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ABSTRACT. In this note we describe a recent result obtained by the author and Shatah [26], concerning global
existence and scattering for small solutions of nonlinear wave equations. Based on the analysis of space-time
resonances, we formulate a very natural non-resonance condition for quadratic nonlinearities that guarantees
the existence of global solutions with linear asymptotic behavior. This non-resonance condition turns out to be
a generalization of the null condition given by Klainerman in his seminal work [21].

1. INTRODUCTION

Global existence and asymptotic behavior of small solutions to nonlinear wave equations has been a
subject under active investigation for over fifty years. One area of research, where much progress has been
made, focuses on identifying nonlinearities that lead to global solutions for small initial data. In this note
we consider first order systems on R× R3 , of the form

(W)

 ∂tu = iΛu+Q1(u, v) +R1(u, v)
∂tv = −iΛv +Q2(u, v) +R2(u, v)
u(1, x) = u0(x) , v(1, x) = v0(x),

where Λ := |∇|, Qi(u, v) are bilinear in (u, v) and their complex conjugates, and Ri are of degree 3 or
higher.

In this paper we focus on determining some general conditions, naturally arising from the space time
resonance analysis, that guarantee global existence and scattering. Our non-resonant condition imposed on
the Qi, roughly states that time resonant wave interactions should be limited to waves with different group
velocities (spatially non-resonant waves).

Since cubic and higher order terms do not require any condition to ensure global existence, we will drop
the Ri’s from any further consideration. Moreover by introducing the notation for bilinear pseudo-product
operator

Tm(ξ,η)(f, g) := F−1

∫
m(ξ, η)f̂(η)ĝ(ξ − η) dη,

where ĝ = Fg is the Fourier transform of g, and without any loss of generality, we reduce the system to a
single scalar equation

(1.1)


∂tu− iΛu = Tq+,+(ξ,η)(u, u) + Tq−,+(ξ,η)(ū, u) + Tq−,−(ξ,η)(ū, ū)

u(1, x) = u0(x) .

with quadratic nonlinearities. Here and throughout the paper, the signs +,− correspond to the presence of
u and ū respectively.

Our work is motivated by some recent applications of the space-time resonance method to several prob-
lems in the field of nonlinear dispersive PDEs. This method was introduced in [7, 9] where non resonant
nonlinearites were treated for Schrödinger equations, which corresponds to (W) with Λ = |∇|2 = −∆. In
these works, most of the existing results on global existence and scattering of small solutions were repro-
duced and explained by studying space time resonant frequencies. Subsequently the method was applied to
gravity water waves [8], which corresponds to Λ = |∇|1/2, and to capillary waves [10], which corresponds
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to Λ = |∇|3/2. Thus it is natural to us to apply this method to system (W), where Λ = |∇|, which can be
reduced to a system of nonlinear wave equations. Our main result is:

Theorem 1.1. Assume that system (1.1) is non-resonant in the sense of definition 4.3, and that the initial
datum satisfies1

‖xu0‖H2 +
∥∥Λx2u0

∥∥
H1 + ‖u0‖HN ≤ ε(1.2)

for some large enough integer N . Then, if ε is small enough, there exists a unique global solution to (1.1)
with

‖u(t)‖L∞ .
ε

t
.

Moreover, u(t) scatters in H2 to a linear solution as t→∞.

Our non resonant condition defined in 4.3 turns out to include the classical null condition for wave equa-
tions [21], wave equations which are not invariant under the full Lorentz group, as well as other systems
where global existence and asymptotic behavior of small solutions was not known.

2. BACKGROUND

Since our system can be reduced to nonlinear wave equations, we give a brief review of some of the
main results about the long time existence of solutions for systems of quadratic nonlinear wave equations
on R1+3:

(2.1) 2ui =
∑

ajki,αβ∂
αuj∂

βuk + cubic terms

where i = 1, . . . , N for some N ∈ N, and the sum runs over j, k = 1, . . . , N , and all multi-indices
α, β ∈ N4 with |α|, |β| ≤ 2, |α| + |β| ≤ 3, with the usual convention that ∂0 = −∂0 = ∂t. Let us first
recall that in 3 space dimensions general quadratic nonlinearities have long range effects: the L2 norm of
the nonlinearity, computed on a linear solution, decays at the borderline non-integrable rate of t−1. Thus,
quadratic nonlinearties can contribute to the long time behavior of solutions. It is in fact known since the
pioneering works of John [11, 12] that finite time blowup can occur even for solutions with small data.
On the other hand, for some very general classes of quadratic nonlinearities solutions were shown to exist
almost globally by John and Klainerman [13] and Klainerman [19].

