α×{1}×R)∪ (β×{0}×R)

)
are trivial, and homotopically trivial curves

have zero energy, and hence are constant.
In our case, Deligne-Mumford degenerations along circles do not happen for generic choice

of the almost complex structure J . In fact, they have codimension 2 in the moduli space of
Riemann surfaces, and so they may appear only in homology classes B with ind(B) ≥ 3.

Cusp degenerations (i.e. degenerations along an arc) are ruled out because one would get
a component S′ → Σ× [0, 1]× R with (without loss of generality) all the boundary mapped
into α× {1} × R, which is absurd because of the homological independence of the αi’s.

So the only degeneration that may happen are holomorphic buildings with no nodal curves.
We are left to prove that they are actually the kind of genuine holomorphic curves we are
interested in. There are quite a few things to verify, but we point out embeddedness which
is the most interesting one. First one proves using proposition 3.5 that the index is additive

along the levels, i.e. for every k one has ind(uk) =
∑l

j=1 ind(vj). Then embeddedness follows
from the fact by index formulas analogue to proposition 3.6, near each immersed curve with
only k transverse self-intersections there is a 2k-dimensional family of embedded holomorphic
curves, and so the dimension of the moduli space would be too big. �

Corollary 3.13. For a generic choice of J , given a homology class B ∈ π2(x,y) with
indB = 1 the moduli space MB(x,y) is a compact 0-manifold, i.e. a finite set of points.

Proof. This follow from the previous theorem by the fact that for ind(B) ≤ 0 the moduli
space MB(x,y) is empty or is just the trivial curve connecting x = (x1, . . . , xg) to itself (i.e.
g copies of the twice punctured disk mapped diffeomorphically to {x1, . . . , xg} × [0, 1] × R),
and so by the additivity of the index there cannot be degenerations. �

For what concerns 1-dimensional moduli spaces MB(x,y), proposition 3.12 lets us con-

struct a nice compactified moduli spaceMB
(x,y) which is a compact 1-manifold, and because
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of dimensional count ∂MB
(x,y) consists of special two-story holomorphic buildings. More

precisely one has the following result.

Corollary 3.14. For a generic choice of J , given a homology class B ∈ π2(x,y) with
indB = 2 the moduli space MB(x,y) is an open 1-manifold, and its ends correspond bijec-
tively to ∐

MB1(x,w)×MB2(w,y)

where w ∈ S(H), and B1 ∈ π2(x,w) and B2 ∈ π2(w,y) are index one homology classes.

In light of proposition 3.12 the proof of this key result is clear, once one has the right
gluing results for holomorphic curves. In the Heegaard Floer context, those can be stated as
follows.

Proposition 3.15. Given a two-story holomorphic building (u1, u2) ∈ MB1(x,w) ×
MB2(w,y) and sufficiently small neighborhoods U1 of u1 and U2 of u2 inside these mod-

uli spaces, there is an open neighborhood of (u1, u2) in MB1∗B2(x,y) homeomorphic to U1 ×
U2 × [0, 1).

In particular, this tells us that each pair of curves of corollary 3.14 actually comes from
a degeneration of holomorphic curves.

Example 3.16. In example 3.8 the points of ∂MB
(x,y) are reached when the cut goes

further until w or w′, and are exactly two two-story holomorphic buildings, one connecting
x to w and w to y, and one connecting x to w′ and w′ to y.

4. Admissibility

This section describes a technical condition that our Heegaard diagrams shall satisfy in
order for the whole theory to make sense. In fact, as our invariants will count holomorphic
curves connecting generators x and y, we have to be sure that this count will be well defined.
By corollary 3.13 we know that if ind(B) = 1 thenMB(x,y) consists of a finite set of points,
but a priori one has to deal with infinitely many homology classes.

Definition 4.1. A pointed Heegaard diagram (Σ,α,β, z) is admissible if every non triv-
ial periodic domain D (see definition 2.6) with nz(D) = 0 has both positive and negative
coefficients.

Remark 4.2. This condition is usually called weak admissibility in literature. Strong
admissibility is required to work with other more complicated versions of Heegaard Floer
homology (see subsection 7.3), but as we will be dealing only with the hat version we will
always drop the ‘weak’.

Example 4.3. The obvious Heegaard diagram for S2 × S1 on the left is not admissible,
while the one on the right is.
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α β

z

αβ

z

Note that the second one is obtained by the first one by isotopy of the β-curve. In fact one
can prove that every Heegaard diagram can be turned into an admissible one by performing
some special isotopies called windings (see [OS04c]).

Proposition 4.4. Any Heegaard diagram is isotopic to an admissible one. Furthermore,
any two admissible Heegaard diagrams can be connected by Heegaard moves which preserve
admissibility.

Remark 4.5. By homological reasons, any Heegaard diagram of a rational homology
sphere is admissible. In fact, it is not hard to prove that in such a diagram a periodic domain
D with nz(D) = 0 is necessarily trivial.

We now explain how this condition assures that our sums will be finite. The following is
a simple lemma in linear algebra.

Lemma 4.6. A Heegaard diagram (Σ,α,β, z) is admissible if and only if there exists an
area form on Σ such that every periodic domain D with nz(D) = 0 has total area 0.

Proposition 4.7. Fix an admissible Heegaard diagram (Σ,α,β, z), and fix generators
x,y ∈ S(H). There there exist only finitely many homology classes B ∈ π2(x,y) with and
MB(x,y) 6= ∅.

Proof. Suppose we have two homology classes B1, B2 ∈ π2(x,y) supporting holomorphic
curves. Now B1 ∗B−1

2 ∈ π2(x,x) so D(B1 ∗B−1
2 ) = D(B1)−D(B2) is periodic. Choosing an

area form as in the previous lemma, we have then that D(B1) has the same area as D(B2),
so all the domains supporting holomorphic curves have the same area.

As by lemma 3.3 all such domains have non negative coefficients, so there can be only
finitely many distinct ones. �

5. The chain complex

We are finally ready to define Heegaard Floer homology. Fix an admissible pointed
Heegaard diagram H = (Σ,α,β, z) for the 3-manifold Y (which exists by proposition 4.4),
and fix a generic (in the sense of proposition 3.4) admissible almost complex structure on

Σ× [0, 1]×R. Consider the vector space ĈF (H; J) generated over F2 by x ∈ S(H), endowed
with the boundary map

∂x =
∑

y∈S(H)

∑
B∈π2(x,y)
ind(B)=1

#
(
MB(x,y)

)
· y.

Note that the sum is well defined because of corollary 3.13 and proposition 4.7.
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Theorem 5.1. For a generic almost complex structure J , the map ∂ is a differential, i.e.
∂2 = 0.

Proof. This is the archetype of all proofs in Heegaard Floer homology. The coefficient
of y in ∂2x is

(1.1)
∑
w

∑
B1∈π2(x,w)
ind(B1)=1

∑
B2∈π2(w,y)
ind(B2)=1

#(MB1(x,w)) ·#(MB2(w,y)).

To prove that this is equal to 0, one studies the ends of 1-dimensional moduli spaces of
curves connecting x and y. More precisely, having fixed a homology class B ∈ π2(x,y) with
ind(B) = 2, by corollary 3.14 the ends of MB(x,y) correspond bijectively to∐

MB1(x,w)×MB2(w,y)

where w ∈ S(H), B1 ∈ π2(x,w) and B2 ∈ π2(w,y) are index 1 homology classes with
B1 ∗B2 = B. As a 1-manifold has an even number of ends, the total number of such pairs of
curves is 0. Then, summing over all possible homology classes B, one gets precisely that the
sum (1.1) is 0. �

We call the homology of the chain complex (ĈF (H; J); ∂) the Heegaard Floer homology
of the pair (H; J). We will prove in the next section that this actually depends only on the
3-manifold Y . We end this section providing some simple examples of computations.

Example 5.2. Consider the Heegaard diagram H for the lens space L(p, q) provided in

example 1.4, which is admissible. Then ĈF (H; J) has exactly p generators, and there are no
differentials. In fact it is easy to see that different generators do not have any topological
disks connecting them, while a non trivial domain connecting a generator to itself is periodic,

and so cannot support holomorphic curves. So ĤF (H; J) ∼= Fp2.

Example 5.3. Consider the admissible Heegaard diagram H for S2 × S1 in example 4.3.
There are two generators x,y (namely the upper and the lower intersection points), and there
is exactly one holomorphic disk connecting x to y (see example 3.7) in each one of the disk

shaped domain, so ∂x = 0, ∂y = 0, and ĤF (H; J) ∼= F2
2.

Example 5.4. As far we have only see examples where the connecting disks are essentialy
unique by the Riemann mapping theorem, but this is no longer true when dealing with more
complicated domains, where very complicated questions in conformal geometry may show up.
Consider for example the following index 1 region with the shape of an annulus.
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This region admits a uniformization map from a standard annulus A = {r < |z| < R} ⊂ C},
where the parameter R/r is determined by the conformal structure on the surface Σ. A
holomorphic curve A → Σ × [0, 1] × R is then determined by a double branched covering
A → [0, 1] × R where the α-part of the boundary maps to Rez = 1 and the β-part maps
to Rez = 0. As the automorphism group of A is generated by rotations z 7→ eiθz and the
inversion z 7→ r

Rz , such a branched covering exists (and is unique up to translations) if and
only if the two α-parts of the boundary determine the same angle. This observation can
be used to create chain complexes depending on the complex structure. For example the
following is a Heegaard diagram for S3 isotopic to the second one of example 1.3.

y3

y2
y1x1

x3

x2

z

D1
D2

Here the annulus D1 is a domain connecting {x3, y2} to {x2, y3}. Denote by θ and φ respec-
tively the angles in the uniformization determined by the α-arcs connecting x3 to x2 and y3

to y2. Then there is a holomorphic representative of D1 if and only if θ = φ, so for generic
choice of the almost complex structure #

(
MD1({x3, y3}, {x2, y2})

)
= 0.

On the other hand the domain D1 + D2 determines a 1-parameter family of annuli con-
necting {x3, y3} to {x2, y3} (obtained by cutting along the α-arc from y3 to y2). By analyzing
the conformal angles one obtains that

#
(
MD1+D2({x3, y3}, {x2, y3})

)
=

{
1 if θ < φ,

0 if θ > φ

so the differential of ĈF (H; J) really depends on J . Anyway, one can check that in both

cases ĤF (H; J) ∼= F2.

Example 5.5. As we have seen in the previous example, the differentials in the Floer chain
complex are not determined in a combinatorial way. This makes Heegaard Floer homology
really difficult to compute in general (this is in fact a common aspects of all Floer theories),
and for example it is not known how to compute the Floer complex for the diagram of
the Poincaré homology sphere of example 1.5. Anyway the homology of such a complex is
computable using other techniques (for example the surgery exact sequence, see [OS04b], or
nice Heegaard diagrams, see [SW10]), and we will return on these later in chapter 3.
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6. Invariance

We now turn to the invariance of Heegaard Floer homology. This is a quite mysterious

and surprising result, as in the construction of the chain complex ĈF (H; J) we have made
many choices.

Theorem 6.1. The homology of the Floer chain complex ĤF (H; J) does not depend on
the choice of the admissible Heegaard diagram H and the generic admissible almost complex
structure J , and so defines an invariant of the 3-manifold Y .

We denote this invariant by ĤF (Y ), the Heegaard Floer homology of Y .

We now discuss the main ideas behind the proof of the invariance of Heegaard Floer
homology. The details of the proof are quite long and technical, and we refer the reader to
[Lip06] for a complete treatment.

In light of proposition 4.4, in order to prove invariance one has just to prove that ĤF (H; J)
is invariant under the following operations (when they preserve admissibility):

• change of the generic admissible almost complex structure J ;
• isotopy of the curves;
• handleslides;
• stabilization of the Heegaard diagram.

We address each one of the operations separately in the rest of the section.

6.1. Change of almost complex structure. Suppose we are given two admissible al-

most complex structures J1 and J2 on Σ × [0, 1] × R. In order to prove that ĤF (H; J1) ∼=
ĤF (H; J2) we construct a chain homotopy Φ : (ĈF (H; J1), ∂J1)→ (ĈF (H; J2), ∂J2) by count-
ing some special holomorphic curves.

For a fixed T > 0, one can choose an almost complex structure J connecting J1 and J2

on Σ× [0, 1]× R, i.e. an almost complex structure such that:

• J agrees with J1 on Σ× [0, 1]× (−∞,−T ] and with J2 on Σ× [0, 1]× [T,+∞);
• J satisfies the properties (1), (2) and (4) of definition 3.1;
• J achieves transversality.

Note that in this case J is not R-invariant, so there is not the usual translation action on the
moduli spaces. This implies that also index 0 homology classes contain non trivial holomorphic
curves, and in fact we use them to define the map

Φ : ĈF (H; J1)→ ĈF (H; J2) x 7→
∑

y∈S(H)

∑
B∈π2(x,y)
ind(B)=0

#(MB(x,y; J)) · y.

Lemma 6.2. Φ is a well defined chain map.

Proof. The sum is finite by the usual admissibility argument.
To show that this is a chain map one has to consider the ends of 1-dimensional moduli

spaces, i.e. in this case maps representing homology classes B ∈ π2(x,y) with index 1.
Again, the only degeneration that may happen is the creation of a two story holomorphic

building, and by dimensional considerations and gluing results there is a bijection between

∂MB
(x,y; J) and the following two types of singular curves:
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• a curve u1 in a class B1 ∈ π2(x,w) with ind(B1) = 0 holomorphic with respect to J
followed by a curve u2 in a class B2 ∈ π2(w,y) with ind(B2) = 1, holomorphic with
respect to J2, with B1 ∗B2 = B;
• a curve u1 in a class B1 ∈ π2(x,w) with ind(B1) = 1 holomorphic with respect to
J1 followed by a curve u2 in a class B2 ∈ π2(w,y) with ind(B2) = 0, holomorphic
with respect to J , with B1 ∗B2 = B.

The first case corresponds to the y coefficient of ∂J2 ◦ Φ(x), while the second one to the
y coefficient of Φ ◦ ∂J1(x). As the ends of a 1-manifold always come in a even number,
∂J2 ◦ Φ + Φ ◦ ∂J1 = 0, i.e. Φ is a chain map. �

Lemma 6.3. Given two generic admissible almost complex structures J and J ′ connecting
J1 and J2, the induced chain maps Φ,Φ′ are chain homotopic.

Proof. Choose a generic path {Jt}t∈[0,1] connecting J and J ′. Here the genericity of the
path implies that for all but finitely many t the complex structure Jt achieves transversality,
and for only finitely many 0 < t1 < · · · < tk < 1 there are non empty moduli spaces of
Jt-holomorphic curves with index −1. Define the map

H : ĈF (H; J1)→ ĈF (H; J2) x 7→
k∑
i=1

∑
y∈S(H)

∑
B∈π2(x,y)
ind(B)=−1

#
(
MB(x,y; Jtk)

)
· y.

By considering the ends of the 1-manifolds
⋃
t∈[0,1]MB(x,y; Jt) with ind(B) = 0 (there are

four different kinds of them), one gets as in the previous lemma ∂J2 ◦H +H ◦ ∂J1 = Φ + Φ′,
i.e. that H is a chain homotopy between Φ and Φ′. �

It is quite easy now to conclude. We get a map Ψ : ĈF (H; J2)→ ĈF (H; J1) by counting
curves in an almost complex structure J ′ connecting J2 and J1. Fix R > 0 and define the
almost complex structure J\RJ

′ connecting J1 to J1 defined by taking their ‘connected sum’,
where the central part coinciding with J2 has lenght R.

R

J1J1 J2

R

≡ J ′
≡ J

Then for R big enough the composite map Ψ ◦ Φ coincides with the map F obtained by
counting holomorphic curves in the almost complex structure J\RJ

′. This is true because for
a fixed B ∈ π2(x,y) with ind(B) = 0 by gluing and compactness lemmas it follows that for
R > 0 large enough

MB(x,y; J\RJ
′) =

∐
MB1(x,w; J)×MB2(w,y; J ′)

where the union is taken over w ∈ S(H) and index 0 classes B1 ∈ π2(x,w) and B2 ∈ π2(w,y).
For this reason, by the previous lemma Ψ ◦Φ is homotopy equivalent to the map induced

by the almost complex structure J1 (seen as an almost complex structure connecting J1 to
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J1) which is clearly the identity. As the same also applies to Φ ◦ Ψ, we have that the two
chain complexes are homotopy equivalent.

6.2. Isotopies. Define a basic isotopy to be an isotopy {αt}, {βt} of one of the two
following forms:

(1) for each time t, αt and βt are transverse;
(2) the isotopy introduces a single new pair of intersection points between αt and βt

(we call this a finger move).

−→

It is clear that two isotopic Heegaard diagrams H1 and H2 are isotopic through a sequence
of basic isotopies, so in order to prove invariance under isotopy it suffices to address those
simple cases separately.

The key observation for the first case is that it is equivalent to a deformation of the almost
complex structure. In fact, there exists a diffeomorphism ψ : H1 → H2 between the Heegaard

diagrams and computing ĤF (H2; J) is exactly the same as computing ĤF (H1; (ψ× IdD)∗J),
so invariance descends form the discussion of the previous subsection.

The proof in the second case is also similar in spirit to the complex structure change case.
In this case one chooses a collection of lagrangian cylinders in Σ× [0, 1]×R which agrees with
(α×{1}×R)∪(β×{0}×R) near −∞ and (α′×{1}×R)∪(β′×{0}×R) near +∞. As in the
previous case, the absence of R-invariance makes interesting to study index 0 moduli spaces

of holomorphic curves with boundary in C in order to define maps ĈF (H1)→ ĈF (H2). The
structure at ∞ of C implies that the analogue maps are chain maps (by considering the ends
of index 1 classes), and inverses are constructed in a similar way.

6.3. Handleslides. This case is surely the most subtle one. In fact, all the invariance
proofs we have sketched before are fairly standard in the symplectic field theory context, while
in order to prove handleslide invariance we will need to count special holomorphic curves into
Σ×T , where T is a holomorphic triangle. We briefly describe this construction (which is really
useful in general to define 4-manifold invariants) before sketching the proof of invariance.

We start with a pointed Heegaard triple (Σ,α,β,γ, z) where we consider three families of
pairwise disjoint homologically independent simple closed curves on Σ rather than two. This
clearly determines three Heegaard diagrams Hα,β,Hβ,γ ,Hα,γ . One can construct a map

F̂α,β,γ : ĈF (Hα,β; Jα,β)⊗ ĈF (Hβ,γ ; Jβ,γ)→ ĈF (Hα,γ ; Jα,γ)

in the following way. Consider a triangle T , i.e. a disk D with three punctures pα,β, pβ,γ , pα,γ
on the boundary
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pα,β pα,γ

pβ,γ

eα

eβ eγ

and endow Σ × T with an almost complex structure with properties analogue to those of
definition 3.1 such that in a cylindrical neighborhood of Σ × pα,β it agrees with Jα,β, and

similarly for the other points. Then F̂α,β,γ is constructed counting holomorphic maps

(S, ∂S)→
(
Σ× T, (α× eα) ∪ (β × eβ) ∪ (γ × eγ)

)
connecting x ∈ S(Hα,β) at pα,β, y ∈ S(Hβ,γ) at pβ,γ and w ∈ S(Hα,γ) at pα,γ , and satis-
fying some generalizations of the conditions required to define the Floer chain complex. In
particular also indexes and homology classes of maps have generalizations, and the map is

F̂α,β,γ(x⊗ y) =
∑

w∈S(Hα,γ)

∑
B∈π2(x,y,w)

ind(B)=0

#(MB(x,y,w)) ·w.

Studying the ends of 1-dimensional moduli spaces one proves that

F̂α,β,γ ◦ ∂α,β + F̂α,β,γ ◦ ∂β,γ + ∂α,γ ◦ F̂α,β,γ = 0

where here we use the compatibility of the structures near the punctures of T . Intuitively
this relation can be drawn as follows.

x y

w

−→

y

w

−→

x

w

+

x y

+

x y

w

In particular, F̂α,β,γ is a chain map, and so it induces the map in homology

F̂α,β,γ : ĤF (Hα,β)⊗ ĤF (Hβ,γ)→ ĤF (Hα,γ)

which can be seen to be independent of the complex structure and the isotopy class of the
curves.

Those maps satisfy the following nice associativity property (which is proved by counting
holomorphic curves in Σ×R, where R is a rectangle).

Proposition 6.4. Given a Heegaard quadruple (Σ,α,β,γ, δ, z) (whose definition is ob-

vious) then for every x ∈ ĤF (Hα,β), y ∈ ĤF (Hβ,γ) and w ∈ ĤF (Hγ,δ) we have

F̂α,γ,δ(F̂α,β,γ(x⊗ y)⊗w) = F̂α,β,δ(x⊗ F̂β,γ,δ(y ⊗w)) ∈ ĤF (Hα,δ).
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We are now ready to sketch the proof of the handleslide invariance. Given a Heegaard
diagram H = (Σ,α,β, z), we want to prove invariance with respect to a handleslide of α1

over α2. One can construct auxiliary sets of curves α′ and αH as in the next figure (which
represents the case g = 2).

<

<

<<

<<

α1

α′1

αH1

α2

α′2

αH2

z

In particular, α′ is obtained by α by a small isotopy which introduces two new intersection
points for each curve, and αH is a small isotopy of the handleslided set of curves, such
that the intersection are as in the figure. The four sets of attaching curves α,α′,αH ,β
define a Heegaard quadruple. In particular there are special generators θα,α′ ∈ S(Hα,α′),
θα′,αH ∈ S(Hα′,αH ) and θα,αH ∈ S(Hα,αH ) determined by the marked intersection points.

Remark 6.5. These are actually the generators with maximum grading, in the sense of
subsection 7.2.

The following proposition proves handleslide invariance.

Proposition 6.6. The map

F̂β,α,αH (· ⊗ θα,αH ) : ĤF (Hβ,α)→ ĤF (Hβ,αH )

is an isomorphism.

