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1 Introduction

In 1954 A.N. Kolmogorov showed evidence in [Kol54] of the following theorem:

Theorem 1.1 (Kolmogorov). Let H be an Hamiltonian in the form H(y,x) =
E+4+w-y+ Qy,x) + eP(y,z) where QQ and P are real-analytic functions over
B x T (here B" is an euclidean ball in R?) with 93Q(0,z) = 0 for |a| <1,
weRL EeR

Assume that

det(Qyy(0,-)) = det /Trd Qyy (0, 7) (Qde)d #0
then for almost all w € R? there exists €y such that for all |e| < ¢, there exists
®,. symplectic diffeomorphism which maps H into the Hamiltonian N, = E, +
w -y + QY 2'), with 05,Qc(0,2") = 0 for |a] < 1 and where we have denoted
(@,y) = (y', 7).
Moreover we have |E. — E|,
[fllor := sup | f| +sup|f]).

Qe — Qllo1 and || P — id || o1 are all O(e) (where

Our aim is to give a proof of this theorem following the original ideas gave by
Kolmogorov itself and focusing our attention on the estimate, in terms of some
constants depending on different parameters, of the size of ¢). We are interested
in particular in the dependence of ¢, from the diophantine constant v because
it is strictly related to the dimension of invariant tori in the phase space for the
perturbed Hamiltonian /. For an elegant and extremely authoritative proof per-
formed adopting a slightly different scheme refer to [Arn63]; our proof is in-
stead inspired by the original scheme suggested by Kolmogorov and is based on
[Chi05].



In order to explain how we are going to proceed, we want now to give an
equivalent, but in some way more “quantitative” version of Kolmogorov’s theo-
rem.

First we set some notations. Let 2 € C? we define the following sets:

Q, = U{xGCd:|x—xo|<r},
ToEN
T¢ = {z€C’: |Imaj/<o, Rex; €T Vj=1...d},
DiT = {wERd:|w-n|>ﬁ,‘v’nEZ};
) n’?’

we shall refer to an element w € DiT as a Diophantine-(y, 7) vector. Let f :
() — R be a real-analytic function on an open set {2 C R? with analytic complex
extension on
Q, = U{xGCd:|x—x0|<r}
zoES)
we put
£, = sup |1
Q,

if £ : T — R is real-analytic with complex extension on T¢ we define

|1y = sup |f];

T

if f : OxT¢ — R is real-analytic with complex extension on the cartesian product
Q, x T< we naturally put

|fl.e = sup |f].
Q. xTd
The same definitions can be obviously given if f is a function whose analytic
extension assumes values in C" or matc(n X n), where in this case | - | is some
appropriate norm in the space considered. The theorem we are going to prove is
the following:

Theorem 1.2. Let H(y,z) = E+w -y + Q(y,x) + €P(y, x) be a real-analytic
Hamiltonian over B¢ x T¢ with analytic extension for P and ) on the complex
domain B¢ x T, for somer > 0and 0 < 0 < 1l and w € Dﬁ‘f;. Suppose
Q0,z) = 0,Q(0,z) = 0 and

det(Qyy(0,-)) # 0.



Let 05, < 0,75 < 1 take

p = |P|

r,o

1
M = maX{;|Q|T70_,|Qy|r?U;T|ny|r,a’}

1 1
A= max{—, }
Oso 0 — 0o

T T
YV = max4{ —,
Too T —Too

S = L Qu(0, )]

and define

I = maX{Mfy*l, 1}
'y = max{M§S, 1}
I's = max{ZS, 1}
ry, = maX{M_l, S} ;

there exists a positive constant ¢(7,d) > 1 such that if
eCDu <1

where
C = e\, T,

and D = 220+D430 then there exists a symplectic diffeomorphism
®:(y,2) e B! xT¢ — (y,x) € BYxT¢
which puts the Hamiltonian H into Kolmogorov’s normal form
N'(y,2'5e) =F'(e) +w-y + Q' (y,2";e) = Ho ®;

we also have that |E'— E|, [|Q' — Q||on < eCDpuMr and || —id||n < eCDpr.



1.1 Some useful estimates

Define H(S2,), H(T%), H(2, x T%) as the spaces of real-analytic functions having
holomorphic extension on the prescribed domain and finite norm (respectively

£l 1f], or [ £1,., < o0).

Lemma 1.1 (Cauchy’s estimate). Let f € H(,), forallp € NP and V 0 < p <
r we have:

9, < 7 )M 7,

Proof The proof of this lemma can be easily obtained by Cauchy’s integral
formula for analytic functions g

Of course, lemma 1.1 can be easily generalized to f € H(T%) or H(£2, x T%).