The main breakthrough in identifying classes of nonlinear wave equations where solutions with small
data exist globally and scatter was in the works of Klainerman [21], Choquet-Bruhat and Christodoulou
[2], and Christodoulou [3]. The class of nonlinearities that satisfy the “null condition” was introduced by
Klainerman [21], and for semlinear systems

(2.2) 2ui =
∑

|α|,|β|=1

ajki,αβ∂
αuj∂

βuk + cubic terms

is given by the condition

(2.3)
∑

ajki,αβξαξβ = 0 for any ξ ∈ R4 such that −ξ20 + ξ21 + ξ22 + ξ23 = 0 .

For such systems it was shown by Klainerman [21] that in 3 + 1 dimension small data solutions exists
globally. This seminal work of Klainerman is based on the invariance of Minkowski space under the Lorentz
group and on energy estimates using the vector fields that generate the Lorentz group [19].

Later on, building on Klainerman’s original ideas, the problem of bypassing the use of the full invariance
under the Lorentz group was dealt with by other authors. In [22] Klainerman and Sideris proved almost
global existence of solutions for quadratic systems (2.1) in divergence form, under the sole assumption
of translation, rotation and scaling invariance. Further developments were made by Sideris in [27, 28],
where global existence of nonlinear elastic waves is proven under the assumption of the null condition.
Similar results include the almost global existence of solutions contained in the works of Keel, Smith and

1 See the remark at the end of section 3 for some comments about these initial conditions.
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Sogge [17, 18]. It also worth mentioning that several works have dealt with the question of identifying other
conditions (weaker than the null condition) under which global existence of solutions of (2.1) can be proven;
see for instance Lindblad [23], Alinhac [1], Lindblad and Rodnianski [24, 25], and Katayama [14].

Another approach that identifies the effects of nonlinearities on the long time behavior of solutions is
based on time resonant computations. For ODE’s this is the Poincare-Dulac normal form. For PDE’s normal
forms were introduced by Shatah [30] and Simon [32] who treated, respectively, the Cauchy problem and
the final state problem for the Klein-Gordon equation in 3 + 1 dimensions. Similar results were obtained by
Klainerman using the vector fields method [20].

In the past several years a new algorithmic method, called the “space-time resonance method”, was
developed by Germain, Masmoudi, and Shatah, to study long time behavior of spatially localized small
solutions to dispersive equations. By bringing together ideas from both vector fields and normal forms,
this new method proved to be very effective in proving new results [8, 5, 6] as well as simplifying already
existing ones [7, 9, 16]. A description of this method can be found in [7].

Notations. We use R to denote indistinctly any one of the components of the vector of Riesz transforms
R = ∇

Λ , where Λ := |∇|. Lp norms will be denoted either by ‖ · ‖Lp or ‖ · ‖p. For s ≥ 0, p ≥ 1, we define
the usual Sobolev norms

‖ϕ‖W s,p := ‖〈∇〉sϕ‖Lp ,

‖ϕ‖Ẇ s,p := ‖Λsϕ‖Lp ,

where 〈x〉 := (1 + |x|2)
1/2

. We let Hs := W s,2 and Ḣs := Ẇ s,2.
Finally we write A . B to mean A ≤ CB for some positive absolute constant C.

3. RESONANCE ANALYSIS AND NON-RESONANT BILINEAR FORMS

To compute resonances for an equation of the type

iut + P (
1
i
∇)u = Tm(ξ,η)(u, u),

we write Duhamel’s formula in Fourier space for the “profile” of u, namely f := e−itP ( 1
i
∇)u, as follows:

(3.1) f̂(t, ξ) = û0(ξ) +
∫ t

0

∫
eisϕ(ξ,η)m(ξ, η)f̂(s, η)f̂(s, ξ − η) dη ds ,

where ϕ(ξ, η) := −P (ξ) + P (η) + P (η − ξ) (and obvious signs modifications occur if Q depends also on
ū). We then define the time resonant set

T := {(ξ, η) : ϕ(ξ, η) = 0} (no oscillations in s) ,

the space resonant set

S := {(ξ, η) : ∇ηϕ(ξ, η) = 0} (no oscillations in η) ,

and the space-time resonant set

R := T ∩S .

