ON THE GLOBAL BEHAVIOR OF WEAK NULL
QUASILINEAR WAVE EQUATIONS

YU DENG AND FABIO PUSATERI

ABSTRACT. We consider a class of quasilinear wave equations in 3 + 1 space-time dimensions
that satisfy the “weak null condition” as defined by Lindblad and Rodnianski [40], and study the
large time behavior of solutions to the Cauchy problem. The prototype for the class of equations
considered is —07u + (1 + u)Au = 0. Global solutions for such equations have been constructed
by Lindblad [37, [38] and Alinhac [5]. Our main results are the derivation of a precise asymptotic
system with good error bounds, and a detailed description of the behavior of solutions close to
the light cone, including the blow-up at infinity.
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1. INTRODUCTION

In this paper we are interested in the global behavior of nonlinear wave equations in 3 + 1
space-time dimensions. Our main focus is the description of the asymptotic behavior for small
solutions of the Cauchy problem for a class of nonlinear wave equations satisfying the so-called
“weak null condition” [40} 41]. The prototype that we are going to consider is the equation

—02u+ (14 u)Au = 0. (1.1)

Background and the Weak Null Condition Conjecture. One area of research on nonlinear wave
equations where major progress has been made focuses on identifying nonlinearities that lead to
global solutions for small initial data. Of particular interest is the case of quadratic nonlinearities,
that is, systems of the form

Ou; = Za?iﬁaauj(?ﬁuk, (1.2)
where O = —9? + A, i = 1,..., N for some positive integer N, and the sum runs over j, k =
1,..., N, and all multi-indices a, 8 € Z4 with |a/, |8] < 2, |a|+|B| < 3, with the usual convention

that dy = 0;. Indeed, in 3 spatial dimensions general quadratic nonlinearities can have long range
effects: Since solutions of the linear wave equation decay uniformly in space at best at the rate of
t~1, the L? norm of the nonlinearity computed on a linear solution also decays at the borderline

non-integrable rate of 1. In particular, quadratic nonlinearities can contribute to the long time
1
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behavior of solutions and even cause finite-time blowup. It is in fact known since the pioneering
works of John [27, 28] that this latter scenario can occur even for solutions with small, smooth
and localized data. At the same time, for some very general classes of quadratic nonlinearities,
solutions were shown to exist almost globally, that is, for times of the order exp(c/e), where ¢ is
the size of the Cauchy data, by John and Klainerman [30] and Klainerman [35].

The main breakthrough in identifying classes of nonlinear wave equations where solutions
with small data exist globally and scatter was in the works of Klainerman [36, 34], see also
Christodoulou [7], on the null condition, which we will refer to as (NC). The class of nonlineari-
ties that satisfy (NC) have the form

Ou; = Z agzﬁﬁo‘ujaﬁuk (1.3)
1<]al,|8]<2
|| +]8]<3

where the following condition holds:
> alk j6a&s =0 for any & € R* such that —€3 + &2 + &3 + &3 = 0. (1.4)

For such systems it was shown by Klainerman [36] that in 3+ 1 dimension solutions with small and
a localized data exist globally. Moreover, (NC) leads to a linear asymptotic behavior of solutions
as t — oo.
On the other hand, while (NC) is sufficient for global existence, it can be easily seen to not be
necessary as the simple example
Oup = (8ﬂl2)2
{ S (15)
shows. Since is a decoupled system, one can trivially solve globally-in-time the equation for
u1. One should note however that the behavior of u; is different from that of a linear solution.
In [40, [41] Lindblad and Rodnianski introduced a weaker notion than (NC), that of the weak
null condition, which we will refer to as (WNC). This concept was later instrumental to showing
the stability of Minkowski space for the Einstein’s vacuum equations in harmonic gauge [41], [42].
To describe (WNC) consider a system of the form , which we rewrite for simplicity as
O*u — Au = Q(u, du, 0%u). (1.6)
Making the ansatz
u(t,x)%éﬁU(q,s,w), g=t—|z|, s=clogt, w=uzx/|z|, (1.7)
one can derive, at least formally, up to faster decaying remainders, an asymptotic PDE for U. We
provide some examples of such asymptotic PDEs in the next paragraph. This type of asymptotic
PDE was introduced by Hormander [I8], 19] to study the blow-up time for scalar wave equations
violating the null condition.
The system is said to satisfy (WNC) if the asymptotic PDE for the ansatz admits a
global solution defined for all s, which, together with its derivatives, grows at most exponentially
in s (algebraically in ¢). An important conjecture in the field is the followingﬂ

¢ is natural to attribute this conjecture to Lindblad and Rodnianski, following [40l 41]. However, these same
authors commented in [42) p. 1405] “In our previous work [40] we identified criteria under which it is more likely
that a quasilinear system of the form has global solutions [...] At this point, it is unclear whether this criterion
is sufficient for establishing a “small data global existence” result for a general system of quasilinear hyperbolic
equations.”
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Conjecture 1.1. (WNC) is a sufficient condition for the global reqularity of the Cauchy problem
with small and localized data.

To give an idea of the definition of (WNC) consider the following three examples of scalar
nonlinear wave equations, and their associated asymptotic PDEs:

Ou = uf — |Vul? ~ 0:0,U =0,
Ou = us Au ~> 050,U + 8qU8§U =0, (1.8)
Ou = uAu ~ 050,U + U@gU =

The first equation is an example (the only scalar one) of the classical (NC); when (NC) is satisfied
one always obtains the trivial asymptotic PDE 0,0,U = 0, which obviously has global and uni-
formly bounded solutions. The second example is Burgers’ equation dsv +v9,v = 0, for v = 9,U;
solutions to this PDE blow-up in finite time, and so do solutions of the corresponding wave equa-
tion. See the works [19, 2 3 [8 17, 46] and references therein for extensive studies of blow-up for
geometric classes of hyperbolic wave equations violating (WNC).

The last of the three examples in is the prototypical equation . For this equation
the construction of global solutions for small C§° data was done by Lindblad [37] in the radial
case. Global solutions where obtained by Alinhac in [5] in the non-radial case. In [3§] Lindblad
treated the more general case of below. One way to see the difference with respect to the
previous asymptotic PDEs is to set again v = 9,U, obtaining dsv + 0, 1v8qv = 0; in this equation
v is transported by 9, Ly which smooths out the contribution of high frequencies, and prevents
the formation of shocks by the intersection of characteristic.

The explicit global solution of the asymptotic PDE

9s0,U + U 93U = 0, (1.9)
with initial data U(0) = ¢, ¥ := 0,¢p, is given by

Uity = | [~ [T|ev v as (1.10)
[/ / ] v(B)s 43, (1.11)

from which one sees exponential growth in (logarithmic) time s for derivatives of 9,U.

with

Motivation and results. Our interest in the asymptotic behavior of solutions to , as well as the
more general equation , is twofold. First, understanding the global behavior of solutions of
nonlinear hyperbolic and dispersive equations is one of the main objectives in the field. For
and this question has been left open since the cited works of Lindblad and Alinhac. See
also Hérmander [18] and John [29]. Recently, several results on asymptotics for hyperbolic PDEs
have been obtained. In [39] Lindblad has proven asymptotics for small solutions of Einstein’s
vacuum equations in General Relativity. Semilinear models for Einstein’s equations have been
studied in [43], and the Maxwell-Klein-Gordon system was considered in [6]. Other works on
asymptotics for semilinear wave equation include [31, [32] and references therein. See also the
recent work [23] on modified scattering for coupled Wave-Klein-Gordon systems modeling the
Einstein—Klein-Gordon system. We remark that, in the context of quasilinear waves, is
conceptually harder to treat than Einstein’s equations despite its much simpler look; indeed,
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Einstein’s equations satisfy (WNC) essentially by having a nilpotent structure as (with
additional null forms and cubic terms).

Second, it is well established that, especially for quasilinear evolution equations, the question
of global regularity is intimately tied to a precise understanding of the asymptotic behavior of
solutions. Some important examples in this respect are the global stability of Minkowski space in
General Relativity [9, [42], the stability of one dimensional interfaces for gravity waves [25] [1, 20]
and capillary waves [26], 21], and the stability of two dimensional interfaces for the full gravity-
capillary water waves system [12]. Thus, one of the main reasons for our work is a contribution to
the understanding of the Weak Null Condition Conjecture[I.I]through the study of the asymptotic
behavior of solutions of and . To this end, we should also remark that since solutions
of the asymptotic system associated to grow exponentially in s, this equation is supposed
to represent the hardest example within the class of equations satisfying (WNC). In fact, our
techniques and results can be adapted to general systems satisfying (WNC).

To end this introduction, let us give a brief and informal description of our results. Precise
statements are given in Theorem (the derivation of an asymptotic system) and Theorem
(exact asymptotics along the light cone). Some ideas of the proof are given in Subsection
We start by considering a global small solution u of as constructed by Lindblad [38], and
assume a priori some of the bounds obtained in [38] on weighted L? norms of the solution. We
then improve these bounds by iterating Duhamel’s formula in Fourier space and obtain almost
sharp bounds for the Fourier transform of the profile f associated to the solution u, see . A
detailed analysis of the bilinear interactions, depending on the size and direction of the frequency,
leads to the derivation of an “asymptotic ODE” for f with good control on the error terms.
Thanks to this we can then construct (a) an asymptotic profile U : (s,p,0) € R x R x §? + R
which satisfies the asymptotic PDE (1.9)) with suitable initial conditions, and (b) a shift function
A (s,0) € R x S? — R, which depends nonlinearly on f, such that, for |z| =~ |t| > 1 we have

ot z) ~ |x1|?/{(log ¢ — o] + A, 2/ \2]), 2/]]).- (1.12)

We remark that our results also apply to the general case
—0}u + gop(u)0*0Pu =0 (1.13)

with go3 smooth and g,3(0) = 1. For simplicity we will work with (1.1)) but it will be apparent
that all our arguments can be carried out for (1.13]) as well.

Organization of the paper. The set up of the equation, Duhamel’s formula in Fourier space, and
basic definition are given in the first part of Section [2l In Subsection [2.4] we give the statements
of our main results, and in we sketch some of the ideas in the proofs. Section [3| contains
several auxiliary lemmas. In we first recall the a priori bounds on weighted energies of [38]
and derive some basic consequences. Lemma contains a result about angular integration by
parts in oscillatory integrals that will be repeatedly used to restrict bilinear interactions to nearly
parallel frequencies. In we obtain some key improved bounds on the spatial Fourier transform
of the profile and localized version of it. Section [4is dedicated to the proof of Theorem [2.2} this
is subdivided into five lemmas which are stated in Subsection Finally, exact asymptotics as
in the statement of Theorem 2.3 are derived in Section (Bl
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2. SET UP AND STATEMENTS

2.1. Duhamel’s formula. Throughout this paper the Fourier transform is defined as

fie) = em 2 [ e pe)da (21)
in dimension d. We fix a number of parameters
N>N >1, v>6:=N1, (N = 1350, = 1/90, N; = N/3 = 450), (2.2)
and a solution u € C([0,00), HN*1(R3)) to
Ou = uAu, (2.3)
with initial data
(u(0), 9pu(0)) = (¢, ev), (2.4)

where 0 < ¢ < 1 and ¢ and 9" are fixed Schwartz functions. In fact, we only need ¢ and 1y to
belong to a suitable weighted Sobolev space for which the energy estimate in Lindblad [38] hold,

We define
— G —ilVDu,  F(t) = Vo), (2.5)
Since ( 5) .
& +i —uA O f = etVl(uA MY g 2.6
( t—l—’L|V|)U uAau, tf € (u u)? U 2‘v’ ‘V’ m(”)? ( )
we have the Duhamel’s formula
fA(ta f) - f(oa f) = Z Hl"i%jmlmz [f/ﬂa fﬁg](tﬂ 5)7 (27)
k1,k2€{+,—}
where we denote
f+ = f7 f— = f>

and

#MMQmo:A&mmmwom

1 _ 2.8
Tl 010, = 0m) 22 [ e EoMF e gy, @
4 R3 Ul
(pmm (fv 77) = ‘€| - :‘ﬁ‘f - 77’ - 52’77"
The functions @, ,, are usually called phases and measure the quadratic interactions between
waves.

2.2. Notation. We choose a suitable decomposition of the indicator function 1jy ) by fixing

functions 79, 71, - : R — [0, 1], with the properties
[o.¢]
supp 7, C [2771, 2] Z () =1, |1, (#)] S27™. (2.9)
m=0

We use this to decompose (omitting the dependence on the inputs for a lighter notation)

t t
B0 = 3 Tt T8 = [ o0t = [ o, 0 @0
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C will generally denote an absolute constant that may vary from line to line. The notation
A < B means that A < CB for some absolute constant C' > 0; we will use 2 and ~ in a similar
standard way.

We denote the space-time gradient 0 = (0, V). The rotation vector fields are Q = (z;0; —
xj0;)1<i<j<3, and the scaling vector field S = t0; + x - 0.

We fix a smooth radial cutoff function ¢ that equals 1 for [{| < 1 and vanishes for [£| > 2, and
define

pr(2) = p(27%2) — (277 12),  r(z) = Y ¢j(z) forany I CR
JEINZ (2.11)
P<a(2) = P(co0,a)(2);  P>a(2) = Qane)(2),  ete.

~

We let Py denote the standard Littlewood-Paley projections, Fk\f(g) = @r(§) (&), and let Qi
be defined, for (j,k) € J :={(j,k) : 7 > max(—k,0)}, as

(k) (k) @j(x), j>max(—k,0);
Q; - p . p ) —
]kf(x) [k—27k+2]((10] kf)($)7 90] { wg](x% ] _ ax(—k, 0)
For any k € Z we will define k™ = max(k,0) and k= = max(—#,0).

2.3. Definition of Acceptable Error. Our main objective is to find the leading order asymp-
totics in . As it will turn out this will require the derivation of a nonlinear PDE that drives
the asymptotic dynamics, as well as a phase correction/shift. We then need a proper definition
of acceptable remainder terms. The norm in which we will measure our remainders is:

+
lgllx = sup sup2"H12F7 |l ()Qg(9)]| e - (2.12)
E|<N; keZ é

Definition 2.1 (Acceptable remainder). We will deem a function R(t,€) to be an acceptable
remainder if we can write is as

R(t7§) = Rl(t7§) + RQ(t7§>7 513
IR@)lx S0, Ro=aR with Ry <07, (2.13)

We will write R = R(t,€) € R if it is an acceptable remainder in the above sense.

2.4. Statements of the main results. Our first main Theorem gives convergence of solutions
of (2.3) to an asymptotic system.