Now define, for w € D¢ _, the operator

.7
d
Dw = E wzag;? .
1=1

Then, let f € H(T2), we are interested in solving the equation
Dou~=f. (1.1)

First recall that f(y,z) € C(BP(y) x RY R™), 27-periodic in the second set of
variables, is analytic if and only if there exist positive numbers M, and & such
that its Fourier’s coefficients f} ,, satisfy

kav””oo < My~ Ikl g=Inhé (1.2)

Now observe that if u(z) = >~ 4 G,e™* is the Fourier series for u, then
D,u= E n - wi,e™”
nezd

so it is easily verified that (D, u) = 0 (the Fourier coefficient corresponding to
n = 0 is zero). Therefore to solve equation (1.1) we must necessarily require
(f) = 0. Expanding f in its Fourier series we obtain f(z) = ZnEZd\ () freine
so that equation (1.1) becomes

Z mn - wip,e' Z fn

nezd\{0} nezd\{0}

and hence




Finally observe that

fn in-xT
u(z) = Z m - w ‘
nezZd\{0}

converges absolutely by means of (1.2) (here p = 0 so that £ does not appear) and
the diophantine estimate satisfied by w. We can now state

Lemma 1.2. Let f € H(T%) and w € DY _; if u is the only solution to D,u = f

with (u) = 0, then there exists ¢ = c(7,d) such that

¢ o

|U|U_5 < ; Sa+t

Proof We have the following inequalities:

f" in: |f| —In|o in-
|u|a—6 < me e Szme n0|61nx|0_6
n#0 s n#0
< S0 g eioios) _ e S sy
n#0 v v 10

where we have used equation (1.2) for f with p = 0 and £ = 6, while it effectively
results by calculus that we can choose M = |f| . We want now to estimate
> o€ ™?In|" . Approximating the sum with an integral we have

/
Ze’|”|5|n|7 = c’/ e 10|z |” da:zc—/ e 6| da =
R4 57— R4

n#0
d c(r,d)
— —lyl|q,™ — ’
T g+ /Rde yl" dy = ST+d

and the lemma is proved g
Combining this two preceding lemmata and simultaneously generalizing the
result in Lemma 1.2 to further inversions of the operator D, we get

Lemma 1.3. Let f € H(T<) with (f) = 0; for every choice of « € N andp € N
we have:
/1o

¢ —-p _—
|a DW f|o‘—5 S C(T’ d’p’ a),.ypép’r-‘rd-f-\och :



1.2 Diffeomorphisms on T

Consider a € H(T?) and the following analytic function on T:
¢:x €T — ¢(x) =z + a(r) € T?;

we want to give sufficient conditions on a in order to obtain that ¢ is an analytic
diffeomorphism on T¢. Our aim is to provide an inverse analytic function for ¢,
that is to say, QNS(a:’) = 2’ + a(z’) such that ¢ o $ = id = ¢ o ¢. Let’s see what
does this mean in terms of a and a:

poga) =1 = o) +a(d() =2 <=
— 2 +al@)+a(dx) =2 = a(z) = —alz' +a(z)).
We now state the following lemma:
Lemma 1.4. Let a € H(T{) and take &' < & such that lal, <&§—& and |a,|. < 1;
then there exists a unique a € H(T¢,) with |al., < & — & such that:
—a(z' +a) = a.
Proof We initially define the following space
X is a closed non-empty subset of the Banach space H(’]I‘g,) and therefore is a
Banach space itself. Let ® : b(z') € X — —a(2’ + b(z')) € H(TE) we state that
® is a contraction in X’; in fact for every choice of b and ¢ € X we have:
I. | Im 2’ 4+ b(2)| < | Im 2’| + [b(2)] < & + |b(2")| < € and this implies, by
the hypotheses done on a, that [®(b)|., = |a(z’ + b(2'))|, <& — ¢
2. [®(b) = @(c)]g = [a(z" + b(z")) — a2’ + c(2"))|¢ < aale[b -l <
< [b — | by Lagrange’s theorem applied on a .
Thesis follows from Banach fixed point Theorem o

Observe that for any a € H(Tg), with £ > &, by Lemma 1.1 we can estimate
|az | as follows:

.| da;
|a.], = sup|ax|:supsupz .
T¢ ¢ i d;

|a|g |a|g
— = d—= .
ssw) g =l g

(2

Now combining this last estimate and Lemma 1.4 taking £ = £, we have

Proposition 1.1. Let a € H(T{) and let & < & such that |ale < % then there
exists a unique a € H(TE) with |al, < |a|; and —a(2’ + a) = a; therefore

d(x) = z + a(x) is an analytic diffeomorphism on T,



2 Kolmogorov’s idea and first step of the proof

2.1 Reduction of the perturbation to order ¢

Let HO = NO + ¢PO = B+ w.y+ QO(y,z) + eP© be the real-analytic
Hamiltonian in Kolmogorov’s theorem defined on the phase space U := B¢ x T¢,
endowed with the standard symplectic form

d
dy A dx := Zdyi A dx;

=1

(that is to say that Hamilton’s equations are *+ = H,,y = —H,). Recall that
w e D! _and P,Q € H(B{ x T%) with Q quadratic in y. The first step (and main
idea) of the proof, is to find a symplectic transformation ® which maps H® into

an Hamiltonian H(!) having the same form but whose perturbative part is order of

€2,

Proposition 2.1. Consider H) as previously defined and suppose to have

det(Qyy(0,-)) # 0. 2.1)