Since for system (1.1) both u and ū are present in the bilinear terms, there are three types of interactions
that we need to analyze.
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The - - case. The phase ϕ−− := −|ξ| − |η| − |ξ − η| clearly vanishes only at ξ = η = 0:

T−− = {η = ξ = 0} .

Since the time resonant set is reduced to a point, we can perform a normal form transformation. This allows
us to obtain the L∞ decay in a more direct fashion (without the need to resort to weighted estimates). For
completeness we compute

S−− = {η = λξ, 0 ≤ λ ≤ 1},

and

R−− = {ξ = η = 0} .

The + + case. The phase ϕ++ := −|ξ|+ |η|+ |ξ − η| vanishes on

T++ = {η = λξ, 0 ≤ λ ≤ 1} .

A simple computation shows that

S++ = {η = λξ, 0 ≤ λ ≤ 1} ,

whence

R++ = S++ = T++ .

The space time resonant set is very large, thus some additional structures are needed to help controlling these
resonances. The first structure will be imposed on the interaction by requiring the symbol q++ to vanish on
R++. The second structure is present in the phase

|ξ|∇ξϕ++ =
η − ξ
|η − ξ|

ϕ++ − |η|∇ηϕ++ ,

and can be interpreted by saying that all resonant waves have the same group velocity and thus are spatially
localized in the same region. This fact together with S++ = T++ allows to control these resonances by
solely relying on weighted energy estimates.

The - + and + - cases. Up to the change of variables2 η → ξ − η, these two case are the same. Therefore,
we will just focus on the −+ case. Since the phase is ϕ−+ := −|ξ| − |η|+ |ξ − η|, then

T−+ = {η = λξ, λ ≤ 0} ∪ {ξ = 0} ,
S−+ = {η = λξ, λ ≤ 0 or λ ≥ 1} ∪ {ξ = 0} ,
R−+ = {η = λξ, λ ≤ 0} ∪ {ξ = 0} .

Again the set R−+ is very big and additional conditions are needed to ensure global existence and linear
asymptotic behavior of solutions. These conditions are similar to the ++ interaction, i.e., q−+ vanishes on
R−+ and the fact that

|ξ|∇ξϕ−+ =
η − ξ
|η − ξ|

ϕ−+ + |η|∇ηϕ−+ .

However this interaction presents an additional difficulty over the ++ case since T−+ ( S−+, which
requires both normal forms transformation and weighted estimates. The fact that this is an added difficulty
is explained below.

2 notice that m12(ξ, ξ − η) = −m12(ξ, η).
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4. NON-RESONANT BILINEAR FORMS

From Duhamel’s formula for equation (1.1) in Fourier space the quadratic terms are expressed as

B̂±±(t, ξ) =
∫ t

1

∫
eisϕ±±(ξ,η)q±±(ξ, η)f̂±(s, η)f̂±(s, ξ − η) dηds

where f+ = f and f− = f̄ and

ϕε1,ε2(ξ, η) = −|ξ|+ ε1|ξ − η|+ ε2|η| ,
for εi = ±. The quadratic interaction is given in terms of its symbol q±±. To define non-resonant bilinear
forms we start by defining the class of symbols that we will be dealing with:

Definition 4.1. A symbol m = m(ξ, η) belongs to the class Bs if

• It is homogeneous of degree s;

• It is smooth outside of {ξ = 0} ∪ {η = 0} ∪ {ξ − η = 0}.
• For any labeling (ξ1, ξ2, ξ3) of the three Fourier variables (ξ, η, ξ − η) the following holds:

for |ξ1| � |ξ2|, |ξ3| ∼ 1 m = A
(
|ξ1|,

ξ1
|ξ1|

, ξ2

)
for some smooth function A.