Supersketchily, the proof follows from the chain of equalities

F̂β,α,α′(F̂β,α,αH (· ⊗ θα,αH )⊗ θαH ,α′) = F̂β,α,α′(· ⊗ F̂α,αH ,α′(θα,αH ⊗ θαH ,α′)) =

= F̂β,α,α′(· ⊗ θα,α′) = Φα,α′(·)

where the first identity is the associativity formula for triangles, the second follows from a
local computation and Φα,α′ is the map induced by a isotopy as discussed in the previous
subsection, which we know is an isomorphism. In particular, this implies that the map we
are interested in is injective. Switching the roles of α and αH , the same argument proves the
surjectivity of our map.
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6.4. Stabilizations. Here is the last Heegaard move to check. Because of the handleslide
invariance, it is enough to prove the result in the case in which one makes the connected sum
at the point z of H with the standard genus 1 Heegaard diagram (T , αg+1, βg+1, w) for S3

from example 1.3, obtaining a diagram H′. This turns out to be quite easy.
In fact there is a clear correspondence between generators

x = (x1, . . . , xg) ∈ S(H) 7→ (x1, . . . , xg, αg+1 ∩ βg+1) ∈ S(H′).
Furthermore, as we are considering homology classes B with nz(B) = 0, it is clear that disks
involving the intersection point αg+1∩βg+1 have to be trivial, and so there is also a canonical
correspondence between moduli spaces (for the right choice of the almost complex structure).

7. Additional structures

As already said in the introduction of this chapter, ĤF (Y ) is the simplest version of
Heegaard Floer homology. In this last section we briefly discuss some of its variants and
refinements.

7.1. Spinc-structures. A Spinc-structure on a 3-manifold Y is a lift of the SO(3)-
structure of its tangent bundle TY to a Spinc(3) structure via the canonical projection
Spinc(3) → SO(3). A more practical way to see Spinc structures on 3-manifolds is due
to Turaev [Tur97]. Recall that as χ(Y ) = 0, there always exists a nowhere vanishing vector
field on Y .

Definition 7.1. Define two nowhere vanishing vector fields to be homologous if they are
homotopic outside a finite disjoint union of balls. A Spinc-structure is a homology class of
vector fields.

Given a pointed Heegard diagram H, there is a natural way to assign to each generator
x ∈ S(H) a Spinc-structure sz(x), where the z stresses the dependence on the basepoint.

Construction 7.2. Consider a self-indexing Morse function f : Y → R which induces
the Heegaard diagram via construction 1.6. Then x determines g trajectories of the gradient
vector field −∇f connecting the index 1 and the index 2 critical points, and z determines a
trajectory from the index 0 to the index 3 point.

Outside a tubular neighborhood of those g + 1 trajectories the vector field −∇f is not
vanishing, and as each trajectory connects critical points with opposite parity, this can be
extended to a globally non-vanishing vector field. Then sz(x) is the well-defined homology
class of this vector field.

The following purely topological lemma is the key of the introduction of Spinc-structures.

Lemma 7.3. For x,y ∈ S(H), π2(x,y) is non empty if and only if sz(x) = sz(y).

So, our Floer chain complex intrinsically splits as a direct sum of chain complexes gener-

ated by intersection points within a Spinc-structure s, which we denote by ĈF (H, s; J), and
so does the homology.

ĤF (Y ) =
⊕

s∈Spinc(Y )

ĤF (Y, s).
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7.2. Gradings. There is a relative grading on each ĤF (Y, s). Given two generators x,y
within the Spinc-structure s, define gr(x,y) = indB for B ∈ π2(x,y) (which is non empty
by lemma 7.3). This is well defined up to indexes of periodic classes, and one can prove
([OS04c]) that those are all multiples of

d(s) = gcdξ∈H2(Y )〈c1(s), ξ〉

where c1(s) is the first Chern class of the Spinc-structure, i.e. the first Chern class of the
oriented 2-plane field complementary to a vector field representing s, and so one obtains a
Z/d(s)Z-valued relative grading.

In some cases, with more work one can extend those relative gradings to absolute Q
gradings, see [OS03a].

7.3. Variants of ĤF . So far we have concentrated only on the hat version of Heegaard
Floer homology, which will be the one we will be interested in for the rest of the work. This
is defined by counting curves which do not intersect the basepoint z ∈ Σ, but actually there
are more refined versions where one counts also curves intersecting it, taking account of the
number of intersections.

We describe the infinity version of Heegaard Floer homology. Given a Heegaard diagram
H and chosen a generic admissible almost complex structure J , the complex CF∞(H; J) is
generated over F2 by pairs [x, i] with x ∈ S(H) and i ∈ Z and has boundary map

∂∞[x, i] =
∑

y∈S(H)

∑
B∈π2(x,y)

indB=1

#MB(x,y) · [y, i− nz(B)]

where here in the definition of the moduli spaces we consider also curves intersecting the
basepoint. The homology of this complex is denoted by HF∞(H; J) and is in fact an invariant
of the 3-manifold HF∞(Y ). Note that in this case our admissibility condition does not assure
that the sum is well defined, as by the proof of proposition 4.7 we can only conclude that for
fixed j there are only finitely homology classes B with nz(B) = j supporting holomorphic
curves. The proof that this is effectively a chain complex and that the homology in an
invariant of the 3-manifold is similar to that in the hat case, but technically much more
complicated.

Other very interesting invariants can be constructed in an algebraic way. The sub-
space CF−(H; J) ⊂ CF∞(H; J) is the one generated by pairs [x, i] with i < 0. It is
straightforward from lemma 3.3 that this is a subcomplex, and the homology HF−(H; J)
turns out to be an invariant of the manifold. In the same manner the quotient complex
CF+(H; J) = CF∞(H; J)/CF−(H; J) gives an invariant of the manifold HF+(Y ).

All these variants are really interesting because using them one can construct invariants
of closed 4-manifolds [OS06], which are conjecturally equivalent to the Seiberg-Witten in-
variants.



7. ADDITIONAL STRUCTURES 33

7.4. Orientations. We have defined all our invariants with F2 coefficients, but actually
with some more work one can lift all the theory to a construction with Z coefficients. To do
this, one need to put an orientation on the moduli spaces, so one can define a differential that
count the points with signs. This choice of orientations has to be coherent, so that counting
the ends on 1-dimensional moduli spaces one finds that the boundary map is actually a
differential.

It turns out (see [OS04c]) that there are 2b1(Y ) different orientation conventions that may
lead to different results. For example one gets that the homology of S2 × S1 is Z⊕ Z in one
convention, and F2 in the other, depending if we count the two disks of example 5.3 as points
with the same or the opposite orientation. In any case, for each 3-manifold one can construct
a privileged one (see [OS04b]), which gives back for example the expected computation for
S2 × S1 with F2 coefficients.





CHAPTER 2

The bordered invariants

In this chapter we introduce the objects of bordered Heegaard Floer homology ([LOT11b]),
which are invariants of a 3-manifold Y together with a suitably parametrized boundary com-
ponent. In particular, bordered Heegaard Floer homology associates:

• to a closed connected and oriented surface F with a fixed handle decomposition
(determined by a pointed matched circle Z) a differential algebra A(Z);
• to a connected and oriented 3-manifold Y with one boundary component ∂Y to-

gether with an orientation preserving diffeomorphism F → ∂Y a differential module

ĈFD(Y ) over A(−Z) (well defined up to homotopy equivalence) and an A∞ module

ĈFA(Y ) over A(Z) (well defined up to A∞ homotopy equivalence).

The basic idea behind the whole construction consists in the study of what happens to holo-
morphic curves in Σ × [0, 1] × R when Σ is cut along a separating curve Z containing the
basepoint z into two pieces Σ1 and Σ2. If Z does not intersect any attaching curve, this
operation is the inverse of a connected sum of Heegaard diagrams, and calling H1 and H2

those Heegaard diagrams, one has immediately as in subsection 6.4 of chapter 1 that for
appropriate choices of the almost complex structure there is the quasi-isomorphism

ĈF (H) ∼= ĈF (H1)⊗ ĈF (H2).

This operation corresponds to cut the 3-manifold along a separating sphere, and the aim of
bordered Heegaard Floer homology is to generalize this to situations where the cutting surface
is more complicated, or, similarly, the separating circle Z intersects some α-curves. The big
complication here is that while in the previous case the two pieces did not interact at all, here
one can have holomorphic curves crossing this circle. The key idea is to encode those curves
as elements in an algebra A(Z) associated to Z, as differentials (which motivates the D) in

the algebraic object ĈFD associated to H2 and as actions (which motivates the A) of the

elements of A(Z) on the algebraic object ĈFA associated to H1.

This idea is very neat when one considers planar grid diagrams ([LOT09]). In these
objects inspired by combinatorial knot Floer homology ([MOS09]) the differential is obtained
by counting special rectangles in a grid, and they serve as a really nice toy model to get
acquainted with the theory. In any case, the real world is much more complicated both from
the algebraic and analytical point of view, so we will not enter the details of that construction,
for which we refer the reader to the original paper.

This is the plan for the chapter. In section 1 we show how to describe surfaces via pointed
matched circles and construct the algebras associated to them. Section 2 is dedicated to
the topological preliminaries of the construction, namely bordered Heegaard diagrams and
homology classes of curves. In section 3 we sketch the analytical aspects of bordered Heegaard
Floer homology, discussing moduli spaces of holomorphic curves with asymptotics at east

35
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infinity and their compactifications. Finally we will be ready to define the main algebraic
objects. In particular, in section 4 we will introduce the type D modules and after having
recalled the basic definitions regarding A∞ algebras in section 5, we will construct the type
A modules in section 6. Finally we briefly discuss the invariance properties of such objects in
section 7.

Many of the proofs are adaptations of the ones in the closed case we have already sketched
in chapter 1, but the details of the whole construction are quite long and technical so we will
not deepen them too much referring the reader to the original paper [LOT11b], preferring
to explain the main ideas using some practical local examples.

1. Pointed matched circles and their algebras

First of all, we discuss the algebra associated to a surface parametrized by means of
matched circles. This will be a subalgebra of the strands algebra A(n) generated by com-
binatorially determined sums of generators. We also discuss how this construction interacts
with Reeb chords, which are combinatorial objects coming from the geometry of holomorphic
curves.

1.1. Pointed matched circles. We will denote the set {1, . . . , n} by [n].

Definition 1.1. A matched circle is a triple (Z,a,M) consisting of an oriented circle Z,
a subset a ⊂ Z of 4k points and a matching function M : a→ [2k] such that after performing
surgery along the 2k pairs of matched points (which are copies of S0) one obtains a connected
1-manifold. A pointed matched circle Z is a matched circle together with a basepoint z ∈ Z\a.

To each pointed matched circle Z with 4k points one can associate uniquely an oriented
surface F (Z) of genus k, the surface associated to Z. Take a disk with boundary Z (with
the correct orientation), and attach 2k 2-dimensional 1-handles as specified by the matching
function. By hypothesis, the resulting manifold has connected boundary, which one can cap
off in order to get a closed oriented surface F (Z).

Note that the associated surface comes with a specified handle decomposition with only
one 0-handle and one 2-handle, and we will think of this as a parametrization.

Example 1.2. The following is the simplest pointed matched circle, whose associated
surface is the torus.

z

Example 1.3. A simple example of pointed matched circle with associated surface the
genus 2 surface is obtained by taking the connected sum of two pointed matched circles as in
the previous example at the basepoint.

z
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The following is also a pointed matched circle with associated surface the genus 2 one,
but with a different handle decomposition.

z

1.2. Reeb chords. We now give the basic definitions regarding Reeb chords, which are
arcs in Z describing the asymptotics at east infinity of our holomorphic curves.

Definition 1.4. Given an oriented circle Z with marked points a and a basepoint z ∈
Z \a, a Reeb chord ρ is an embedded arc in Z \ {z} with endpoints in a, with the orientation
induced by the circle Z. We denote the initial and the end point of the Reeb chord ρ
respectively by ρ− and ρ+.

Notation 1.5. The name Reeb chord is due to the fact that one can think an end Z of
punctured surface as a contact 1-manifold. Then the points a are legendrian 0-submanifolds,
and the arcs connecting them can be seen as the flow lines of the Reeb vector field (for the
basic definitions in contact geometry see for example [Gei08]).

Clearly a Reeb chord is uniquely determined by its initial and endpoint ρ− and ρ+, so
one can use the notation ρ = [ρ−, ρ+]. Here are the basic definitions and operations regarding
Reeb chords. Note that the orientation of the circle together with the basepoint determines
an ordering on the set of marked points a.

Definition 1.6. An ordered pair of Reeb chords (ρ, σ) is:

• nested if ρ− < σ− < σ+ < ρ+;
• interleaved if ρ− < σ− < ρ+ < σ+;
• abutting if ρ+ = σ−.

These definitions have a clear geometric meaning.

z
ρ

σ

z
ρ

σ

z
ρ

σ

Note that these relations are all asymmetric. When ρ and σ are abutting, one can define their
join as the Reeb chord ρ ] σ = [ρ−, σ+]. A splitting of a Reeb chord ρ1 is a pair of abutting
Reeb chords (ρ2, ρ3) such that ρ2 ] ρ3 = ρ1.

For the definition of our invariants, we will be interested in sets of Reeb chords ρ =
{ρ1, . . . , ρj}, and the following operations between them will describe the degenerations of
holomorphic curves. Let ρ− = {ρ−1 , . . . , ρ

−
j } and ρ+ = {ρ+

1 , . . . , ρ
+
j } be the sets of initial and

end points of the chords in ρ.

Definition 1.7. A set of j Reeb chords ρ is consistent if ρ− and ρ+ are both sets of j
points, i.e. no pair of Reeb chords have the same initial or endpoint.
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Given two consistent sets of Reeb chords ρ and σ, ρ]σ is obtained from the union ρ∪σ
by replacing each abutting pair ρk ∈ ρ and σl ∈ σ by their join ρk ] σl. Given ρk ∈ ρ, one
can define

ρ++
k =

{
σ+
l if for some σl ∈ σ, ρk, σl abut
ρ+
k otherwise.

Note that this is well defined because of the consistency hypothesis. In the same manner one
can define σ−−j for a Reeb chord σj ∈ σ.

Definition 1.8. Two consistent sets of Reeb chords ρ and σ are composable if ρ ] σ is
consistent and has no double crossings, i.e. there are no ρk ∈ ρ and σl ∈ σ such that:

• ρ−i < σ−−j ;

• σ−j < ρ+
i ;

• ρ++
i < σ+

j .

This notion can be easily iterated to sequences of consistent sets of Reeb chords, i.e. (ρ1, . . . ,ρn)

is composable if for each i = 1, . . . , n− 1 the consistent sets of Reeb chords
⊎i
j=1 ρj and ρi+1

are composable.
A splitting of ρ is a set of Reeb chords ρ′ obtained by substituting to a chord ρ1 ∈ ρ a

splitting {ρ2, ρ3} of it, such that ρ′ is consistent and the operation does not introduce double
crossings, i.e. there is no chord ρ4 nested in ρ1 such that ρ−4 < ρ+

2 = ρ−3 < ρ+
4 .

A shuffle of ρ is a set of Reeb chords ρ′ obtained by replacing a pair of nested chords
(ρ1, ρ2) by the interleaved pair (ρ′1, ρ

′
2) = ([ρ−1 , ρ

+
2 ], [ρ−2 , ρ

+
1 ]), such that no double crossing is

introduced, i.e. there is no ρ3 ∈ ρ such that ρ2 is nested in ρ3 and ρ3 is nested in ρ1.

Remark 1.9. One can also introduce the notion of weak splitting and weak shuffle, where
we do not require the absence of double crossings (these are graphically explained in the next
figure).

−→ρ1 ρ4

ρ3

ρ2

ρ4 −→(ρ1, ρ2) ρ3 (ρ′1, ρ
′
2) ρ3

This further condition (which name will be justified in the next subsection) is anyway more
interesting to describe the moduli spaces we will deal with.

1.3. The strands algebra. We now turn our attention to the strand algebra on n points
A(n). As a module this will be freely generated over F2, and the generators, relations and
differential will have a nice pictorial description in terms of strands diagrams (see [LOT09]
for a motivation behind the definitions).

A strand diagram on n points consists of a diagram with n dots on the left and on the right
(numbered from the bottom up) and a set of strands connecting points on the two columns
such that for each strand the right end is greater or equal to the left end, and no point is the
initial or end point of more than one strand.
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1
2
3
4
5

1
2
3
4
5

These elements, considered up to homotopy, are the generators of A(n) over F2. Clearly every
generator admits a representative such that each pair of strands crosses at most once, and is
uniquely determined by the initial and end point of each strand.

Remark 1.10. In fact, there is a less visual but completely algebraic construction of the
algebra. In that case the generators are partial non decreasing permutations (S, T, φ) of [n],
i.e. two subsets S, T ⊂ [n] together with a bijection φ : S → T such that φ(i) ≥ i for every
i ∈ S. There is a straightforward correspondence between these maps and the generators of
the strands algebra, for example the generator above corresponds to

φ : {1, 2, 3} → {3, 4, 5}

 1 7→ 5
2 7→ 3

3 7→ 4.

All what we will say can be formulated in this language, but we will adopt the strands
approach as it is much more visual and intuitive.

The algebra A(n, k) is the direct summand of A(n) generated by the strand diagrams
with exactly k strands. To each generator a we may associate its number of inversions inv(a),
which is number of pairs of strands such that the ordering of the end points is switched, or,
equivalently, the minimal number of crossings in any strand diagram representing it. For
example the generator pictured above has 2 inversions.

We now turn to the differential algebra structure on A(n). The product is defined as in
the following figure.
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4
5
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5

1
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4
5

1
2
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5

× =

1
2
3
4
5

1
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3
4
5

1
2
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4

1
2
3
4

1
2
3
4

1
2
3
4

× = 0

More in detail, given two generators a, b we set a·b = 0 if the end points of a do not correspond
to the initial points of b. If they correspond, one can obtain a new strand diagram a∗b placing
the two diagrams next to each other and joining the ends. Then one defines a · b to be 0 if
double crossings are introduced, i.e. inv(a ∗ b) 6= inv(a) + inv(b) (on the right of the figure),
and a ∗ b otherwise (on the left).

The differential comes from the smoothings of the strand diagram, as in the next figure.
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1
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5
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More in detail a smoothing of a generator is a generator obtained by replacing a crossing
with two parallel strands as in the next figure.

−→

Then, the differential of a generator a is obtained by summing all the possible smoothings
of the strand diagram with no double crossings, i.e. such that the number of inversions is
decreased exactly by one.

Lemma 1.11. When equipped with these operations, A(n, k) is a differential algebra.

Proof. One can define an algebra A(n, k) in the same manner as A(n, k) but considering
as generators strand diagrams up to isotopies that preserve double crossings (and without
setting them equal to 0 in the products ad differentials). This is clearly a differential algebra.
The subspace Ad(n, k) ⊂ A(n, k) generated by all strand diagrams with at least one double
crossing is a differential ideal: in fact, if s has at least two double crossings then ∂s ∈ Ad(n, k),
while if it has only one it easy to check that the terms in its differential with no double crossings
cancel in pairs. So A(n, k) = A(n, k)/Ad(n, k) is a differential algebra. �

Each subset S ⊂ [n] with k elements has an associated idempotent I(S) ∈ A(n, k) which
is represented by the strand diagram with all horizontal strands starting from elements of S.
The subalgebra of A(n, k) generated by those idempotents is denoted by I(n, k).

With this in mind, there is another way to describe the generators of the algebra A(n)
related to the notion of Reeb chords introduced in the previous subsection. Given a pointed
circle with n marked points, one can number the points from 1 to n in a canonical way thanks
to the basepoint and the orientation of the circle. In this way, every Reeb chord ρ defines
a strand, namely the one connecting ρ− to ρ+. So given a consistent set of Reeb chords ρ,
one can define the element a0(ρ) ∈ A(n) which is obtained by taking the sum over all strand
diagrams obtained by the strand diagram for ρ (which is the one with one strand for each
Reeb chord of ρ) adding horizontal strands in a consistent way. For example if n = 4 and
ρ = {[1, 2]}, a0(ρ) is the following element of A(4).

1

2

3

4

+ + +

Notation 1.12. We define for convenience a0(ρ) = 0 if ρ is not consistent.

It is clear then that the basic additive generators for A(n, k) we have described are exactly
the non zero products of the form I(S)a0(ρ), where S ⊂ [n] is a subset with k elements and
ρ is a consistent set of Reeb chords.

Remark 1.13. This description will fit better in our construction, as we will always sum
over all possible matchings at e∞, and then get the right element multiplying by a suitable
idempotent.
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Here is a simple lemma, which proof descends straightforwardly from the definitions of
the algebra and the operations between Reeb chords. The first part tells us that a0 behaves
well under composition, while the second gives us a nice description of its differential.

Lemma 1.14. Given two consistent sets of Reeb chords ρ and σ and a subset S ⊂ [n] such
that I(S)a0(ρ) 6= 0, then

I(S)a0(ρ)a0(σ) =

{
I(S)a0(ρ ] σ) if ρ and σ are composable;

0 otherwise.

If ρ is consistent, then

∂a0(ρ) =
∑

ρ′ splitting of ρ

a0(ρ′) +
∑

ρ′ shuffle of ρ

a0(ρ′).

Remark 1.15. Note that the absence of double crossings condition of definition 1.8 for
splittings and shuffles of Reeb chords corresponds exactly to the relation in the algebra that
sets the product of two generators to zero if there is a double crossing in the product.

1.4. The algebra of a pointed matched circle. In the previous subsections we have
seen how to associate to a pointed circle with n marked points an algebra A(n). We now
use the further information given by a pointed matched circle Z with 4k marked points to
construct a special subalgebra A(Z) ⊂ A(4k).

First of all, the matching permits to construct special idempotents in A(4k). To s ⊂ [2k]

one associates I(s) ∈ I(n, |s|) which is obtained by summing all the 2|s| possible primitive
idempotents in I(n, |s|) with exactly one horizontal strand for each matching. For example, in
the pointed matched circle of example 1.2, the idempotent associated to the subset {1} ⊂ [2]
is the following.

1

2
+

The subring of A(4k) generated by all the I(s) is the ring of idempotents associated to
pointed matched circle, denoted by I(Z). This has the unit element

I =
∑

s⊂[2k]

I(s).

Definition 1.16. The algebra associated to a pointed matched circle Z is the subalgebra
A(Z) ⊂ A(4k) generated by I(Z) and the elements of the form Ia0(ρ)I. We will denote the
latter as a(ρ), and call it the algebra element associated to ρ.