Then there exists a symplectic transformation @ : (', x') — (y, x) generated by
the second species function F(y',z) =y - + eg(y’, x) where

gy, x) =b-x+s(x) +a(z) -y
for someb € R?, s : T? — Rand a : T¢ — R? both analytic functions, such that
HOcd=HY =Y 4.y + Q(l)(y’, ') + eQP(l)(y’, ')
with QW quadratic in y' and QW) , P real-analytic functions.
Proof By the definition of F'(y/, x) we have the implicit definition of ® given

by:

¥ = 2—5 =z + ea(x)

y =% =y +elbts(a)+(a@) y)
Assume that p(x) = 2/ = x + ea(z) is a diffeomorphism on T¢ with inverse
P(z') = x = 2/ + ea(a’). Following the Hamilton-Jacobi proceeding we aim to
express H)(y, r) in the new variables (3, '); notice that we will often leave



instead of @(z’) for simplicity, and we will not sometime use the apex 0 since
there’s no ambiguity for the moment. By Taylor’s formula we have:

H(y,x) = HY +egex)=H 2)+eH,(y,2) g, + P (Y, 2) =
= H(Y.2)+ €[N, 2) +ePy(y,2)] - g + EP(Y, 7) =
= H(,z)+eN,(¥,x) g + ezﬁg(y’, T) =

= N@.2) +e[P(y,2) + Ny(y', @) - ga] + EPoly, 7) (2.2)

where we have put Py (i, x) fo (1—t)Hy, (v +tegs, ©){(gs, g-) dt and obviously

Py(y,x) = P,(y/,x) - g« + Pi(y/, x). We now focus our attention on H(y/, ) +
eN,(y', z) - g, in order to put it into the desired Kolmogorov’s normal form with
at least a perturbative part of order €2. Recalling that for an analytic function f we
have D, f = w - f, we obtain:

Ny x) go = (w+ Qy) - (b+ 52+ (az)" - ¢/) =
= w-b+w-sw+w-(ax)T-y'+Qy~(b+sz)+Qy-(az)T~y':

= W‘b+DwS+Dwa'y/+Qy'(b+SI)+Q1(y/7$)'
with ~
Q1(y/,l’) Qy - (x) Y

Now by Taylor’s formula applied on @), (v, z), and recalling that ), (0, z) = 0,
we have

Ny(y,x) - gr =w-b+Dys+Dya-y + Quy(0,2) -y - (b+ sz) + Qa(y', )

where we have naturally put

Qa(y,x) = (Y, x) + </01(1 — 1) Quyy (ty', ) dt) W,y b+ sz) .



Combining the expression found for N, (y, =) - g, and equation (2.2), reorganizing
the terms and applying Taylor’s formula on P(y/, ), we obtain:

H(y,z) = N, z) +¢P(y,2) +w-b+Dys+Dya-y +
+Quy(0,2) -y - (b+ 5,) + Qo(y, )] + € Py, 7) =
=F+ew-b)+w -y +QU,z)+¢[P(0,z2)+ P,(0,2) -/ +
+Q3(¢, ) + Dys + Doy + Qyy(0,2) - ¢/ - (b + 5,)]

+E Py (Y, ) (2.3)
having defined

Qs(y,x) = Qa(y, ) + (/01(1 —t)Pyy(ty, 7) dt) W,y

Starting from the equation (2.3) we want now to determine b , s and a. Observe
that since Q3(0, ) = 0 we have:

[ ]y—o = P(0,2) + Dys = (P(0,z) — (P(0,z)) + Dys) + (P(0,z))

so taking
s(z) = D, (P(0,2) — (P(0,2))) (24)

itresults [...],,_o = (P(0,)).
For what concerns the linear part in ¢y’ we want to maintain the same frequency
w of H® . Since the term w - ¢/’ is already given by N(3/, ) we have to require

P,(0,2) + Dya+ Qyy(0,2) - (b+s,) =0. (2.5)
By averaging we have
(Py(0,-)) + (Qyy(0,-) - b) + (Qyy(0,-) - 52(-)) = 0
and by hypotheses (@, (0, -)) is invertible so that we can take
b= —(Quy(0,)) " {B(0,) + Quy(0,) - 52(-)) (2.6)

in order to have the average of the left member in (2.5) to be 0. We are now able
to solve equation (2.5) taking

a=-D, " [P,(0,7) + Qyy(0,7) - (b+ s5,)] 2.7)

9



In conclusion by (2.3) , (2.4) , (2.6) and (2.7) we have:

H(y,x) = Ho®(y,2') = HV(y,3(a")) = NO(y, 3(2))

+ePV(yY, ¢(2)) = EY +w-y + QV(Y,¢(2)) + €PV(y, p(2")).
where:

EY = E+ew-b+(P0,)); (2.8)

QW(Y. 4(z') = Qy, ¢(a")) + €Qs(y', 4(2")) ; (2.9)

+ /0(1—t)Hyy(z/+tegz,@(x’))<gx(<ﬁ(fc’)),gz(sﬁ(ﬂf’mdt- (2.10)