Theorem 2.2 (Approximation by the asymptotic system). Let u be a solution of the equation

(2.3)-(2.4), and let f be the associated profile in (2.5). Denote spherical coordinates by & = pb,
p > 0,0 € S?. Define the “radial profile”

~

Fy(t,p):= f(t,pd), p>0;  Fy(t,p) = Fy(t,—p), p <O, (2.14)
and the quantities
ho(t, p) = // 6””[179'@‘}%(@ 7")‘27“2 dedr,
R JS2
¢ (2.15)

Hot.p) = e<ra(pt)"*) [ hols.p)ds
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and

1 itr[1-0-¢)
By(t) = 32W2Re[/R/Sie Hy(t,r)r dedr|,

(2.16)
Colt) i= Bolt) = 5557 [ wmrolp®)""*)Holt. ) dp.
3271'2 t R ’
Then Fy satisfies the “asymptotic PDE”
1 .
OpFy(t, p) = W@so(ﬂ@m) ~ho(t, p) —ipCy(t) Fy(t, p)
(2m) (2.17)

L1
it 4(2m)1/2

where R is an acceptable remainder in the sense of Definition[2.1]

/ (p = T)ng(t, p—1)Fp(t,r)dr + R(t,€),
R p

The proof of Theorem will follow from the approximation Lemmas [4.1H4.5 which are stated
in and proven in the rest of Section [4 Combining Theorem [2.2] with additional linear and
nonlinear estimates, we will obtain the following result:

Theorem 2.3 (Nonlinear Scattering and Asymptotics). Consider a solution u of (2.3). For
|| — t| < #7710 the asymptotic behavior of u(t, ) ast — oo, is as follows: there exists a function
( “the asymptotic profile”) U = Upy(s,q), satisfying

swp VR0, T0(s) o S =€, (2.18)
|| <14,|8|<N1
and the equation
asaqﬁg + (79 . 63(79 =0, (2.19)
and a function Dy(t) (the “shift”) satisfying
sup |95 Do(t)] S e(1 + [¢)°°, (2.20)
la|<N:
such that
1 ~
sup  [VeQPu(t,x) — 2(2m)/2 = Up(logt, x| — t + Da(t))]) < et 17/30, (2.21)
|a] <10,81<N: |z

where 0 = x/|x|.

Let us make a few comments.

- Our result applies also to the general case of the equation with gos smooth and
9ap(0) = 1. For simplicity we deal with but it will be apparent that all our arguments
apply verbatim to . The only changes involve the dependence on the “parameter” 6 in
the formulas of Theorems 2.2l and 2.3

- The asymptotic formula (2.19)—(2.21)) follows from the asymptotic PDE (2.17)), whose deriva-
tion occupies most of our paper. It is important to observe that the PDE (2.17), with the

explicit formulas 7, actually contains more precise information about the asymp-
totic behavior of solutions of . However, in order to be able to fully exploit this, and
obtain asymptotics inside the light cone for the solution w itself, it seems that one would need
to strengthen the notion of acceptable remainder, and prove even stronger bounds than the
ones in this paper. This we plan to do in future work.
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- Away from the light cone, when ||z| — t| > (1 + [t|)"/1°, one has

sup  [VeQPou(t, x)| < e(1+ |t)) /30,
‘a|§10,‘ﬁ|§N1

as a consequence of the standard Klainerman-Sobolev embedding, and the weighted bounds

(3-1)-

- Note that with o = 8 = 0 implies the sharp t~! decay for Ou close to the light
cone. In particular, it follows that we can close energy estimate (with small-in-time growth)
in standard Sobolev spaces. Weighted energy estimates would instead require additional
arguments, see also the comment below.

- As already mentioned, the construction of global solutions for for small C§° data was
done by Lindblad [37] in the radial case. Global solutions where obtained by Alinhac in [5],
and by Lindblad [38] for the more general case of . To obtain our results on asymptotics
and nonlinear scattering we are going to use some of the a priori bounds on weighted Sobolev
norms from [38], more precisely only those involving one single scaling vectorfield and several
rotation vectorfields.

- We did not optimize the choice of the parameters in (2.2)), nor the fraction of v in (2.21),
but prioritized convenience instead. For similar reasons, the exponent 7/8 appearing in the
definitions (2.15)—(2.16]) is a convenient number slightly smaller than 1.

2.5. Ideas and structure of the proof. We now discuss the strategy for our proofs and some
of the main features of our arguments. We focus on describing the main intuition behind the
derivation of the asymptotic system in Theorem and the construction of the asymptotic
profile in Theorem For the sake of explanation we will disregard many technical aspects of
the proofs. The initial approach follows the general scheme of recent works on global solutions of
(quasilinear) evolution systems, see [15], 13} 22} 25]. In the context of wave equation this general
framework was employed by Shatah and the second author [44 [45]. Let v and f be defined as in
(2.5). For sufficiently regular and localized solutions, one has the following linear asymptotic for
|| ~ t:
c [ . ~
v(t,x) ~ = etPt=lzl) p f(t, px/|z])dp (2.22)

up to faster decaying terms; see Proposition for a precise formula. Motivated by this, we look
at the evolution of f, which reads, see ([2.8)),

f6,9=70+ > ij?m / /R . ’tW(f")‘ﬂ |’”fm<t§ 1) faa (t, ) dipds,

K1,k2€{+,— } ( )
2.23

where we denote fy = f, f- = f, and

Driro(§,1) 7= —[€] + RalE = nl + r2ln]. (2.24)

For simplicity, let us focus on one of the terms in the nonlinear expression - the
term with (k1k2) = (+—). In other words, let us look at the equation

Btf (t,€) =~ / et lElHIE=nl=In) = 77’]’;( 5—77)?(15, n)dn + similar terms. (2.25)
R3 ul
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One can verify that the interacting waves have the same velocity, and therefore travel in the same
direction, for frequencies in the set

{(&m) eRPXR?: =X, A<} (2.26)

For such frequencies the integral ([2.25) presents no oscillations in 1, V,®,_ = 0. In addition, on
the subset

{(&,m) eR* xR : £= Ay, A<0}, (2.27)

there are no oscillations over time, as ®,_ = 0 as well. Interactions between waves with parallel
frequencies in the set are call “resonant” and are the most problematic to handle. We refer
the reader to the introduction of [44] for a longer discussion along these lines.

Our general approach to obtaining bounds on solutions will be to first restrict the integral in
to the parallel frequencies in the set and then analyze the resulting contribution. We
remark that such contribution would vanish if (NC) was satisfied. One of the things we are going
to show is that, when the (WNC) is satisfied, the asymptotic PDE or, more precisely, the
equation , emerges from the reduction of — to resonant interactions. However,
in order to be able to see the full asymptotic dynamics there are several important aspects one
needs to deal with. In the remaining of this section we give a schematic description of our main
steps.

Step 1: Improved bounds by iteration. We begin by translating the energy bounds from [38] on
weighted L?-norms of solutions of (I.1]) in terms of the profile f. Roughly speaking these give us
a bound of the form

I+ 12DVl 2 + 1YVl 2 S e+ [t (2.28)

where () is any rotation vectorfield of the form x;0;; —x;0,,;, N is a sufficiently large number, and
€ < 1 is the size of the initial data. Then, we obtain a number of stronger bounds by iterating
the basic bound through Duhamel’s formula —. These bounds give good control
on f, as well as improvements for localized versions of it. See Lemmas and A key

tool that we often use is the angular integration by parts Lemma [3.3

Step 2: Low frequency outputs. It is important to observe that one cannot restrict the interac-
tions to parallel frequencies when these frequencies are too small. Therefore, we first look at the
contribution of very small frequencies outputs |¢| < (1+ [¢t|)~'*. In this case, using the weighted
and pointwise bounds obtained in the previous step, we show that

ot ~ 1z [ It an+ R ne.le) + R (229)

where R denotes here, and in what follows, a remainder which decays fast enough in time in
a suitably strong norm, see Definition In other words, we see that low frequency outputs
contribute a bulk term h such that [£|h(t, |¢|) decays at a critical ¢~! rate.

Step 3: High-low interactions and phase shift. The next step is to measure the feedback
contribution of the low frequency bulk A to the nonlinear interactions. We then look at when
In| < (1+]t))~1* < |¢|. Formally replacing f(n) by the contribution coming from fot h(s,|n|)ds =:

~ ~

H(t,|n|), and approximating f(§ —n) by f(&), we see that:

&f(t@) ~ \g|f(g) z/o H(t,r)rdr + R. (2.30)
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This shows that high frequencies are essentially transported by the low frequencies bulk. Eventu-
ally we will renormalize f to incorporate this contribution via a phase correction/shift, using the
reality of H. This is a similar phenomenon to the one occurring in scattering-critical equations
such as 1d nonlinear Schrodinger equations [16, [33) 24], and 2d water waves [25] 26].

Step 4: High-high interactions: Reduction to parallel frequencies. After treating very low
frequency inputs and outputs we can isolate the contribution of parallel frequencies, using the
improved bounds obtained earlier, and angular integration by parts arguments. Denoting spherical
coordinates by & = pf, n = r¢, with 0, ¢ € S?, we can write Duhamel’s formula as

Of(t,€) ~ /0 - /S ) eit(_pJ’lpe—w'_T)Mﬂt, pd — r¢)?(t, r¢) r? drd¢ + R, (2.31)
¢

r

where the integral over Sé is supported in a small cap around #. Then, a stationary phase
argument on the sphere gives

ofit.e)~ [ [ [ e agl (- )t (= Tt ~r0)rar + R

® (1 (p—r) R _ (2.32)
~ [ G = oFte o= o)t ~p0) rar + R
Thus, we have arrived at
ot~ - [ = 2R (o= )Tt ~p9) ar + R (2.33)

Step 5: The asymptotic PDE. Similar arguments to those sketched above for (2.25) can be
used for the other terms in ([2.23))-(2.24]). Gathering all the contributions, and defining the “radial
profile”

~

Fg(t,p) = f(t,pe), p=>0,0¢€ Szv Fg(t,p) = FQ(t’ _p)’ p <0, (2'34)
one obtains
OFy(t, p) = —ipColt)Ey(t, p) + —— /(”_’“)zp(t CWEr)dr+ R, (2.35)
tL'o\l, p) = PLo o\, p 14(27_‘_)1/225 & P) o\t, p ZANZ) 5 .

where Cy(t) is a real-valued nonlinear function of Fyp which takes into account the low frequencies

contributions (2.29)-(2.30), and we have disregarded some less important terms. See Theorem [2.2]
for details. We then define Uy = U(s, ¢; ) by setting

eS
(FUn)(s.p) == Fole? e, Dyfs)i= [ Cols') ! (2.36)
0
and observe that equation (2.35)) is the 1 dimensional Fourier transform of the equation
0:0,Us = U 92Uy + R(e*, q). (2.37)

This is a perturbation of the asymptotic PDE . An important aspect of our analysis is the
control of all the remainders R in a proper “critical norm”, see , to guarantee a strong
enough proof of convergence to the asymptotic system.

Step 6: Asymptotics. The last step consists in rigorously proving convergence of Uy to an
asymptotic profile, which will still depends on time s, and deduce from there asymptotics for
u. Combining the solution of the perturbed asymptotic system for Uy with the improved
bounds obtained by analyzing Duhamel’s formula , we explicitly construct an asymptotic
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profile (79 =U (s,q,0) that solves the unperturbed asymptotic system (1.9)) together with suitable
initial conditions, and such that

8,Up — 0,Up =50, (2.38)

with the convergence happening in a suitable norm. Combining this with identities (2.34) and
(2.36]) and the linear asymptotic (2.22)), one obtains

C ~
u(t,z) ~ maqU(s, 2| =t — Dy jz (log t); z/|x]). (2.39)

We refer the reader to Propositions and and the formulas ((5.4)-(5.5)) for more details on
the asymptotic profile.

3. A PRIORI BOUNDS AND IMPROVEMENTS

In this section we gather several supporting estimates that we are going to use in the proof of
Theorem in the next section. We begin by recalling the weighted energy bounds from [38] and
state some basic consequences in terms of the profile in Lemmas and We then prove
a general results about angular integration by parts in oscillatory integrals in Lemma[3.3} this will
be used repeatedly in rest of this section and in Section [4] to restrict many bilinear interactions to
nearly parallel frequencies. Finally, in Subsection we improve in various ways the basic energy
bounds by iterating Duhamel’s formula, and obtain several key bounds on the Fourier transform

of f, see Lemmas [3.5] and

3.1. Basic a priori bounds and norms. We will use the following energy bounds established
by Lindblad [38]:
sup  [|[VQY0u(t)] o+ sup  [|[VIQUSOut)||,s < e(1+|t)°F, (3.1)
[¢|+]¢'|<N [¢|+]¢'| <N
where Q = (2;0; — 2;0;), S = t0y +x - 0, and 0 = (04, V) = (0, 0z). Moreover we will use the
decay information, see [38] (6.8)],
sup 099 u(t, )| S e(1+ [¢) 7T+ (] - t)F,
o] +]BISN

sup  |0CQPAu(t, z)| S e(1+ [t)) 1O (1 + ||| — ) T2HCE.
laf+|BI<N

(3.2)

This first Lemma translate the weighted energy bounds on the profile.

Lemma 3.1 (Energy bounds). We have

sup [V ()]l +  sup VUS| 2 S (1 + )7, (3.3)
|+l |<N e+ |<N

where f is the profile for (0; —i|V|)u defined in (2.5). Moreover we have the bound

sup sup 2j+k‘2|1\k+”QZ’ijf(t)HLQ < e(1 4 |t)°=. (3.4)
(G,k)ET || +]¢'|<N—2

Proof. A direct computations shows that ¢Vl commutes with 8, Q and S, so (3.1)) directly
implies (3.3). Now by (3.3)) and commutation we have

sup  [[SVEQY (1))l S (1 + [E),
[€]+]¢'| <N
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and by and we have
10059 F(#)llz2 S HIVQ (whu)ll2 S (1 + [H),

for any |¢| + [¢| < N — 2. This implies

(- 02)VQ £t 2 S (1 + [E) ",
and combining this with the bounds

(@505 — 2,0V Q" F(0)]|12 S e(1+ [),

which is again true for |[¢| + [¢/| < N — 2, we obtain that

llz| - vV f(B) 2 S e(1+ [H)
which, via standard harmonic analysis estimates, implies . O

The next lemma contains some basic bound that are consequences of the energy bounds (3.3)).
More refined bounds will be proved later in Section [3.3

Lemma 3.2 (Basic bounds). Let |[t| =~ 2™, m € {0,1,...}. Under the a priori assumptions

-, we have

sup  [|Q0Qnf (1) || g < 272K . 9=2k=i/2  gCem. (3.5)
I<N/2

for any (4,k) € J. As a consequence we see that

sup Hlm(t)ﬂpo < g7 20k 9= 3k/29Cem. (3.6)
[(|<N/2
Moreover

sup H@f(t)ﬂmo < g2 20k o1+ Cem, (3.7)

[(|<N/2

In particular, combining (3.6))-(3.7), we have
sup [|PpQLf(8)] e < 22720 min (20+COm 9=3k/29Cem). (3.8)
|(|<N/2

Proof. Since (3.6]) is a direct consequence of (3.5)), and (3.8]) is direct consequences of (3.7)), we
only need to prove (3.5)) and (3.7).
Proof of (). Let Q1 f(t,€) = F(€), then (34) implies

||QN/48§F||L2 < 2—k—20k+205m; ||QN/4F||L2 < 2—j—k—20k+205m‘
Writing & = p6 in polar coordinates, and using Sobolev embedding in 6 and Gagliardo-Nirenberg
in p, and using the support information of F', we see that

|Flloe = 1F(p0) 1, < 10 F(pO)II}2 050,F (p0)][s° S ea~komi/2-hg=20k" oCem.