Remark 1.17. It is easy to see that A(Z) is actually closed under multiplications and
differentials, and so is effectively a subalgebra.

Note that a(ρ) is obtained by taking the sum over all the strand diagrams obtained by
the one for ρ adding consistently horizontal strands such that there are no matchings between
any pair of initial points, and the same for end points.
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As for the strands algebra, there is a convenient basis for A(Z) given by the non zero
products of the form I(s)a(ρ), where s ⊂ [2k] and ρ is a consistent set of Reeb chords. There
is a simple notation for these kind of generators:

[ x1,...,xk z1,...,zl
y1,...,yk ] = I({M(x1), . . . ,M(xk),M(z1), . . . ,M(zl)})a({[x1, y1], . . . [xk, yk]}).

For example, for the first pointed matched circle of example 1.3, the element
[

1 2
5

]
is the

following one.

1

2

3

4

+

Note that this notation is not unique, as the preceding element is also described by
[

1 4
5

]
.

Actually A(Z) is a subalgebra of
⊕2k

i=0A(4k, i). One can then define

A(Z, i) = A(Z) ∩ A(4k, k + i).

Remark 1.18. In the definition of our bordered invariants we will be interested only in
the A(Z, 0) algebra, as it will be the only one for which the defined action will be non trivial.

The following is a simple concrete example of the algebra.

Example 1.19. Let us analyze the algebra A(Z, 0) where Z is the pointed matched circle
of the torus as in example 1.2. Its algebra of idempotents is generated by the elements

ι1 = + ι2 = +

while the basic generators are the following ones.

ρ1 = ρ2 = ρ3 =

ρ12 = ρ23 = ρ123 =

The non trivial products of generators are

ρ1ρ2 = ρ12 ρ2ρ3 = ρ23 ρ1ρ23 = ρ123 ρ12ρ3 = ρ123

and clearly, as there are no crossings, all the differentials are trivial.
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1.5. A Maslov index on Reeb chords. We conclude this section with the definition
of an index for sets of Reeb chords, to which we refer as the Maslov index as it will have a
key role in the index formula for moduli spaces.

Given α ∈ H1(Z,a) and p ∈ a, define the multiplicity m(α, p) of α at p as the average
multiplicity with which α covers the two regions adjacent to p. This can be extended to a
bilinear map

m : H1(Z,a)×H0(a)→ 1

2
Z.

A consistent set of Reeb chords ρ determines in a natural way a homology class [ρ] ∈ H1(Z,a).
Then one can define its Maslov index to be

ι(ρ) = inv(ρ)−m([ρ],ρ−)

where inv(ρ) is the number of inversions of the strands diagram associated to ρ. Finally, one
defines the Maslov index for a sequence of sets of Reeb chords ~ρ = (ρ1, . . . ,ρn) as

ι(~ρ) =
∑
i

ι(ρi) +
∑
i<j

m([ρj ],ρ
+
i − ρ−i ).

Remark 1.20. Given two Reeb chords ρ and σ the quantity m(σ, ρ+−ρ−) can be thought
as the linking number between them.

Remark 1.21. This Maslov grading can be used to define on A(Z) a grading with values
in a non abelian group. In fact, the whole bordered theory can be made into a graded one
(see [LOT11b]) which fits well with the notion of grading in the closed case (see subsection
7.2). A slight complication here is that the target of the grading has to be a non abelian
group (in fact it is easy to see that A(Z) does not admit any non trivial abelian grading).

2. Topological preliminaries

This is the extension of the definitions and results of sections 1, 2 and 4 of the previous
chapter to the bordered case. In particular, we define what a bordered 3-manifold is, how it
can be represented by means of bordered Heegaard diagrams and discuss homology classes of
curves and the admissibility conditions.

2.1. Bordered 3-manifolds and Heegaard diagrams.

Definition 2.1. A bordered 3-manifold is a triple (Y,Z, φ) where Y is a compact 3-
manifold with one boundary component ∂Y , Z is a pointed matched circle and φ : F (Z)→ ∂Y
is a orientation preserving diffeomorphism.

We say that two bordered 3-manifolds (Y,Z, φ) and (Y ′,Z ′, φ′) are equivalent if Z = Z ′
and there exists an orientation preserving diffeomorphism ψ : Y → Y ′ such that ψ ◦ φ = φ′.

Notation 2.2. We will usually suppress Z and φ from our notation, referring to a bor-
dered 3-manifold simply by Y . We will also always consider equivalence classes of 3-manifols
rather than bordered 3-manifolds themselves.

We now define the analogue of Heegaard diagrams for bordered 3-manifolds.

Definition 2.3. A bordered Heegaard diagram is a quadruple (Σ,α,β, z) consisting of
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• a genus g compact oriented surface Σ with one boundary component;
• a collection of g disjoint simple closed curves β = {β1, . . . , βg} which are independent

in H1(Σ);
• a collection of g+k disjoint curves α which are independent in H1(Σ, ∂Σ) with g−k

of them αc = {αc1, . . . , αcg−k} simple closed curves in the interior of Σ and the other

2k curves αa = {αa1, . . . , αa2k} arcs properly embedded in (Σ, ∂Σ).

• a basepoint z ∈ (∂Σ) \ (α ∩ ∂Σ).

We will refer to the closed α-curves as α-circles, and to the other ones as α-arcs.

Definition 2.4. The pointed matched circle associated to a bordered Heegaard diagram
H is (∂Σ, ∂Σ ∩ α) together with the matching M : Σ ∩ α :→ [2k] defined by the α-arcs
M(αai ∩ ∂Σ) = i and the basepoint z ∈ ∂Σ. We will denote it by ∂H.

Lemma 2.5. This is a pointed matched circle.

Proof. We just need to verify that the result Z ′ of performing surgery along the matched
pairs is connected. To see this, we surger out all the α-circles (i.e. for each circle delete a

tubular neighborhood and glue back two disks), obtaining a new connected surface Σ
′
. Now

by the homological hypothesis Σ
′ \ nbd(αa) is a disk, and clearly Z ′ is its boundary. �

To a bordered Heegaard diagram H one can associate a bordered 3-manifold Y with
boundary canonically identified with F (∂H), in a way analogue to construction 1.2 of chapter
1.

Construction 2.6. Consider the thickened Heegaard surface Σ × [0, 1] and surger out
the curves βi×{1} and αci×{0}. The resulting manifold has exactly one boundary component
which is naturally identified with F (Z) thanks to the curves αai × {0} which determine the

1-handles of the handle decomposition. Here the 0-handle is the annulus ∂Σ× [0, 1] together
with the disk obtained by Σ× {1} after surgerying out all the β-curves.

In analogy with the closed case (see proposition 1.9 of chapter 1), one has the following
result.

Proposition 2.7. Any bordered 3-manifold is represented by a bordered Heegaard dia-
gram via the previous construction. Furthermore, any pair of bordered Heegaard diagrams for
equivalent bordered 3-manifolds can be made diffeomorphic by a sequence of:

• isotopies of the α-curves and β-curves;
• handleslides of the β-curves and of α-curves over α-circles;
• stabilizations in the interior of Σ.

The proof has the same spirit of the original one, and involves a Morse theory construc-
tion. Actually one has to modify a little bit the construction of the associated 3-manifold
(introducing some extra pairs of canceling handles) in order to make it fit well in that setting,
see [LOT11b] for details.

Example 2.8. The following bordered Heegaard diagram represents the genus 1 handle-
body (note that any diagram without α-circles is necessarily a handlebody).
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β

αa2
αa1

< >
z

Here the parametrization of the boundary is given by the classical meridian and longitude.

Example 2.9. A bordered Heegaard diagram for the genus 2 handlebody can be obtained
by taking the connected sum at the basepoint z of 2 copies of the previous diagram

< > << >>

z

and has as associated pointed matched circle the first one of example 1.3. The following
bordered Heegaard diagram also represents the genus 2 handlebody.

< >

<< >>

z

Notice that this handlebody comes with a parametrization of the boundary different to the
previous example, and indeed its pointed matched circle is none of those of example 1.3.

Remark 2.10. When talking about holomorphic curves we will be more kind to consider
(improperly called) bordered Heegaard diagrams (Σ,α,β, z) with a cylindrical end, i.e. Σ is
a punctured surface and near the puncture the couple (Σ,αa) has a product (translational
invariant) structure. Clearly topologically one has that Σ = Σ \ ∂Σ. We will use one notion
or the other depending on the setting.

We conclude this paragraph by discussing how the gluing and cutting operations work
from the point of view of Heegaard diagrams. Recall that in order to get a well defined
orientation in a manifold obtained by gluing one has to make the appropriate orientation
reversal. Here by −Y we denote Y with the orientation reversed, and given a Heegaard
diagram H = (Σ,α,β, z) by −H we denote the Heegaard diagram with the orientation of Σ
reversed. Note that if Y is the 3-manifold associated to H, −Y is the 3-manifold associated
to −H, and F (−Z) is naturally identified with F (Z) with the orientation reversed.

The following two lemmas, which simply state that cutting and gluing of 3-manifolds
correspond to cutting and gluing of Heegaard diagrams, are immediate from construction 2.6.

Lemma 2.11. Given bordered Heegaard diagrams (Σ1,α1,β1, z1) and (Σ2,α2,β2, z2) for
the bordered 3-manifolds (Y1,Z, φ1) and (Y2,Z, φ2), one can obtain a closed Heegaard diagram
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H = −H1∪∂H2 by gluing them along the boundaries according to the markings of their pointed
matched circles:

−H1 ∪∂ H2 = (−Σ1 ∪∂ Σ2,α1 ∪α1,β1 ∪ β2, z1 = z2).

Then H represents the manifold −Y1 ∪∂ Y2 = −Y1 ∪φ2◦φ−1
1
Y2.

Lemma 2.12. Let H = (Σ,α,β, z) be a Heegaard diagram for the closed 3-manifold Y ,
and let Z be a separating curve such that:

• Z ∩ β = ∅;
• Σ \ (α ∪ Z) has exactly two components;
• Z passes through the basepoint z.

Let Σ = ΣL ∪Z ΣR. Then

HL = (ΣL,α ∩ ΣL,β ∩ ΣL, z) and HR = (ΣR,α ∩ ΣR,β ∩ ΣR, z)

are bordered Heegaard diagrams, and there exists a separating surface F ⊂ Y such that the two
components of Y \ F are exactly the 3-manifolds associated to HL and HR via construction
2.6.

2.2. Generators, homology classes and domains. Fix a bordered Heegaard diagram
H = (Σ,α,β, z) of genus g.

Definition 2.13. A generator of H is a g-tuple x = {x1, . . . , xg} of points of Σ such that:

• each β-circle contains exactly one xi;
• each α-circle contains exactly one xi;
• each α-arc contains at most one xi.

We denote the set of generators of H by S(H). Given x ∈ S(H), we define o(x) to be the
set with k elements of α-arcs occupied by x, i.e. o(x) = {i|x ∩ αai 6= ∅} ⊂ [2k].

Remark 2.14. Note that the generators of a Heegaard diagram −H1 ∪∂H2 are naturally
identified with the pairs (x1,x2) ∈ S(H1)×S(H2) such that o(x1)∩ o(x2) = ∅. We say that
such generators are compatible.

In the bordered setting, similarly to the closed case (section 2 of chapter 1), given a pair
of generators x,y ∈ S(H) we are interested in topological curves S → (Σ \ {z}) × [0, 1] × R
from a compact surface S (with punctures on the boundary) with boundary in

C = [(α× {1}) ∪ (β × {0}) ∪ (∂Σ× [0, 1])]× R
and asymptotics at the punctures the chords (x × [0, 1] × {−∞}) and (y × [0, 1] × {−∞}).
These carry a relative homology class in

H2

(
Σ× [0, 1]× R, C ∪ (x× [0, 1]× {−∞} ∪ (y × [0, 1]× {+∞})

)
where C is the compactification of C in the R direction. We denote by π2(x,y) the set of
relative homology classes of such curves connecting x and y.

As in the closed case, we have a natural concatenation product ∗ : π2(x,y)× π2(y,w)→
π2(x,w), and each homology class has an associated domain (necessarily with nz = 0).

Note that in this case the boundary of a domain D can be split into three parts, ∂αD
contained in α, ∂βD contained in β and ∂∂D contained in ∂Σ. We can think the latter as an
element of H1(∂Σ, ∂Σ ∩α).
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Definition 2.15. Given two generators x = {x1, . . . , xg} and y = {y1, . . . , yg}, we say
that a domain D connects them if up to relabeling one has that:

• ∂αiD is a 1-chain with boundary yi − xi;
• ∂βiD is a 1-chain with boundary xσ(i) − yi,

for some permutation σ ∈ Sg. We denote the set of domains connecting x to y by P (x,y).

A domain B is periodic if ∂αB = ∂βB = 0. We say that B is provincial if ∂∂B = 0.

As in the closed case, the map that associates to each relative homology class B ∈ π2(x,y)
its domain D(B) maps into P (x,y) and is a bijection with the subset of P (x,y) with nz = 0,
so we will always confuse a homology class with its domain.

Finally it is clear that domains can be glued and cut like the Heegaard diagrams in the
previous section. The following lemma is immediate.

Lemma 2.16. Let H1 ad H2 be two bordered Heegaard diagrams with ∂H1 = −∂H2 = Z.
Then, given two pairs of compatible generators (x1,x2) and (y1,y2) in S(H1)×S(H2), there
is a bijection between pairs of homology classes B1 ∈ π2(x1,y1) and B2 ∈ π2(x2,y2) with
∂∂B1 = −∂∂B2 ∈ H1(Z,a) and homology classes B ∈ π2

(
(x1,x2), (y1,y2)

)
.

2.3. Admissibility. We discuss admissibility criteria for bordered Heegaard diagrams.
As in the closed case (definition 2.6 of chapter 1), we will say that a domain is positive if
every coefficient is non negative.

Definition 2.17. A Heegaard diagram is called admissible if every non zero periodic
domain D with nz(D) = 0 has both positive and negative coefficients. A Heegaard diagram is
called provincially admissible if every non zero provincial periodic domain D with nz(D) = 0
has both positive and negative coefficients.

The following propositions are completely analogue to the closed case.

Proposition 2.18. Every bordered Heegaard diagram is isotopic to a (provincially) admis-
sible one. Furthermore, any two (provincially) admissible Heegaard diagrams can be related by
a sequence of Heegaard moves such that at each stage the diagram is (provincially) admissible.

Proposition 2.19. Given a Heegaard diagram H, fix generators x,y ∈ H. Then:

• if H is admissible, there are only finitely many positive domains in π2(x,y);
• if H is provincially admissible, for a fixed h ∈ H1(Z,a) there are only finitely many

positive B ∈ π2(x,y) with ∂∂B = h.

Finally, we discuss what happens when one glues admissible Heegaard diagrams.

Lemma 2.20. Let H1 and H2 be Heegaard diagrams with ∂H1 = −∂H2. If H1 is admissible
and H2 is provincially admissible, then H = H1 ∪H2 is admissible.

Proof. A positive periodic domain B in H decomposes as a positive periodic domain
B1 of H1 and a positive periodic domain B2 of H2. As H1 is admissible, B1 = 0, but then
∂∂B2 = 0, so as H2 is provincially admissible B2 = 0, so B = 0. �
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2.4. Spinc-structures. The notion of Spinc-structure introduced and analyzed in sub-
section 7.1 of the previous chapter has a natural generalization in the bordered case. Further-
more, one can also define relative Spinc-structures in this setting. We will not enter the details
of the constructions, and we just point out that the fact that the Heegaard Floer homology
decomposes as a direct sum of the groups within a fixed Spinc-structure is actually true also
for the bordered invariants we are going to define (see [LOT11b] for the details).

3. Moduli spaces of holomorphic curves

In this section we give an overview of the theory of holomorphic curves we will use in
the construction of the bordered invariants. This will be much more complicated than the
closed case because we will consider curves with asymptotics also in the Σ direction, as the
latter is now a punctured surface. In particular, the compactification we will construct for
1-dimensional moduli spaces will not in general be a manifold, but we will be able to describe
its ‘ends’ in a nice way. The aim of this section is to give an intuitive idea of the subject
providing some key examples. In this sense, we will not bother the reader with many technical
details (for which we refer as usual to [LOT11b]).

3.1. Holomorphic curves. Given a bordered Heegaard diagramH = (Σ,α,β, z) choose
a complex structure on Σ with a cylindrical end Z×R (or, equivalently, a puncture p). Then
the manifold Σ× [0, 1]× R has three kinds of ‘ends’, namely the usual ones at +∞ and −∞
in the R direction, and those at p× [0, 1]× R, to which we refer as east infinity e∞.

We are interested in some special curves

u : (S, ∂S)→
(
(Σ \ {z})× [0, 1]× R, (α× {1} × R) ∪ (β × {0} × R)

)
where S is a decorated source, i.e. a smooth Riemann surface with boundary and punctures on
the boundary such that each puncture is labeled by +,− or e and each e puncture is labeled
by a Reeb chord in (Z,a). In particular we want curves which have asymptotics as prescribed
by the punctures and which are holomorphic with respect to an admissible almost complex
structure on Σ×[0, 1]×R. Here the definition of admissible almost complex structure is totally
analogue to the closed case (definition 3.1 of chapter 1) with the extra assumption that it is
split near the {p}× [0, 1]×R. More in detail, we want holomorphic maps u : S → Σ× [0, 1]×R
such that (using the usual coordinates (s, t) on [0, 1]× R):

(1) at each − puncture q of S, limw→q t ◦ u(w) = −∞;
(2) at each + puncture q of S, limw→q t ◦ u(w) = +∞;
(3) at each e puncture q of S, limw→q πΣ ◦ u(w) is the Reeb chord ρ labeling q;
(4) πD ◦ u is a g-fold covering (in particular is non constant on every component of S);
(5) some technical conditions, namely that u is proper and extends to a proper finite

energy map to the east punctures;
(6) for each t ∈ R, u−1(βi × {0} × {t}) consists exactly of one point for all i = 1, . . . , g,

u−1(αci × {1} × {t}) consists exactly of one point for all i = 1, . . . , g − k.

Definition 3.1. We call the last condition weak boundary monotonicity.

The weak boundary monotonicity condition implies that the curve is asymptotic at −∞ to
a chord of the form {x1, . . . , xg}× [0, 1]×{−∞} such that each β-curve and α-circle contains
exactly one of the xi’s, and similarly for the {+∞} asymptotics. Note that {x1, . . . , xg} is
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generally not an element of S(H), as there might be some α-arcs containing more than one
xi. We refer to such a g-uple of points as a generalized generator.

Given a pair of generalized generators x and y, a homology class B ∈ π2(x,y) (defined
in the same manner as for genuine generators) and a decorated source S, one can consider

the space M̃B(x,y;S) of holomorphic curves connecting (in the usual sense) x to y in the
homology class B from a fixed decorated source. Note that each e∞ puncture q of S comes
with a evaluation map, which assigns it its R coordinate evq(u). Putting all those maps
together, we get

ev =
∏

q∈E(S)

evq : M̃B(x,y;S)→ RE(S)

where E(S) is the set of east punctures of S.

With this map, one can define certain subspaces of M̃B(x,y;S) where asymptotics at east

infinity have the same height. Fix a partition P = {Pi} of E(S), and let ∆P ⊂ RE(S) be the

subspace defined by {xp = xq| p, q are in the same Pi}. We then define M̃B(x,y;S;P ) to be

ev−1(∆P ), i.e. the subspace of M̃B(x,y;S) where two punctures have the same evaluation
if they are in the same partition. A generalization of proposition 3.5 of chapter 1 is the
following.

Proposition 3.2. The space M̃B(x,y;S;P ) has expected dimension

ind(B,S, P ) = g − χ(S) + 2e(B) + |P |

where |P | denotes the number of parts of the partition P .

Remark 3.3. Here to determine the Euler measure of a region in Σ we have to choose a
Riemannian metric for which ∂Σ is geodesic.

We will also be interested in the spaces of curves M̃B(x,y;S; ~P ), where ~P = (P1, . . . , Pn)

is an ordered partition. This is the subset of M̃B(x,y;S;P ) where we require that the
evaluations are strictly increasing with respect to the partition, i.e. if p ∈ Pi, q ∈ Pj and
i < j then evp(u) < evq(u).

As every puncture of S is labeled by a Reeb chord, to the ordered partition ~P of E(S) is

associated a sequence of sets or Reeb chords, which we denote by [~P ].

3.2. Strong boundary monotonicity. As we have already pointed out, weak bound-
ary monotonicity is a condition too wide to describe the moduli spaces we are interested in.
The main reason of its introduction is that the study of moduli spaces of curves and the
construction of their compactification is neater in this setting. The right condition to impose
is the following one.

Definition 3.4. A holomorphic curve u : (S, ∂S)→ (Σ× [0, 1]×R, (α×{1}×R)∪ (β×
{0} × R)) is strongly boundary monotone if for each t ∈ R:

• u−1(βi × {0} × {t}) consists exactly of one point for all i = 1, . . . , g;
• u−1(αci × {1} × {t}) consists exactly of one point for all i = 1, . . . , g − k;
• u−1(αai × {1} × {t}) consists at most of one point for all i = 1, . . . , 2k.
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This immediately implies that the curve is asymptotic to a pair of genuine generators.
The nice thing is that this notion is completely combinatorial once one knows the asymptotics
of a curve.

Given a multiset s ⊂ [2k] and a sequence of sets of Reeb chords ~ρ = (ρ1, . . . ,ρn), define
recursively

o(s,ρ1) =
(
s ∪M(ρ+

1 )
)
\M(ρ−1 );

o(s, (ρ1, . . . ,ρi+1)) =
(
o(s, (ρ1, . . . ,ρi)) ∪M(ρ+

i+1)
)
\M(ρ−i+1),

where the operations are to be intended in the sense of multisets.

Definition 3.5. The pair (s, ~ρ) is strongly boundary monotone if

(1) s is actually a set (i.e. a multiset with no repeated elements);
(2) M(ρ−i+1) ⊂ o(s, (ρ1, . . . ,ρi));

(3) M(ρ+
i+1) is disjoint o(s, (ρ1, . . . ,ρi)) \M(ρ−i+1).