More expressly we recall that Q3 = Q1 + Q2 + Q5 with
Ay, o) = Qs ¢(a) = Quly', &(2)) - (az)" (¢(a")) - ¢/

J

Qs(y, p(x") = (/0 (1—75)Pyy(ty'795(96’))dt) (') (2.11)

Q /
Quly/. (') = ( <1—t>c2yyy<ty',¢<x'>>dt) o b+ sa(3()))

1
1

To end the proof we observe that Q(V)(y/, 3(z')) is quadratic in ¢’ so that N is
effectively in the desired Kolmogorov’s normal form o

Lemma 2.1. The non-degeneracy condition holds for NV (3, (z')) as found in
proposition 2.1, that is:

det(Q)(0,-)) # 0

Proof QU (v, p(2)) = Qv ¢(z)) + €Qs(y/, p(x")) so by derivation and
averaging we have

(@4 (') = (Quy (Y, ) + €l0jQa(y', ) = (Quy (Y, ) + o)

Thesis follows for small enough €, since det(Q,, (v, -)) # 0 by hypotheses. We
postpone for the moment the discussion with full details on the estimate of how
small must ¢ be in order to have (Q™ (y/, 3(z"))) invertible o

10



2.2 Control on the domain of ®

Recall that H® = N + ¢PO = E+w -y + QU + eP© withw € DI, for
some fixed vy € R, and P,Q € H(B? x T%). Let oo < 0 < land 0 <7y, < 7 we
define

1
M = max{;lQL",a’ ‘Qy‘r,a’ r’ny’r,o}

S = (@097

1 1
A= max{—, }
O 0 — O

r r
v = max{ —,
Too T —Too

Z = |w

po=|P|

r,0

We want now to give estimates on |g| in order to apply proposition 1.1 to g(y/, z) =
b-x+ s(x)+ a(x) - y obtaining that the application
. aF /

gp.x»—>y—x+ea( T)=ux
is effectively a diffeomorphism on T¢ and by consequence so is ¢ : 2’ — 2/ +
ea(z') = x, i.e. the first component of ®. Recall that we have b € R? and by
definition of s and a in equations (2.4) , (2.6) , (2.7) and lemma 1.2 there exists
0 < § < o such that s € H(T¢ ;) and a € H(T? ;) ; here § is the loss of
analycity due to the inversion of the operator D,,,.

Remark 2.1. Let p < r and 6 < o be respectively the losses of analycity in y
and x; combining lemmata 1.1 and 1.2, for any f € H(T%) or H(B%¢ x T%) and
| € N this two estimates hold:

l -1 c |f’a
%D @), < 2 e (2.12)
l |f|7’,a

v fy. @), 5 < i (2.13)

where we take the same constant ¢ > 1 for both inequalities and for any f scalar
or vectorial function, matrix or tensor and where ¢ = d + T.

11



Lemma 2.2. There exists a constant c; > 1 depending on ¢ = 7+ d, and B; > 1
depending on M, S, ~, pand r such that for all )0 < § < 0 — 04

max {|s|a_g, 5ol 5. 0 lal, 57 sl ,_s 7 |gx|w_5} < e1B16~2y

Proof Using inequalities (2.12) and (2.13) and recalling the definitions of s,
b and a in (2.4), (2.6) and (2.7), we estimate separately each quantity. First of all
we have

2151\ P(0, 2) — (P(0,2))], <

’S|07g7 |$I|o-—g S

A

< S9rtl5ma| P(0,2)|, < <67 Py, x)|,, < @y
Y Y ’

with ¢ = ¢2971
Furthermore we may estimate

18] = {Quy (0. )) " (Py(0,) + Qyy (0, ) - 5.(-))] <

< Sr Sr;ldp (|1P,(0,z)| + |Qyy(0,2) - s5(x)]) <

SST(sup By, 2)] + sup |ny(3/>$)HSx(fc)|g_g> <
BidxTd BdxTd
mo, M o =Gl ~15—q. 1
<Srlc—=+4+c—cd uy < ccSpur (1+Mr 0 Iy )§
r r

< ceSpd™ 1 (1+ My~ < dSpus—A,
where we define the first auxiliary constant
A; := max {M’yfl, 1}

and ¢ := 2cé = 22912,

12



Using (2.12) and (2.13) once again, from the definition of a in (2.7) we get

where

c 24
’a‘af& ’a1|076 S ;E‘Py(o,l') =+ ny(o,l’) : (b + SI)’a—g S
. _
< S50 | sup [P0l + sup @yl )] (16l + |sz<x>|a_a)] <
Y | BYxTY BixTe 2
C I M
< S5k 4= (!b\ + Ismlgsﬂ <
ol T T 2

< Eé’q [epr™" + cMr=' (Spo—%A; + 6 9uy )] <

)