2 2
LP,0 LP,G

Proof of (3.7)). This bound is not a direct consequence of the a priori bounds (3.1)) when frequencies
are very small. We therefore prove it by a bootstrap argument. More precisely, we assume the

bounds (3.1))-(3.2)), which in particular imply (3.6[), and assume a priori

sup 22 || PLlf(1)|| e S e20HCm, (3.9)
[¢|<N/2
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where C’ > C but still is an absolute constant, and show that these imply

sup 220KV || BeQEf (1) || oo < & + £22014C7/2m. (3.10)
(<N

Since f(0) = v(0) = e(x)° —i|V|¢), in view of the decomposition (2.7)-(2.10]), and the identity

18 5 - ry —~
0f /R3 e q"‘l’“?“’”)mf(s,ﬁ —n)g(s,n)dn

Z(@”%”Mﬁﬂbwwémmmem@ﬂ>

b1+lo=¢

we only need to estimate, for fixed r12 € {£} and fixed ¢1, {3, the integral

t
/m@/@wmmnwwwsm%mmmm<ﬁmwm
0 R3

7]
Let Q% fr; = gj, then for |¢| < N/2 and each k we have
| Prgsll o < 22758729 Jlgn(€) - Gl < €272 min (21HCIm 27290 (3.12)
and by fixing time s & 2™ it suffices to bound
€ — -~ /
o) = [ Egi(E =l ] dn 5 22072, (313)

Now for |¢| ~ 2F we have
220k Z |I|[Pk1.gly Pk‘2g2] S Z 220k1 ||Pk:1gl||L2220k2 ||P/€292||L22k1 k2 S 522C€m7
k1<k2+10 k1<k2+10
using (3.12) and also the consequence that || Py, g 2 < 23/ 29(14C")m  For the remaining terms
we have
+ + ~ +
2030 MR Pagal S 30 292 ik Gill e 22 (1 Pragel 22"/
k1>ko+10 k1>ko+10
S 8205m . Z 23]61/22710](}1" H(pklg\lHLOO S 82205m7
k1

using (3.6)). This proves (3.7)). 0

3.2. Angular integration by parts. Here is a Lemma about angular integration by parts which
we will use several times in the rest of the proof.

Lemma 3.3. Consider the integral

~

J = /R M) Xk (€ = )Xk (1) Pphsnnini k) (€ A1) F(E = )G (), (3.14)
where p < 0, x is a compactly supported and smooth cutoff,
|s| =2, @(&,n) = [€] £ & —nl  [n,
and, for all |o| < M, the functions f and g satisfy
IV Fllze < 20 fllze, 199Gl 20 S 220 glle: e > max(—k,0), 7 € (1,2}, (3.15)

as well as
199 Fll 2 < 250 Fll e, 1199022 S 2591°N(G)p2s s >0, (3.16)
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where ) denotes the rotation vector fields. Then, we have
|71 S 27 ) 221G 2 (3.17)

provided that
—m — min(k, k1, k2) + Kk +vm
2

min(j1, j2) < (L —v)m, p= (3.18)

for some constant v > 0.

Proof. We may assume that f(() is supported in the region |[¢| ~ 2¥1, and similarly for g; by
symmetry and (3.18) we may also assume k1 > ko and min(k, k1, k2) > —m. Writing

3
Pprhrhs (EAT) = Cophaa (AN D Vpikysha (EAN);) (3.19)
=1

for some suitable cutoff x, we may assume that |£172 — &om1| & 2PTF+F2 in the support of integral.
There are then three cases to consider.

Case 1: |k — k1| < 4, and j1 < (1 —v)m. First express fin polar coordinates and use the
Fourier transform in the radial coordinate to write
fle—mn = / e"p'f‘"'H<p, 7 ) dp, (3.20)
R € —n
where H(p, () is homogeneous of degree 0 in ¢, then we have that (due to our assumption about
the support of f, and |k — k] < 4)

¢ M o
20 H O, < | (65) 7| <20l (3:21)
p:0 [q L2
so if we define
H'(p,0) = H(p,0)p<m—10(p), H"(p,0) = H(p,0)p>m—10(p); (3.22)
and define (f’, f”) and (J', J”) accordingly, then we have
1F7 e = 112" H" (0, O)l 2, < 277 e (3.23)
since j1 < (1 — v)m. By Cauchy-Schwartz we then have
TS NN lglle < 27 Fllz2 111 2 (3.24)

which is acceptable. Below we will consider f’ and J' only, and will omit the “prime” symbol for
simplicity. Since now

o~

e = [, esnmloh (o =)o 429

we will first fix one p and denote the corresponding contribution by J,. Note that |p| < s by our

assumption, so | £ s+ p| = 2™.
Let D = 110y, — 120y, and

Df / < f >
Lifes—21 . e D1 ), 3.26
Dlg —n DIg = (320)
then we have L(e®t%IE=1) = j(£s + p)e?s®Hlé=nl and thus
Jp = (i(s+p)) M [ BTG () dn, (3.27)

Riﬂ
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where
G(1) = X&) Xk1 (€ — 1) Xb2 (1) Ptk (§ A MUty +15 (§ A1)3) H <p, H)?(n)- (3.28)
By induction in M one can prove that
, M DuF2le _pl... DoF2g _
HMe=3" Y D™G ’5(D|;7|_ s €=l (3.29)

r=0 ag+--+ar=M—r

where the coefficients are omitted for simplicity (the same below); now we analyze each factor
appearing in this expression.
First, we have
§imz — &am
DI§ =n|=——7,
€ —nl

by Faa di Bruno’s formula one has that

q r
Dije—nl=>" > =DV -0

IDI¢ — || ~ 227P; (3.30)

r=1 ai++ar=q—r j=1
q
=3 > E=nl"> T €n2—&m) [] (&m +&m), (3.31)
r=1ai+--+ar=q—7 aj even aj odd

again with coefficients omitted, therefore

D€ =l < Sli}i>2(1‘2”’“2’"(’“+k2) < ok (3.32)
rZ

with constants depending on q. As for the DG factor, we have

D (X (€) Xk (€ = WXk (M)Izee S 1, IDg(0) |22 < 27|12, (3.33)
and
q r
DUepiiimaEAM) =D D (O eprrim) EAn) [[ DT EAD), (3.34)
r=1 ai+-+ar=q¢—r j=1

which implies that

1D (Ppihins (€ AM)zee S sup 207PR-RIrgrkthe) < 9map, (3.35)
1<r<g
and similarly
DY (Ppthars (€ A1)3)) [ Lo S 277 (3.36)
Using also that
§—1 « lal— §—n
DQH<p, =Y - nfle— ey (5, S e
€ =l € =
181 17I<]al<q
we get
IDIG| 2 S sup 2P 25VEH (p,0)] 29 2 (3.38)
Iy+1<q
and therefore
IEYMGp S sup 2/ PImUrEMtRl k2 DR GEH (o, 0) | 2131 2, (3.39)

[y[+1+r<M
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and

[T, £ sup 27 MmHsmR) e (atp) ke ok G B (p, Ol 2119l 22- (3.40)
Y| +H4+r<M

Integrating in p, we get that

5 [ eemnloli
pN m

<oPglle sup 2 MM 9k F ()

2 o
[y|+i+r<M P
SO Flualigllie sup oM RS CeMGatp ks
[y[+1+r<M
using the fact that
12"V5H (p. O)ll 2 , =~ 127 fll2 < 201 7]l 2. (3.41)
Optimizing the last line, we get that
T S 272 )1l 2llgl o - 2027 < 27 M a2 (3.42)

due to our choice ({3.18]).

Case 2: |k1 — ko| < 4, and j; < (1 — v)m. We then apply the same argument as in Case 1,
except that the bounds are now

|D[¢ = nl| ~ 2%¥7, IDYE = ||~ S 2F, (3.43)
and ([3.33)~(3.38) still hold, except that the factor 2* in (3.38)) is replaced by 2¥1. Following the
same lines, we get

I <272 fllpellgll e sup 27 Mmtllsmp)= (M)t rkely] (3.44)
[v|+i+r<M

and consequently
7] S 272 Fllz2lgll gz - 226 R2Pm) < 27 M £l o] (3.45)

due to our choice (3.18)).

Case 3: |k — k1| < 4, and jo < (1 —v)m. In this case we switch the role of n and £ — n;
first we manipulate g(n) in the same way as Case 1 above, and reduce to studying H(p,n/|n|).
Define D = (£ —1)10p, — (£ —n)20,, and define L and other quantities accordingly, then we have,
replacing the estimates in Case 1, that

Dl = S Dl 2 (3.46)
and
q T
Dinl=>> > " [ DYt
r=1 a1++ar=q—r J=1
q
=> > "= T €ame = &m) T (G(§ =1+ &(€—n)2), (3.47)
r=1 ai1+--+ar=q—r aj even aj odd

which implies
|DY[n]|| e < 2k Fath—h2), (3.48)
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moreover, we have

1D (3 () x0s (€ = M)xaa (M) 200 S 290782 I DUf(E = )| 2 S 27/ 2, (3.49)
and (3.34)) now implies that
1D (Pphina(EAM) oo S sup 207 Fkrg2hr < glopikahala, (3.50)
1<r<g
and similarly
1D (Wpiehs (€ A m)3)) | 0w S 207PHR, (3.51)
Using also that
n Y- n
o (p ) = S e P (o), (3.52)
18, 1vI<al<q
we get
IDIG| L < p 2wk | 98T H (p, 0)] 2113 12, (3.53)
vI+I<q
so following the same line as Case 1 we get that
1S 272 fll 2l 2 - 2M R 22mm) S oM s ] 2 (3.54)
due to our choice (3.18]). O

Here is an additional simple result for non-stationary integrals:

Lemma 3.4. Assume that € € (0,1), eK > 1, M > 1 is an integer, and F,g € CM(R™). Assume
also that F' is real-valued and satisfies

IVF| > 1 supp(g)s ‘DQF| <yl va<al < M.
Then
; 1
\/ " Tgde| S e 2 Dl (3.55)
' jal<M

3.3. Improved bounds on f We now show how starting from the basic bounds of Lemma
it is possible to get improved estimates by using, among other things, the angular integration by
parts estimate of Lemma, [3.3

Lemma 3.5. Let f be the profile (2.7)-(2.8)), and assume the apriori bounds (3.4). Then, for all
t=2" m >0, k €Z we have

sup || PeQf(t)|| e < €272 max (25’", Z_k)2(08+125)m. (3.56)
[¢|<N/3+42

Note that, combining Lemmas [3.5] and [3.2] yields a useful bound: for all ¢ ~ 2™ we have

sup S 252k BOIf ()| S 2™, 8 = Ce + 135, (3.57)
e|<N/3+2

This follows by using (3.7) for the sum over k < —2m, and (3.56|) and (3.6)) when summing over
k > —2m.
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Proof. The bound (3.56) is the consequence of iterating many times the following claim, starting
at 3=1and M =0 (see Lemma [3.2)):

Claim. Suppose for some 8, M > 0 we have
sup [ PeQCf(t)]| oo < 2272FF max (29m 9~k g(M+CE)m. (3.58)
|| <N/3+2
for all ¢ &~ 2™, then for the same ¢ we also have, with 3’ = 23/3 and M’ = 2M /3 + 4, that
sup || Pl f (1) ][ e S 227 20K max (29, 9=k) oM 0 +Ce)m. (3.59)
|0|<N/3+2

To prove the claim, assume that (3.58) holds. Using the Duhamel formula (2.7)) and the
commutation formula (3.11]), in the same way as in the proof of Lemma we see that (3.59)

would follow if we can prove the estimate

is(lelle—nlin) € =1 ~ o oo
SO,g(g)/ﬂ@e 91 (& = m)gz(n) dn (3.60)

< 622720k+2(71+M’6+Ce)m max (Qﬁ’m7 24@),

|Tklg1, 92) ()] =

for all s &~ 2™ and all functions g, (which are g, = Q% £, see the proof of Lemma satisfying

< 62—20k+2—j/2—2k‘208m’ (361)

~

o0kt —
sup [ Q°Prgrll e S 270K 205 1Q; k00| oo
l0|<N/2

| Pegr|| e S e27 20K oM+Cm ay (25m 97F)  (3.62)

for r = 1,2. We decompose the inputs g, into Q;, 1, g for r = 1,2, and divide the proof into two
cases.
(1) Assume that min(ji, jo) > (1 — 46)m or max(ji,j2) > 2m. To treat the case when both

inputs have large spatial localization it suffices to use the second inequality in (3.61]) and estimate

‘Ik[Qﬁklgl,Qthgﬂ(f)’ SJ 2k1—k2 /R3 ’leklgl(g - 77)’ }szk:ggQ(n)’ dﬂ
< 29Cemoki—ky 920k 9—j1/2-2k1 _ 9—20k} 9—jo/2—2k> 93 min(ky,k2) (3.63)
< 622—201c1+2—20k;2+2— max(k1,k2) | 9—(j1+j2)/29Cem.