It is not a coincidence that we have called this condition (which might look pretty ugly
at a first sight) strong boundary monotonicity.

Proposition 3.6. A curve u ∈M(x,y;S; ~P ) is strongly boundary monotone if and only

if (x, [~P ]) is strongly boundary monotone.

The key observation is that as u is holomorphic, its restriction to arcs in the boundary is
strictly monotone (when not constant).

With this in mind, it is clear that if (x, [~P ]) is strongly boundary monotone then also u
is. In fact, o(x, [(P1, . . . , Pi)]) represents exactly the multiset of α-arcs occupied by the curve
between the asymptotics Pi and Pi+1, and strong boundary monotonicity just says that this
is actually a set for every i = 1, . . . , n.

The other implication follows from a similar (but a little more tricky) argument.

3.3. Moduli spaces of embedded curves. As in the closed case, in order to define
the invariants we will focus only on spaces of embedded curves. The reason that led us to

consider the more general spaces M̃B(x,y;S;P ) is that the compactification theory is more
neatly described in that setting. In any case, as in the closed case the embeddedness or not
of the curve will be determined only by the Euler characteristic of the source.

Definition 3.7. We say that a sequence of sets of Reeb chords ~ρ = (ρ1, . . . ,ρn) and a
homology class B ∈ π2(x,y) are compatible if ∂∂B = [~ρ] ∈ H1(Z,a) and (x, ~ρ) is strongly
boundary monotone. In this case, define the embedded Euler characteristic and the embedded
index as

χemb(B,~ρ) := g + e(B)− nx(B)− ny(B)− ι(~ρ)

ind(B,~ρ) := e(B) + nx(B) + ny(B) + |~ρ|+ ι(~ρ).

where ι(~ρ) is the Maslov index of the sequence of sets Reeb chords defined in subsection 1.5.

This is motivated by the following bordered analogue of proposition 3.6 of chapter 1.

Proposition 3.8. Let u ∈ M̃(x,y;S; ~P ). Then u is an embedding if and only if χ(S) =

χemb(B, [~P ]). Furthermore the expected dimension of M̃(x,y;S; ~P ) is ind(B,S, P ) = ind(B, [~P ]).
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This lets us define our spaces of embedded curves connecting generators x,y in the ho-
mology class B ∈ π2(x,y) with prescribed asymptotics ~ρ at e∞, which is simply

M̃B(x,y;~ρ) =
⋃

χ(S)=χemb(B,~ρ)

[~P ]=~ρ

M̃B(x,y;S; ~P ).

Finally, here is the transversality result.

Proposition 3.9. For a generic choice of the admissible almost complex structure on
Σ× [0, 1]× R, MB(x,y;~ρ) is a smooth manifold of dimension ind(B,~ρ).

The moduli space of curves is obtained as usual by factoring out the R-action by transla-
tions

MB(x,y;~ρ) = M̃B(x,y;~ρ)/R.
In the moduli space the evaluations are not well-defined, but the difference of the evalu-

ation of two punctures is, and so one obtains a map

ev :MB(x,y;~ρ)→ RE/R
where E is the set of east punctures of the curves in the moduli space. Note that this may
change from source to source, but two such sets can always be identified in a natural way.

3.4. Holomorphic combs. As in the closed case, we will need to study the ‘ends’ of
the 1-dimensional moduli spaces, and so we need to construct a suitable compactification for
them. The further complication here is due to the fact that we are considering curves with
asymptotics at e∞, so there can also be degenerations in that direction. To take account of
this phenomenon, one has to construct the huge space of holomorphic combs, which will be
unfortunately not a manifold in general even in the best cases. We just sketch the construction
without entering too much into the details.

First of all, one defines holomorphic curves at e∞, i.e. curves in Z ×R× [0, 1]×R where
Z×R is the cylindrical end of Σ. Note that this space contains the 4k planes a×R×{1}×R,
which are lagrangians with respect to any split symplectic structure.

We consider maps

v : (T, ∂T )→ ((Z \ {z})× R× [0, 1]× R,a× R× {1} × R)

where T is a bidecorated source, i.e. a Riemann surface with boundary and punctures on the
boundary where each puncture is assigned a Reeb chord and is labeled e or w (east or west),
and v satisfies:

(1) v is holomorphic respect a fixed split almost complex structure on Z×R× [0, 1]×R;
(2) s ◦ v(∂T ) = 1;
(3) v is proper;
(4) at each west puncture q of T labeled by ρ, limz→q πΣ ◦ u(z) = ρ ⊂ Z × {−∞};
(5) at each east puncture q of T labeled by ρ, limz→q πΣ ◦ u(z) = ρ ⊂ Z × {+∞}.

Note that the first condition implies via the maximum modulus principle that the projection
on the [0, 1] × R factor is constant on each component of T . In this case there is a R × R
action via translations on the space of curves at e∞ with fixed source T , and we denote the
resulting moduli space (generally not a manifold) by N (T ). There are two evaluation maps
eve and evw defined on this space, one for the east punctures and one for the west punctures.
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There are some special kind of curves at east infinity with sources disjoint union of disks
that we will be interested in.

Example 3.10. The simplest example is the trivial curve, which consists of a single disk
with two punctures both labeled with the same Reeb chord.

w, ρ e, ρ v−→ ρ ρ

Example 3.11. A join component has as source a disk with two west punctures and an
east puncture, and the Reeb chords of the west punctures abut (in the right order), with their
join the Reeb chord of the east puncture.

e, ρ

w, ρ2

w, ρ1

v−→
ρ2

ρ1
ρ = ρ1 ] ρ2

A join curve is a curve at e∞ consisting of one join component and several trivial disks.

Example 3.12. A split component is the reverse of a join curve. It has as source a
disk with one west puncture and two east punctures, such that the Reeb chords of the east
punctures abut (in the right order), with their join is the Reeb chord of the west puncture.

w, ρ

e, ρ2

e, ρ1

v−→
ρ2

ρ1

ρ

A split curve is a curve consisting of some split components and some trivial disks. Note that
this definition is different from the one for the join curve.

Example 3.13. An odd shuffle component is a curve with source a disk with two east
punctures and two west punctures such that the Reeb chords associated to the east ones are
the nested pair associated to the interleaved pair associated to the west pair.

w, ρ2

e, ρ1

e, ρ3

w, ρ4

v−→ ρ1ρ3ρ2ρ4
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Here the big central point represents the branching point. This can be in the interior, but
also one can have two boundary branching points (in fact, the space of shuffle curves has
1-dimensional moduli).

↔ ↔ ↔

An even shuffle component is defined in a similar manner, with the role of east and west
punctures interchanged. A (even or odd) shuffle curve is a curve at e∞ consisting of a (even
or odd) shuffle curve and some trivial disks.

We are now ready to define the space of holomorphic combs, which is the compactification
we are looking for. For every bidecorated source T denote by W (T ) and E(T ) respectively
the sets of its west and east punctures.

Definition 3.14. A holomorphic story is a sequence (u, v1, . . . , vk) where u ∈MB(x,y;S),
vi ∈ N (Ti) and such that there is a label preserving bijection E(S) ↔ W (T1) and E(Ti) ↔
W (Ti+1) for i = 1, . . . , k− 1 such that under this identification the evaluation maps coincide,

i.e. ev(u) = evw(v1) in RE(S)/R ∼= RW (T1)/R and eve(vi) = evw(vi+1) in RE(T )/R ∼= RW (T1)/R
for all i = 1, . . . , k − 1.

A holomorphic comb of height N is a sequence {(uj , v1,j , . . . , vkj ,j)}j=1,...,N of holomorphic

stories such that uj ∈MBj (xj ,xj+1;Sj).

Intuitively, this definition is made to take account of all possible degenerations at ±∞
and e∞. In order to get a compact space, we have to consider singular holomorphic combs,
i.e. we allows also singular Riemann surfaces (with suitable stability conditions) as sources.

A singular holomorphic comb determines a smooth decorated source simply by gluing all
the surfaces along the matching punctures and solving all the nodes and cusps (see remark 3.10
of chapter 1), and it connects two generators x,y ∈ S(H) in a homology class B ∈ π2(x,y)

in an obvious sense. One can then define the moduli space M
B

(x,y;S) of such holomorphic
combs with glued source S. As in the closed case, there is a complicated natural topology on
such spaces, which turns out to be quite awkward: for instance, the space of curves at e∞ is
almost never a manifold. In any case, the fundamental result is the following one.

Theorem 3.15. The moduli space of holomorphic combs M
B

(x,y;S) is compact.

This space contains the (closed, and so compact) subspace M
B

(x,y;S;P ) of curves re-
specting the partition P of the eastmost punctures of S (in the usual case). Then one defines

MB
(x,y;S;P ) to be the closure of MB(x,y;S;P ) in M

B
(x,y;S;P ) and MB

(x,y;S; ~P )

to be the closure of MB(x,y;S; ~P ) in MB
(x,y;S;P ). By the previous theorem, all these

spaces are compact, and are indeed the compactifications we will use subsequently.

3.5. Degenerations. We describe now how 1-dimensional moduli space of holomorphic
curves may degenerate. Before stating the main result, we focus on some simple (but central)
local examples.
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Example 3.16. The following pictures show a 1-parameter family of curves connecting
{a, c} to {b, e} with asymptotics at east infinity the Reeb chord [1, 3].

b

d

a

e

c

3

2

1

b

d

a

e

c

3

2

1

b

d

a

e

c

3

2

1

←→ ←→

As the big dot approaches the intersection point d, we obtain a classical two-story holo-
morphic building, with a curve connecting {a, c} to {c, d} with east asymptotics the Reeb
chord [1, 3] followed by a curve connecting {c, d} to {b, e}. On the other side, as the big dot
approaches the 2, a join curve degenerates at east infinity. Namely, this end of the family is
given by a curve connecting {a, c} to {b, e} with asymptotics at east infinity the set of Reeb
chords {[1, 2], [2, 3]}, together with a join curve at east infinity with west labels [1, 2] and [2, 3]
and east label [1, 3].

b

d

a

e

c

3

2

1

b

d

a

e

c

3

2

1

−→

Notice that the curve connecting {a, c} to {b, e} has two components which are both disks,
one connecting a to b with east asymptotic [1, 2], one connecting c to e with east asymptotic
[2, 3], and those east asymptotics have the same height.

Example 3.17. This picture represents a 1-parameter family of holomorphic curves con-
necting {a} to {c} with east infinity asymptotics the sequence of Reeb chords ([1, 2], [2, 3]).

c

b

a

3

2

1

The end where the big dot reaches b corresponds to a two-story holomorphic building where
the first curve connects {a} to {b} with east asymptotics the Reeb chord [1, 2] and the second
curve connects {b} to {c} with east asymptotics the Reeb chord [2, 3]. When approaching the
other end, there is a split curve degenerating at e∞.
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c

b

a

3

2

1

−→

c

b

a

3

2

1

In particular this holomorphic story end consists of a holomorphic disk connecting {a} to {c}
with east asymptotics [1, 3], and a split curve at e∞ with west label [1, 3] and east labels [1, 2]
and [2, 3].

Example 3.18. The figure determines a 1-parameter family of holomorphic curves con-
necting {a, c} to {b, d} with asymptotics at e∞ the sequence of Reeb chords ([1, 2], [3, 4]). This
family is parametrized by the difference of the evaluations of the two punctures ev[3,4]−ev[1,2] ∈
R+.

d

c

b

a
1

2

3

4

When this evaluation approaches +∞, the curves break into a two story holomorphic building,
the first curve connecting {a, c} to {b, c} with east asymptotics [1, 2], the second connecting
{b, c} to {b, d} with east asymptotics [3, 4]. On the other hand, when the evaluation ap-
proaches 0 the curves degenerate to a curve connecting {a, c} to {b, d} with asymptotics at
e∞ the set of Reeb chords {[1, 2], [3, 4]}. Notice that in this case the limit curve is actually a
genuine one, but in another moduli space.

Example 3.19. This example is more complicated to visualize. The following diagram
represents a 1-parameter family of holomorphic disks connecting {b, c} to {f, g}, with east
infinity asymptotics the set of interleaved Reeb chords {[2, 3], [1, 4]} (here the grey region is
covered twice).

b a

cd

f

g

e

1

2

3

4
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The moduli space looks somehow like that of example 3.13, and one can have curves with one
branching point inside the grey region, curves with two boundary branching points on the
α-arc from e to 3 and in the α-arc from c to 2 (in this case one branching point has to be c).
Note that the type of such curves involved depends on the complex structure on the surface.

In any case, one end is reached for a branching point converging to c, and consists of a two
story holomorphic building, with a single disk connecting {a, d} to {b, c} followed by a pair
of disks one connecting a to g with Reeb chord [1, 4] and the other d to f with Reeb chord
[2, 3], with the punctures at the same height. The other end is reached when a branching
point approaches the boundary, and a odd shuffle curve from {[1, 3], [2, 4]} to {[1, 4], [2, 3]} is
split out.

We now give names to these ‘ends’. Recall the terminology on sets of Reeb chords of
definition 1.8.

Definition 3.20. Fix a moduli spaceM =MB(x,y;~ρ), with x,y ∈ S(H), B ∈ π2(x,y),
and ~ρ = (ρ1, . . . ,ρn) such that ind(B,~ρ) = 2 and (B,~ρ) is compatible (definition 3.7).

A two story end ofM is an element ofMB1(x,w;~ρ1)×MB2(w,y;~ρ2) where B1∗B2 = B,
and ~ρ = (~ρ1, ~ρ2).

A join curve end ofM at level i is an element ofMB
(
x,y; (ρ1, . . . ,ρi−1,ρ

′
i,ρi+1, . . . ,ρn)

)
and ρ′i is a split of ρi.

A shuffle curve end ofM at level i is an element ofMB
(
x,y; (ρ1, . . . ,ρi−1,ρ

′
i,ρi+1, . . . ,ρn)

)
and ρ′i is a shuffle of ρi.

A collision of levels i and i+1 ofM is an element ofMB
(
x,y; (ρ1, . . . ,ρi]ρi+1, . . . ,ρn)

)
where the sets of Reeb chords ρi and ρi+1 are composable.

Remark 3.21. Notice that an end where a split curve is degenerated at east infinity
(example 3.17) is indeed a special case of a collision of levels. Furthermore the definition of
shuffle curve end contemplates only the degeneration of odd shuffle curves at east infinity
(example 3.19).

These are morally the ‘ends’ of our moduli spaces. Here we say morally because the
identification of those is not as neat as in the closed case, as generally M does not have a
manifold structure. In fact there are transversality issues at e∞ where one has shuffle curves
or split curves with more than one split component, because these kind of curves have moduli
themselves. For the shuffle curves this was shown in example 3.13, while in what follows we
show it for split curves.

Example 3.22. Consider the following situation, which is made taking two curves as in
example 3.17.

ρ4

ρ3

ρ2

ρ1
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Here we consider the curves with asymptotics the ordered partition ({ρ3, ρ1}, {ρ4, ρ2}), and
this is a 1-dimensional space parametrized by the position of the upper branch point. As
the upper branch point reaches the boundary, also the lower one does, so our moduli space
degenerates at east infinity a split curve with two split components.

This end is not isolated (as it should be for the end of a 1-manifold), and has indeed
one dimensional moduli (the parametrization is given by the difference in the R coordinate of
R×Z of the two branching points), and so the compactification does not achieve transversality
at this end.

In order to circumvent these complications, when referring to the ‘ends’ of the moduli
space M we will always intend the curves of the previous definition, and the weaker but
central result we are interested in is the following one.

Theorem 3.23. Fix a generic admissible almost complex structure, suppose (x, ~ρ) is
strongly boundary monotone and consider a 1-dimensional moduli space MB(x,y;~ρ). Then
the total number of

(1) two story ends;
(2) join curves;
(3) shuffle curves;
(4) collision of levels;

is even.

Proof. We give a sketch of the proof. The big part is the study of the moduli spaces of
non necessarily embedded curvesMB(x,y;S;P ) we have introduced before. By dimensional
and topological considerations analogue to those in the closed case (see proposition 3.12 of

chapter 1), one obtains that the points of ∂MB
(x,y;S;P ) are holomorphic combs of the

following form:

• a two-story holomorphic building (u1, u2);
• a holomorphic story (u, v) with v is a join curve;
• a holomorphic story (u, v1, . . . , vk) where each vi is a split curve, and the result of

gluing all the sources of the vi’s is also a split curve;
• a holomorphic story (u, v) with v is a shuffle curve.

Furthermore, as we consider ∂MB
(x,y;S; ~P ), there will be also a general case where two

distinct levels collide (as in example 3.18). The main technical complication compared to the

closed case is due to the fact that generally the closuresMB
(x,y;S;P ) will not be manifolds

at all, showing a bad behavior near the boundary where there are shuffle curves or two different

levels of ~P collide. The idea is then to consider the space

MB
cropped =MB

(x,y;S; ~P ) \ (U<ε ∪ Ushuffle)

where U<ε (for ε small enough) is the open subset in MB
(x,y;S; ~P ) where two levels are

closer than ε and Ushuffle is a small neighborhood of the shuffle curves in the boundary.
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Ushuffle

U<ε

join
curve

shuffle
curve

two story

collision
of levels

MB
(x,y;S)

The space MB
cropped is a compact 1-manifold, and its ends are by gluing and compactness

results exactly the analogue of definition 3.20 for not necessarily embedded curves. Note that
for not necessarily embedded curves the notions of split, shuffle and composable have to be
intended only in a weak sense (meaning for example that in a split of Reeb chords there might
be the creation of double crossings, see remark 1.9). Furthermore, our definition of shuffle
curve end contemplates only odd shuffle curves at e∞, and this is consistent because one
proves by some local considerations (following example 3.13) that actually each odd shuffle

curves at e∞ contributes to ∂MB
cropped with an odd number of points, while even shuffle

curves contributes with an even number (which also justifies the name).
Finally, in order to study the real moduli spaces MB(x,y;~ρ), one has just to notice

that from what we have said the statement of the theorem is reduced to an easy algebraic
problem as by proposition 3.8 embeddedness is a numerical condition and also for a weak split
(shuffle, composable) to be genuinely split (shuffle, composable) is an algebraic condition on
the Maslov index of the induced sequences of sets of Reeb chords. �

Similar (but simpler) arguments imply the compactness of 0-dimensional moduli spaces
as in the closed case (corollary 3.13 of chapter 1):

Proposition 3.24. For a generic choice of the admissible almost complex structure, given
a homology class B ∈ π2(x,y) and a sequence of sets of Reeb chords ~ρ with ind(B,~ρ) = 1,
the moduli space MB(x,y;~ρ) is a compact 0-manifold, i.e. a finite set of points.

4. Type D modules

We turn now our attention to the definition of the type D module ĈFD(H; J) for a bor-
dered Heegaard diagram H and a generic admissible almost complex structure J . The module
structure of this object will be straightforward, while as we have said in the introduction of
this chapter, the differential will be defined by counting some special kind holomorphic curves.
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4.1. Definition of the type D module. Fix a provincially admissible bordered Hee-
gaard diagram H, and let Z be the pointed matched circle −∂H, that is the pointed matched
circled determined by H with its orientation reversed. We perform this orientation reversal
because we think of H on the right side, so the orientation induced on the boundary is the
opposite of the usual one.

∂H

Fix also a generic admissible almost complex structure J on Σ × [0, 1] × R. Consider the
vector space X(H) generated by the set of generators S(H) over F2. We define a left action
of the subring of idempotents I(Z) ⊂ A(Z) as follows.

Given x ∈ S(H), o(x) ⊂ [2k] denotes as usual the set of arcs occupied by x. We then
define

I(s) · x =

{
x if s = [2k] \ o(x),
0 otherwise.

i.e. an idempotent acts as the identity on x if it corresponds to the complement of the arcs
occupied by x, and acts trivially otherwise.

We define ĈFD(H; J) to be the left A(Z)-module

ĈFD(H; J) = A(Z)⊗I(Z) X(H)

where the module structure is the one induced by the tensor product.

Remark 4.1. Note that only the A(Z, 0) summand of A(Z) acts non trivially.

The count of holomorphic curves comes in the definition of the differential as follows. By
~ρ we will denote a sequence of Reeb chords ~ρ = (ρ1, . . . , ρn) in ∂H. To this we may associate
an element

a(−~ρ) = a(−ρ1) . . . a(−ρn) ∈ A(Z).

Notice that because of the orientation reversing, if ρ is a Reeb chord in ∂H that −ρ is a Reeb
chord in Z, and also that the notation here is a little misleading as this algebra element is
usually different from the algebra element associated to the set of Reeb chords. Then we
define

∂(I⊗ x) :=
∑

y∈S(H)

∑
B∈π2(x,y)
ind(B,ρ)=1

#(MB(x,y; ~ρ)) · a(−~ρ)⊗ y

where here we implicitly imposed the compatibility condition for (B, ~ρ) (definition 3.7), and

extend this map to all ĈFD(H; J) by the Leibniz rule

∂(a⊗ x) = ∂a⊗ x + a · ∂(I⊗ x).

Notation 4.2. We will now on use the notation ax for a ⊗ x. In particular I ⊗ x will
simply denoted by x.

As usual, the admissibility condition assures that the map is well defined.
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Lemma 4.3. Suppose H is provincially admissible. Then the boundary map ∂ is well
defined, i.e. the sum involved in the definition of ∂x is finite for every x ∈ S(H).

Proof. First of all, notice then all that each element a ∈ A(Z) can be written as a(−~ρ)
for only finitely many sequences of Reeb chords ~ρ. Then, lemma 2.20 tells us that there are
only finitely many B ∈ π2(x,y) such that B is positive and ∂∂B = [~ρ], so that MB(x,y; ~ρ)
is not empty only for finitely many pairs (B, ~ρ), and by proposition 3.13 in these cases it
consists only of finitely many points. �

4.2. ∂2 = 0. We now want to prove that the boundary map ∂ is effectively a differential,
i.e. ∂2 = 0. Observe that the boundary map can be written in the form ∂x =

∑
y ax,yy

where ax,y ∈ A(Z), and as

∂2(ax) = ∂
[
(∂(a)x + a

(∑
w

ax,ww
)]

= (∂2a)x + 2(∂a)(∂x) + a
[(∑

w

(∂ax,w)w
)

+
(∑

w

∑
y

ax,waw,yy
)]

in order to prove ∂2 = 0 one has just to prove that for all x and y in S(H)

(2.1) ∂ax,y +
∑
w

ax,waw,y = 0.