< ced 62yt [1 - (MSA1 + Mv_l)} <
<cedd 2y T 1T+ AL (MS + 1)) <

S 6572(1”)/71”7"71141142

Ay == max{MS, 1}

and we take ¢ := 2céc’ = ¢3229+4, By using the preceding estimates we have

where

192(Y' s 0)], g5 = [0+ 52(2) + az(@)" -4/, .5 <

< bl 4 [Salys + |asl,_sly'| <

< ASpdT A k66 Iyt F ed 2y T A Agr <
<67 [SpAy + py T+ py T AL Ay <

< 260 %r Ay A, [S,ur_l + m“lv_l] < 07 2r Ay Ay Ag

Ag = pr~ ' max {S, 'y_l} ;

observe that Aj is linear in x4 and so is the final estimate that proves the lemma
with c1 — 4¢ = C322q+6 and Bl = A1A2A3 [m]
With these estimates we can now obtain the following

13



Proposition 2.2. There exists co > c; such that if
ecoBip 16 %r < 1 (2.14)
then
1. o(x) = x + ea(x), with a as in (2.7), is an analytic diffeomorphism on T
2. If ¢(2') =2’ + ea(2'; €) is its inverse, we have

al,_s5 < lal,_5 < c1d"*By.

[

3. ()27 . Ti_%a — Tg._é‘y

d
TU—Q(S'

@:T§_25|—>Ti_%5andcﬁogp: id =popon

4. Letp < rthen Yy € B,_,,x € T? ,s we have y + teg.(y,z) €
B, s, Vt€10,1]; inparticular y = y' + €g.(y',x) € B, s

Proof The first three statements follow directly from proposition 1.1 with
§=0—0, =0 — 320 and taking ¢ = 2¢;(d + 1) so that condition |a|,_; <

% = 5 d‘il) holds by the estimate in lemma 2.2. Again by lemma 2.2 and by
hypotheses we obtain €|g,(y', )|, _,, o5 < § so that the last statement is also
proved o

With this proposition we are now able to control domain and codomain of ®;
for instance we may use the following kind of estimates:

|PY o @ < |P|

r—p,0—28 r—5£,0-9

|Qz 0] q>|7’—p,0—25 S |Qi|7‘—§,a—5 for 7 = 1,2,3

2.3 Estimates on £ — E© QM) — Q) and PV

To complete the first step of the proof of Kolmogorov’s theorem we want now to
estimate the difference between the energies and the quadratic parts of N© and
N and the size of the new perturbation P,

Lemma 2.3. There exists c3 > ¢y constant depending on ¢ = 7+ d, and By > By
depending on M, S, u, Z,~ and r such that:

max{|E(1) - E(0)| ,e‘P(l)(y’, p(a")]

r—p,0—29"’
(p/2)1[05 QU 3@) = QO ()], s os} <
<ecsp 6 M By

14



forany |af, <2.

Proof Identity (2.8) and lemma 2.2 yield:

|E(1) _ E(O) — 6’&) - b+ <P(O, )>| < E(‘W‘ ’b‘ + |P|r.o) <

< e(ZdS07 WA + ) < eddTIpA (ZS +1) < edd AL Ay

with
Ay :=max{Z5, 1}

Moreover, by identity (2.9) we have Q) — Q© = eQ®) = ¢(Q; + Q2 + Q3) ;
thus, we may estimate separately the three terms using definitions in (2.11) and
the estimates prove in lemma 2.2; it result

‘Ql(y/7@(x/>)’r7%p70725 < ’Ql(yc'r))’rf%p,o‘f& <

< |Qy<y/7x>|r—p7a—(5’az<x)’0—5|y/| < cerp 0Ty T UM Ay Agr

and

‘Q2(y/7(ﬁ(aj/>>”r—%p,0—25 < |Q2<y/7x)’7'—%p,cr—5 <
8 -3,.3
< et Mp () + 15, ) <

<cMp3r? (cls,ué_qu + clé_qlw_l) <

<cep 20 M3 M (S,uAl + pfy_l) < cerp 36 IM A Agr?

analogously, for what concerns ()3 we have:

’Q3(y,7¢(x/))|7“7%p,0725 S |Q3(y/’x)|r7‘%p,0'75 S

<Py 2)],_, ly'1* < cup™r®.
Now recall that A3 = pr~' max {S,77'} and then

MA; = pur™! maX{MS, Mfyfl} < prtmax {Ay, A1} < purmtA Ay

15



besides observe that obviously pr~! < 1 and therefore we have:

(p/2)"]05 (QW (Y, @) = QO ¢(@)))|, 5,505 <

<e <|Q1|r_gp,a_25 +1Q2l, 3,005 + |Q3’r_gp,a_2a> <

<e (cclp_lé_Qq'y_luMAlAgr + cclp_35_2qMA1A37“4 + c,up_27“2) <
< ecc1p 29 %y? (’y’luMAlAg + MAAsr + u) <

< ecerptor? (MA12A2 + puA 2 Ay + M) <

< ecclp_3§_2qr3A12A22,u
It remains now to be proved the estimate for P; by identity (2.10) we have

|P(1)(y'795(x/))|r p,o—28 = |P ( )|T—p,a—5 <

< ‘Py(g)(ygﬂfl)}r,p’a,ﬂgx( o5 T }H(O) )‘ 7%7075|gz(93)|(2,_5 <
< cptuerd B + (\Qé? W0, oy s