Summing over all indices j1, jo, k1, k2 with min(j1, j2) > (1—40)m, or max(ji1, j2) > 2m, we obtain

Z ‘Ik[Qijzgla QJ2J€292](§)} ,S 522ik720k+27m2(08+46)m7
min(j1,j2)>(1—46)m, (3.64)
or max(j1,j2)>2m
which is stronger than (3.60)).
(2) Assume min(j1,j2) < (1 — 40)m and max(ji,j2) < 2m. We can then be able to apply

Lemma in combination with the first inequality in (3.61)), see the first condition in (3.18]), to

restrict the integral to the region where
1€ Ap| < grothtminhika) _m+ minéh/@l, k2) 4 26m

This then restricts the integral to a cone of angular aperture 270 and radius 2™in(k1:52). areuing

as in (3.63)), we obtain that

[ 1e[Qiky 91, Qjakp g2] (€)] S 2817 R2 . 22pot8min(knka) Q.4 g1 || poo - [|Q ks g2l Lo - (3.65)
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If ko > k — 10, then we have
ki — ko 4+ 2pg + 3min(k:1, kz) <-m-£k+ 3(k‘1 + k‘g)/Q + 46m,
which implies, using the second inequality in (3.61)), that

_ +_ +
| 14[Qi1 1 91, Qi 92) (€)| S 227200 —20kz g=m—ko(46+Ce)m

which implies (3.60) upon summing over (j, k). If ko < k—10, then |k —k;| < 5 and (3.65|) gives

1 1:Qjs k91, Qs 92] (€) ] S e2271F0Im gohitke Q0 g1l 1o + | Qaky g2l Lo (3.66)

Now if ky < —fm, then in (3.66) we may use the second inequality in (3.61)) to bound the first
L factor and (3.62)) to bound the second, obtaining

315 22920k T o(~1+45+Ce)m  o—k/29(Ms+Ce)m._

)

| 16[Qj1 1, 91, Qjaks 92
This does not imply (3.60), but upon integration in time, this implies that

sup || PeQEf (1) |1 S 27208 9 R 2900405+ Com,
[¢|<N/3+42
which then implies (3.59) via interpolation with (3.6)) (we obtain M’ = (M + 4)/2).
Finally, if & > ko > —/m, then the second inequality in (3.61) and (3.62) implies, for k. €
{k, ko), that

ok QZm\grllLoo < 52—20kj min (QCsm—k*/2’2(M5+Cs)m2ﬁm+k*) < 62—20kj26m/32(M5/3+Ce)m.

This then gives

_ +_ + _
’Ik: [leklgla Qijng](é-)l 5 622 20k —20k3 2( 14+28/3)m | 2(45+2M6/3+C’6)m

)

which again implies (3.60) upon summation. This completes the proof. O

Another direct consequence of Lemma [3.5] is the following bound for time derivative of the
profile:

Lemma 3.6. Under the assumptions (3.4), for allt ~ 2™, m > 0, we have the following estimates:

sup || PeQlOf(1)|| 2 S e227 20k g (1=Ceym, (3.67)
[6|<N/3+2

sup (| PoQD,f (1)1 < £227 220K g+ (§'+48)m, (3.68)
[(|<N/342

Proof. To prove (3.67) is suffices to use (2.6, Holder’s inequality, and the L decay (3.2)). To
prove (3.68]) it suffices to combine the commutation formula (3.11]), the estimate (3.66]) and (3.56)),
]

and follow the proof of Lemma [3.5
Finally, we have the following improvement of (3.56|) for @, f:
Lemma 3.7. For allt ~ 2™, m > 0 we have

sup (| QS ()] < 2R/,
[6|<N/3+1 )
when —Tm/8 <k < (—=1/2+42y)m, j>m—~ym.
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Proof. Fix a time s € [0,¢], assume s ~ 2", where 0 < n < m. By Duhamel formula (2.10), and
the commutation formula (3.11]), it suffices to prove that

IFQinF ' Ilg1, g2 (s, &)l e S €227 P26, (3.70)
where
: - £—nl . ~

Iklg1, g2](s,€) == /R3 RAGSESS nliln|)||n’|gl(§ —n)ga(n) dn, (3.71)

and g, = Q% f,. as before. In particular g, satisfy the bounds
sup || Peg, > < e27 2% 205, (3.72)

[e|<N/2

“%"Lm S 82—20k+ min (2(1-i—C’€)n7 2—]'/2—2k20<5n7 2—k+6’n)’ (3.73)
HQﬁa\thHL? < 62—20k+2—(1—05)n7 ”Qﬁa\tg’fHLoo < 62—n2—20k+2—k+6’n+46n‘ (3'74)

We decompose g, into Qj,k,gr, and subdivide the proof of (3.70) in various cases along the same
lines of the proof of (3.56]) above.
Case max(n, min(ji, j2)) < (1 — 2y)m. Without loss of generality assume j; < (1 — 2y)m; we
differentiate (3.71)), using the fact that
IV Qi g1llz2 S 27 [ga 2,
we obtain that
|08 Tk [Q1, 91, Qoo 92] (5, €) | S 2l max(slkban) gki=h2 g, || 15 || go | 12

< 2U=2nmlal  gki=ka |0 Il 5 |l go| 2.

Since j > (1 — «)m, by choosing || big enough we see that
IFQikF ~ Te[Qjrk 91, Qs 2] (5, )| oo < 27120 =20mlel . gF1=h2 g | s [ go | 2 < 27100,

Case min(ji, j2) > (1 — 49)n or max(ji, j2) > 3m. The case max(j1,j2) > 3m can be simply
treated as in , so we skip it. We then assume min(j1,j2) > (1 — 46)n and separate into
different cases depending on the size of ko relative to k. Note also that min(ji, j2) > (1—40—2v)m
since when n < (1 — 2v)m we must have min(j1, j2) > (1 — 2y)m.

Subcase 1: ko < k—10. In this case ks is the smallest frequency and |k; — k| < 10. If ko < —2m/3
we estimate

ki—ko s k
[ 16[Qi 52915 Qo ki 921 ()| S 2577211Q, k1 91 1| foo [|Qa kn G2 1 00 252
< 522k1_k2 . 2—j1/2—2k1 . 2—k2+6’n . 23k2

< 622—14:1-1—/622—]'1/225'71
< g29—n—k  gkatn/2  o(8'+26+7)n

which suffices since n < m. If instead ko > —2m/3 we estimate
|Ik [Qj1,k2917 sz,kng](g)‘ N k1 =k Hle,klgl HLQ Hng,kQQQHLDO . 93k2/2
< 522]{)17’62 . 27]'17](:1 . 27]622(5/4*06)% . 23k2/2
< f29-01 .2—k2/22(5’+06)m

< 622(—2/3+6’+46+27+C'5)m
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using that n <m, —2m/3 < ko <k < —m/2+ 2ym and j; > (1 — 4§ — 27)m, which suffices.

Subcase 2: ko > k — 10. Here we can use an L? x L? estimate and obtain

ki—ko )|y . T
‘Ik[lenglvsz,kQQQ](g)‘ 5 2% 2Hthklgl”L2”sz,k292||L2
< 8221@1—@2—2%;—2%; .9—ii—k19Cen  9—ja—kagCen

< 8227j17j2272k2720kf720k2+2Cem
< £29—20k{ —20k3 9—2m—2k _o(86+4+Ce)m
which is more than sufficient since k > —7m/8 and j1,j2 > (1 — 46 — 2y)m.
Case min(j1, j2) < (1 — 46)n. Using Lemma we can restrict the angle between £ and 7 in
the integral I in (3.71)), and reduce matters to estimating
€ —mnl~ ~ - i
| Tk po 915 92](€) == ¢1(€) / |G1(¢ = )] [g2(m)| x(|¢ A | 27 PorktmintErka))y g,

R3 ‘77|
+ min(k, k1, k
po ‘= —n ! ( AL 2) + 2(in.

Subcase 1: ko < ki1 — 10. In this case |k; — k| < 5 and we estimate, using (3.57)),

|Ik,l)0 | [Qj1,k2917 szJng?] (5) 5 2k1_k2 ||Qj1,k1 g1 ||L<><> ’|Qj2,kzg2 ”Loo 22p0+3k:2

T —_—
< 9k1 Qi1 k191 oo - QkQHQjQ,kQQQHLOO . g—n+4dn

g 6227n+(45+26’)n’

which suffices since k < —n/2+2yn and n > (1—2v)m. The case k1 < ko — 10 is treated similarly
and easier in view of the factor 2k1—%2,

Subcase 2: |k — k1| < 10, and max(ji, j2) > 2n/5. Suppose j1 > 2n/5, we proceed similarly and
estimate

T, Qi1 5291 Qs 92)(€) S 11 91l e Qg 2] o 2270242
< 231@1/2“Qm1“Lm _231@/2”62@2“”0 . 9—kg—n+4én
< g2o~honglon iy (9-(itki)/2+Cen gki/2) oCen
which suffices noticing that n > (1 — 2)m, and that
min(—(j1 + k1)/2,k1/2) < —j1/4 < —n/10.

From now on we may assume max(ji, j2) < 2n/5, so in particular min(ky, ko) > —2n/5. In this
case we will have to consider the integral I, ,,, with the phase, namely

Bl Qi1 Quass2l(€) 1= 1) [ I GG 6 — 0) G

x x(|§An[27 PR ) dn B(E,m) =[] = Ral€ — ] — Kalnl.
For simplicity we also assume max(k1, k2) < 0. Recall that in the region of integration we have

&/1El £ n/Inl| < 2.
Case k1 = K2, or when ’f/\ﬂ + mn/\n” < 2P0 If K1 = Ko, since k < —m/2 4+ 2ym and
k1,ke > —2m/5, we know that in the region of integration we have

7 URES
K Inl  In—¢
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100m

so we get |1 po [Qj1k1 91, 92| S 27 via integrating by parts in 7 many times, noticing also that

|Vax((€ Am)2Poh=h)| < glelpo=h) 0 _py — ) < Tmy/8,
due to Faa di Bruno’s formula and the observation that (£27%) A7 has all 5 derivatives bounded.

If kg = —k1, and |£/[¢|+r1n/|n|| < 2P°, then in the region of integration we have |V ®| < 2P0t
which implies, via Faa di Bruno’s formula, that

|V?€i8¢)} < 2|a|max(m+po,(m—k)/2) < 2(31m/32)|0¢\'
Similarly
[VEx((€ Am)2Poh=h)| < glelpo=h) - _py — | < 31m /32,
so by taking { derivatives in the integral definition of Iy ,, we get that

|08 T o [ Q1 k1 915 Qiakn 2] (5, )| S 281 /32Nl gkr=he gy ] o] go] [ 2.

Since j > (1 — ~)m, by choosing || big enough we see that

IFQikF ™ T (@i 91, Qaka 9] (5, ) | £ S 27714123 Im/3DMel glimbz g ) o g 2 S 27100,

~

Case ko = —K1, and ‘§/|§| — /im/|77|‘ < 2P0, We may assume k1 = 1, kg = —1, and |Z(&,n)] <
2P0 (the other case being similar). In this case we have

|| = [1€] = |& =0l + [n]] Z €] = 2,
so we will integrate by parts in time. Recall that to prove (3.69) it suffices to show
| Tk Qs 915 Qs g2] (€)| S €227 F7/16, (3.75)
where

TuanlQitr 1. Qi) = [ 7(5) 1 Qi1 Qi) 5.) .
Now, integrating by parts in s, we get that

Tk Q11 915 Qjakr 92) (€) = —/ T (8)K[Qj1 k91, Qjoka92) (5,€) ds

R

_/RTTL(S)K[QjﬂﬂasglvQj2k292](37§)d3_/RT’VL(S)K[leklglvszkzang](svg) dS,
where

K(Qjik1 91, @joko92](s,€) = /RS ’£|77—|<IZ7|

|Qiuk 916 = )] | Qiakag2(m)| X (£(&,m)277) dy.
Now we have
K[Qju 91 Qraks92)(5:€) S 27 M1 Q91 oo [ Qs ko oo 2270542
< 2—k23k1/2|’Qm1||Lw .231@2/2‘@3]62\92”“0 . 9—kog—n+don
< 292k t(A50n < 29k g—k-ng(15+Ce)n
which suffices since k > —7m/8 and n > (1 — 27)m; similarly we have
K[Qsu 0191, Qi 92)(5:€) S 27 1Q ks Brn o | Qo ol] o 2270

5 2_k23k1/2”Qj1,k18t91||Loo : 23k2/2”@j2,k292HLw : 2—k2—n+45n

< 29— 2k—n—n+(8'+46+Ce)n < 29k og—k-n 2(5’+45+C’5)n’
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which also suffices since k > —7m/8 and n > (1 — 2y)m. This completes the proof. O

4. PROOF OF THEOREM [2.21 THE ASYMPTOTIC SYSTEM

The proof of Theorem [2.2 will be built on the approximation Lemmas We first state
all these lemmas and then prove them in the remaining of this section.

4.1. The main Approximation Lemmas. In what follows, we will always assume m > 1, and
the a priori bounds — and their consequences, see Lemma Lemma and the result
in Subsection 3.3

We will frequently write a vector & € R? in polar coordinates, say ¢ = pf where p = |¢| and
0 = £/|€]; we may use similar notations such as & = r¢, etc. In these coordinates we will define

~ ~

Fy(t,p) == f(t, pf), and similarly Fy(t,r) := f(t,r¢), etc.
Lemma 4.1 (The —— interactions). We have

I (t,¢) € R, (4.1)
see and Definition for notations.

This is proven in Section [£.2] by exploiting oscillations in time and making use of the angular
integration by parts Lemma |3.3
We then look at low frequency outputs and prove the following;:

Lemma 4.2 (Low Frequency Outputs). We have
€17 <o (67F) I (1,€), 1617 Pp<o ()T (1,€) € R. (4.2)

Moreover, we have

— m m 1
€171/5 o (€407/5) (I (1, €) + 17, (1, €)) - 2y o p)| eR (4.3)
where
ho(t, p) == o<o(p(t)"/®) / / P U=09) Fy(t, 1) *r? dgdr. (4.4)
R J§2
In particular, by Duhamel’s formula —, it follows that
-1/ I8YIF(E€) — T _
|17 (o<-1o(e™™)1T0.€) = F0.601 + 5 Hatton) )| £ 2% (45)
where
t
Ho(t, ) = pe10(p(t)7%) /0 ho(s,p) ds. (4.6)

The above Lemma is proven in Notice that in we prove stronger bounds than what
is needed for the terms to be considered acceptable remainders. These bounds will be used later
on in the proof of Lemma

Next, we decompose I, x, to distinguish between high and low frequency inputs. Define

FO(1,6) = o106 %)y (1.€); FL(1E) = po10(E(t)®) Fu (£,€), (4.7)
and
L0 = I 10 ) + I [FL PO T, = I I FL). (4.8)
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The next lemma treats the high-low frequency interactions I, Q}’BZ and shows the appearance of
a low frequency bulk term correction. It will be proven in [4.4]

Lemma 4.3 (High-Low Interactions). We have

P>0(E)THIMN(1,€) € R. (4.9)
Moreover
P>0(€() B [I10(t,€) = TI0(4,€)] +ipFu(t, p) - Bo(t)Tm(t) € R (4.10)
where
1 o itr(1—6-
By(t) := ?Mlm(/o /S2 ettr 9¢)H¢(t,r) rdgi)dr), (4.11)

and Hy(t,r) is defined in .