Loosely speaking, symbols in B0 are Coifman-Meyer [4] except, possibly, along the axes ξ = 0, η = 0 and
ξ − η = 0, where they can have singularities like linear Mihlin-Hörmander multipliers. Symbols in Bs are
essentially of the form |ξ|sm0 for some m0 ∈ B0. The boundedness of these bilinear operators on Lp is
given by the following Theorem:

Theorem 4.2 (Boundedness of bilinear multipliers [8],[26]). Let p, q, r be given such that 1
r = 1

p + 1
q and

1 < p, q, r <∞. The following hold
(i) If m belongs to the class B0

‖Tm(f, g)‖Lr . ‖f‖Lp‖g‖Lq .

(ii) If m belongs to the class Bs for s ≥ 0 and k is an integer, then∥∥∥ΛkTm(f, g)
∥∥∥
Lr

. ‖f‖W s+k,p‖g‖Lq + ‖f‖Lp‖g‖W s+k,q .

(iii) If m belongs to the class Bs and M > 3, then∥∥∥ΛkTm(f, g)
∥∥∥
L2

. ‖f‖Hs+k‖g‖W 1,M + ‖f‖W 1,M ‖g‖Hs+k .

With the class Bs defined above we can define a non-resonant system as follows:

Definition 4.3 (Non-resonant bilinear forms). System (1.1) is called non-resonant if

(4.1) q±±(ξ, η) = a(ξ, η)ϕ±±(ξ, η) + b(ξ, η) · ∇ηϕ±±(ξ, η) ,

with a ∈ B−1 and b ∈ B0. Additionally we require that

|η|∇(ξ,η)a(ξ, η) or |ξ − η|∇(ξ,η)a(ξ, η) =
µ

(1)
0 (ξ, η)
|ξ|

+
µ

(2)
0 (ξ, η)
|η|

+
µ

(3)
0 (ξ, η)
|ξ − η|

(4.2)

for some µ(i)
0 ∈ B0, and∥∥Tb(ξ,η)(f, g)

∥∥
L2 . ‖f‖L2

k∑
j=0

∥∥Rjg∥∥
L∞

+
k∑
j=0

∥∥Rjf∥∥
L∞
‖g‖L2(4.3)

for some k ∈ N.
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Some comments about this definition. Equation (4.1) asserts that bilinear interactions vanish on R±±,
the space time resonant set. The presence of ϕ±± in equation (4.1) allows us to perform normal form
transformation on one part of the bilinear terms (integration by parts in s), while the presence of ∇ηϕ±±
allows us to treat the remaining part by weighted estimates (integration by parts in η). The classical null
condition is equivalent to a = 0 (see below). Equation (4.2) essentially avoids having a(ξ, η) ∼ |ξ|−1 which
would be too singular to handle. Equation (4.3) is needed due to failure of the L2 × L∞ → L2 estimate
for symbols in B0. It would be possible to avoid this last technical restriction by resorting to the use of
Besov spaces, but for the sake of simplicity we do not pursue this matter here (see also remark 5.1 for more
comments about this aspect).

Examples of non-resonant systems. Now we give examples of non-resonant systems and explain how they
relate to existing definitions on “null systems", and how our definition is a natural extension of previous ones.

Classical null forms. Quadratic (semilinear) nonlinearities satisfying the null condition (2.3) are linear com-
binations of

Qij(u, v) = ∂iu∂jv − ∂ju∂iv ,(4.4a)

Q0i(u, v) = ∂tu∂iv − ∂iu∂tv ,(4.4b)

Q0(u, v) = ∂tu∂tv −∇u·∇v .(4.4c)

By letting (u±, v±) = (∂tu ∓ iΛu, ∂tv ∓ iΛv), one can reduce systems (2.2) to first order systems in
the unknowns u± and v±. Then, one can check that the respective symbols of the above null forms (4.4),
corresponding to interactions of uε1 and vε2 , are given (up to a constant factor) by

mε1,ε2
ij (ξ, η) = 2

ηiξj − ηjξi
|η||ξ − η|

= ∂ηiϕ++(ξ, η)∂ηjϕ+−(ξ, η)− ∂ηjϕ++(ξ, η)∂ηiϕ+−(ξ, η)

mε1,ε2
0i (ξ, η) =

(
ε1
ηi
|η|

+ ε2
ηi − ξi
|η − ξ|

)
= ∂ηiϕε1ε2(ξ, η)

mε1,ε2
0 (ξ, η) = 2

(
1− ε1ε2

η

|η|
· ξ − η
|ξ − η|

)
= |∇ηϕε1ε2(ξ, η)|2 .