+ [P )y, ) L@ <

< ceip 0 By + (dep > Mr + edep ) (015_2‘1317“)2

< ceip 0T B + decip 20T B A M <1 + EMLT> <

< 4cc§p’25’4qr231 [,u + MrB; < + e—)} <
< 4cc§p‘25_4qr2Blu [1 + A2 A2 (1 + 6%)} <

< 12cc2p 2012 A2 A2 B

if we impose on ¢ the condition



(note that this condition will be automatically satisfied by stronger conditions we
will impose later). The lemma is so proved taking

cg = 12cc] = 3c72%tH (2.15)

and
By = ABA2 A3 A, o (2.16)

3 Iteration and conclusion

3.1 Inductive step and convergence of the scheme

In lemma 2.1 we have proved that Kolmogorov’s non-degeneracy condition holds
for Q) = Q) o ® and hence we can iterate proposition 2.1 obtaining via con-
secutive symplectic transformations the following scheme:

H = HO— NO L pO 2% g0 _ yO 4 2pm) 2 o) _
— N@ L Ap@ . g - NG L 2 pl) 3.1)
(notice that here ®© = & in proposition 2.1); to prove theorem 1.2 we must
prop P

therefore provide in some way the convergence of the scheme.

With proposition 2.1 we have reduced the analycity domain from B¢ x T¢ to
B?, » X T< .5 , where this loss is due to the inversion of the operator D,, and to
the necessity of estimating the derivatives of some analytic functions (see lemmata
1.1and 1.2) . Let r; and 4, be the losses of analycity at each step and ij X ']I‘f,l]_ the
analycity domain after j iterations; in order to be able to iterate infinitely many
times the proceeding shown, obtaining a non-empty analycity domain, we must
then require that the sequences oy = 0, 01 = 09 — 209, 02 = 01 — 201 ...0j41 =
0j —2(5] = 0y —221115]4 andro =7r,Tr =" —200, o =171 —2/)1...7’j+1 =
r; —2p; =19 —2Y 7_, pr admit a strictly positive limit. For any oo, < 0¢ and
Too < To WE put

1 09— 0 1 70— 70
TR Pi= % 2
in order to have a final analycity domain B¢ x T¢ .
Recall that in lemmata 2.2 and 2.3 we defined

(3.2)

A = max{]\/[’y_l, 1}

Ay = max{MS§S, 1}

Az = pmax {S, ’y’l} ‘= pA,
Ay = max{Z8S, 1}

17



and took B; = A; A5 A5 and By = A2 A A3 Ay. We now define inductively the
following quantities

-1

1 4 1 4 ;
Mj = ;‘Q(J)lrj,aj J Sj = 7’_ <Q3(ij)(0’ ) > T ’P(])‘Tjﬂj
J J

and the following real numbers
Aj ::max{i,;} vj ::max{L, - }
0o ) 0j—0co Too ) Tj—Too

Aﬁ” = max {M;y1, 1} Agj) = max {M;5;, 1}

~

A = A = pyry  max {S;, 7'} AY = max {25, 1}

. . . . . N3 N3 . .
B%J) — Agj)Agy)Aéj) ng) — Agy) Agj) Aéj)Aflj)

with the notation My = M , Sy = S, g = A, vy = v, gy = pu. We are now
ready to state

Lemma 3.1. There exist positive constants ¢, > c3 and q4, depending on q =
T + d, such that if
eCDy < 1 (3.3)

with C' = cq™ Nt AtAJAymax{M ', S}, D = 2%, then it is possible to
define iteratively (by the scheme described) Hamiltonians HY) = NU) 4 ¢¥ pl)
real-analytic on ij X ’]I‘fflj and symplectic transformations ®Y) such that HU+D =
HO o dU),

Moreover, referring to the quantities previously defined, for every j € N we
have

Mr < Mjr; <2Mr (3.4)
S;r; < 28r (3.5)
11y < % (3.6)
and by mere consequence

AV < 24

A < 442

AV < 242
EQjAgj) < Azt

AY < 24w
YT o

i S

—
o0



and
E2j Bg]) S Bl
By < B,.

Furthermore, it results that the symplectic transformation ®V) : Bffj L X Tng

Bffj X ng generated by F;(y',x) = ' -z + ¥ g;(y,x) (we denote Fy = F'),
where g;(y',x) = bj-x+s;(x) +a;(z) -y, is a symplectic diffeomorphism since

e, BY p; 710,70y < 1 (3.7)
forall 3 € N.