The next lemma treats the high-high frequency interactions LZL’,%Q, and shows that the leading
order behavior is governed by an asymptotic PDE.

Lemma 4.4 (High-High Interactions and the Asymptotic PDE). Suppose m > 1, define

Go(t, p) == Fy(t, p)o>—10(p(t)/®), p>0; (4.12)
GQ(t7p) = GQ(t7 _p)7 p <0, (413)
then we have
>0 (€ [IT (4,6) — TP (8, ) = I™ (6,9)] + T (N (t,p) € R (4.14)
where
1 —r)?
N(t,p) = 4\/%1/]1% (p ; S Gt p— )Gt ) dr- (4.15)

The proofs of Lemma [£.4] is performed in Section
The last lemma reduces the function Gy on the right hand side of (4.15) back to Fy, thus
recovering the expression on right-hand side of (2.17)):

Lemma 4.5. For m > 1 we have
i 1
4427 t

2
(DNt p) / (o . S Fy(t.p— v)Fa(t,r) dr

— T ()ipFy(t, p) - ﬁ /R o< 10(r(t)"®) Hy(t,r)dr € R. (4.16)

4.2. Proof of Lemma [4.1l Recall that
1 - i 1§ —nl ~ =
I™ (g1, ga](t, &) i= = (2m) 327 (¢ / et®——EmS e ¢ — t,n)dnds,
91, 92](#, &) 5= 3 (2m) = (t) | €= mg(t ) dn (4.17)
S (&n) =[]+ 1€ —nl +Inl.
Since the phase ®__ is elliptic, ®__ ~ max(|¢|,|£ — 1|, |n|), it is convenient to write

I™ (g1, 92) = O (TmK__[g1,92]) — T K—_[g1, 92] — T K—_ [0 g1, 92] — Tm K__[g1, D1 92]

Kool €) = [ et S50, — (e n) dnds.

(4.18)
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Now, by using (3.11]), we only need to estimate I"™ [g1, go] with
gl:thv 92:Q€2f7 ’61‘—’_‘62’ < Ni. (419)

Note that they satisfy the estimates

sup || Pegy | > S 227208 20, (4.20)
eI<N/2

— — _ + . —1/9_ _ ’
||QQj,kgTHLoo ‘I‘HQj,k.ngLoo <9 20k min (2(1+Ce)m,2 /2 QkQCsm’Q k25m)’

- (4.21)
and
Q5 Begrl| o S €27 20K 2= (1=CoIm .
) e — — + / .
Q) kOkgr |l e < €2 ko—20kT 9—m+8'm-+46m

We begin by decomposing the two inputs in frequencies k1, ko and distinguish a few cases.

Case 1: min(ky, k2) < —3m/4. Let us start by looking at the term K__[g1, g2, and estimate,
for all |¢| ~ 2% and t ~ 2™

2| K__[Pryg1. Proge) (§)] < 2° - 27 [Py o | Py g - 28014
We can then sum over frequencies using (3.57)):

+
> 252K K __ [Py, g1, Pryg2] (€))
min(k1,k2)<—3m/4
< Z 915k T gmax(ki k) +2 min(k1 k2) H@HLW H@HLW

min(ki,k2)<—3m/4
< 26’m6 . 26’m€ . 2—3m/4 < g29—vm
According to (4.18) and the definition of acceptable remainder this suffices to deal with this

term. For the same reason the term 77 K__[g1, g2] in (4.18)) is also an acceptable remainder when
the frequencies of the inputs satisfy min(kq, ko) < —3m/4, see (2.9).

To deal with the other two terms we estimate similarly, using (3.57) and (3.67):

Z okgl5k* | K__ [Py, 91, Py 0:92](€)|
min(k1,k2)<—3m/4

SEEED DI ] L BN RO
min(k1,k2)<—3m/4

< 2—3m/4 . 625’m . 62—m—l—§’m—i—4§m < é\22—(1—|-')/)"rn,'
The term K__[0:g1, 92| can be handled in the same way.
Next, we decompose g, = Z(jhk?«) Qj,k, gr, and treat first the case when min(jy, jo) is large.

Case 2: min(j1,j2) > 9m/10 or max(ji,72) > 3m. When max(j1,j2) > 3m estimating directly
using (4.17)) suffices. When min(j1,j2) > 9m/10, the starting point is again the identity (4.18)).
Then, using the bound (3.5)), for all [¢| ~ 2¥ and t ~ 2™, we estimate

+ R — ;
2521 K [Qjyky 91, Qo 92) ()] S 252"5% - 2772 1Q 0y 01| o | Qo 92 e - 22 1F2)

5 2—5max(k1,k2)+2max(k1,k2)+2min(k1,k2) . 52_j1/2_2k1 . 82—j2/2—2k2206m

5 2—5max(k1,k2)+2—max(kl,k2)205m . 622_(j1+j2)/2
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For j1,jo > 9m/10, and —3m/4 < min(ky, k2) < max(k1, k2), we can sum the above bound over
all parameters kp, k2, j1, jo obtaining the desired bound of 2277, By the same argument, the
term 7, K__[g1, g2] is also an acceptable remainder.

For the other two terms in we proceed similarly as above but also using :

2521 | K [Qjuy 91, D Q9o (§)] S 21K omex bk t2minthn ko) g g1 L 00Qiahaga o
g 275max(kl,k2)+2max(k1,k2)+2min(k1,k2) . 827]’1/272]61206’”’1, . 6271{?2272’”’1,/3

< 275max(k1,k2)+2C€m . 82272m/32*j1/2'

Using that j; > 9m/10 and summing over all parameters gives a more than sufficient bound of
£22-1m/10 The term K__[0;f, f] can be treated identically.

Case 3: min(ky, k2) > —3m/4, and min(j1,j2) < 9m/10. In this last case we can use Lemma
thanks to the restrictions on the frequencies and spatial localization guaranteeing that the

hypotheses (3.15)-(3.16|) are satisfied. The conclusion (3.17)) then takes care of the integral in
[@17) with inputs fi, f2, when the support is restricted to |& A 5| > 2rothtmin(kik2) with

_m + min(k, k1, k‘g) — 46m

Po = B

Therefore, matters are reduced to estimating the term

I™ Qi k91 Qs 2] (£, €) := T (1) /RS ez't<1>(£m)|£‘;|77|

—_

X Qi 01(t, € — M Qykaga(t,m) x (27 Wotktmintkrk2) e npy dp - (4.23)

for a compactly supported function x. Similarly to (4.18) we can write

IT—,pO [lelﬂgla Qj2k292] - 8t (T’mK——,po [Qjﬂﬂgla szkQQQ]) - T1/nK——,p0 [Q]jklgl’ ngkQQQ]

(4.24)
~Tin K~ po[01Qj1 k1 91, Qiaka 92] — T K —— po Q1 1y 91, 0t Qinr 92]
where
Kl gal(t8) 1= [ e =G e gt
PO IE RS | ®——(&n)" ’ (4.25)

x (2~ Wothtmin(kk2)) e A ) dpds.

Notice that, for each fixed &, the support of the above integral is contained in a cone of aperture
2P0 and length omin(k1.k2) whose measure is 22Pot3min(krk2)  Then for ¢ & 2™ we can estimate

+ + _ —
22 K 3 [Quki 91, Qrao2) (€)] < 202108 97 hegh mmex(in k)
K[| Qs 91l o | Qo g2 | . 2200+ 1A
Jika

<21 gD gk i) Q1| | Qb 2

< 2—5111ax(k1,l~32)+ . 2—m(1—45) . (526’m)2

where we have used (3.57)), and this bound clearly suffices. This also takes care of the term
27Ky [Qﬁ/ﬁgl’ Qj2k292]'
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In a similar fashion, we can deal with the other terms in (4.24)), by using in addition (3.68]) as
follows:
252 K o [Qjuka 91, 01 Qiaky 92)(€)] S 2F217HT - 97 haghu mmax(hu k)

— —_— .
X[1Qju 911l oo 01Q ks g2 | oo 2°0FH N A2)

+ _ _ . — —
< 9l5k™ o m(1—46) 2max(/7c1,lc2)+mm(kl,k2)||leklglHLoo ”8tQj2k‘2.g2||Loo

S 2—5max(l€1,kgﬁL . 2—m(1—4§) . E2(5’m . 62—2771/3

Summing over all parameters we see that we get at least a bound of £22~5"/4 which suffices. The
last term K__ p [0:Q;,k, 91, @jsokng2) can be treated identically. This concludes the proof of this
Lemma. (|

4.3. Proof of Lemma [4.2]
Proof of (4.2]). We begin by showing the first claim in (4.2), and in particular the following:

Y Pp<o(E(t)B)QIT (L, €) = R(t,€) + 0S(L,€),  |€] < Ny,
IR(t,€)| S 2 UFIm S e) <27, t~2™ m>0.

By using (3.11)), we again reduce to estimating ", [g1, g2], where g1 2 are defined in (4.19). We
let |¢] = 2%, k € Z, and begin by splitting relative to the size of |n|:

(4.26)

42m)32IT (8,€) = I (1, €) + IT2 (L, €),

I (8, €) = Tt )/}R3 #24+(Em) lfwnl 1(t, € = m)g2(t,n)<it10(n) dnds,

1) =m0 [ e ”‘1’++“’5|n|’7' (1€ — )Gt 1) @ ka10(n) dds.

Using (3.50)
71 p 2 — /
[0 (4 )] S 161G O 7o - €100 S €227 - 2"

After multiplication by @< (£(t)7/8)|¢|*/® this term can be absorbed into R in (4.26)).
The term Iff is treated using integration by parts. More precisely we write

177 = 0y (K191, 92)) — o K4 (01, 2] — T K 4+[0491, 92] — Tm K1 [g1, B1.90]
i é- - -~ —~
Koelon 1.0 = 3 ou© o/, t¢++<€v">m,<'b++&'mgl<af — D)@t @ks10() dds.
(4.27)

Notice that for |¢| = 2¥ with k < —7m/8, on the support of K., we have || > 2'0|¢|, and
therefore |®14(&,n)| 2 |n| = |€ —n|. It is then not hard to see that for all ko > k + 10 we have
for |k1 — ko| <5 that

|0k(E) K1 [Pry 91, Pry 92](€)] < 282/2 min (|| Py, 91| 12 | Prea 92l oo s | Py 91| oo || Pragall p2) - (4.28)
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Using (4.28]), followed by (3.8]), we immediately obtain, for all ¢t ~ 2™

€12 0<0((t)®) K191, 921 (2,€)] < > 21/598212)| gy (1)) 2 | Py 92| oo
k<min{—7m/8,ko—10}
< 62C’sm 9- m/422k2HPk2 ( )HLOO 5 2—m/4 . E225’m S 522—'ym’
ko

having used (3.57)). This term can then be absorbed in S in (4.26|). The same bound shows that
also 7, K", [g1, g2] can be absorbed into R in (4.26]).
Similarly, we can use again (3.57)), and in addition (3.67)), to obtain

€50 e K B @O S S 252200 L Bl e
k<min{—7m/8,ka—10}
S P20 TN 9 [P ga (1) o S P27
ko

A similar bound holds for K", [g1, 0;g2], so that these terms can be also absorbed into R in (4.26]).
The same argument above also show the claim ) for the term I™ (¢,§), since ®__(§,n) =

€| 4 |n] + |€ — n| so that we can directly resort to integratlon by parts in the time variable as in
(4.27]). O

Proof of (4.3]). We need to show that for all ¢t &~ 2™, m > 0, and |¢| < Ny, we have

€14 0ol )75)) (Lo (t.€) ~ a(t.€) = 52m) 2 [ el e 2 a)|
R3

(4.29)
g 5227(1+'y)m
From the definition of I, ., we can write
m
I—‘r— (tvg) = I+—7§qo (t7£) + I+—,>q0 (tag)a qo ‘= _5
Lo v-s2 [ ittei—le—nl+mn € =1l & 2 (4.30)
Femn(t.€) = 202 [ e B ¢ a7t o) dn

We can immediately verify that Iy <4 (¢,€) is an acceptable remainder term by using (3.56)):

€100 (€)Y Ty — < g0 (£,€)| S 27 7’”/10/ 1€ = nlgi(t.€ — n)||Inlg2(t,n \(p| ,gn) dn

S 9- ™m/10 | (626 m) . 940 5 29— 21m/20,
(4.31)

where ¢ o are defined in (4.19).
Next, for (k1k2) € {(+-), (—+)}, let

Tanaolt,6) = 1(2m) 2/ [ GMEREMID L ) 1, (132
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Let us look at the case (k1k2) = (+—) and estimate

[ L— g0 (t:€) = Lm0 (,©)] < 1ol + 1] + [ 12| + | T3],

Iy := /RS tEFraE ™) £ (2 —) g (1) g0 (1)

I = /R3 [eit(lé\*léfnlﬂnl) _ eit(\€|+£-n|n\’1)} Wf(t,g - n)?(t,n)g0>q0(7]) dn (4.33)
[ e [IE= 1 5 e F

I = /RSet el [ o 1} (t, & —n)f(t,m)>q(n)dn

Iy = /]R3 U [F (1 € — ) — F(t,—0)] F(t, 0) @50 (1) dy.

Estimating in the same way as ([4.31)) we can prove Iy € R. Since for all |¢] < 277™/8 <« |n
one has

1] = 1€ =l + [nl = (€] + & - nlnl™H)| < €M

we can estimate, for ¢ ~ 2™ and [¢| < Ny,

0°n) < /
R3

P01
</ tEP I 1€ = nlgi(t, € — n)||Inlg2(t,n))| >|q°|§ )dn

SHEP - NEIgra@ll e -m S €2 -2 - (£27™) *m.

Here g; 2 are as in (4.19), and we have used (3.57) for the last inequality. Upon multiplying this
by |€]4/%, with |¢] < 277"/8, we obtain the bound

‘§|14/5 .om . 52225’m S; 622721m/20‘

e — nlgi (e, € - n)||Ga(t. 77)!%“(77)6117

eit(€l=1€=nl+Inl) _ git(|E|+Enlnl~T) 90
Ui

The second term in (4.33)) can be estimated as follows:

f_n ~ = — —
90l 5 [ 5 1]l €~ gt ) dn 5 620 - i

5 277m/8 . 2m/2 . EQQCsm S; 273m/8+C€m€2.