These symbols are of the form (4.1) with a = 0 and vanish on the space resonant set. Thus classical null
forms are spatially non-resonant, and therefore can be treated by weighted estimates and without normal
forms transformation. Note that in our system the +− interactions have T+− ( S+−, and our symbols
(4.1) only vanish on the smaller set T+−. To treat these interactions a normal form transformation is needed,
leading to terms which are not well spatially localized. This causes a difficulty that will be elaborated on
below.

The classical quasilinear null forms are also non-resonant in that their symbols satisfy (4.1) where the
homogeneities of a and b are increased by 1. However, for general first order systems of the type (1.1),
quasilinear equations lose derivatives in the energy estimates unless there are cancellations present. In the
special case where the first order quasilinear system comes from a second order system of wave equations
with quasilinear null terms, cancellations are present in the energy estimates. Thus, our results will apply
for such nonlinearities as well3.

Systems with multiple speeds. For systems

(4.5) ∂tu` − ic`Λu` =
∑
j,k

Tq`
j,k(ξ,η)(uj , uk)

the phases are given by −c`|ξ| + cj |ξ − η| + ck|η|. In the case cj 6= ±ck one has S = {0, 0}, so that our
results will trivially apply. If cj = ±ck, R = {0, 0} unless ck = ±c`. Therefore, in the case ck 6= ±c`,

3 More specifically, in the quasilinear case the most efficient proof of the analogue of Theorem 1.1 would consist of two steps:
1) establishing energy and weighted energy estimates directly on the second order wave equation so to obtain the weighted bounds
in (5.7); 2) run our proof to show the decay of solutions.
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global existence can be obtained provided a suitable null condition is imposed at {0, 0}. This is similar to
the work on quadratic NLS [9]. The full non-resonance condition is then needed only for interactions of the
form −c`|ξ|+ c`|ξ − η| ± c`|η|. This extension is similar to the result of Sideris and Tu [29]. We also refer
the reader to the work of Katayama and Yokoyama [15] and references therein for more on systems with
multiple speeds.

Some examples of interest that can be treated using our techniques are:

1. First order systems of the form

(4.6)
{
∂tu+ icΛu = |v|2
∂tv + iΛv = Tm(v, v) + u3

where c > 1 and m is non-resonant as in definition 4.1. Here no special null condition at the origin is
assumed on the bilinear form in the first equation. This system does not satisfy any existing null condition
criteria set by the vector fields method. In fact we believe that this system is not amenable to analysis by
the vector fields method due to the simultaneous failure of the Lorentz invariance and the need of a normal
form transform.

Our method works by first applying a normal form transformation on u (notice that the phase is bounded
below by (c − 1)|ξ|), and then handling the singularity introduced by such a transformation through a
spread-tight splitting as explained in section 5.

2. Systems of wave equations of the form

(4.7)

 21u = (∂v)2 + ∂u(∂w)2

21v = ∂v∂w +Q(v, v)
2cw = ∂v∂w + ∂u(∂v)2

where 2c := ∂2
t − c2∆, c 6= 1 and Q is any null form. This is an example of a nonrelativistic system

satisfying the weak null condition. Global existence can be obtained with a weaker decay on u of the form
‖∂u‖L∞ . t−1+ε, for ε� 1.

Non-locality and absence of Lorentz invariance. The class of systems (W), under the non-resonance condi-
tion given by definition 4.3, includes the class of second order wave equations

(4.8) 2u = T1Q(T2u, T3u)

where the Ti’s are zero-th order operator and Q is any combination of the nonlinear terms (4.4a)-(4.4c) (or
their quasilinear version). For systems as (4.8) the action of the Lorentz boosts Li = xi∂t + t∂i on the
nonlinearity produces some terms which are too singular to be estimated. This makes the classical [21]
vector fields method difficult to be applied.

In [27, 28] Sideris considered quasilinear hyperbolic systems governing the motion of isotropic, homoge-
neous, nonlinear elastic waves. Like systems with multiple speeds, these systems are only classical invariant,
i.e. they do not possess Lorentz invariance. By imposing a null condition on the nonlinear terms of the form
F (∇u)∇2u, he was able to show global existence of solutions. As mentioned in the introduction, several
other works have dealt with the problem of long time existence for classically invariant systems on R3+1,
see for example [22, 17, 18]. Our methods are also applicable to the systems considered in these works.