Proof We want now to prove by induction inequalities (3.4) to (3.7) . For
j = 0 condition (3.6) is trivial and (3.4) and (3.5) are obviously satisfied. For
what concerns (3.7) observe that

5o — (M) < gmym
2

_ To — Teo o v\™
- ()
Po ( 5 ) = .

and therefore we have

60231,06150_2‘17’ < ecg A1 Ay Ag2ur 1224 )20y —

= eucg22q“M’1A%A§1/)\2qr’l <eCDp<1

by hypotheses, taking ¢, > ¢y, C' > ¢,MTA2A20\%r~1 and q4 > 2¢ + 1 so
that (3.7) holds for 7 = 0. During the proof we will come across several lower
bounds on ¢4, g4 and C' and in the end we will take the worst in order to have all
conditions required satisfied simultaneously.
Assume now by induction that conditions from (3.4) to (3.7) hold for ¢ =
0...7 — 1. Recall that by consequence of lemma 2.3 we have for all [p| < 1
‘P(j+1)| < C3pj_26]‘_4qr_]2'Agj)3Agj)3A3(])Az(,Lj)/VL? ‘=l

75,05

|BG) — BO| < P

27
< € [t

(r— rj)lp\l |85 (Q(j+1) _ Q(j))’

5,04

19



where we have denoted 1o = 1 and
= 03p_25_4qr2A?A§A3A4,u2 )
We now verify (3.6): forall 1 < < j it results

;. 3 71— 3 ~ (i— 71—
Hi = 039;2151'_741(17}2—1/151 g Ag g Ai’»( I)Az(x 1),%2—1 <

—2 —4q
To = Teo o VYoo n
< 03< 5 ) (%) r2M R AS A As Agp? | <

< 6324q+132(4q+2)(i—1)V14)\4qA411A%A4M—1r—1M22_1 < COD(i)—llu?_l

where this last inequality is obtained taking Cy > cyv A\ AT AJA,M~1r~1 with
cy > 324713 and Dy > 249%2 (that is ¢4 > 4q + 2). Now let ji; = Co Dt p; we
have

fli < (CODéﬂ) (CODéilﬂ?—l) = C3D3 iy = i1 ;

therefore iterating we obtain

for all 7 < j thatis, forall C' > Cjy and D > D it results (taking i = 7)

; j j (eCDu)Qj
CD?"; < (CDp)? = € i < D

thus, condition (3.6) holds for every j € N.
Using (3.6) and hypothesis (3.3) we can obtain

J
() — (0) (@) _ -1
QY. = |RV+> QV-Q <
=1

j
< QU L, Y IQW =@V, <
=1
i i 9i—1
i CD
S TR ST TRS gl
=1 =1
J 1 1+oo 1
< rM ——<rM+= Di=rM+——m— <
=7 +;CDZ_T +c; Mm-S
< rM+4+rM<2rM .

20



since C~1 < Cyt < Mr, so that (3.4) is verified.
Let us verify (3.5). Let B; := ( l(fy)((), )y fori =0...5— 1, we want to prove
|B; | < 28. Recall that if A € mat(d x d) then (I + A)~' = > (—=1)*A* and

(I+ A7 < Now

1= IAI

J
B;=By+> Bi— B =By+ B =B, <I+Bng)

i=1

where obviously we took B = S (B; — B;_). By hypothesis B is invertible,
such that to invert B; we have to invert I + B;'B, that is we want to prove
|B;'B| < 1:

J
[By'Bl < [By'|D 1B — Bial| <

i=1

j
< SRV - @0, <
j
< (’L (Z—l) <
j
(eC' Dop)*
< < S ST o
- r—n ;eu ' Z cDytt
cSv = 1 cSv cSv 1
— = < < -
rC & Dit' rCDy(Dy—1) = rC ~ 2
if we assume C' > 2¢Svr—!. The new condition on Cj is now
Co > ca™NMATAS Ay max{M 1 S} .
Also, we have just proved that B; is invertible and
B4 =85 = 1Bs | (T+ BO‘IB>1‘ < Byl <25
1—|By' Bl

so that S;r; < 2Sr for every j € N.
To end the proof of this lemma we still need to verify (3.7) for ¢ = j. Using

21



(3.4) to (3.6) and hypothesis (3.3) we have

; () —1c —2 B g G) 1G) & @) 2J+1 2i+1
62 CQBlj Pj 15j q?"j = 0262 ILLjAlj AQJ Ag o — 1\ oy — o Tj <

< C2€2j’uj24A1A2A32(2q+1)(j+1)VG/\Qq <

(eCDp)*
C Dit1

Co

CDj+1

if we take C' > ¢y, M ~1r=1 A2 A20°)\%0 with ¢4 > ¢,2* and D > 229*1, This lemma
is proved by taking

S Co 24A1A2A32(2q+1)(j+1)Vﬁ/\Qq S

<

24 ML AT ARG 002 <

g = cg2tatis (3.8)

G = 4q+2 o

We are now ready to prove the convergence of the scheme described in (3.1)
with the following

Proposition 3.1. Let & = & oW ®U) the sequence of symplectic diffeomor-
phisms obtained iterating lemma 2.1; if we define
U0 =0@odWo...000 B! xT¢ - BIxT?

Ti+1 95+1

then the sequence WY converges (uniformly) to a symplectic diffeomorphism
U= lim; o UY) such that

1. U =id+ O(e)
9 H(o) oW — N(oo) — E(oo) +w- y/ + Q(OO)<Z//7 LIZ’I)

with N> (that is N in theorem 1.2) analytic on Bi xTd .