Multiplying this bound by |€|*/®, with |€| < 277"/8, we see that this is also an acceptable remain-
der.
To estimate I3 we decompose g = Z(j1,k1) Qj,k 91, and write

VI3= > QL §1=Qumng,
Jj1+k1>0

o —

1 =
QL g, /RS DG (1, €~ ) = g1 (8, =) | Pioga(t, )0 () dn,

having used that | — 1| & |n| on the support of the integral (noticing also that |k; — ko] < 5,
so we omit the summation in kg). Observe that, for |¢| ~ 2¥, with k < k; — 20, in view of the

estimate (3.6]), we have

lg1(t, € —n) — gi(t,—n)| S )/0 V fivgn (=1 4 CE) - £d¢| S e271/27 2k gCem ok, (4.34)
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Also, in view of the apriori bound ({3.4)), we have, for all t ~ 2™,
g1 (D)l > < e27 71~ FraCem, (4.35)
For large values of j; we use Holder, (4.35)) and (3.57) to obtain

Lol 5 [ (3800 =l + 1t =) | Pt )l ()
S 2 i higlem . g3 2 P gl e
S eomin . gk /2gm,
When j; > 2m this bound clearly suffices. For j; < 2m with j; > —(k; + 2k)/3 we obtain
24k/5‘QZIj1,k1‘ < £29220/15  9—k1/6od'm < 29=TTm/60 o(1/1248)m < ;29— (14+x)m

having used k < —7m/8 and k1 + 10 > go = —m/2. This gives an acceptable remainder.
In the remaining case when j; < —(k1 + 2k)/3, we use (4.34) and again (3.57)) to estimate

91,001 5 [ 1300 =) = g1t~ Proga(t. iy

< g2/ glem ok || B (1)) oo - 22

S 6222k/3—k1/6 . 25’m.

Then we have

24k/5’Qte1,k1’ S 82222k/15 . 2—k1/6 . 25/771

which is the same acceptable bound obtained above.
From the above inequalities, and (4.33)), together with the analogous estimates for (kik2) =
(—+), it follows that

’§|4/5Q0§0(£<t>7/8) ‘QZ (Iganz,>q0 (t’ f) - Tm(t)lmm,o(tv 5)) ’ S 522_(1+ﬂ/)ma
when t ~ 2™, v < 1/60 and |¢| < Nj. This implies the desired bound (4.3)) since

1 _ 4 - — -~
Tt + Tvalt.6) = 5(2m)>/2 [ M€ Ft P a,

which is (4.4) once we write the integral in polar coordinates £ = pf, n = r¢. Finally (4.5]) follows
from integrating in ¢, and noticing that in the support of o< 10(£(t)7/®), we have w<o(&(s)7/%) = 1
for all s < ¢. O

4.4. Proof of Lemma [4.3l

Proof of ([.9). Recall the definition of 170 from ([.8). Moreover, we will define J I N
replacing the inputs f:j in by Py, fs, for j = 1,2 (where x can be 0, 1 or nothing), and
multiplying by ¢x(£). Note that, for example, in the first term of IQ}Q;’“’%’” in we must
have k1 < —7m/8 + 5 and in the second term we have k; > —7m /8 — 5 and ko < —7m/8 + 5.

Moreover, in this setting we may modify the g¢; 2 defined in by attaching in Fourier
space cutoff factors like p<_10(&(t)7/®) or ¢~ _10(£(t)7/®), and note that they still satisfy the same
estimates f. By abusing notation, below we will still write them as g1 ».
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Case 1: k1 < ko +20. We first look at the terms ITf’k’kl’]Q in the case k1 = min(kq, ko). We
have

|I€los0 () TB)QE T2 (1, €
S 20s0(€(0)Don(E) - Tm(t) - 297 /R [Pt = )| [Praga(t, )] dy
< 2% | P g1 ()] oo | Py 92 (8) ] e

which, when multiplied by 215k+ and summed over k, k1, ko with |k—ko| < 30 and k1 < —7m /8430,
gives us

> 21554 || pso (§ (1) /E) IR (1, €))|

k1 <—T7m /8+30, |[k—ka| <30

"m\ 2 —
5 Z 22k‘1 (526 m) S 522 577’7,/4,
k1<—7Tm/8+20

having used (3.57]).

Case 2: k1 > ko + 20. In this case ko — 10 < —7m/8 < k — 15, and we can integrate by parts
in time using

€]+ 1€ = 1] — |nl| = |€].
We define
KRR (g, o] (t,€)

= [ et oS ARG ) Pt d

and write, noticing that ITf’k’kl’kQ [g1, 0] = QKITf’k’kl’kz (when omitting the input functions in

these bilinear operators we always understand that the input functions are f or f),

l 2 9 ( )

= () K2R 091, o] (8,€) + KOEF g1, rn] (1,€)]
To prove the desired bound observe that for all [¢| &~ 2™, and ke < k — 10,

0,k K1,k PN ~ ~ ~
|10 (6(t)/*) K2R 2 (g1, go] (1, €)] < min (|Ga ]| oo 12| 125 1611|2183 o< ) - 25125272, (4.37)

This estimate implies

> 255 |ops o (6(8)/B) €| KB (g1, ga) (£, €))|
k1€Z, ko <min{—7m/8+10,k—10}

+ —_— —_—
S Y 2 NP e [P 22
k‘16Z,k‘2§—7m/8
5 Z ok2 | €275kf25/m . 826/m 5 8227m/2
k1€7Z,ka<—Tm/8
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having used (3.56|) and (3.57)). This is consistent with our definition of remainder (2.13)). Moreover,
using again (3.57)) together with (3.67)) gives

+ k,k1,k
> 2% on s (O)E[KEE g1, Do) (8, €)
k1€7Z, ko<min{—7m/8+10,k—10}
—+ —_— —_—
< 3 25218 By g1 | o | Py D19 2272/

k1€Z, ka<—Tm/8+10

< Z 525'm2—5kfr . 29— (1-Ce)moks /2 < 532—4m/3’
ko<—7m /8410

which again suffices. For the last term K f’_lf_l’kr" (011, g2](t, &) we use the bound (3.68) on d.g1, and

(3.56) obtaining

+ koer k
Z 257 os _rn s (E)IE K2 0091, o) (£,€) |
k1 €2, ko <min{—7m/8-+10,k—10}

+ —_— _—
S > 22157 P, 0091 [ oo | Py g2l 0 222
k1€Z, ko<min{—7m/8+10,k—10}

S Z 522—m+5’m+46m2—5kfr . 626’m2k2 5 632—3m/2,
k1€Z, k2§77m/8+10

which concludes the proof of (4.9). O

Proof of (4.10). Let us begin by observing that we can argue as in the beginning of the proof of
(4.9) to obtain that the contributions from ky < ko + 20 are acceptable remainders, that is, for
Ko € {+7 _}7

P ()LD (4,€) — psa(€T®) DT ITR gy e R

ko<k1—20

so we can concentrate on the case ky < min(—7m/8 4+ 10, k; — 20). We let

(1>n2 (ga 77) = 5|£|77 - ’{2|77|7 (438)

recall the definition (4.4)), and write

o (42 + 2 BT el

i d
X /RS6t(bw(g’n)(pkz(n)(Hrizargn)m( |77’) ’ ‘) Zwk KZ[Pklgl’szgQ](t g)

q=1
(4.39)
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where g = Qbfma |£2‘ < Ni, and

Kalgr,ga] = [ [erte-tenrble g - comeaenie i, - matem) (4.40)
R3
. 1 N N N
KQ[QI)QQ] = |€| /]Rg elt®K2(£’n)m [gl (t7£ - 77) — g1 (ta 5)} 92(t7 77) d777 (441)
. : 1 —~ ~ (n)
= itPo(Em) =l _ Pra\N1)
K3[917g2] . |£|91(t,£) /R3 € ‘77|Q |:fn2 (t777) fn2(0777) + 2(27’()3/2 (Hli2 aurgn),{2 (ta |77|):| d777
(4.42)
~ i 1
Ky [gl, 92] = |§|gl (t, f) /Rs e t%(s’”)m@(& 77) dn. (4.43)
We now show
Z KQ[P’ﬁglkang](tag) €R, g=1,...,4 (444)

ko <min{—7m/8+10,k1—10}
For the first term we can use ||¢| — |€ — 1| — ka|n| — @o(&,1)| < |n)?/|€] and estimate
1€k () K1[Pry g1, Py g2) (£, )| S 2+ || Pay fll poc | Pos fl| oo - 27F2 (272782 4 22)

so that summing over ki, ks in the current frequency configuration, and using (3.56))-(3.57)), we
get a bound of

525’m . 625’m . 93k29m < 52273m/2'

To estimate (4.41)) we decompose g1 into Q;,x, g1 as before. Let g1 = Qj,x,91, (j1,k1) € J. For
all ko < k1 — 10 we can use (3.5) and (3.7) to estimate

1€k (€) Kalgr, Progo](t,€)] S 282877 - |1l e - || Py 2l o 272

5 2k2 . 27.].1/22715161‘»206171& . 25’m€'

We can then sum this as in (4.44)) when j; > 2m/3, to obtain a bound of £22-10m/99—15k" which
is an acceptable contribution. When instead j; < 2m/3 we can use again (3.5)), see also (4.34)),

and (3.56)) to estimate

|1€10k (§) K2[g1, Pry g2 (t,€)| S r(§)25 20 7F2 /R3 |91(t,€ —n) — g1(t, ) || Pryga(t,m)| dn
< 22k‘—k‘2 . 2k22j1/2—2k16208m X 625'm . 22k2
< 2,_:22(6’«#06)7712]'1/222162.

Summing this bound over j; < 2m/3 and k1, k2 in the current frequency configuration, we conclude

that (4.44)) holds for K.
For the third term we use (4.5)) to deduce, for ko < k1 — 10,

€10k (&) K3[Pry g1, Pryg2] (£,€)|

—_—
< 2k2k1\|Pk1g1HLoo . 92k2 sup sup
In|~2k2 [( <Ny

0 (Fttm) = F0.0) + 572250 (), 01D )

+
S; 626’m2715k1 ‘5226k2/5.

Summing over ky < min{—7m/8 + 10, k; — 10} gives a bound of 22~ (1+M)ma—15k" for ~ < 1/40.
Finally the estimate for (4.43) follows directly from the assumption on initial data.
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Putting together (4.44) and (4.39) we have obtained that for all k > —7m/8,

Tm(t) =

m,0,k,k1,k m,0,k,k1,k

LR02 (it m) — I 2(ta77)+mpklf(tvé)%(@\ﬂ

x| / I o, () Hogn (8, Inl) 1 / M o, () H - arg 8 In) | € R
R3 il R3 Ul

By writing £ = pf and n = r¢, summing over (ki, k2), and making the change of variables n — —n
in the second integral above, we arrive at the desired conclusion (4.10)). O

4.5. Proof of Lemma As seen from 1’ the term IZ{’,%Z involves only f! which is the

not-low frequency part as in (4.7). Define g1 and g3 in the same way as in (4.19). For simplicity

we will still use g1 2 to denote 9%72. Define I'Zi,ﬁlék,kl,kZ by

Lok = op(€) - I o, [Pry fay s Prafio)s

K1K2 K1K2 K1?

in the same way as the proof of (4.9) above, then we have
Pr(E) I, (1,€) = er(E) I, (t,€) = > el VA R ((¥3)

min(k1,k2)>—7m/8—10

/Rs e”('g"“l'f‘”"“”')Wﬂﬂgl (t, &€ — 1) Piyg2(t,m) dn
(4.45)

m.1k kb (&)
Iﬁlﬁz (t7§)[glag2] = 4(27T)3/2

For lighter notation, we will often denote the term I2:%*0*2(¢ €)[f, g] just by IIE[f, 9], and

sometimes omit the dependence on (k1k2) when this causes no confusion.

The main idea for the proof of this Lemma is to restrict the interactions to parallel ones
using integration by parts in the angular directions via Lemma [3.3] However, before being able to
extract the main contribution from the nonlinear terms, we need several reductions. We subdivide
as usual our inputs according to their frequency and spatial localization, that is g, = > Qj, k. 9r»
and analyze various cases.

Step 1: min(ji,j2) > (1 —40)m or max(j1,j2) > 3m. We first treat inputs with large spatial
localization, and show that these only contribute to the remainder terms. We look at three cases
depending on the size of ko. First, using the a priori weighted bound (3.4]) we see that

k|l rm.k ki—ko)| . s
2 ’Q IIZIHQ[Qanklf17Qj2ak2f1](§)‘ 5 2% 2”le,klgl||L2 Hsz,kngHLQ

g 2]{:1—]{:2 . E2—15kf2—j1—k2120£m . 62—15kr2—j2—k22208m
< 8227151@*‘ 27j17j2205m .9~ 2ks

This suffices to obtain an estimate compatible with a remainder of the type (2.13) provided that
ko > —m/2 + 2ym, noticing that v = 156, see ([2.2]).
In the case ko < —m/2 — 2ym, we estimate using the bounds (3.5) and (3.56)):

2| I L Qi e Qo F 1) S 229 7G| e QoG o - 22 F1E2)
< gkgki—kz | _9—15k{ 9—j1/2-2k19Cem  _g—k298'm 93 min(k1 k2)

S 622—15k+2(5/+08)m . 2]{: . 2—j1/2—k’1 . 2min(k1,k2).

This suffices since j; > (1 — 49)m and k — k1 + min(kq, k2) < —m/2 — 2ym + 10, and v = 150.
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We are then left with the case —2ym < kg +m/2 < 2ym, which we treat using (3.5|) similarly
to the case above, this time together with the additional improved bound (3.69):

k k 1 1 koki—ko ||y s 3min(k1,k
2 ‘I/:rim Qj17k2f 7Qj27k2f ](5)‘ S./ 272% 2HQJ'1J€191”L0<> HQJ'QJQQQHLOO -2 min(kyk2)
< okoki—k2 .52—15kf2—j1/2—2k1205m . £9M/29=m/16 93 min(k1,k2)

< 822—15k+2(36+05)m . 2—m/16 . 2]€—k1 . 22 min(khk'z)

where we used j; > (1 — 40)m in the last inequality. Since ko < —m/2 + 2ym this gives us a
bound of 2215k 2(30+Ce)mo(~1-1/16+47)m which is sufficient with y = 1/90, see (2.2).