Before sketching the details of the proof, we expose some simple local examples which
illustrate how the whole thing works.

Example 4.4. This local example is based on example 3.16, with the orientation reversal
needed to define type D structures.

a

b c

d e

3

2

1

This diagram has 4 generators {a, c}, {a, e}, {b, e} and {c, d}, and the non trivial boundary
maps are (using the notations of subsection 1.4 of chapter 1):

∂{a, c} =
[
1
2

]
{a, e}+

[
1
3

]
{c, d}

∂{c, d} = {b, e}
∂{a, e} =

[
2
3

]
{b, e}.

The fact that ∂2 = 0 is then exactly the relation in the algebra that[
1
2

]
·
[
2
3

]
=
[
1
3

]
.

This has the following geometric interpretation. There are two 1-dimensional moduli
spaces connecting {a, c} to {b, e}, the one as in example 3.16 which has e∞ asymptotics
[1, 3] and another with e∞ asymptotics ([1, 2], [2, 3]), given by two holomorphic disks, one
connecting {c} to {e} and one connecting {a} to {b}, and parametrized by the positive
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difference of their evaluations (notice that in this situation the moduli space connecting {a, c}
to {b, e} with asymptotics ([2, 3], [1, 2]) is empty as it not boundary monotone).

Then the join end of the first family and the collision end of the second family are clearly
the same curve connecting {a, c} to {b, e} with asymptotics {[1, 2], [2, 3]}. On the other hand
the two-story end of the first family corresponds to the double boundary

{a, c} ∂−→
[
1
3

]
{c, d} ∂−→

[
1
3

]
{b, e},

while the two-story end of the second family corresponds to the double boundary

{a, c} ∂−→
[
1
2

]
{a, e} ∂−→

[
1
2

]
·
[
2
3

]
{b, e}.

Example 4.5. This is the type D interpretation of example 3.17.

a

b

c

3

2

1

Here we have 3 generators {a}, {b} and {c} with non trivial boundary maps

∂{a} =
[

2 1
3

]
{b}+

[
1 2
3

]
{c}

∂{b} =
[

1 3
2

]
{c}

where here in the algebra element we also add the strand of the element not involved in the
differential to get the right idempotent (this operation was trivial in the previous example).
The relation ∂2 = 0 comes from the relation in the algebra

∂
[

1 3
2

]
=
[

1 2
2 3

]
=
[

2 3
1

]
·
[

1 3
2

]
.

This is explained in a geometric fashion by considering the 1-parameter family of holomorphic
curves in example 3.17 connecting {a} to {c} with e∞ asymptotics ([2, 3], [1, 2]). The two-
story end corresponds to the chain of boundary maps

{a} ∂−→
[

1 2
3

]
{b} ∂−→

[
1 2
3

][
1 3
2

]
{c}.

while the split curve end corresponds via the Leibniz rule and lemma 1.14 to

{a} ∂−→
[

1 3
2

]
{c} ∂−→

[
1 2
2 3

]
{c}.

Example 4.6. This corresponds to example 3.18.

a

b

c

d
1

2

3

4
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There are four generators {a, c}, {a, d}, {b, c} and {b, d}, and non trivial boundary maps

∂{a, c} =
[

3 1
4

]
{b, c}+

[
1 3
2

]
{a, d}

∂{b, c} =
[

1 4
2

]
{b, d}

∂{a, d} =
[

3 2
4

]
{b, d}

and the relation ∂2 = 0 corresponds to the identity in the algebra[
3 1
4

]
·
[

1 4
2

]
=
[

1 3
2

]
·
[

3 2
4

]
=
[

1 3
2 4

]
i.e. the fact that the algebra elements associated to the Reeb chords [1, 2] and [3, 4] commute.

The geometrical intuition behind this is given by considering the two 1-dimensional moduli
spaces connecting {a, c} to {b, d}, the first with east asymptotics ([1, 2], [3, 4]) and the second
with east asymptotics ([3, 4], [1, 2]). In particular, both have a collision of levels end, which is
precisely the same curve connecting {a, c} to {b, d} with east asymptotics {[1, 2], [3, 4]}. The
two story end of the first family, which is reached for ev[3,4] − ev[1,2] → +∞ corresponds to
the double boundary

{a, c} ∂−→
[

3 4
2

]
{b, c} ∂−→

[
3 4
2

][
1 2
3

]
{b, d},

while the second, which is reached for ev[3,4] − ev[1,2] → −∞, corresponds to

{a, c} ∂−→
[

1 2
3

]
{a, d} ∂−→

[
1 2
3

][
3 4
2

]
{b, d}.

Theorem 4.7. The boundary operator ∂ is a differential, i.e. ∂2 = 0.

Proof. We give a sketch of the proof. As usual, this is proved by considering the ends
of 1-dimensional moduli spaces connecting two fixed generators x,y ∈ S(H). Given B ∈
π2(x,y) and a compatible ~ρ such that ind(B, ~ρ) = 2, by theorem 3.23 we have that the sum
of the following quantitites is equal to 0:

(1) the number of two-story ends, i.e. the number of elements of the form

MB1(x,w; ~ρ1)×MB2(w,y; ~ρ2)

where B = B1 ∗B2 and ~ρ = (~ρ1, ~ρ2);
(2) the number of split curve ends (with necessarily one split component), i.e. the

number of elements of

MB
(
x,y; (ρ1, . . . , ρi−1, ρi ] ρi+1, ρi+2, . . . , ρn)

)
where ρi and ρi+1 abut;

(3) the number of collision of levels, i.e. the number of curves in

MB
(
x,y; (ρ1, (ρ1, . . . , ρi−1, {ρi, ρi+1}, ρi+2, . . . , ρn)

)
;

where ρi and ρi+1 do not abut;
(4) th number of join curve ends, i.e. the number of curves in

MB
(
x,y; (ρ1, (ρ1, . . . , ρi−1, {ρj , ρk}, ρi+1, . . . , ρn)

)
where ρi = ρj ] ρk.
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Note that curves of type (2) and (3) all come from collision of level curves of definition 3.20
(depending whether the colliding Reeb chords abut or not), and that shuffle curves do not
appear as every set of the partition has only one element. Fix an element a ∈ A(Z), and sum
the previous objects over all ~ρ such that a = a(−~ρ). If we define

aBx,y =
∑

ind(B,~ρ)=1

#
(
MB(x,y; ~ρ)

)
· a(−~ρ)

then the first type of curves corresponds straightforwardly to the coefficient of a in the sum∑
w

∑
B1∗B2=B

aB1
x,wa

B2
w,y.

as in the two-story ends of our examples. The second kind of curves corresponds to ∂aBx,y
through the observation that

∂(a(−ρi)) =
∑

{ρj ,ρk|ρi=ρj]ρk}

a({−ρj ,−ρk}) =
∑

{ρj ,ρk|ρi=ρj]ρk}

a(−ρj)a(−ρk)

so that summing all up and relabeling we obtain that

∂aBx,y =
∑

ind(B,~ρ)=2

∑{
ρi,ρi+1

abut

}#
(
MB(x,y; (ρ1, . . . , ρi ] ρi+1, . . . , ρn)

)
a(−~ρ)

which is exactly what happens in the split curve end of example 4.5. For the third case, there
are many cases that do not contribute because of combinatorial or algebraic reasons. For
example, if ρi and ρi+1 are interleaved, a(ρi)a(ρi+1) = 0. At the end, after having analyzed
many cases, one remains only with two possibilities that may happen:

• ρi+1 and ρi abut. Then this end is exactly the same end of case for where one
considers the east asymptotics (ρ1, . . . , ρi+1 ] ρi, . . . , ρn), as

a(−ρ1) . . . a(−ρi)a(−ρi+1) . . . a(−ρn) = a(−ρ1) . . . a(−(ρi+1 ] ρi)) . . . a(−ρn).

This situation is what happens in example 4.4 where a join curve end and a collision
of levels cancel with each other.
• ρi and ρi+1 are nested or disjoint (in either order), and all the matchings are disjoint.

Then as a(−ρi) and a(−ρi+1) commute in A(Z), one gets the same degeneration
considering the asymptotics (ρ1, . . . , ρi+1, ρi, . . . , ρn). This is exactly the case of
example 4.6.

So the third and fourth case all cancel with each other. Summing then over all possible
B ∈ π(x,y), one proves the relation 2.1. �

4.3. The torus. Here we analyze a simple global example, namely the genus 1 handle-
body. We will use the following bordered Heegaard diagrams.
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<

<

ρ1

ρ2

ρ3

z

z

x0

H1 : H2 :

ρ1

ρ2

ρ3

z

z

x

y

w

<

<

The diagram H1 is exactly the one of example 1.2 drawn from a type D point of view and
is provincially admissible, while H2 is obtained from H1 by isotopy of the β-curve and is
admissible.

Then ĈFD(H1; J) has only one generator x, and a differential

∂x0 = ρ23x0

where we use the notation of the torus algebra of example 1.19. Notice that there are infinitely
many curves connecting x to x, respectively with asymptotics (ρ2, ρ23, ρ3), (ρ2, ρ23, ρ23, ρ3)
and so on, but the algebra elements associated to these curves is trivial (this is possible

because of the non admissibility of the diagram). On the other hand ĈFD(H2; J) has three
generators x, y, w and differentials

∂x = ρ2w

∂y = ρ3x+ w + ρ23w

∂w = 0,

and it is straightforward to verify that in both cases ∂2 = 0. Notice that ĈFD(H1; J) and

ĈFD(H2; J) are not isomorphic, and they define an invariant of the bordered 3-manifold in
a sense that will be more precise later.

5. Something about A∞ structures

In this section we briefly introduce the basic definitions regarding A∞ algebras and mod-

ules which will be used in the rest of the work. In fact, while the type D module ĈFD(H; J)

is a genuine differential module, its left counterpart ĈFA(H; J) has a much more complicated
structure, where associativity holds only up to homotopy (in a suitable sense). This is neatly
described in the framework of A∞ structures, which have recently become a common topic
in symplectic geometry (see [Sei08]).

The A∞ modules we will consider subsequently will be defined over the differential algebra
A(Z) rather than a general A∞ algebra, and so the structure will be much more simple.
Anyway for the sake of clarity we will describe the situation in his full generality. We give
the definition for right A∞ modules, but clearly all the definitions have a left counterpart.
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5.1. A∞ algebras. Let k be a characteristic 2 ring (but everything can be defined with
the right sign conventions for every ring).

Definition 5.1. An A∞ algebra A over k is a k-module A together with a collection of
k-linear maps

µi : A⊗i → A, i ≥ 1

(where A⊗i denotes the i-fold tensor product A ⊗k · · · ⊗k A) that satisfy the compatibility
relation ∑

i+j=n+1

n−j+1∑
l=1

µi(a1 ⊗ · · · ⊗ al−1 ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ al+j ⊗ · · · ⊗ an) = 0

for every n ≥ 1 and a1, . . . , an ∈ A.

Notation 5.2. We will denote with A the A∞ algebra and with A the underlying k-
module.

The notion of A∞ algebra is a generalization of the differential algebra one. In fact,
the compatibility relation for n = 1 reads µ2

1 = 0, so (A,µ1) is a chain complex over k.
Furthermore, if µi = 0 for all i > 2, A is just a genuine differential algebra with associative
multiplication µ2. Indeed the compatibility relation with n = 2, is exactly the Leibniz relation

µ1(µ2(a1 ⊗ a2)) + µ2(µ1(a1)⊗ a2) + µ2(a1 ⊗ µ1(a2)) = 0

while for n = 3, as µ3 = 0, we get

µ2(µ2(a1 ⊗ a2)⊗ a3) + µ2(a1 ⊗ µ2(a2 ⊗ a3)) = 0

which is exactly the associativity of the multiplication µ2.

Remark 5.3. In the case µ3 6= 0, the compatibility relation for n = 3 tells that the maps

a1 ⊗ a2 ⊗ a3 7→ µ2(µ2(a1 ⊗ a2)⊗ a3) and a1 ⊗ a2 ⊗ a3 7→ µ2(a1 ⊗ µ2(a2 ⊗ a3))

are homotopic as chain maps A⊗3 → A. In this sense associativity holds up to homotopy.

There are some basic additional properties one usually requires on A∞ algebras.

Definition 5.4. An A∞ algebra A is said to be strictly unital if there exists a unit 1 ∈ A
such that µ2(a, 1) = µ2(1, a) = a for every a ∈ A, and µi(a1, . . . , ai) = 0 if i 6= 2 and at least
one of the aj ’s is equal to 1.
A is operationally bounded if µi = 0 for i sufficiently big.

All the relations we will deal with while working with A∞ structures are quite ugly, but
there is a nicer way to treat them by means of the tensor algebra T ∗A =

⊕∞
n=0A

⊗n. Define

the endomorphism D : T ∗A→ T ∗A as

D(a1 ⊗ · · · ⊗ an) =
n∑
j1

n−j+1∑
l=1

a1 ⊗ · · · ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ · · · ⊗ an.

Then the compatibility relation is then simply stated as D ◦D = 0 or µ ◦D = 0, which can
be drawn in a graphical way
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D

D

µ

D

where the normal arrows mean that we are dealing with elements of A, while the thick arrows
are for elements of T ∗A.

5.2. A∞ modules. We now define A∞ modules.

Definition 5.5. A (right) A∞ module M over A is a right k-module M together with
k-linear operations defined for i ≥ 1

mi : M ⊗A⊗(i−1) →M

satisfying the compatibility conditions

0 =
∑

i+j=n+1

mi(mj(x⊗ a1 ⊗ · · · ⊗ aj−1)⊗ · · · ⊗ an−1)+

+
∑

i+j=n+1

n−j∑
l=1

mi(x⊗ a1 ⊗ · · · ⊗ al−1 ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ · · · ⊗ an−1)

for every n ≥ 1, x ∈M and a1, . . . , an−1 ∈ A.
If A is strictly unital, M is said to be strictly unital if for every x ∈ M, m2(x, 1) = x

and mi(x, a1, . . . , ai−1) = 0 if i > 2 and at least one of the aj ’s is equal to 1.
The module M is bounded if mi = 0 for i sufficiently big.

Notation 5.6. As in the A∞ algebra case, we refer to the A∞ module as M while M
will denote the underlying k-module.

Like the notion of A∞ algebra generalizes differential algebras, A∞ modules generalize
the notion of differential module over a differential algebra, which is exactly the case where
mi = 0 and µi = 0 for all i > 2.

As before, the condition has a nicer interpretation in terms of the tensor algebra. One
can promote the operations {mi} to a map m : M ⊗ T ∗A→M ⊗ T ∗A

m(x⊗ a1 ⊗ · · · ⊗ an−1) =

n−1∑
l=1

ml(x⊗ a2 ⊗ · · · ⊗ al)⊗ · · · ⊗ an−1+

+

n−1∑
j=2

n−j+1∑
l=1

x⊗ a1 ⊗ · · · ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ · · · ⊗ an−1

and the A∞ conditions are equivalent to m ◦m = 0, i.e to the fact that (M ⊗ T ∗A,m) is a
chain complex.
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One can also give a nice graphical representation of these relations. Define the canonical
diagonal map ∆ : T ∗A→ T ∗A⊗ T ∗A

∆(a1 ⊗ · · · ⊗ an) =
n∑
l=0

(a1 ⊗ · · · ⊗ al)⊗ (al+1 ⊗ · · · ⊗ an).

Then the compatibility condition can be represented as

m

m

∆

+

m

D
= 0

where the dashed arrows refer to elements of M .

5.3. A∞ homomorphisms. We define now homomorphisms between A∞ modules and
homotopies between homomorphisms.

Definition 5.7. Given two strictly unital A∞ modulesM andM′ over the A∞ algebra A
a strictly unital homomorphism f = {fi} of A∞ modules (or simply an A∞ homomorphism)
is a collection of k-linear maps

fi : M ⊗A⊗(i−1) →M ′

with i ≥ 1 satisfying for each n the following compatibility condition

0 =
∑

i+j=n+1

m′i(fj(x⊗ a1 ⊗ · · · ⊗ aj)⊗ · · · ⊗ an−1)+

+
∑

i+j=n+1

fi(mj(x⊗ a1 ⊗ · · · ⊗ aj)⊗ · · · ⊗ an−1)+

+
∑

i+j=n+1

n−j∑
l=1

fi(x⊗ a1 ⊗ · · · ⊗ al−1 ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ · · · ⊗ an−1)

and the unital condition that fi(x⊗ a1 ⊗ · · · ⊗ ai−1) = 0 if i > 1 and some aj = 1.
The homomorphism f is bounded if fi = 0 for i sufficiently large.

This also has a nice interpretation in terms of tensor algebras. Promote the maps {fi} to
f : M ⊗ T ∗A→M ′ ⊗ T ∗A by the formulas

(2.2) f(x⊗ a1 ⊗ · · · ⊗ an) =

n∑
l=0

fl+1(x⊗ a1 ⊗ · · · ⊗ al)⊗ · · · ⊗ an.

Then the compatibility relation simply states that f is a chain map between chain complexes
(M ⊗ T ∗A,m) and (M ′ ⊗ T ∗A,m′), i.e.

m′ ◦ f + f ◦m = 0.
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Furthermore the compatibility condition can be drawn as

m′

f

∆

+

f

m

∆

+

f

D
= 0

where the dotted arrows refer to elements of M′.

Example 5.8. For any A∞ module M, the identity homomorphism I is the map

I1(x) := x

Ii(x⊗ a1 ⊗ · · · ⊗ ai−1) := 0 (i > 0).

We now discuss the notions of composition and homotopy of maps. At this point the
definitions are forced to be as they are, and even if they involve a lot of indices, they are quite
intuitive.

Definition 5.9. Given two A∞ homomorphisms f : M → M′ and g : M → M′′, one
can form their composite g ◦ f :M→M′′ as the A∞ homomorphism with nth component

(g ◦ f)n(x⊗ a1 ⊗ · · · ⊗ an−1) :=
∑

i+j=n+1

gj(fi(x⊗ a1 ⊗ · · · ⊗ ai−1)⊗ · · · ⊗ an−1).

Definition 5.10. An A∞ homomorphisms f :M→M′ is nullhomotopic if there exists
a nullhomotopy, i.e. a collection of k-linear maps

hi : M ⊗A⊗(i−1) →M ′

which are unital (i.e. higher maps are trivial if at least one entry is the identity) such that

fn(x⊗ a1 ⊗ . . .⊗ an−1) =

=
∑

i+j=n+1

m′i(hj(x⊗ a1 ⊗ · · · ⊗ aj)⊗ · · · ⊗ an−1)+

+
∑

i+j=n+1

hi(m
′
j(x⊗ a1 ⊗ · · · ⊗ aj)⊗ · · · ⊗ an−1)+

+
∑

i+j=n+1

n−j∑
l=1

hi(x⊗ a1 ⊗ · · · ⊗ al−1 ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ · · · ⊗ an−1).

Two homomorphisms f, g :M→M′ are homotopic if their sum f + g is nullhomotopic.
Two A∞ modules M and M′ are homotopy equivalent if there exist homomorphisms f :
M→M′ and g :M′ →M such that their compositions f ◦ g and g ◦ f are homotopic to the
respective identities (example 5.8).
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A homotopy h defines a map h : M ⊗ T ∗A→ M ′ ⊗ T ∗A as for functions (equation 2.2).
Then the relation of being homotopic can be rephrased as the more familiar

h ◦m+m′ ◦ h = f + g.

We can also express these relations in a graphical way as follows.

h

m

∆

+

m′

h

∆

+

h

D
= f + g

6. Type A modules

We now define the type A modules ĈFA(H; J) associated to a bordered Heegaard diagram
H together with a generic admissible almost complex structure J on Σ×[0, 1]×R. Here we will
use the count of holomorphic curves to define the right A∞ module structure over the pointed
matched circle algebra A(Z), with ground ring I(Z). In particular, unlike the definition of
the type D module, here we will consider as e∞ asymptotics sequences of sets of Reeb chords
not necessarily consisting of a single element.

6.1. Definition of the type A modules. Fix as usual a bordered Heegaard diagram
H = (Σ,α,β, z) for the bordered 3-manifold Y , and let Z = ∂H be the pointed matched
circle associated to its boundary. Fix also a generic admissible almost complex structure J

on Σ × [0, 1] × R. Then ĈFA(H; J) is generated as a F2-module by the set of generators of
the Heegaard diagram S(H), and one defines the right action of the subring of idempotents
I(Z) ⊂ A(Z) as

x · I(s) =

{
x if s = o(x),
0 otherwise.

where as usual o(x) ⊂ [2k] denotes the set of arcs occupied by the generator x (so in particular

this action is opposite to the one defining ĈFD). This makes ĈFA(H; J) a right I(Z)-
module. Observe that as in the type D case, only the summand I(Z, 0) acts non trivially.

We now define the A∞ module structure over the A∞ algebra A(Z), considering as
ground ring I(Z) (so all the following tensor products will be intended to be over this ring
of idempotents). In order to do so, one has to define the multiplications

mn+1 : ĈFA(H; J)⊗A(Z)⊗n → ĈFA(H; J)

and as A(Z) is generated by the products of the form I(s)a(ρ) with s ⊂ [2k] and ρ a set
of Reeb chords, one has just to define the products of the form mn+1

(
x ⊗ a(ρ1) ⊗ · · · ⊗

a(ρn)
)

(which we denote by mn+1

(
x, a(ρ1), . . . , a(ρn)

)
for notational convenience). It follows

immediately from the definitions of the algebra that x⊗a(ρ1)⊗· · ·⊗a(ρn) is non zero if and
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only if (x, (ρ1, . . . ,ρn)) is strongly boundary monotone (subsection 3.2), so we can restrict to
that case.

Fix a generic admissible almost complex structure on Σ× [0, 1]× R. Define then

mn+1

(
x, a(ρ1), . . . , a(ρn)

)
:=
∑
y

∑
B∈π2(x,y)
ind(B,~ρ)=1

#(MB(x,y;~ρ)) · y

m2(x, I) := x

mn+1(x, . . . , I, . . . ) := 0, n > 1.

where we implicitly suppose the pair (B,~ρ) to be compatible, and the last two conditions
simply state that the A∞ structure will be strictly unital.