A remark about the initial data. In contrast with the results mentioned previously, our initial data belong
to a low weighted Sobolev space. In particular we only ask for xu0 ∈ H2 and |x|2Λu0 ∈ H1, see (1.2).
In comparison, the spaces used in [22, 27, 17] would require (|x|Λ)iu0 ∈ Λ(L2), for i = 0 . . . k and some
k ≥ 7. This means that we can allow more oscillating data. For example, for data behaving at infinity like
cos |x|/|x|α, we can allow any α > 7

2 , whereas in the other works one would need α > 17
2 .



8 FABIO PUSATERI

5. OUTLINE OF THE PROOF

Before outlining the proof of Theorem 1.1 we would like to point out two difficulties in our problem:
a) Although the space-time resonance method is algorithmic, its implementation on the space-time resonant
set is very much problem dependent. This is due to the fact that the aforementioned set can be large with
no clear criteria, set by the method, to address how large is large. Its application to nonlinear dispersive
equations has been restricted so far to cases where the resonant set is very small. In particular, for problems
such as the Schrödinger equation, the resonant set is a point; and for gravity water waves, there are no qua-
dratic time resonances. However for hyperbolic systems this set is large. For the system we are considering
here the space time resonant set is 4 dimensional in a 6 dimensional space. Treating such a big space-time
resonant set required new ideas, which we present in this manuscript.
b) When space resonant frequencies are different from time resonant frequencies, and when both types of
resonances are present in the bilinear interactions, a normal form transformation is needed

u→ u+ Tm(u, u)⇔ f̂ → f̂ +
∫
eisϕ(ξ,η)m(ξ, η)f̂(s, η)f̂(s, ξ − η) dη .

The bilinear term Tm(u, u) need not be well localized in space since the outcome of the interaction may
have a different group velocity, i.e., ∇ξϕ 6= 0, which is the case for (1.1). Thus weighted estimates on this
bilinear interaction tend to grow at a fast rate with time. We refer to these bilinear interactions as spread
terms. This is in contrast to non space resonant frequencies which are well spatially localized and for which
weighted estimates tend to grow very slowly. We refer to such bilinear interactions as tight terms. The
presence of tight and spread terms is problematic and requires a careful analysis when trying to establish
the decay of solutions. This is the case here for the +− interactions, as was the case for the 2D Schrödinger
equation [9]. Our strategy in obtaining the pointwise decay of solutions will be explained below in more
details.

Reduction of system (1.1). By isolating the terms in equation (1.1) that are most difficult to estimate, we
can considerably simplify our notations and the presentation of the main aspects of the proof of Theorem
1.1.

Reduction to the −+ case. As the analysis of resonances in section 3 showed, the −+ interactions lead to a
more complicated resonant set than the ++ and−− interactions. The−+ case actually contains the difficult
aspects of both the ++ and−− cases. More precisely, in the−+ case we will need to decompose the phase
space in two sets: one containing R−+ but not S−+ ∩T c

−+, and the other one containing S−+ ∩T c
−+ but

not R−+. The analysis on the set containing R−+, respectively on the set containing S−+ ∩ T c
−+, would

be enough to take care of the ++, respectively the −−, interactions.
Therefore, we focus only on the −+ interactions, and we will drop the −+ indices for lighter notations.

Reduction to a(ξ, η) = 1
|η| and b(ξ, η) = 1. Recall that we are imposing the restriction (4.2) on a. This

means that a can have singularities of the type 1/|η| or 1/|ξ−η|, but not of the form 1/|ξ|. By the symmetry
between η and ξ − η, we can then assume that a is of the form µ0(ξ, η)/|η| for some µ0 ∈ B0. Moreover,
since the presence of symbols in the class B0 is irrelevant for our estimates on the terms corresponding to
the symbol a(ξ, η)ϕ(ξ, η), we can simply assume that a is given by 1/|η|.

Finally, since we assume that b satisfies (4.3), and since we will show that ‖Rju‖L∞ is controlled with
a decay of t−1 (see remark 5.1 below) we can reduce matters to b = 1. It will be clear to the reader what
minor modifications are necessary to perform the estimates for a general b ∈ B0 and satisfying (4.3).