Step 2: Restriction to parallel interactions. In view of the previous step, we may assume that
min(j1, j2) < (1 — 49)m and max(j1,j2) < 3m. Moreover, by definition of - we already have
min(k, k1, k2) > —Tm/8 — D, so that we are within the hypotheses of Lemma Using this
Lemma reduces matters to estimating the terms

4TI (1 €) =i () / it —rale—nl—ratnl) 1€ = 11|
R3 7| (4.46)

x x(|€ A m|27po—kmmin(krk2)y g1 (¢ & — )1 (¢, ) dn,

with
o= % B min(k:,2k:1, k2) +28m, (4.47)
where we denoted as usual f,. := Q; . f, r = 1,2, and
k,ki,ke > —Tm/8 — 10, min(jp,j2) < (1 —25)m (4.48)

We next treat the case when max(ji,j2) > (1 — 20)m. Using that 7 is in a solid cone of
approximate aperture 2P0 and height 2™(k1:52) e get that

. —_— —_—
’QZI/{1K2| 5 2k1—k222p0+3m1n(k1,k2) ' ||Qj1k:191||L°° ’ ||Qj2k2.g2||L°°-

We may assume kg < k — 10, other cases being similar and simpler; then we have
14 —(m—4m) o—ko2k1+k 3. - 3.
|0 Ty | S 2740kt Q) 01| e - (1Qoha g2l oo -

If j1 > (1 — 26)m, using first (3.5 and then (3.57), we have

2m+k’QeL€1H2| 5 22k‘1 24(5771 X 52—j1/2—2k1 2C€m . 2k2 ||Qj2k292”L°° 5 622(—1/2-}-55-1-6’)771

Y

which suffices; if jo > (1 — 20)m and ko > (—1/2 + 2v)m, again by (3.5 and (3.57)), we have
2m+k|QeL@152‘ < 522(46—1—05)771 . 2k22—j2/2—2k2 < 522—k2—m/2266m < 622—'ym7

which again suffices. Finally, if jo > (1 — 20)m and —7m/8 < ko < (—1/2 + 2y)m, then using
Lemma [3.7] we get
2m+k|Q€L{1n2| < 622Cem2k2 2—k2—m/16

which suffices, and completes the proof in the case max(j1,j2) > (1 —25)m

Now we will assume max(j, jg) (1 —20)m. In what follows we show that the expressions in
, under the restrictions —-, are well approximated by the sole contributions from
frequencies 7 which are parallel to € (whether in the same direction or the opposite depends on
the signs K1k2).
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Let us introduce the following nonlinear terms
it(1€]—le—nl—n)) 1€ —
Jow = [ ettt STl (Lm0 P < )P o
Ty = / e““"'g‘”””')‘ﬂ;’n’x([é(&n) — a2 ot ROTY F(E ¢ ) (2, ) d,
R3

Ty = /Rs ez’t(s|+|sn|n|)|5|—n|77’<p§5(‘§|/m|) (£(g,m)27Potka=hy) ))T(t & —n)f(t,n)dy,
(4.49)

where, for lighter notation, we have omitted the dependence on m, k, k1, ks, pg. Let us also define

o= [ eterent-m oy gnie (g marmstaioty)

x f(t.€ — ) 1 (1€ 1) dn,
g /RS Git(el—le=nl+In) |f\|j;||77x([4(5, g) — w2tk Y, 5+§%)f:( t,—¢l2) dn,
Jﬂ+ = /R3 it(|€]-+1€—nl—[nl) ’77" ’5" §5(‘£|/‘n|)X(l(g’n)2_p0+(k‘2—k‘l)+))
< FL(t6 — €l (el dn.
(4.50)

Next we show how the terms I, ., := 4(27)%/ 21 ,52{%(;@ in (4.46)), are well approximated by the

terms J,!lm by first approximating them by Ji, «,-

Step 2.1: Proof that Iy, o — Tm(t)Ji ks € R. Let us look at the case k1k2 = ++ and write
Lig = mn(t) J 4 = (1) (A + B)

4= Rgeitus|5n||n|>|fm|77|x([4(m) o+ k=k) Y FL( ¢ — ) FI(t ) diy,

Bam [ e m S o ol x(ae mz ot et e - e an
(4.51)
The expressions for QA and QB are similar, just with f! replaced by g; and go. Both of these

terms can be treated by integration by parts in 7 many times using Lemma since on the
support of both A and B we have

IVt = b =l = ] = | = + il 2

and max(j1,j2) < (1 — 28)m, min(k1, k2) > —(1 — 26)m, and moreover

)

|Vax (£(g,m2ror e FTY| < 2lelpommin(hika)) o — min(ky, ko) < (15/16 + 26)m

using Faa di Bruno’s formula and the observation that Z(£,n) is homogeneous of degree 0 and
smooth on S?.
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In the +— case we decompose depending on the size of n relative to &:

Lo = 1) Jo = 7(t)(C + D),

Ci= [ e e Hel—le=nl+1nh) |§|n’n| p<—s(nl/IEN X (26 m277) FL(t,§ — m) P (t,m) dn, (4.52)
D= 5 eit(£|—|£—nl+77|)|§|;|n e>—a(|nl/1€]) x (£(&, 77)2—1’0)}7(15,5 - n)ﬁ(t, n) dn.

On the support of C, since & and 7 are almost parallel and 2|n| < [£], we have

n

ol (4.53)

Vel -l =l + )] = [ =% -

| =z
We can then apply again Lemma [3.4] as done for the terms A and B above to deduce that C' is
an acceptable remainder.

On the support of D instead, the gradient of the phase is not lower bounded, but the phase
itself satisfies a good lower bound:

1€l = 1€ =l — Inl| 2 1€I.

We can then use this to integrate by parts in time. More precisely we write

Tm () - O'D = O (Tm(t)L(g1, g2]) — 70, (t)L[g1, g2) — T (t)L{g1, Org2] — T () L[Org1, ga],  (4.54)

where

L — it(1€|—~|e—nl+Inl) € =1 )
lov. 92 /R:se (e == n+D ¥ a(Inl/1€1)

% X(2 (po+k+min(kq,k2)) EN 77)91 (t £ — 77)92(t T]) dn.

We then have

“5’ . L[g1, 92](1&’ 5)} 2k:+k1 —ka—max(ky,k2) | 22po+3mln (K1, kQ)HPk:lngLOO HPk292HL°°

< 2k+k1—k:z—max(kl,kz)2—m+46m—m1n(k,k:1,k2) . 626 m—ky | 625 m—ka < 622—(2/3—25’)771
which settles the first two terms in (4.54)); the last two terms are treated similarly, using

“5’ L[ovg1, 9] (¢, 5)} < ok+ki—ka—max(k1,k2) | 92po+3min(ky, k:z)”atpklngLooHP]CQQZHLOO
< 2k+k1—k2—max(k1,k2)2—m—m1n(k,k1,k2) . 82—m—l—&’771—‘,—4(5m—l~c1 . 525 m—ky < 522—(3/2—25’)771

and similarly for L[g;,d;g2]. The estimate of the remaining term I_; — J_, is similar and we
omit the details.
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Step 2.2: Proof that J,x, — J,!lm € R. We look at the case with (k1k2) = (4++), the other cases
being similar. Write

(s — T )| S Ly + Lo+ Ly + L,

Ly = / 2l (e w020 G, € — ) — (1€ — %) | fa(t,m)] do,
|n|<100]¢] In|

Lo [ B (emr B G (ke = i) = (16— )] [
iml<100e| |7

Lom [ B ez s i — )] [ga(en) — sn( €8 [ an
|n]<100|¢] In|

Lyi= / ”5 77‘ ’5‘ ’77“‘ 2 po+(k2— kl)+))‘ﬁ(t,f—§%)| ‘@(t,g%”dn,
ml<toof¢] | 17
(4.55)

where v = sgn(§ - (£ —n)). We then proceed to show that for all £ =1,...,4, the terms L, € R,
see (2.13). For this we first prove that on the support of the integrals we have

S0 S g (vl —ul— (el — lnl)| $ 2otk (4.56)
e=ul Tl

In fact, if pg > —10 then first inequality in is obvious, and so is the second inequality, since

we must have v = 1 if |n| < |€|. Assume py < —10, then from |€ A n| < 2PotF+F1 we know that

either [Z(&,&—n)| < 2*p0 and v =1or [£(§,&—n)—7| <27P0 and v = —1, and in either case the

first inequality in (4.56)) follows. As for the second inequality, notice that |¢ |2 Inf? = (E+n)-(E—n)

has the same sign as v, so we have

a2 _ 2 .
vle = a1 = (6] - | 5 L SR Z I < pmbsbthgy — cos (¢, ] s mimink),

noticing also that ko < k + 10.
Estimate of L. Observe that on the support of L; one has, by (4.56)), that
191(8,€ =) = i (8, 1€ = nli5) | < (1961|027 (4.57)

Also, for every fixed &, the support of L; is contained in a solid cone of approximate aperture 2P°
and height 2¥2. Then we can estimate

|L1| S ok1—ks HQgAlHLoogpo NN G2l oo - 227032

g 2k1+k2/2 . HQ.é\lHLoo . HQAQHLOO . 273m/2266m_
We can use the standard apriori bounds (3.6)) and the improved bound (3.56)) to obtain
215k+2k’L1| < 2k/275k+ 2k2/2 . 62057}1 X 827k}225/m . 273m/2+65m
which suffices in view of ky > —7Tm/8 — D, see ([4.48)).

Estimate of Ly. By (4.56|) we have

(816 = nlt) = A1 (6.6 = €] S IVaLll e - 2702, (4.58)
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In the case j; < 5m/6 we estimate

215k+2k‘L2‘ S 215k+2k . 2k:1—k:2 . Hg\l J1 . 22po+k2 . ||g\2||L°0 . 22p0+3min(k1,k2)

. 2—2m+min(k1 ,kg) 286m

o2
PR Al (171 N 171
< 2k . 2j1/27k1€205m . E27’€2+6/m . 272m+min(k1,k2)+86m

which is easily seen to suffice.
If instead j; > 5m/6 we do not look at the difference of the profile g; at the two different
locations, and instead directly estimate using the apriori bound ([3.5)):

215k+2k‘L2’ 5 215k+2k . 2k1—k2 . ||g/\1||Loo . ||g\2||Loo . 22p0+3min(k1,k2)

S 627]'1/22(454’08)771 . 2](32 HQ\QHLOO . 2

which can be seen to be largely sufficient using (3.57)).

Estimate of Ls. Here we can use

|G2(t,m) = ot Inl5)| < (|22 027 (4.59)
and estimate similarly to the term L; above:

Qk\L3| < okt+ki—ks Hg\luLOO . ”QgA2|’L002po . 92po+3 min(k1,k2)

SR |G| - 28225 | oo - 2732250,

This is sufficient in view of the usual bounds (3.6 and (3.57)), and the lower bound (4.48) on k2,
by separately considering the cases k > k1 + 10 and k& < k1 + 10.

Estimate of Ly. Using (4.56|) we have that the symbol in the expression for L4 is bounded by
22P0 and therefore

215k+2k’L4| S 215k+2k . 22p0 . Hg/\lHLOO . ”g\anoo . 22po+3min(k1,k2)’

L
$ 225 |l oo - G e - 2720,

Then we can directly invoke (3.57) and see that this contribution is also controlled as desired.
This completes the estimate for the four terms in (4.55)), hence for I, — Jy 4

The estimates of I, —Ji, s, in the remaining cases (k112) = (+—), (—+) can be done similarly,
se we omit the details. Putting together the above steps we have obtained

Iiwy —J . €R. (4.60)

R1Kk2
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Step 3: Phase oscillations and asymptotics. Let us write the integrals in (4.50)) in spherical
coordinates, by denoting & = p#, 6 € S%:

A, = /0 N /S T g e pes (/) X(£(8, g)2 P TR

% 71(t, (p — 1)) 1 (¢, 76) dodr,
I [T e g e (246, 6) e

x fL(t, (p+ r)@)ﬁ(t, —rf) dgdr,

I [T el gl o) x (208,02 )

—

X F(t, (p— r)@)ﬁ(t, r@) degdr.
(4.61)
We then define, for p > 0 and r € R such that |p| ~ 2¥, |p — | ~ 2 and |r| ~ 2*2, that
1(6;t,7,p) == |(p—r)r] / eHPlof=rél=r) y (£(B, )27 Po+(h2=k)T)) dg (4.62)
S2

F(t, @) = fa(t, 20), fo = Qjurn 1, n=12 (4.63)

and rewrite

Iys= [T 1085 ) peslr /o) Fltp = ) P )
0
A= [ 10t Fep - B ar (4.64)
I = [ T@ ) pestofn) Fller — pF (e dr,
0

having changed (r,¢) — —(r,¢) to obtain the expression for JJHF,. By rotational symmetry we
know that I(6;¢,r, p) is independent of §. To arrive at our final asymptotic expression we now
calculate asymptotics for I in (4.62]).

Lemma 4.6. Let p ~ 2F, |r — p| ~ 2%, |r| ~ 2F2. Let t € [2771 2™FY, m > 1, and assume that
min(k, k1, ko) > —Tm/8 4+ 10. Let py be given as in (4.47). Then, for all § € S%, we have

' 2
1(0:t,7, p) — %ezt(p—r—lp—r\) : (Pp’”) + O(27 koM H5k3 p(-24120)m) (4.65)

Proof of Lemmal[].6. We assume r > 0 (the other case is similar), and denote |p — r| = 0. For
simplicity we will also assume k1, k2 < 0. Note that in the support of the integral we have

lv| == |£(0,¢)| < 2P° min <1, U);
,

moreover we write

2.2

2pr(1 — 2
|p0 — ro| = \/p2+7"2—2prcosuza\/1+M(Uzcosy):a—i—gr(l—cosu)—i—()(pag y4>,
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which implies that

. 2.2
itlo=r=1p0=r6)) _ gitlp—r—lp=r}) o~ 2 (1=cosv) | <tﬂ ’ ,,4>.
g

The integral of the error term is bounded by
2k’1+k2 . 2m+2k‘+2k‘2—3k‘1 26(p0—(k2—k1)+) 5 2—2m+126m2—k.

We then consider the main term, which is now

’,ra.’eit(p—r—\p—r\) /S2 e—zizi(l—cosI/)X(2—p0+(k2—k1)+y)) do.