As usual, admissibility conditions on H will assure that the sum is actually well defined.

Lemma 6.1. If H is provincially admissible, then all the mk are well defined. Furthermore,
if H is admissible, there are only finitely many non zero mk’s.

Proof. The proof of the first part is straightforward from the positivity of the domains.
For the second statement, note that if for a domain B we define |B| to be the sum of all the
local multiplicities of the regions, then mn+1 involves the count of domains with |B| ≥ n (just
consider the regions adjacent to the east asymptotics). As in an admissible Heegaard diagram
for each pair of generators x,y there are only finitely many positive domains connecting them,
this implies that mi = 0 for i sufficiently large. �

Remark 6.2. Notice that the m1 operation is obtained by counting curves not approach-
ing e∞.

6.2. A∞ relations. In this subsection we prove that the previously introduced oper-

ations actually define a right A∞ module structure on ĈFA(H; J). This is done as usual
by considering the ‘ends’ of 1-dimensional moduli spaces of curves. Before doing this, we
illustrate some local examples which contain the key ideas of the proof. They deal with the
same geometric situations as in the type D case (just considering them as rotated), but the
degeneration phenomena will be here interpreted in a different fashion.

As A(Z) is a genuine differential algebra, in this case the A∞ relations are simply

0 =
∑

i+j=n+1

mi(mj(x, a1, . . . , aj−i), aj , . . . , an−1)+

+

n−1∑
l=1

mn(x, a1, . . . , ∂al, . . . an−1) (2.3)

+

n−2∑
l=1

mn(x, a1, . . . , alal+1, . . . an−1).

Example 6.3. This is the type A interpretation of example 4.4.
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b

a

de

c

3

2

1

Here the generators are {a, c}, {a, e}, {b, e} and {c, d}, and the non trivial A∞ multiplications
are

∂{b, e} = {c, d}
{c, d} ·

[
1 2
3

]
= {a, c}

{a, e} ·
[

1 3
2

]
= {a, c}

{b, e} ·
[

1 2
2 3

]
= {a, c}

{b, e} ·
[

2 1
3

]
= {a, e}

so in this case ĈFA is a genuine differential module over A, as one can verify that the only
non trivial A∞ relation

(∂{b, e}) ·
[

1 2
3

]
+ {b, e} · ∂

[
1 2
3

]
= 0

is true because ∂
[

1 2
3

]
=
[

1 2
2 3

]
. The geometric meaning of this relation comes from the usual

1-parameter moduli space connecting {b, e} to {a, c} with Reeb chord [1, 3]. The two story
end corresponds to the chain of multiplications

{e, b} m1−→ {c, d}
·
[

1 2
3

]
−→ {a, c}

while the join curve end corresponds to

{e, b}
·
[

1 2
2 3

]
−→ {a, c}.

Example 6.4. This comes from example 4.5.

c

b

a
1

2

3

Here we have 3 generators {a}, {b} and {c} and non trivial A∞ operations

{a} ·
[

1
2

]
= {b}

{a} ·
[

1
3

]
= {c}

{b} ·
[

2
3

]
= {c}

and the only A∞ relation to verify is that

({a} ·
[

1
2

]
) ·
[

2
3

]
= {a} · (

[
1
2

]
·
[

2
3

]
)
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which is satisfied as
[

1
2

]
·
[

2
3

]
=
[

1
3

]
in the algebra. The geometric intuition of this identity

relies in the ends of the 1-dimensional moduli space connecting {a} to {c} with Reeb chords
([1, 2], [2, 3]) as in example 3.17, where the two-story end corresponds to the left hand side of
the identity, while the split curve end corresponds to the right hand side.

Example 6.5. Here we see example 4.6 from the type A point of view.

d

c

b

a
1

2

3

4

There are 4 generators {a, c}, {a, d}, {b, c} and {b, d}, and non trivial operations

{a, c} ·
[

1 3
2

]
= {b, c}

{a, c} ·
[

3 1
4

]
= {a, d}

{a, c} ·
[

1 3
2 4

]
= {b, d}

{b, c} ·
[

3 2
4

]
= {b, d}

{a, d} ·
[

1 4
2

]
= {b, d}

and here the non trivial A∞ relations are

({a, c} ·
[

1 3
2

]
) ·
[

3 2
4

]
= {a, c} ·

[
1 2
3 4

]
= ({a, c} ·

[
3 1
4

]
) ·
[

1 4
2

]
.

Geometrically, the first identity comes from the moduli spaces of curves connecting {a, c}
to {b, d} with Reeb chords ([1, 2], [3, 4]), while the second from the moduli spaces of curves
connecting {a, c} to {b, d} with Reeb chords ([3, 4], [1, 2]).

Theorem 6.6. Given a provincially admissible bordered Heegaard diagram and a generic

admissible almost complex structure J , (ĈFA(H; J), {mn}) is a A∞ module over A(Z). Fur-
thermore, if the bordered Heegaard diagram is admissible, the A∞ structure is bounded.

Proof. Fix generators x,y ∈ S(H), a domain B ∈ π2(x,y) and a sequence of sets of
Reeb chords ~ρ = (ρ1, . . . ,ρn) with (x, ~ρ) strongly boundary monotone, (B,~ρ) compatible
and ind(B,~ρ) = 2. Theorem 3.23 implies that the sum of the following quantities is zero:

(1) the number of two-story ends, i.e. the number of curves in

MB1(x,w;~ρ1)×MB2(w,y;~ρ2)

with w ∈ S(H), B1 ∗B2 = B and ~ρ = (~ρ1, ~ρ2);
(2) the number of join curve ends, i.e. the numbers of curves in

MB
(
x,y; (ρ1, . . . ,ρ

′
i, . . . ,ρn)

)
where ρ′i is a splitting of ρi;
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(3) the number of shuffle curve ends, i.e. the number of elements of

MB
(
x,y; (ρ1, . . . ,ρ

′
i, . . . ,ρn)

)
where ρ′i is a shuffle of ρi;

(4) the number of collision of levels, i.e. the number of curves in

MB
(
x,y; (ρ1, . . . ,ρi ] ρi+1, . . . ,ρn)

)
with ρi and ρi+1 composable.

Clearly the first elements correspond to the first term in the A∞ relation 2.3. By lemma
1.14 one has that

∂a(ρ) =
∑

ρ′ a splitting
of ρ

a(ρ) +
∑

ρ′ a shuffle
of ρ

a(ρ)

so the second and the third quantities correspond to the second term in the A∞ relation.
Finally, as for composable sets of Reeb chords a(ρ ] ρ′) = a(ρ)a(ρ′) (lemma 1.14), the third
term of the A∞ relation corresponds exactly to the fourth type of ends.

Boundedness in the admissible case is exactly the second part of lemma 6.1. �

6.3. A remark about associativity. In all the local examples we have encountered so

far ĈFA is a differential module. Anyway, as the following example will illustrate, it is gener-
ally a genuine A∞ module, in the sense that the multiplication m2 is really associative only up
to homotopy, and there are non trivial higher multiplications. Indeed, intuitively associativity
holds only when there are only two-story ends (the terms of the form m2

(
m2(x, a(ρ)), a(ρ′)

)
)

and collision of levels ends (the terms of the form m2

(
x, a(ρ)a(ρ′)

)
).

Example 6.7. The following diagram has four generators {a, c}, {a, d}, {b, c} and {b, d}.

a

b

c

d

3

2

1

There are two nontrivial m1 = ∂ operations obtained by counting the disk connecting {c} to
{d}

∂{a, c} = {a, d}
∂{b, c} = {b, d}.

For some choices of the generic almost complex structure J (see example 5.4 of chapter 1)
there is a holomorphic anulus connecting {b, c} to {a, c} with Reeb chord [1, 3], and so a non
trivial operation

{b, c} ·
[

1
3

]
= {a, c}.

In particular, m2 cannot be associative as

{a, c} = {b, c} ·
[

1
3

]
= {b, c} · (

[
1
2

]
·
[

2
3

]
) 6= ({b, c} ·

[
1
2

]
) ·
[

2
3

]
= 0
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as {b, c}·
[

1
2

]
= 0 (there are no topological curves indeed), so there should be some non trivial

higher multiplications. In particular one has that

m3({b, d},
[

1
2

]
,
[

2
3

]
) = {a, c}

by counting the following annulus (for an appropriare cutting parameter).

a

b

c

d

3

2

1

The only non trivial associativity relation is then

m3(∂{b, c},
[

1
2

]
,
[

2
3

]
) + {b, c} ·

[
1
3

]
= 0

which is clearly true. Geometrically, this comes from the following 1-parameter family of
curves connecting {b, c} to {a, c} with Reeb chords ([1, 2], [2, 3]).

a

b

c

d

3

2

1

a

b

c

d

3

2

1

−→←−

a

b

c

d

3

2

1

Here the end on the left is a two-story holomorphic building which corresponds to the first term
of the associativity relation, while the one on the right is a split curve end which corresponds
to the second term.

There are some special circumstances all the higher multiplications may vanish, making

ĈFA(H; J) a genuine differential module, see for example section 4 of chapter 3.

6.4. The torus. Here we analyze the bordered Heegaard diagrams H1 and H2 for the
genus 1 handlebody of example 4.3 from the type A point of view.

H2 :H1 :

>

>
ρ3

ρ2

ρ1

z

z

x0
>

>
ρ3

ρ2

ρ1

z

z

x

y

w
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The generators are clearly the same as the associated type D modules. The non trivial
multiplications for ĈFA(H2; J) are

m2(x, ρ2) = w

∂y = w

m2(y, ρ1) = x

m2(y, ρ12) = w

and the A∞ relations are readily verified. While this is a differential module, ĈFA(H1; J) is
a real A∞ module, and furthermore it is not bounded, as

m3(x0, ρ2, ρ1) = x0

m4(x0, ρ2, ρ12, ρ1) = x0

m5(x0, ρ2, ρ12, ρ12, ρ1) = x0

...

so there are infinitely many non trivial multiplications (which is possible because the diagram
is only provincially admissible). As in example 4.3 the two A∞ modules are not isomorphic,
and they define an invariant of the bordered 3-manifold in a sense which will be made precise
in the next section.

7. Invariance

This section is devoted to the discussion of the following invariance result.

Theorem 7.1. Fix a bordered 3-manifold Y . The modules ĈFD(H; J) and ĈFA(H; J)
are, up to homotopy equivalence and A∞ homotopy equivalence respectively, independent of
the provincially admissible Heegaard diagram H for Y and the generic admissible almost
complex structure on Σ× [0, 1]× R.

In this sense they define invariants of a bordered 3-manifold Y , which we denote by

ĈFD(Y ) and ĈFA(Y ).

As in the closed case (section 6 of chapter 1), in light of proposition 2.7 this result is
proved by analyzing the effect of the following four types of moves:

• change of the generic admissible almost-complex structure;
• isotopy of the α and β-curves;
• handleslides of the β-curves and of the α-curves over the α-circles;
• stabilizations in the interior of Σ.

The spirit of the proofs of invariance under these moves is identic to the closed case, but the
details are clearly more complicated because of the more involved algebra and analysis of our
construction. Here we discuss some special cases to illustrate how these difficulties can be
circumvented.
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7.1. Almost complex structure change for type D modules. As in the closed case
(see subsection 6.1 of chapter 1), given two generic admissible almost complex structures

J0 and J1 one can construct a map Φ : (ĈFD(H; J0), ∂0) → (ĈFD(H; J1), ∂1) by counting
curves holomorphic with respect to a (non translational invariant) almost complex structure
J connecting them. In particular the chain map is given on a generator x ∈ S(H) by

Φ(x) =
∑

y∈S(H)

∑
B∈π2(x,y)
ind(B,~ρ)=0

#(MB(x,y; ~ρ; J)) · a(−~ρ) · y

and can then be extended to the whole ĈFD by Φ(ax) = aΦ(x). First, we need to prove
that this is a chain map, i.e. that

∂1 ◦ Φ + Φ ◦ ∂0 = 0.

As for all x ∈ S(H), a ∈ A(Z) one has that

∂1(Φ(ax)) + Φ(∂0(ax)) = (∂a)Φ(x) + a∂1(Φ(x)) + aΦ(∂0(x)) + (∂a)Φ(x),

one has just to prove that for every x ∈ S(H)

Φ(∂0(x)) + ∂1Φ(x) = 0.

As in the closed case we consider the ends of 1-dimensional moduli spaces, and the analogue
of theorem 3.23 states that the total number of:

(1) two-story ends with a J0 holomorphic curve followed by a J-holomorphic curve;
(2) two-story ends with a J-holomorphic curve followed by a J1-holomorphic curve;
(3) join curve ends;
(4) odd shuffle curves;
(5) collision of levels;

is equal to zero. Now, the first term corresponds to Φ(∂0(x)), while the second and the
third correspond to ∂1Φ(x), respectively when one considers the differential applied to the
generators or to the algebra elements. The fourth and the fifth terms cancel as in the proof
of theorem 4.7.

The rest of the proof, with some adaptations, follows in the same way as in the closed
case.

7.2. Almost complex structure change for type A modules. This is very similar
to the previous paragraph, only with extra algebraic complications due to A∞ structures.

One defines the A∞ homomorphism

Φ = {φi} : (ĈFA(H; J0), {m0
n})→ (ĈFA(H; J1), {m1

n})

by letting for a strongly boundary monotone pair (x, ~ρ) with ~ρ = (ρ1, . . . ,ρn)

φn+1(x, a(ρ1), . . . , a(ρn)) :=
∑

y∈S(H)

∑
B∈π2(x,y)
ind(B,~ρ)=0

#(MB(x,y;~ρ; J)) · y

and extending by multilinearity (and imposing strict unitarity) to a map

ĈFA(H; J0)⊗A⊗n → ĈFA(H; J1).
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To show that this is effectively an A∞ homomorphism we have to prove that

0 =
∑

i+j=n+1

m1
i (φj(x, a1, . . . , aj−1), aj , . . . , an−1)+

=
∑

i+j=n+1

φi(m
0
j (x, a1, . . . , aj−1), aj , . . . , an−1)+

+

n−1∑
l=1

φn(x, a1, . . . , ∂al, . . . an−1)

+
n−2∑
l=1

φn−1(x, a1, . . . , alal+1, . . . an−1).

which is done as usual by considering the ends of 1-dimensional moduli spaces. In particular,
similarly to the proof of theorem 6.6 the first two terms correspond to two-story holomorphic
buildings, the third to join curve ends and odd shuffle curve ends, and the last one to collision
of levels.

With this in mind, the proof proceeds identically as in the closed case. One wants to
prove, with the notations of subsection 6.1 of chapter 1, that Φ and Ψ are homotopy inverses.
Here we have more A∞ complications and we address one of these as an example.

In the closed case we used the fact that the composition Ψ ◦ Φ was the same as the map
F induced by the almost complex structure J\RJ

′ for sufficiently big R > 0. In this case, the
composition has to be intended in an A∞ sense, and so one has to prove that:

Fn(x, a1, . . . , an−1) = (Ψ ◦ Φ)n(x, a1, . . . , an−1) =
∑

i+j=n+1

ψi(φj(x, a1, . . . , aj−1), . . . , an−1).

The y coefficient of ψi(φj(x, a(ρ1), . . . , a(ρj−1)), . . . , a(ρn−1)) is the count of rigid curves of
the form

MB1(x,w; (ρ1, . . . ,ρj); J)×MB2(w,y; (ρj , . . . ,ρn−1); J ′)

which, by gluing and compactness results corresponds exactly for R sufficiently large to the
count of curves in MB(x,y; (ρ1, . . . ,ρn−1); J\RJ

′).

7.3. Handleslides. Here is the case where the biggest analytical complications come
out, and in particular we focus on the handleslide of an α-arc over an α-circle. As in the
closed case (subsection 6.3 of chapter 1) we introduce some auxiliary sets of attaching curves,
αH (the dashed ones) and α′ (the dotted ones), which are constructed in a similar way as in
the closed case.
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∂Σ

<

<

→

→

This is made in order to reduce to a standard computation, and as in the closed case, the
homotopy equivalence

Fα,αH ,β : ĈFD(Σ,αH ,β, z)→ ĈFD(Σ,α,β, z)

is constructed by counting holomorphic curves

(T, ∂T )→
(
Σ×∆, (α× eα) ∪ (β × eβ) ∪ (αH × eγ)

)
with particular boundary conditions and asymptotics. Those curves may have asymptotics
at Reeb chords along the eα and eβ edges, but the main technical issues come from the
asymptotics at pα,γ , as punctures of T mapped there may have as asymptotics both a point

in α∩αH or a Reeb chord in ∂Σ connecting points of a to points of aH . One has to introduce
the concept of curves at pα,γ in order to construct a compactification of such moduli spaces.
The details are long and technical, but the general spirit is exactly as the closed case.

7.4. The type D genus 1 handlebody. Here we verify directly the invariance of the
type D structures of the genus one handlebodies of example 4.3, which diagrams differ by an
isotopy of the β-curve. Recall that the type D modules are respectively

x0x0
ρ23

ĈFD(H1) : ĈFD(H2) :and

wx
ρ2

y

ρ3
1 + ρ23

One can define the maps

Φ : ĈFD(H1)→ ĈFD(H2) x0 7→ x+ ρ2y + ρ2w

and

Ψ : ĈFD(H2)→ ĈFD(H1)

x 7→ x0

y 7→ ρ3x0

w 7→ ρ3x0
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which are readily verified to be chain maps. Clearly Ψ ◦ Φ is the identity map of ĈFD(H1),

while Φ ◦Ψ is homotopy equivalent to the identity of ĈFD(H2) through the chain homotopy

H : ĈFD(H2)→ ĈFD(H2)

x 7→ ρ23x+ ρ2w + ρ2y
y 7→ ρ3x+ w
w 7→ ρ3x+ y.

There is a geometric motivation behind these maps, analogue to the closed case (subsection
6.2 of chapter 1). Here, in order to prove invariance under an isotopy of the β-curves that
moves β to β′ one constructs chain maps considering holomorphic curves in Σ× [0, 1]×R with
boundary in a generic collection of lagrangian cylinders which coincides with β×{0}×R near
−∞ and with β′×{0}×R near +∞. Then the chain maps are constructed by counting curves
in index 0 moduli spaces. On the other hand, in order to construct homotopies between the
chain maps induced by two such collection of cylinders C and C ′ one chooses a generic family
of lagrangian cylinders Ct connecting C to C ′ and considers the union over t of index −1
moduli spaces of curves with boundary in Ct (which are non empty only for finitely many
t’s). For example, the y coefficient of H(x) is guessed considering the following curve

<

<

ρ1

ρ2

ρ3

z

z

x

y

w

and similarly all the other differentials have such graphical interpretation.





CHAPTER 3

The pairing theorem

In this chapter we study how to construct a pairing of the type A and type D modules
in order to recover the information regarding the Heegaard Floer homology of a closed 3-

manifold Y = Y1 ∪ Y2 from the knowledge of ĈFA(Y1) and ĈFD(Y2). In particular, we will
define the A∞ tensor product ⊗̃ between A∞ modules (which returns a chain complex) and
prove the following pairing theorem.

Theorem 0.2. ĈF (Y ) is homotopy equivalent to ĈFA(Y1)⊗̃ĈFD(Y2). In particular

ĤF (Y ) ∼= H∗
(
ĈFA(Y1)⊗̃ĈFD(Y2)

)
.

We will discuss two proofs of this key result.
The first one, via time dilation, is the more geometric one, and involves the study of pairs

of holomorphic curves with matching asymptotics which arise when one stretches to infinity
the complex structure on the closed surface along a separating curve. This proof, which is
quite complicated from an analytical point of view, has the advantage of being more intuitive
and to motivate the definition of our modules, which has been quite mysterious by far. For
example, it is not really clear at the moment why in the definition of the type A modules we
consider curves with asymptotics sequences of sets Reeb chords, while in the type D case we
simply consider curves with sequences of Reeb chords.

The second one, via nice Heegaard diagrams, is the more combinatorial one. Nice Heegaard
diagrams, first introduced by Sarkar and Wang in [SW10], are a special class of Heegaard
diagrams where the differential of the Floer complex can be computed in a combinatorial
way simply by counting some specific domains (while, as we noticed in example 5.4, the
Floer complex is generally far from being a combinatorial object). When dealing with such
diagrams, the result becomes really neat but this proof in some sense hides the idea behind
the whole construction. For example, in nice diagrams there is no need to deal with A∞
structures as type A modules are easily shown to be honest differential modules (lemma 4.7)

This is the plan for the rest of the chapter. In section 1 we explain two näıve ways (one
geometrical, one algebraic) to make two bordered Heegaard diagrams interact. In particular
we will describe how holomorphic curves behave with respect to cutting of the surface, and
how to construct a tensor product of A∞ modules. The latter turns out to be always infinite
dimensional, and so is unlikely to fit well in the count of holomorphic curves. For this reason
in section 2 we study type D structures (which generalize our type D modules) and construct
a special pairing between them and A∞ modules. In section 3 we sketch the proof of the
pairing theorem via time dilation, while in section 4, after having discussed the basic results
regarding nice Heegaard diagrams, we will prove it using them. Finally in section 5 we show
an application of the pairing theorem.

81
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1. Towards the pairing theorem

In this section we describe two ideas which are a first step to prove the pairing theorem.
In fact at a first sight it is not obvious how the algebraic objects we have defined on the
two sides can describe properly the global invariant. Here we present two constructions, one
to decouple the global geometry into the geometry of the two parts, the other to pair the
algebraic objects of the two parts.

1.1. The näıve geometric idea. Here we describe a first näıve way to break the chain
complex associated to a Heegaard diagram H = H1∪ZH2 into some algebraic objects depend-
ing on the two bordered Heegaard diagrams. The idea here is that given a holomorphic curve
u : S → Σ× [0, 1]×R, if we stretch to infinity the almost complex structure along the separat-
ing circle Z this curve will break up into a pair of holomorphic curves u1 : S1 → Σ1× [0, 1]×R
and u2 : S2 → Σ2 × [0, 1]× R with S1\S2 = S and matching asymptotics at east infinity.