In view of these reductions the non-resonant equation becomes

(5.1) f̂(t, ξ) = f̂0(ξ) +
∫ t

1

∫
eisϕ(ξ,η)

(
ϕ(ξ, η)
|η|

+∇ηϕ(ξ, η)
)
f̂(s, ξ − η)f̂(s, η)dηds .
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Furthermore, we recall that∇ξϕ vanishes on the resonant set, and in particular the following identity holds:

(5.2) |ξ|∇ξϕ =
η − ξ
|η − ξ|

ϕ+ |η|∇ηϕ .

Splitting of the profile f . Integrating by parts in s in the terms containing the phase ϕ we get

f̂(t, ξ)
def
= f̂0(ξ) + ĝ(t, ξ) + ĥ(t, ξ)

def
= f̂0(ξ) + ĝ(t, ξ) + ĥ0(t, ξ) + ĥ1(t, ξ)

where

ĝ(t, ξ)
def
=
∫
eitϕ(ξ,η) 1

|η|
f̂(t, ξ − η)f̂(t, η) dη ,(5.3a)

ĥ0(t, ξ)
def
=
∫ t

1

∫
eisϕ(ξ,η)∇ηϕ(ξ, η)f̂(s, ξ − η)f̂(s, η) dηds,(5.3b)

ĥ1(t, ξ)
def
=
∫ t

1

∫
eisϕ(ξ,η) 1

|η|
∂s

(
f̂(s, ξ − η)f̂(s, η)

)
dηds .(5.3c)

This splitting can be understood in the following manner:
1) g comes from the normal form transformation, has very good time decay but is spatially spread;
2) h0 is a spatially tight term due to the presence of∇ηϕ(ξ, η);
3) h1 is cubic in f .

Regarding h0 = h0(f, f) as a bilinear form of f = f0 + g + h, we can decompose h0 as

h0(f, f) = h0(f0, f0 + h) + h0(f0, g) + h0(g, f) + h0(h, h) + h0(h, g) + h0(h, f0)

= h0(g, f) + h0(h, h) + h∗ ,(5.4)

and thus decompose f further:

(5.5) f = f0 + g + h0(h, h) + h0(f, g) + h1 + h∗.

A priori bounds. The proof of global existence and scattering of solutions is obtained from the following
a priori bounds on u = eitΛf :

(5.6)


‖u‖HN . tε, ‖u‖H2 . 1, ‖u‖L∞ , ‖Ru‖L∞ . 1

t ,

‖xf‖L2 . tγ , ‖Λxf‖H1 . 1,
∥∥∥|x|2Λf∥∥∥

H1
. t ,

and a continuation of the local-in-time solution. Here, N is a suitably large number possibly depending on
ε and γ, which are arbitrarily small but fixed positive constants. This leads us to define the space X by the
norm associated to these bounds:

‖u‖X := sup
t≥1

[
t−ε‖u‖HN + ‖u‖H2 + t(‖u‖L∞ + ‖Ru‖L∞)

+t−γ‖xf‖L2 + ‖Λxf‖H1 + t−1
∥∥∥|x|2Λf∥∥∥

H1

]
.

(5.7)

Remark 5.1. The presence of ‖Ru‖L∞ is not surprising because the Riesz transform is already present in
the interaction symbol ∇ηϕ. However we remark here that if b is any symbol in B0 satisfying (4.3), the
same X-norm above would work. Indeed, as a byproduct of our estimates we have

(5.8)
∥∥∥Rku∥∥∥

L∞
.

1
t

[
ε+ ‖u‖2X

]
for any k. This is because L∞ estimates on u = e−itΛu0 + e−itΛg + e−itΛh are obtained by

a) using Sobolev’s embedding on g: ‖e−itΛg‖L∞ . ‖e−itΛg‖W 1,p for p � 1, and then showing
t‖e−itΛg‖W 1,p . ‖u‖2X ;
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b) estimating weighted L2 norms of the main components of h by means of the following linear dis-
persive estimates: ∥∥eitΛh∥∥

L∞
.

1
t
‖〈x〉

3
2
+Λ2h‖L2(5.9) ∥∥eitΛh∥∥

L∞
.