If one replaces the cutoff function X(2_p0+(k2_k1)+y)) by x1(v), where x1 is a fixed smooth cutoff
function supported at |v| < 1/100 and equals 1 for |v| < 1/200, then by the same argument as in
Lemma we can show that the difference introduced will be O(27109) since in the support
of x — x1 there is no critical point of the phase 1 — cosv. Therefore, below we will replace the
cutoff function by y1. Writing in spherical coordinates we get

) s ) 1 )
/2 QCJ,—Q%(I—COSV)X1 (l/) do = 27‘(‘/ 6_2 ZP (1—cosv) sin(u)x1 (I/) dv = Qﬂ-/ 6_2%(1_”)(2()\) dA,
S 0 -1

where A\ = cosv, and x2 is supported in [A—1| < 1/10 and equals 1 for [A—1| < 1/200. Integrating
by parts in A and noticing that the boundary term at A = —1 vanishes, we obtain that

/1 e T ANy (A) dA = —2— + O(27100m)
1 2itpr ’

noticing also that (tpr)/c = 2™/, Summing up, we get that

_ )2
1(9, t,r, p) = %elt(fo—r—lp—rl) . (ppT) + 0(2—k2—2m+126m). 0

Step 4: Conclusion. We still need to control the error terms coming from Lemma which
is of form R where

2R| g 22 [ G0t (0~ PO - s (¢, (o — T)O)] dr-
|r|~2"2 | p—r|~2k1
Now we may assume ki > ko; if ko < —m/2 the above is bounded by
27(27126)m27k1 226/m

which suffices since k1 > —7m/8 — 10. If ky > —m/2 then we have the bound
27(27126)m . 2m/225’m . 25’m

which also suffices. Moreover, in the integral JJ”r 1, if 7 > p, then by Lemma up to acceptable
error terms, this integral is of form

/+oo 20D g — rlr oos(r/p) FL(E (p — r)O) FL(E,76) dr,
P

which decays like 27100m

since we can integrate by parts in r, using the fact that max(ji, j2) <
(1 —46)m and that there is no boundary term since f1 is supported on |p —r| > 277™/8 Thanks

to this we can restrict the r integral in Jl 4 tor € [0,p], and similarly restrict the integral in
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JJ”r_ to r € (—o0,0] and the integral in JLF to r € [p,+00). In conclusion, we see from from the

formulas (4.66[), with (4.62))-(4.63)), and using (4.65)), and the apriori bound (3.4)), that

T [P (p—r1)2
ahe =3 "= pste)o) Bt - () dr + R,
0

0 )2
gl =T / =" g0, p— Y FO(E —r) dr + R, (4.66)

00 )2
Iy =2 [TUZE o) Rl = R ) e+ R
p
where R denotes the usual acceptable remainder terms.
We then extend the profile FY in ([#.63) to negative arguments by letting
GO(t,2) = Fl(ta), @0, .
GO (t,x) == FI(t,—x), x <0, n=1,2. '

With this definition, recalling the formula (#.46) and the notation I, ., = 4(2m)%/2I mkkik2 Cand
putting together (4.60) and (4.66)), we see that

2
[lkvke _ pmkikike - pmkikake r) Glp—r)Gi(r)dreR.  (4.68)

1 /°° (p—
4tV ) o p

which implies the desired conclusion. O

4.6. Proof of Lemma Let Lo(t,7) = p<_10(r(t)7/3)Fy(t,r), we decompose

7 —7r)?
[ =R Rt = ) Fatr) e = N(a,p) + o (Al + Blt.) + C(ep),

i
427t p 427t

where

2
Attp) = [ (”p)w,p P)Galt,r) dr,

B(t,p) = /RPFO(t7p)L9(ta r)dr,

(p—1)°
C(t. p) :=/ TFe(t,p* r) — pFy(t,p) | Lo(t,r)dr.
R
Let |p| =~ 2%, |p — 7| =~ 2% and |r| ~ 2¥2; estimating A using Lemma we get

22 sup 1Q°A(t,p)| S / 22" Pp —rPlp [Tt dr S 2272,
al<Ny lp=rlS2-Tm /55l

so t~LA(t,p) € R. By similar estimates, and using (4.5), we can show that

e (B0 + graePao) [ wenr ) e r)ar) € R

Finally, for C(t, p) we can decompose

t o, p) =t! /R <(p—p7")2 — p) Fy(t,p)Lg(t,r)dr

)2
ot [ Y2 Eap - ) - Bt o) Lot
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The first term can be shown to be in R in the same way as above. For the second term, as
[r| < 277/8 we may assume |p —r| > 2=/ | for otherwise the desired bound follows from the
smallness of (p — r)?; then, decomposing f into Q;rf (and F accordingly) as in Section [2| and
using and the mean value Theorem, we get that

sup [Q¥(Fy(t, p— 1) — Fp(t, p))| < supmin(2~"/83/272k 5=3/272k) < 9=Tm/16-2k
|a|<Np J

so the contribution of this part to the X norm of t~1C(t, p) is bounded by

2—m22k . 2—7m/16—2k25'm . / min(|,’,,|—1’ 2m) d?" < 2—477’1,/3‘
rl2-Tm/8 -
This gives that C(¢, p) € R, which completes the proof. O

5. PROOF OF THEOREM 2.3} NONLINEAR ASYMPTOTICS

We start by proving an upper bound for the correction term By(t) defined in (2.16]). Recall
that the vector fields in € are equivalent to Oy.

Proposition 5.1. We have

sup Q% Hy(t, p)| < ep<—10(p®)*)p (1 + [t)7°,  sup |QYBy(t)] Se(1+[t) . (5.1)
|| <2Nq |a| <Ny

Proof. Assume |t| 2 1. Recall that
¢
Hy(t, p) := o<—10(p(t)"*) / / / 5P1=091| F(t,r¢) 12 dgdrds,
0 JRJS?

1 .
By(t) := 327T2Re[/R/S2 6”’“[1*9-¢>]H¢(t’7«) rdqbdr};
we then have, for |a| < 2Ny, that

O*Ho(t,p) = > w<10(p(t)7/®) / //82 isell=06100 F(t,r) - Q2 (L, r)r? dpdrds.

a1tas=«

Let |t| &~ 2™, by using , Lemma and integrating by parts in ¢, we see that the above
1ntegral can be restrlcted to the region | sin Z(0, )| < (14 sp)~ /220%™ using also the L>® bounds

, we estimate

t
90 Ho(t,p)| S po10(plt) )2 [ (1 sp) 7 s [ ()% minG 82 27 P
0 R
S ep<10(p(t)/®)p 1205

Similarly, we have

o 1 itr[1—0- [
Q Bg(t):WRe[/R/yet [1=0-9]0) H¢(t,r)rd¢dr],

so using the bounds for Hy(t,r) just proved, and Lemma and integrating by parts in ¢, we
can again restrict the integral to the region |sin Z(6, ¢)| < ( + tr)~1/22¢em and hence obtain

Q9 By(t)] < e2°°™ / (1+tr)"Ldr < et=14C%,

|T|§2—7m/8

which completes the proof. 0
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Now, using the same arguments as in Proposition [5.1}, we can show

sup [Q%hy(t, p)| S p~ (14 [¢]) 75 sup [QCy(t)| S (1+[t)~F9%, (5.2)
|| <Ny o] <Ny

see the definitions (2.15))-(2.16)). By Theorem we have

OFy(t, p) = —ipCo(t) Fy(t, p) + - — /(p_r)QF(t VBt ) dr
tr'g\l, P) = PLo oL, P Zt4(27‘r)1/2 . P o\t, p ANG)

(5.3)
1 7/8
—_— t - ho(t R(t, ).
Let Uy = Uy(s, q) be defined by
1 —ipDg(e® s
(FqUs)(s:p) := We PDs )Fe(e . p)
1 (5.4)
— —1 s s
Up(s,q) :== W(}—p Fp)(e,q + Dg(e%)),
where .
Do(t) = / Col) ', (5.5)
0
We then calculate, using , that
8saqU9(sv Q) = —UQ(Sa (:7) : 83U9(37 q) + 59(5a q)a (56)
where
1 < s 1
_ s ,—ipDg(e®) S\7/8Y . s s
Fobalon) = g’ ") mealolel ) e ) + RO 6)

Using the definition of X norm, the assumption about the error term R, and the bound (5.2]) on
hgy, we obtain that

E =& + 0s&s, sup Hvagﬁgj(s)”LQme < 2 58)
|a‘§157|/3|§N1 q q

for j € {1,2}.
Using (5.6)), we can obtain the asymptotic behavior of U as follows.

Proposition 5.2. There exists a function U= Ug(s,q), satisfying

sup VA0, 1 S e,
|a|§147‘B|SN1

and the equation
asaqu + Uy - agUg =0,
such that we have

sup HVo‘Qﬁaq(ﬁg(s, @) = Us(s,0)l L2n 100 (g <ere/10) S g2e™75/20, (5.9)
| <14,|B]<MN T

Proof. For simplicity, denote
IGlly, = sup  IVQ7G(s) |z

lo|<a,|B|< N1
We use the method of characteristics. Let Vy(s,q) = (9,Up)(s,¢q) and zg = zg(s,q) be defined
such that

asze(sv q) = U@(Sa 20(37 Q))? 29(07 q) =4q,
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and make the bootstrap assumption
|| log 0q20(s,q)||v1, < Ces. (5.10)

For simplicity we will omit the subscript § below. Then we calculate that

0s[V (s, 2(5,9))] = [(0s0 + U - 97)U](s, 2(s,9)) = (s, 2(s,4))
= &1(s,2(5,9)) + Os[Ea(s, 2(s,9))] — (0,2)(s,2(5,9)) - U(s, 2(s, ))-
Using and the bounds for U which follow from Lemma as well as the bootstrap assump-
tion (5.10f), we obtain that
V(s,2(s,9)) = Vao(q) + Oy, (%7 7°/9),

for some function Vo € Y14 with ||V |y, < Coe, where Cpy depends only on the initial data, and
Oy, (€2e77%/6) denotes any function that is O(e2e~7%/6) measured in the norm Y.
Next, we calculate

88(103; aqz(sa Q)) = V(Sv Z(S, Q)) = VOO(q) + Oy, (526_75/6)7
upon integrating in s (and choosing C' large enough depending on Cp), we can recover the boot-
strap assumption ([5.10). Moreover, we have
log 042(s,q) = $Voo / Oy, (2e77%/%) ds'.

Define -
Ex(q) = / Oy, (e2e77%/%) d,
0
where the Oy, () term is the same as above, we then obtain that
log 8,2(s, @) = 8V (@) + Eoc(q) + Oy, (% 77%/°).

We can now define the function U(s, q). Let ¢ = qo(s) be the unique point where z(s, go(s)) = 0,
we let
8(15(8, q) _ esVoo(q)+Eoo(q)

U(s, Z(s,q)) = 053(s, q).

By calculations similar to the ones above we can check that asaqﬁ +U - 83(7 = 0, as claimed in
the statement.

Finally, we let V := Oqﬁ and need to control 17(5, q) — V(s,q) as in (5.9). For |q| < e73/10 we
may replace ¢ by z(s, ¢) and reduce to considering V (s, z(s, q))—V (s, z(s, q)) for |g—qo(s)| < 7/°.
Moreover, since

) 5(&%(3)) =0 (511)

V(57 Z(S, Q)) = VOO(Q) + OY14(56_75/6)7 ‘7(57 E(Sa Q)) = VOO(Q)»

we just need to control V (s, z(s,q)) — V(s,2(s,q)), which is essentially bounded by \861‘7(5)] .
|2(s,q) — Z(s,q)|. Then, since z(s, qo(s)) = Z(s,q0(s)) = 0, lg = ao(s)| < €7*/%, and

10g2 — 042 = V@ . (94 ET) 1) = Oy, (2e779/0),
we end up obtaining (5.9)). O

To conclude the proof of Theorem [2.3] we need to transfer the asymptotics of U to the asymp-
totics of u (and Ou), which is done in the following:
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Proposition 5.3. Let z = rw € R3, such that w € S? and |r —t| < e75/10 where t = e5. Then
we have

sup
|| <10,|8|<N1

veOro (u(t,az) — ;—i@q]:_le(t,r - t)) ’ < et 1/30, (5.12)
Proof. Let |t| =~ 2™. We consider only the 0; component in 0, the others being similar. By
definition, we can write

185 emiirins fe) ag
o I€

:Re/ e~ itr 2 dp/ Hjepr(“'e)Fg(t,p) dé.
0 S2

Oju(t,z) = —Im
(5.13)

In the above integral, with fixed p, we can restrict to the region |sin Z(0,w)| < (pr)~1/22Cem,

by integrating by parts in € using (3.3)) and Lemma moreover when 6 is close to +w we can
replace Fy(t,p) by Fiu(t,p), where the control on the difference is given by
sup [Q*(Fy(t, p) — Few(t, p))| S (rp)”1 /2295 sup | Q*Fp(t, )| p=
|| <Ny la|<N7+1
and Lemma By a standard calculation on oscillatory integrals (see for example Lemma ,
we then obtain that
i

/SZ Gjepr(w'e)Fg(t, p)do = p <wje_i’”Fw(p) + wjeipTFw(p)> + (errory),

where the error term satisfies estimates that are at least 27™/10 better than the main term, namely
1
|(errory)| < €27™/10 min (1, ﬁ) -min(2™, |p| 1),
pr
together with the corresponding bounds with vector fields Q2. Therefore we obtain (using also the
assumption Fy(t, —p) = Fy(t, p))

Oju(t,x) = u;jlm/o pe? T EL (L, p) dp + u;jlm/o pe? T (¢, p) dp + (errorp) 5.1
5.1

= ;—i(aqf_le(t, 7 —t) 4+ 0y F 'F_y(t,—r — t)) + (errory),
where the error term satisfies
|(errory)| < e27m~m/10,
and is thus bounded by the right hand side of (5.12)) (note also that |r| &~ 2). The corresponding
bounds with several applications of V and €2 can be proved in the same way.

It remains to bound |9, F 1F_,(t,—r — t)|; for this we recall that Fy(t,p) = f(t,pf), and
decompose f into Qi f. Since | —r —t| =~ 2™ we may assume j > m — 10; using also the
Hausdorff-Young inequality and (3.56)) we may assume k > —m/10. Then, using the bound (3.5
and Hausdorff-Young again we deduce that

|0 F Py (t, —r — 1) S 2710,

which gives what we need. The corresponding bounds with vector fields easily follow as before. [

Proof of Theorem[2.3. We may assume |t| > 1. The asymptotic description (2.21)) for ||z| —t| <
|t|7/10 follows from combining Propositions and and the relationship (5.4))-(5.5) between
Fy and Uy. ]
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