This is made more precise as follows. Let H1 and H2 be provincially admissible Heegaard
diagrams with compatible boundaries, i.e. ∂H1 = −∂H2, and suppose one of them is admis-
sible. Then by lemma 2.20 we have that H = H1 ∪ H2 is an admissible Heegaard diagram.
Recall (remark 2.14 of chapter 2) that the set of generators S(H) can be identified with the
set of compatible pairs (x1,x2) ∈ S(H1) ×S(H1) (i.e. such that o(x1) ∩ o(x2) = ∅), which
we denote by S(H1,H2).

Define a pair of decorated surfaces (S1, S2) to be compatible if there exists a bijection
φ : E(S1)→ E(S2) such that the Reeb chord labeling φ(q) is the Reeb chord labeling q with
the orientation reversed. Given such a pair, one can construct the surface S = S1\S2 by
gluing along the corresponding punctures.

Fix two pairs of compatible generators (x1,x2) and (y1,y2) in S(H1,H2) inducing x,y ∈
S(H), homology classes Bi ∈ π2(xi,yi) inducing B ∈ π2(x,y) (see lemma 2.16 of chapter 2),
and a compatible pair of sources (S1, S2) connecting x1 to y1 and x2 to y2 respectively. We

then define the moduli space of matching pairs as the fibered product over RE(S1)/R

M̃M
B

(x1,y1, S1; x2,y2, S2) = M̃B1(x1,y1;S1)×ev1=ev2 M̃B2(x2,y2;S2)

i.e. the space of pairs of curves (u1, u2) ∈ M̃B1(x1,y1;S1) × M̃B2(x2,y2;S2) such that
ev1(u1) = ev2(u2) under the correspondence of the punctures induced by the bijection φ.

There is the usual R-action by translation on this space, and we will consider the quotient
space indicated as usual by dropping the tilde. Actually, we will only be interested in the
union of spaces of embedded such pairs inducing a fixed homology class B, which we denote
by MMB(x1,y1; x2,y2).

The transversality results and index theory for embedded curves are totally analogue (with
small complications) as the treatment in the previous chapter (see [LOT11b]), and in partic-
ular embeddedness turns out to be a purely numerical condition on the Euler characteristic
of the sources.
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We are now ready to define the chain complex ĈF (H1;H2). This is generated as a vector
space over F2 by S(H1;H2), and the differential is defined as

∂(x1,x2) =
∑

(y1,y2)∈S(H1;H2)

∑
B∈π2(x,y)
ind(B)=1

#(MMB(x1,x2; y1,y2)) · (y1,y2)

where the sum is finite because of the admissibility hypothesis we imposed on the two bordered
Heegaard diagrams.

Proposition 1.1. For a generic choice of the almost complex structures, (ĈF (H1;H2), ∂)

is a chain complex and is isomorphic to ĈF (H1 ∪Z H2).

Proof. The two objects agree as vector spaces by definition, so we just have to prove
that the boundary maps coincide for a suitable choice of the almost complex structures. This
follows from compactness ad gluing techniques totally analogue to those of the previous chap-
ters, and in particular generic almost complex structures (for which the Z neck is sufficiently
long) there is an identification for 0-dimensional moduli spaces

MB(x,y;S) and
⋃

S1\S2=S

MMB(x1,y1, S1; x2,y2, S2)

and by index considerations this identification respects embeddedness. So the differential of

ĈF (H1;H2) is exactly the differential of ĈF (H1 ∪H2). �

1.2. The näıve algebraic idea. As ĈFA(Y ) and ĈFD(Y ) are respectively a right and
left A∞ algebra over the differential algebra A(Z), there is a natural ‘good’ way to pair them
via a tensor product ⊗̃ in order to get a chain complex. The notion of ‘good’, which motivated
by the invariance results we have discussed previously (section 7 of chapter 2), is that the
pairing operation should respect quasi-isomorphisms, i.e. that if M∼=M′ and N ∼= N ′ then
M⊗N ∼=M′ ⊗N ′ in a natural way.

The construction of such a pairing is not immediate. For example, even if we are talking
of genuine differential modules over a differential algebra, the classical tensor product has not
the required properties. A solution to this problem is the tensor product in the A∞ setting
we are going to define now.

Definition 1.2. Fix a ground ring k and an A∞ algebra over it. Given M and N ,
respectively right and left A∞ modules, their A∞ tensor product M⊗̃N is the chain complex
with underlying module M ⊗ T ∗A⊗N and differential defined by

∂(x⊗ a1 ⊗ · · · ⊗ an ⊗ y) =

n+1∑
i=1

mi(x⊗ a1 ⊗ · · · ⊗ ai)⊗ · · · ⊗ an ⊗ y

+

n∑
i=1

n−i+1∑
l=1

x⊗ · · · ⊗ µi(al ⊗ · · · ⊗ al+i−1)⊗ · · · ⊗ an ⊗ y

+
n+1∑
i=1

x⊗ a1 ⊗ · · · ⊗mi(an−i+2 ⊗ · · · ⊗ an ⊗ y).

The fact that ∂ is effectively a differential is an immediate consequence of theA∞ relations.
This is a ‘good’ tensor product as the following holds.
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Proposition 1.3. An A∞ homomorphism f : M → M′ induces a chain map f⊗̃IN :
M⊗̃N → M′⊗̃N . Furthermore, if f is nullhomotopic, then also f⊗̃IN is. In particular if
M∼=M′, then M⊗̃N ∼=M′⊗̃N .

Clearly the result holds symmetrically for N .

Proof. One just defines the induced map by

(f⊗̃IN )(x⊗ a1 ⊗ · · · ⊗ an ⊗ y) =
n+1∑
i=1

fi(x⊗ a1 ⊗ · · · ⊗ ai−1)⊗ · · · ⊗ an ⊗ y,

and a homotopy h :M→M′ induces a homotopy h⊗̃IN is the same way. �

One important construction in when one considers N = A as a right A∞ module. This
allows in certain situations to construct a honest differential module homotopy equivalent to
a given A∞ module M.

Definition 1.4. The bar resolution M of M is the chain complex M⊗̃A together with
the higher operations

mi((x⊗ a1 ⊗ · · · ⊗ an)⊗ b1 ⊗ · · · ⊗ bi−1) =
n∑
l=1

x⊗ a1 ⊗ · · · ⊗ µi+l−1(an−l+1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bi−1).

Proposition 1.5. If A and M are strictly unital then M is an A∞ algebra homotopy
equivalent to M. Furthermore, if A is a differential algebra, then M is a genuine differential
module.

Proof. The only non trivial part is the homotopy equivalence, which we construct con-
cretely. We define ϕ :M→M by

ϕi((x⊗ a1 ⊗ · · · ⊗ an)⊗ b1 ⊗ · · · ⊗ bi−1) := mi+n(x⊗ a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bi−1)

and ψ :M→M by

ψi(x⊗ a1 ⊗ · · · ⊗ ai−1) = x⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ 1.

Then ϕ ◦ ψ is the A∞ identity map (example 5.8), while h :M→M defined as

hi((x⊗ a1 ⊗ · · · ⊗ an)⊗ b1 ⊗ · · · ⊗ bi−1) = x⊗ a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bi−1.

is a homotopy between ψ ◦ ϕ and the identity. �

2. A simpler model for the algebraic pairing

Even though the A∞ tensor product we have introduced in the previous section has a
nice behavior with respect to homotopy equivalences, it is unlikely to fit well in our context.
Indeed, it is always infinite dimensional, while our chain complexes are always finite dimen-

sional. For this reason we will introduce a simpler model for the tensor product of ĈFA(Y1)

and ĈFD(Y2), denoted by �. This exploits the fact that ĈFD(H2; J) = A(Z) ⊗X(H2) is
indeed a genuine differential module over A(Z), and its differential is defined by a map

∂ : X(H2)→ A(Z)⊗X(H2)
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satisfying certain compatibility properties. This is a special case of the type D structures we
are now going to define.

2.1. Type D structures. The ĈFD(H; J) modules will be a special case of the struc-
tures we are going to define, but as usual we give a more general definition because it is neater
to state and work with.

Fix a characteristic 2 ground ring k an A∞ algebra A over it. We will always suppose for
simplicity that A is operationally bounded (see definition 5.4 of chapter 2). Consider pairs
(N, δ1) where N is a left k-module and δ1 is a map N → A ⊗ N , with the tensor product
taken over k. The latter may be iterated to construct maps δk : N → A⊗k ⊗N by

δ0 = IN
δi = (IA⊗(i−1) ⊗ δ1) ◦ δi−1.

We say that (N, δ1) is bounded if δn = 0 for sufficiently large n. In this case usual one can
promote the δk maps to a map δ : N → T ∗A⊗N by

δ(x) =

∞∑
i=0

δi(x).

By definition we have the relations

(IA⊗j ⊗ δi) ◦ δj = δi+j

or, graphically

∆

δ
=

δ

δ

where the dotted arrows indicate elements of N .
Notice that all of this makes sense even if (N, δ1) is not bounded if we consider instead

of T ∗A the complete tensor algebra T ∗A =
∏∞
i=0A

⊗i.

Definition 2.1. We say that the pair (N, δ1) is a type D structure over A with base ring
k if

(D ◦ IN ) ◦ δ = 0

or, graphically,

D

δ

= 0
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We say that the type D structure is bounded if the pair (N, δ1) is.

Lemma 2.2. Given a provincially admissible Heegaard diagram H and a generic admissible

almost complex structure J , the pair (ĈFD(H; J), ∂) defines a type D structure over A(Z),
where as usual Z = −∂H. If H is also admissible, then the type D structure is bounded.

Notation 2.3. There is a slight abuse of notation here, as the module N in this case

should be the left I(Z)-module X(H) generated over F2 by S(H), while ĈFD(H; J) is the
associated A∞ module (in a sense that will be made precise later).

Proof. As A(Z) is a genuine differential algebra, the type D compatibility condition is
simply

(µ2 ⊗ IN ) ◦ (IA ⊗ ∂) ◦ ∂ + (µ1 ⊗ IN ) ◦ ∂ = 0

which is exactly the fact that ∂ is a differential. Then we prove that the admissibility condition

implies that (ĈFD(H), ∂) is bounded. That is because the y coefficient in δk(x) counts points

in the product spaces
∏k
i=1MBi(xi,xi+1; ~ρi) where x1 = x, xk+1 = y and B1 ∗ · · · ∗ Bk =

B ∈ π2(x,y). Now, if as in the proof of the lemma 6.1 we define |B| to be the sum of its local
multiplicities, because of the positivity of the domains we have that for such a homology class
|B| ≥ k, and so we can conclude by lemma 2.19 of chapter 2. �

Definition 2.4. Given a type D structure (N, δ1) over A∞, the associated A∞ module
N has underlying module A⊗N and operations defined by the sum

mn =
∞∑
k=0

(µi+k ⊗ IN ) ◦ (IA⊗i ⊗ δk).

(which is always finite because of the boundedness condition on A).

It is straightforward to prove that such operations actually define an A∞ structure over A,

and that this is exactly the way we constructed the differential module ĈFD(H; J) starting
from X(H).

We next define homomorphism between type D structures (N1, δ
1
N1

) and (N2, δ
1
N2

). Given

a map ψ1 : N1 → A⊗N2, one can construct

ψk : N1 → A⊗k ⊗N2 x 7→
∑

i+j=k−1

(IA⊗(i+1) ⊗ δjN2
) ◦ (IA⊗i ⊗ ψ1) ◦ δiN1

(x)

As usual one can put everything together in order to get a map ψ : N1 → T
∗A ⊗ N2

defined as

ψ(x) =
∞∑
i=0

ψi(x).

We say that ψ1 is bounded if ψk = 0 for k sufficiently big, which holds for example if N1 and
N2 are both bounded. In particular in this case the map ψ has image in T ∗A⊗N2.

Definition 2.5. ψ1 is a type D homomorphism if (D ⊗ IN2) ◦ ψ = 0, or, graphically,
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D

ψ

= 0

In a totally similar way one defines homotopies between type D homomorphisms. The
composition of type D homomorphisms has a pretty complicated definition, and given fi :
Ni → A ⊗ Ni+1 for i = 1, . . . , k, their composition ◦k(f1, . . . , fk) : N1 → A ⊗ Nk+1 is given
graphically by

µ

δMk

f1
k

...

...

f1
2

δM1

f1
1

δM0

Remark that the condition ◦1(f1) = 0 says precisely that f1 defines a type D homomorphism.
Finally, we can construct from a type D homomorphism ψ1 : N1 → A⊗N2 an associated

homomorphism of A∞ algebras between the associated type D modules.

Lemma 2.6. Fix a bounded A∞ algebra A. A type D homomorphism ψ1 : N1 → A⊗N2,
induces an A∞ homomorphism N1 → N2 between the associated A∞ structures whose ith
component is given by

∞∑
k=1

(µi+k+1 ⊗ IN1) ◦ (I⊗iA ⊗ ψ
k)

Similarly, a homotopy of type D structures induces a homotopy between the associated maps.

Remark 2.7. In light of these definitions, the invariance theorem (section 7 of chapter

2) says ĈFD(H; J) is homotopy invariant not only as a differential module, but also as
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a type D structure, in the sense that the homotopy equivalences are induced by type D

homomorphisms. Furthermore by lemma 2.2 ĈFD(H; J) is always equivalent to a bounded
type D structure.

2.2. The box tensor product. We are now ready to define our new version of the tensor
product which gives us a pairing between a right A∞ module and a left type D module. As
we will see, this will fit nicely in the geometric context we are studying and will produce small
sized chain complexes.

Definition 2.8. Given a operationally bounded A∞ algebra A, a right A∞ module M
over it and a left type D module (N, δ1) over it such that at least one of M and (N, δ1) is
bounded, one can form the box tensor product M�N which is the k-module M⊗kN together
with the boundary map

∂�(x⊗ y) =
∞∑
k=0

(mk+1 ⊗ IN )(x⊗ δk(y))

or, graphically,

m

δ

Remark 2.9. The boundedness hypothesis for at least one of ĈFA or ĈFD is quite
natural in view of lemmas 2.20 and 6.1 of chapter 2 and lemma 2.2 of this chapter.

Lemma 2.10. The pair (M ⊗N, ∂�) is a chain complex.

Proof. This fact the following nice pictorial proof

(∂�)2 =

m

δ

m

δ

=

m

m

∆

δ

=

m

D

δ

= 0

where the first identity comes from the definition of δ, the second from the A∞ relations and
the third them the definition of type D structure. �

This is indeed a ‘good’ pairing.
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Proposition 2.11. Given an A∞ homomorphism f :M→M′, for every type D struc-
ture (N, δ1) there is an induced a chain map

f � IN :M�N →M′ �N

if M,M′ and f are bounded or (N, δ1) is bounded. Furthermore, under boundedness condi-
tions such that all � are defined, homotopic maps induce homotopic maps and given another
A∞ homomorphism g :M→M′ we have that (g ◦f)�IN is homotopic to (g�IN )◦(f�IN ).
Symmetrically, everything holds also for maps on the N side of the tensor product.

Proof. The first claim follows from the fact that an A∞ homomorphism f : M→M′
induces a chain map f � IN :M�N →M′ �N defined as

(f � IN )(x⊗ y) =
∞∑
k=0

(fk+1 ⊗ IN ) ◦ (x⊗ δk(y))

and, in the same spirit, an A∞ homotopy h between maps f1 and f2 determines a chain
homotopy h� IN between f1 � IN and f2 � IN by the formula

(h� IN )(x⊗ y) =

∞∑
k=0

(hk+1 ⊗ IN ) ◦ (x⊗ δk(y)).

Graphically, these maps are

f

δ

and

h

δ

and the proof of their properties is an easy adaptation of that of (∂�)2 = 0.
The second claim is completely analogous, as for a type D homomorphism φ1 : N1 →

A⊗N2 one can define a chain map IM � φ1 :M�N1 →M�N2 by

(IM � φ1)(x⊗ y) =
∞∑
k=1

(mk+1 ⊗ IN2) ◦ (x⊗ φk(y))

or, graphically

m

φ

and similarly for homotopies of type D homomorphisms. �

Here is the main algebraic result we are interested in.



90 3. THE PAIRING THEOREM

Proposition 2.12. In the previous setting, suppose the type D structure (N, δ1) is bounded
or M is bounded and (N, δ1) is equivalent to a bounded one. Then the box tensor product
M�N is homotopy equivalent to the A∞ tensor product M⊗̃N .

Proof. By the previous proposition, the boundedness hypotheses imply that we can
suppose N to be bounded. Then one has that M�N ∼=M�N . This follows from the fact
that M and M are homotopy equivalent (proposition 1.5) and the fact that the box pairing
is ‘good’ (here we need the boundedness hypothesis on N).

Then one just notices that M�N and M⊗̃N are exactly the same chain complex with
different names. For instance, the underlying k-modules are

M�N = (M ⊗ T ∗A⊗A)⊗N = M ⊗ T ∗A⊗ (A⊗N) =M⊗̃N .
and it is straightforward to check that also the differentials coincide. �

Remark 2.13. In our case the hypoteses of this result are always satisfied, as every ĈFD
module is equivalent to a bounded one (see remark 2.7) and we will always suppose that one
of the two Heegaard diagrams is admissible.

3. Time dilation

We are now ready to sketch the proof of the pairing theorem via time dilation. We have

already seen in subsection 1.1 how to reformulate the chain complex ĈF (H1∪H2) in terms of a

chain complex ĈF (H1;H2) counting pairs of holomorphic curves with matching asymptotics.
Even if this is an interesting interpretation, it is far from our aim as the two Heegaard diagrams
still interact in a complicated analytical way (i.e. via fibered products), which does not fit
in a clear way in our algebraic construction. The ingenious idea is to consider more general
fibered products where the matching condition is rescaled, in particular rather than imposing
ev(u1) = ev(u2) we want T · ev(u1) = ev(u2) for a real parameter T > 0. When letting
T →∞, process we call time dilation, the two parts of the diagram will decouple, and we will

recover exactly the algebraic definition of the box tensor product ĈFA(H1) � ĈFD(H2).

We now introduce the family ĈF (H1;H2;T ) of chain complexes depending on the real
parameter T > 0 (note that for T = 1 we will recover the previously constructed chain com-

plex ĈF (H1;H2)). As a vector space this is generated by S(H1;H2). In the differentials we
will count pairs of holomorphic curves where the evaluations coincide after a T -dilation. In
particular, given two pairs of compatible generators (x1,x2) and (y1,y2) in S(H1;H2) induc-
ing x,y ∈ S(H), homology classes Bi ∈ π2(xi,yi) inducing B ∈ π2(x,y), and a compatible
pair of sources (S1, S2) connecting x1 to y1 and x2 to y2 respectively we define the space of
T -matching pairs as the fibered product

M̃M
B

(x1,y1;S1; x2,y2;S2;T ) = M̃B1(x1,y1;S1)×T ·ev1=ev2 M̃B2(x2,y2;S2)

i.e. the moduli space of pair of curves (u1, u2), ui ∈ M̃Bi(xi,yi;Si) with T · ev(u1) = ev(u2).
This space has a natural R-action by scaled translations, i.e. the translation on the first curve
is amplified by a factor T , and we consider the quotient space of this action (denoted as usual
by dropping the tildes).

We refer to the moduli space of such embedded pair of curves (the one we are interested
in) as MMB(x1,y1; x2,y2;T ). Again, transversality results and index theory are analogue
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to the closed case so for a generic choice of the admissible almost complex structure on

Σi × [0, 1]× R and i = 1, 2 one can define the boundary map for ĈF (H1;H2;T ) as

∂T (x1,x2) =
∑

(y1,y2)

∑
B∈π2(x,y)
ind(B)=1

#
(
MMB(x1,x2; y1,y2;T )

)
· (y1,y2)

where we have finiteness for the sum if both H1 and H2 are provincially admissible, and at
least one is admissible. Here is the key lemma of this construction.

Lemma 3.1. For each T > 0, ∂T is a differential. Furthermore for any T > 0 the chain

complex ĈF (H1;H2;T ) is homotopy equivalent to ĈF (H1 ∪H2).

We discuss the proof of such a result.
The first part is proved as usual by considering the ends of a 1-dimensional moduli spaces

MMB(x1,x2; y1,y2;T ). The compactification one constructs is the space of T -matched
combs, i.e. the space of pairs of holomorphic combs with matching evaluations up to a
T -scaling.

The second part is similar in spirit to the change of the almost complex structure, and

is proved by constructing a chain map FT : ĈF (H1;H2;T )→ ĈF (H1;H2) defined by count-
ing pairs of holomorphic curves with asymptotics matching up to a nonlinear rescaling. In
particular one considers a smooth function ψ : R→ R with ψ′ > 0 and

ψ(t) =

{
T · t if t ≤ −1

t if t ≥ 1.

and the fibered products of spaces of curves

MMB(x1,y1;S1; x2,y2;S2;ψ) = M̃B1(x1,y1;S1)×ψ◦ev1=ev2 M̃B2(x2,y2;S2).

As in the proof on the invariance with respect to the change of complex structure one defines
FT by counting rigid embedded holomorphic curves, and proves that is a chain map consid-
ering the end of 1-dimensional moduli spaces. The homotopy inverse of FT is constructed in
a totally analogue way.

As the homotopy type of ĈF (H1;H2;T ) is independent of T , one may look to its behaviour
for T →∞. Intuitively, on the left side (the one involved in the type A modules) some Reeb
chords may collide while on the right side (the one involved in the type D modules) some
Reeb chords may become infinitely apart. This is made rigorous with the introduction of the
so called ideal matchings, which are limits of T -matched holomorphic curves. The main result
is the following.

Proposition 3.2. For sufficiently big T > 0, ĈF (H1;H2;T ) is a chain complex isomor-

phic to ĈFA(H1) � ĈFD(H2).

In particular, in light of the algebraic result of proposition 2.12 this implies theorem 0.2.
We will not enter the complicated details and definitions needed for the proof of this result
(see [LOT11b]). Instead, we illustrate a quite long local example which shows the phenomena
which occur and how they are described by the algebra we have defined.

Example 3.3. Consider the hexagonal domain cut as in the next figure



92 3. THE PAIRING THEOREM

x1

y1 x3

y3

y2

x2

D1 D2

D3ρ3

ρ2

Z

z

which topologically connects x = {x1, x2, x3} to y = {y1, y2, y3} in a homology class B ∈
π2(x,y) corresponding to the domain D1 +D2 +D3.