1
t

∥∥|x|Λ2h
∥∥ 1

2

L2

∥∥∥|x|2Λ2h
∥∥∥ 1

2

L2
.(5.10)

In both operations a) and b) the presence of Riesz transforms becomes irrelevant.

Bounds for g and h. A key aspect of our proof is the different treatment of the components g and h, and
the different treatment of some components of h itself. In particular, the bound on ‖u‖X will follow from
the bounds on g 

‖g‖HN . ‖u‖2X , ‖xg‖L2 . tγ‖u‖2X , ‖Λxg‖H1 . ‖u‖2X ,∥∥∥Λ|x|2g∥∥∥
H1

. t‖u‖2X ,
∥∥eitΛg∥∥

L∞
. 1

t ‖u‖
2
X .

(5.11)

and the bounds on h
‖h‖HN . tε‖u‖2X , ‖h‖H2 . ‖u‖2X , ‖xh‖L2 . tγ‖u‖2X , ‖Λxh‖H1 . ‖u‖2X ,∥∥∥Λ|x|2h∥∥∥

L2
. ta‖u‖2X ,

∥∥∥Λ2|x|2h
∥∥∥
L2

. tb‖u‖2X ,
∥∥eitΛh∥∥

L∞
. 1

t ‖u‖
2
X ,

(5.12)

where a and b are (small) positive constants satisfying 0 < γ < b < a
3 and a < 1

8 .
These a priori bounds will imply global existence provided the data is small:

(5.13)
∥∥eitΛ(g + h)

∥∥
X

. ‖u‖2X =⇒ ‖u‖X .
∥∥eitΛf0

∥∥
X

+
∥∥eitΛ(g + h)

∥∥
X

. ε+ ‖u‖2X ,

which in turn gives ‖u‖X . ε. Scattering is also a consequence of the bounds (5.11)-(5.12). To obtain
Theorem 1.1 it is then enough to show (5.11) and (5.12). Below we briefly explain the main steps needed to
obtain these bounds.

Main steps in the proof of (5.11) and (5.12). From (5.6) and (5.12) we see that h has the same energy
and pointwise estimates as f , and better weighted estimates than f . Thus, the bilinear terms that need to be
bounded are g, h0(h, h), h0(f, g) and h1. All the remaining bilinear terms in (5.5), denoted by h∗, see (5.4),
are easier to estimate because their arguments satisfy stronger bounds.

The first step in the proof of the bounds (5.11) and (5.12) consists of estimating Sobolev norms. Such
estimates are pretty straightforward, since we are dealing with a semilinear equation.

We then obtain weighted andL∞ estimates for the spread component g defined by (5.3a). This component
is the one who is responsible for the fast growth in time of the weighted norms, see the first inequality in
the second line of (5.11). On the other hand, since g consists of a bilinear term with no time integration, its
decay in L∞ can be obtained easily.

Subsequently, we prove a priori bounds on weighted L2 norms of h0(h, h). Thanks to the presence of
the symbol ∇ηϕ, and to the identity (5.2), we can always integrate by parts at least twice in time and/or
frequency. As a consequence we can prove that h0(h, h) satisfies the stronger weighted bounds (5.12) that
hold for the h component.

The next step consists of estimating the L∞ norm of h0(h, h), and is one of the most delicate parts of the
proof. In order to obtain the t−1 decay we perform an angular decomposition of the phase space into two
regions. The first region contains the space resonant set S but is away from the time resonant set T . In
this region we can perform a normal form at the expense of introducing only a mild singularity when one of
the Fourier variables vanishes. For the quadratic boundary terms arising in the integration by parts in time,
the decay is obtained in a straightforward manner, as it is done for the g component. For the cubic terms the
decay is obtained as a consequence of L2-weighted estimates. The second complementary region is away
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from S ∩ T c and contains R. There we can combine the identity (5.2) and the fact that ϕ can be divided
by ∇ηϕ, to conclude, roughly speaking, that ∇ξϕ ∼ ∇ηϕ in this region. This implies a good control on
weighted norms, and decay is obtained by interpolating in an appropriate fashion these norms.

Eventually, the cubic terms h0(f, g) and h1 are estimated using again the decomposition f = g+h. Also
for these terms the pointwise decay is obtained as a consequence of the L2-weighted bounds.
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