From a global point of view, a result due to Rasmussen ([Ras03], lemma 9.11) assures
that #MB(x,y) = 1 so this hexagon always contributes to the differential of x. Let us see
what happens when one slices the diagram along Z.

First of all we consider the näıve decoupling, i.e. the chain complex ĈF (H1;H2) of sub-
section 1.1. Here, MD1({x1}, {y1}) consists of a single curve and the difference of the evalu-
ations is a fixed real number t0 = evρ3 − evρ2 > 0 depending on the complex structure, while
MD2+D3({x2, x3}, {y2, y3}) is a one dimensional space parametrized by evρ2−evρ2 (which is a
positive number because of strong boundary monotonicity). It is then clear that there is only
one pair of curves with matching asymptotics, so #MMB({x1}, {y1}; {x2, x3}, {y2, y3}) = 1.

Then we consider the effects of time dilation. The type A module ĈFA(H1) has two
generators x1 and x2 and only one non trivial operation

m3(x1, ρ2, ρ3) = y1

while the type D module ĈFD(H2) has four generators x2x3, x2y3, y2x3 and y2y3 and differ-
entials

∂x2x3 = ρ2 · y2x3 + ρ3 · x2y3

∂x2y3 = ρ2 · y2y3

∂y2x3 = ρ3 · y2y3.

The module ĈFA(H1)� ĈFD(H2) has only two generators x1⊗x2x3 and y1⊗ y2y3, and
the only non trivial differential is graphically given by

y1 y2y3

m3

δ1

ρ2

δ1

ρ3

x1 x2x3
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so we recover exactly the global chain complex. The analytical interpretation of this result
is that the moduli space MMB({x1}, {y1}; {x2, x3}, {y2, y3};T ) contains a single pair given
by the disk in H1 and the pair of disks in H2 with height difference T · t0. For T → ∞ this
difference goes to infinity and the curve breaks in a two-story holomorphic building, which
are exactly the two δ1s.

Finally we see the different behaviour when we switch the roles of H1 and H2. The type
A module ĈFA(H2) has four generators x2x3, x2y3, y2x3 and y2y3 and non trivial operations

m2(x2x3, ρ2) = y2x3

m2(x2y3, ρ2) = y2y3

m2(x2x3, ρ3) = x2y3

m2(y2x3, ρ3) = y2y3

m2(x2x3, {ρ2, ρ3}) = y2y3

while the type D module ĈFD(H1) has two generators x1 and y1 and differential

∂x1 = ρ23 · y1.

Then ĈFA(H2) � ĈFD(H1) has two generators x2x3 ⊗ x1 and y2y3 ⊗ x1, and there is
only one non trivial differential represented graphically as

y2y3 y1

m2

δ1
ρ23

x2x3 x1

Geometrically, MMB({x2, x3}, {y2, y3}; {x1}, {y1};T ) consists of a single pair with a disk in
H2 and a pair of disks in H1 with height difference t0/T . For T → ∞, this separation goes
to 0, so the Reeb chords collide returning us the only non trivial differential in the tensor
product.

4. Nice Heegaard diagrams

We now discuss another proof, via the notion of nice Heegaard diagrams. These were
introduced for closed 3-manifolds by Sarkar and Wang (in [SW10]), and their importance
is that in such diagrams the differential of the Floer chain complex can be determined in a
completely combinatorial way. This was a big breakthrough, as Heegaard Floer homology
turned out to be the first completely computable Floer theory. In this section introduce the
basic facts about nice Heegaard diagrams and show how to use them to prove the pairing
result.
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4.1. Nice Heegaard diagrams. We will treat the case of nice bordered Heegaard dia-
grams. The case of closed Heegaard diagrams is completely analogue (and simpler).

Definition 4.1. We say that a bordered Heegaard diagram is nice if each region in which
Σ is cut out by α and β not adjacent to z is topologically a disk with at most four corners,
so in particular:

• each region in the interior of Σ is a bigon or a quadrilateral
• each region at the boundary of Σ except the one adjacent to z is a quadrilateral with

boundary two α-arcs, a β-curve and ∂Σ.

∂Σ

The following is the key result regarding nice Heegaard diagrams.

Proposition 4.2. Let H be a nice bordered Heegaard diagram, and let ind(B,~ρ) = 1.
Then any holomorphic curve u ∈MB(x,y;~ρ) has one of the following forms:

(1) the source of u consists of g bigons, g−1 of which are mapped trivially and the other
is mapped by πΣ to the interior of Σ;

(2) the source of u consists of g − 1 bigons and a quadrilateral, with the bigons mapped
trivially and the quadrilateral mapped by πΣ to the interior of Σ;

(3) the source of g consists of g bigons, which are mapped trivially or with a single
puncture at e∞. Furthermore all those punctures are at the same height, i.e. |~ρ| = 1.

Conversely, if there are topological maps satisfying the previous conditions, there is a unique
holomorphic map in MB(x,y;~ρ).

This implies that in a nice Heegaard diagram the non trivial differentials are obtained
by counting special bigons and quadrilaterals. In particular, the differentials between x =
{x1, . . . , xg} and y = {y1, . . . , yg} are obtained by counting empty bigons and quadrilaterals
connecting them, i.e. domains B ∈ π2(x,y) which are topologically embedded bigons and
quadrilaterals and do not contain any of the xi’s or yi’s in their interior.

Notation 4.3. In particular the differentials in a nice Heegaard diagram depend only on
the diagram and not on the almost complex structure, so we will always drop the latter from
our notations.

Proof. By the index formula of proposition 3.2 of chapter 2 we know that

1 = g − χ(S) + 2e(D(u)) + |~ρ|.
Since the diagram is nice, each region (except the one adjacent to z, which our curves cannot
intersect) has Euler measure 0 or 1/2, and so e(D(u)) ≥ 0, and as S has at most g components,
none of which closed, χ(S) ≤ g. So there are the three possibilities:

(1) χ(S) = g, e(D(u)) = 1/2 and |P | = 0;
(2) χ(S) = g − 1, e(D(u)) = 0 and |P | = 0;
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(3) χ(S) = g, e(D(u)) = 0 and |P | = 1;

which clearly correspond to the cases in the statement. Such domains admit holomorphic
representatives by the Riemann mapping theorem, and it is clear that this is unique in the
moduli space. The only non straightforward case are the rectangles. For these one can use
Rasmussen’s lemma ([Ras03], lemma 9.11) or the classical fact in conformal geometry that
a rectangle admits a double branched covering over the bigon, unique up to translations of
the image. �

The natural question that arises is whether or not any bordered 3-manifold admits a nice
Heegaard diagram. This is answered in the following algorithmic way.

Proposition 4.4. Any bordered Heegaard diagram H = (Σ,α,β, z) can be turned into a
nice one by a suitable finite sequence of

• isotopies of the β-curves;
• handleslides among the β-curves.

Proof. We first describe how the proof goes in the closed case, referring the reader to
the original paper [SW10] for the details. This is done in two steps.

In step 1, one makes all the regions topological disks. To do this, after performing some
isotopies one can assume that no curve β-curve is disjoint from α and viceversa no α-curve
is disjoint from β. As each region in which the surface is cut by the curves is planar (by
homological assumptions), one can perform finger moves as in the following figure to obtain
the result.

In step 2 we obtain a nice Heegaard diagram. First one defines an appropriate complexity
function on Heegaard diagrams with values in a well ordered set which attains its minimum
if and only if the diagram is nice, and a related notion of distance for a region.

Then, starting from a non disk or rectangle region with maximal distance, one performs
a finger move like
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splitting the region in two regions with less edges, and pushes it through all square regions
as far as possible.

From the definition of complexity then if the region one reaches at the end is different from
the starting one the complexity of the new Heegaard diagram is smaller. If the starting region
is reached, one has to perform a suitable handleslide of the β-curves is order to decrease the
complexity.

In any case, if H is not nice then one can perform some moves as in the statement to
decrease its complexity. Because of the well-orderedness of the values of the complexity, this
algorithm will terminate, yielding a nice Heegaard diagram.

In the closed setting, one just starts by doing a finger move as

z

z

β0

α0

where α0 is the α-arc intersecting ∂Σ in the ‘highest’ point, and β0 is the arc which intersects
α0 closest to the boundary, and then one just proceeds as in the closed case. �

We conclude the paragraph with the following simple result.

Lemma 4.5. A nice bordered Heegaard diagram is admissible.

Proof. First one notices that in a nice diagram the region adjacent to z has to occur to
both left and right of each β-curve. Otherwise on one side of the β-curve there would be only
bigons and rectangles (possibly intersecting the boundary), and by analyzing the cases one
shows that the only possibilities are
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which are impossible as in each of them the β curves turn out to be not homologically
independent.

Now, suppose we have a periodic domain D with nz(D) = 0 and all positive coefficients.
Chosen a β-curve on its boundary (without loss of generality in the left), as D is periodic
all the domains on the left of this curve have positive coefficient, which clashes with the
assumption nz(D) = 0. �

Remark 4.6. Even if this algorithm has a great theoretical importance, in the practice
this is far from being satisfactory, as:

• the computations are pretty complicated. For example we remarked that one can not
tell the differentials in the Heegaard diagram for the Poincaré homology sphere, while
the Sarkar and Wang algorithm yields a nice Heegaard diagram with computable
chain complex, but with 335 generators and 505 non trivial differentials;
• the algorithm works really ad hoc for each Heegaard diagram. In particular this

method does not fit well when one wants to compute Heegaard Floer homology for
infinite families of 3-manifolds with special properties (for example, all the Dehn
fillings of the complement of a knot).

Both these reasons are indeed motivations behind the construction of bordered Heegaard
Floer homology.

4.2. The pairing theorem via nice diagrams. We now show how one can use nice
Heegaard diagrams in order to give a neat proof of the of the pairing theorem (via proposition
2.12).

Lemma 4.7. If H is a nice bordered Heegaard diagram, ĈFA(H) is a differential module.

Proof. The higher operations mi with i > 2 count curves in the index 1 moduli spaces
MB(x,y;~ρ) with |~ρ| > 1, which in a nice Heegaard diagram are always empty in light of
proposition 4.2. �

Proof of Theorem 0.2. The union of nice bordered Heegaard diagrams H1 and H2

is obviously a nice Heegaard diagram H, and they are all admissible by lemma 4.5. The

differential of ĈF (H) counts index 1 empty bigons and rectangles, and we want to show that

this is exactly what the chain complex ĈFA(H1)� ĈFD(H2) does. This will let us conclude
thanks to proposition 2.12.

First of all, notice that because of the definition of the actions of the subring of the
idempotents I(Z) there is an obvious identification between pairs of generators (x1,x2),
x1 ∈ S(H1) and x2 ∈ S(H2) with x1 ⊗ x2 non zero and generators x ∈ S(H), and so

ĈFA(H1) � ĈFD(H2) and ĈF (H) are naturally identified as vector spaces over F2.
Because of proposition 4.2, one has that ∂x2 =

∑
y2
ax2,y2 ⊗ y2 where

ax2,y2 =

{
1 if it comes from a provincial bigon or rectangle;

a(−ρ) if it comes from a bigon with asymptotic at east infinity ρ.

By definition the differential of ĈFA(H1) � ĈFD(H2) has the form

∂�(x1 ⊗ x2) = (m1(x1))⊗ x2 +
∑
y2

m2(x2, ax2,y2)⊗ y2
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which corresponds exactly to the differential in ĈF (H). In fact, the first terms corresponds
to empty rectangles and bigons entirely contained in Σ1, the second terms where ax2,y2 = 1
corresponds to empty rectangles and bigons entirely contained in Σ2, while the ones where
ax2,y2 = a(−ρ) are the correspond to the empty rectangles intersecting the splitting circle at
the Reeb chord ρ. �

5. An application

In this section we show a quick proof of the surgery exact sequence for Heegaard Floer ho-
mology using the tools of bordered Heegaard Floer homology. The existence of such an exact
sequence was already proved in [OS04b], relying on the count of some special holomorphic
curves similar to those of subsection 6.1 of chapter 1. In this case, with all the machinery we
have constructed, this turns out to be a completely algebraic argument.

Recall that given a framed knot in a 3-manifold (K,λ) ⊂ Y and a pair of coprime integers
p, q, the p/q-surgery along K is the 3 manifold Yp/q obtained gluing to the manifold with

torus boundary Y \ nbd(K) the solid torus S1×D2 with a diffeomorphism ϕ : ∂(S1×D2)→
∂(nbd(K)) which sends the meridian of S1×D2 to a curve in the homology class p[λ] + q[µ],
where [µ] is the meridian of nbd(K). Here we allow also the pairs (0, 1) (the 0-surgery) and
(1, 0) (the ∞-surgery). The 3-manifold Yp/q is well defined because of the same argument of
example 1.4 of chapter 1.

Example 5.1. Here are some easy examples:

• we always have Y0 = Y ;
• if K ⊂ S3 is the unknot with the obvious framing, then Yp/q is the lens space L(p, q)

of example 1.4 of chapter 1 (by definition);
• this example is more complicated. If K is the trefoil knot with the 0-framing (i.e.

the framing curve has linking number 0 with K), then Y+1 is the Poincaré homology
sphere presented in example 1.5 of chapter 1. A nice graphical proof of this can be
found in [Rol76].

Theorem 5.2. Given a framed knot K ⊂ Y , there is an exact sequence

ĤF (Y−1)

ĤF (Y∞)

ĤF (Y0)

between the Heegaard Floer homologies of the 0,∞ and −1 surgery on K.

From the bordered point of view, surgery can be seen as the operation of gluing to a given
3-manifold with torus boundary a solid torus with different framing of the boundary, and so
a different bordered Heegaard diagram. In particular, one may use the following provincially
admissible Heegaard diagrams H0,H∞ and H−1
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respectively for the 0,∞ and −1 surgery. Here the vertical and horizontal edges have to be
identified in order to get a genus 1 diagram.

Remark 5.3. Because these diagrams are only provincially admissible, we will always
suppose that the one for the bordered 3-manifold Y \ nbd(K) is admissible.

Here comes the algebra. As we will deal with type D structures (N, δ1) over a differential
algebra A, we will always have that N ∼= A�N is a differential module.

Definition 5.4. Given a differential algebraA, and three typeD structures (N1, δ1),(N2, δ2)
and (N3, δ3), we say that two type D morphisms ϕ1 : N1 → A ⊗N2 and ψ1 : N2 → A ⊗N3

form a short exact sequence, and write

0→ N1
ϕ→ N2

ψ→ N3 → 0,

if the induced maps ϕ : N1 → N2 and ψ : N2 → N3 between the associated differential
modules form a short exact sequence.

Lemma 5.5. Given a short exact sequence of type D structures 0→ N1
ϕ→ N2

ψ→ N3 → 0
over a differential algebra A with (N3, δ

1
N3

) equivalent to a bounded type D structure and a
bounded A∞ module M over A, there is the following exact sequence in homology.

H∗(M�N1)

H∗(M�N3)

H∗(M�N2)

Proof. From the short exact sequence of type D structures we can form a 3-step filtered
type D structure N with underlying k-module N1 ⊕N2 ⊕N3 and structure map

N1

δ1N1
⊕ϕ1

−→ (A⊗N1)⊕ (A⊗N2)

N2

δ1N2
⊕ψ1

−→ (A⊗N2)⊕ (A⊗N3)

N3

δ1N3−→ A⊗N3.

In particular A�N is a chain complex with a 3-step filtration

0 ⊂ A�N3 ⊂ A� (N2 ⊕N3) ⊂ A� (N1 ⊕N2 ⊕N3) = A�N.

We have that A�N3 = N3 is a projective differential A-module, as it is homotopy equivalent
to its bar resolution which is always projective ([BL94]). So the short exact sequence

0→ N1 → N2 → N3 → 0
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is split, and this splitting implies that N is nullhomotopic.
We then turn our attention to the 3-step filtered complexM�N , which has as associate

graded complex
⊕3

i=1M�Ni. The nullhomotopy of N induces a nullhomotopy ofM�N , so
it is acyclic. This implies that there is an exact sequence between the homologies of the terms
of its associated graded complex. This is a small generalization of the fact that an short exact
sequence of chain complexes induces a long exact sequence in homology, and comes from the
Leray spectral sequence. �

Remark 5.6. Because of the definitions the differential of elements M � N1 may also
have part in M�N3.

In order to prove theorem 5.2 it suffices then to study the type D modules associated to
the Heegaard diagrams introduced before, whose generators are indicated in the figures. The
differentials are

∂n = ρ12n

∂r = ρ23r

∂a = (ρ1 + ρ3)b

∂b = 0

and there is a short exact sequence

0 −→ ĈFD(H∞)
ϕ−→ ĈFD(H−1)

ψ−→ ĈFD(H0) −→ 0

where the maps are defined as

ϕ(r) = b+ ρ2a

ψ(a) = n

ψ(b) = ρ2n.

Actually one can guess those maps by counting holomorphic triangles (which is indeed the
original way of constructing the surgery exact sequence). For example, ψ(a) is obtained by
counting the following triangle.

z

12

3

a

a

nn

bb



Further developments

The theory we have described in the present work is just the beginning the whole big theory
of bordered Heegaard Floer homology. In fact, despite its nice properties, the construction of

the invariants ĈFA(Y ) and ĈFD(Y ) and their pairing do not solve the two main problems
we pointed out in the introduction, i.e. the creation of efficient computational tools and the
categorification of the restricted TQFT. Indeed, among the weak points of this construction,
the objects we constructed have the same computational complexity of traditional Heegaard
Floer homology, and their complete antisymmetry does not fit at all in the quantum invariants
big picture.

Anyway, there have been many improvements of the theory in subsequent papers by
Lipshitz, Ozsváth and Thurston, and we describe the most interesting ones among them.

Bimodules and 3-manifolds with two boundary components. In the present work
we have considered only 3-manifolds with one boundary component, and it is an interesting
problem to extend the construction to manifolds with disconnected boundary. In this direc-
tion, in the paper [LOT11a] the authors associate bimodules to strongly bordered 3-manifolds
Y with two boundary components ∂LY and ∂RY , which require the additional data of param-
eterizations φL : F (ZL) → ∂LY and φR : F (ZR) → ∂RY and a framed arc γ from ∂LY to
∂RY compatible with the parameterizations in a suitable sense. To such an object the authors
associate:

• a differential bimodule ĈFDD(Y ) with commuting left actions of A(−ZL) and
A(−ZR);

• and A∞ bimodule ĈFDA(Y ) with a left action of A(−ZL) and a right A∞ action
of A(ZR);

• an A∞ bimodule ĈFAA(Y ) with commuting right A∞ actions of A(ZL) and A(ZR),

each defined up to quasi-isomorphism.
Those invariants behave in an expected way with respect to gluing. For example, given

3-manifolds Y1 and Y2 with ∂Y1 = −F1
∐
F2 and ∂Y2 = −F2

∐
F3 one has the pairings

ĈFDD(Y1 ∪F2 Y2) ∼= ĈFDA(Y1)⊗̃A(Z2)ĈFDD(Y2)

∼= ĈFDA(Y2)⊗̃A(−Z2)ĈFDD(Y1)

and in general all the compatible matchings of A and Ds return a correct pairing theorem.

Remark 5.7. Here some of the boundary components may be empty, returning the well

known invariants ĈF , ĈFD, ĈFA.

101
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Duality properties and morphism spaces. In the paper [LOT11d] the authors prove
a number of duality properties up to homotopy equivalence relating the bordered modules
and bimodules. First of all A(−Z) is the opposite algebra of A(Z), so one can exchange left

actions of A(−Z) with right actions of A(Z). With this in mind, the module ĈFD(Y ) is

dual over A(Z) to ĈFA(−Y ) in the sense that

ĈFD(Y ) ∼= HomA(−Z)

(
ĈFA(−Y ),A(−Z)

)
ĈFA(Y ) ∼= HomA(Z)

(
ĈFD(−Y ),A(Z)

)
where the morphism spaces have the structure of chain complexes given by

(∂f)(x) = ∂(f(x)) + f(∂x).

Similarly ĈFDD(−Y ) is the one-sided dual of ĈFAA(Y ), i.e.

ĈFAA(Y ) ∼= HomA(−Z2)

(
ĈFDD(−Y ),A(−Z2)

)
,

and also the symmetric relation holds.

In particular the first duality properties permit to reformulate the pairing theorem as

ĈF (−Y1 ∪ Y2)) ∼= HomA(−Z)

(
ĈFD(Y1), ĈFD(Y2))

)
∼= HomA(Z)

(
ĈFA(Y1), ĈFA(Y2))

)
which is more symmetric and involves only type D modules or type A modules.

The action of mapping classes. Note that every 3-manifold can be obtained by gluing
two handlebodies along their boundaries so, in order to compute the closed Heegaard Floer
invariants one just needs to understand how the reparameterization of the boundary acts
on the type D invariants. In particular, one can address the action of a reparameterization
by a diffeomorphism φ : F → F by studying the DD-bimodule associated to the bordered

3-manifold F
φ−→ F × [0, 1]

IF←− F with 2 boundary components.
In the paper [LOT11c] the authors describe explicitly these bimodules for certain special

reparameterizations of the boundary, namely the arc slides. An arc slide on a pointed matched
circle Z takes two matched pairs {b1, b2} and {c1, c2} where b1 and c1 are adjacent and replaces
it with a new pointed matched circle Z ′ which coincides with Z everywhere except for the
matched pair {b1, b2} which is replaced by a new matched pair {b′1, b2}, with b′1 a new point
adjacent to c2 in the direction opposite to b2.

b1
c1

b2

c2

Z : −→ Z ′ :

b′1

c1

b2

c2
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These moves on pointed matched circles come with naturally associated diffeomorphisms
F (Z)→ F (Z ′) between the associated pointed matched circles. As one can prove that the arc
slides generate the strongly based mapping class grupoid (i.e. the grupoid of diffeomorphisms
ϕ : F (Z)→ F (Z ′) which map the 0-handle to the 0-handle considered up to isotopies which
are constant on the 0-handle) this solves the problem of computing Heegaard Floer homology
in a more efficient way, leading for example to the first computer program able to compute
it.
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