Proof We prove uniform convergence of W) which also guarantees the ana-
lycity of N(*), Let’s write ¥() through a telescopic series:

J J
) — ¢ 4 Z vl gl — ¢ 4 Z @) _ pli-1)
i=1 i=1

In lemma 2.2 we obtained that

@ —id|,, ,, < ecxBidy r

22



since

(@ —id)(y',2") = € (b + su(2) +ag () -/, al2))

and each term was estimated with ¢; B6~24r and ¢, > 4c¢; . By induction we can
therefore assume

00 —id|, . < e eBYs

Ti,0%

which implies, together with lemma 3.1,

P _ gpi=1) _ ‘q)(i) o W1 _ -1 <
Tit1,044+1

Ti4+1,0i4+1

< €2¢023§j)5;2qrj _ CQEQiMjAgj)Agj)Ag(j)5]-_2qu <

S CQETlUj24l/5AlA2A3)\2q22q(j+l)7’ S

(¢CoDop)*

00D6+1 24V5A%A§M_17’_1)\2‘122‘1(”1)7" < (eC’ODO,u)ZZT

> G

since in lemma 3.1 we took Cy > c/' A\ ATAJA, M~ r~! and D, > 2%+2
(notice that v > 1) . Therefore we can estimate |V — id | as follows :

|\Ij - 1d|7'oo,0'oo 700,000

<|0—id],_, 4> |¥O— iy <
=1

<

Ti4+1,0i+1 —

<|o—idl, , + Y [v®—wi
1=1

60231(562%“ + Z (ECOD()M)TT‘ S

i=1

IN

S 6,[LC2A1A2A3(50_2Q7’ + Z (EO()DQ,M)TT S
=1

< epiea M 1L A2 A20200HD) \24p 4 Z (eCoDop)'r <

1=2

< cCoDopr + ) _ (¢CoDop)'r
=2
since, always by lemma 3.1, it results Cy > coM ~'r~*\2¢ and D, > 2%¢ . Then,
taking D > 2D, that is to say the new hypothesis is eCyDp < 1 and hence
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eCoDopt < 5, we obtain

|\If —id |T0070'00 S EO()DQ[M" + Z (ECODo/L)iT S

=2

(eCoDopr)’

1= CoDo’ = eCoDopr + 2(¢CoDop)*r < eCoDypur.

< eCoDopr +

Thus U converges uniformly to U and N(*) = H® o is analytic. To conclude
we trivially observe that

< EQij < (eCDp)? =%

Oj, 05 —

ey ‘ p(j)|
so that N (> is effectively in Kolmogorov’s normal form g

3.2 Final estimates

To completely prove theorem 1.2 we still need to estimate |E(>) — E(©)| and
HQ(‘X’) - QO H o Recall first that in order to have all inductive conditions satis-
fied we must take eC'Dyp < 1 for any

C>Cy = ca/Nr ' max{ M S}ATASA, (3.9)

D> D, = 2t2 (3.10)

with ¢; = ¢32%*13 | Now using an estimate done in the proof of lemma 2.3 we

have
‘E(l) _ E(O)‘ < €0y 1AL Ay

therefore, by inductive hypotheses and lemma 3.1 we obtain
U+ _ E(j)l < cleréfqujAg_j)Agj) <
S C1€2jMj)\2q22Q(j+1)23V3A1A2 S

< (eC'Dop)?

- opitt 220040 ¢ 2313\ A A, < (eC’Dou)2jM7“
0
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for any C' > C,. Now, writing £(>) as a telescopic series and taking D > 2D,
in order to have eC' Dy < % , it results

’E(OO) _ E(O)‘ < }E(l) _ E(O)‘ + i ‘E(J'Jrl) — BV <

j=1

< €0y 1AL Ay + Mr Z (eCDou)2j <
j=1
< eN29uA1 Ay + Mr Z (ECDO,u)j <

Jj=2

(eC' Do)

< eCDouM My —""—
< eCDopuMr + T].—ECD[),M

<eCDuMr .

; 1n

T'oo,000

In a completely analogous way we can estimate |02(Q) — Q"))
lemma 2.3 we obtained

,Ol)ph |3§(Q(1) _ Q(O)){ ) < c3epa3(50_2qr3A%A§,u.

1,0

Thus, by induction

(r _ rj+1)|ph ‘85(@0“) _ Q(j))| <

Tj+1,05+1

. N2 a2 ) .
< 03627p;35;2qr§?14§]) AV 115 < cge? 1232001320966 42 A2 <

C Dop)* : s
< '(Gc D—S-i) 2209240420 ATAZ < (eCDop)* Mr
0
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writing as usual Q> as a telescopic series we obtain for |p|, < 2

(r — roo)lph ‘GS(Q(O") — Q(O))‘ < (r— Tl)\pll |85(Q(1) — Q(O))‘

Too,000 71,01

+ Z (7“ N Tjﬂ)\ph |85(Q(j+1) _ Q(j))‘ <
j=1

Tj+1,05+1

< c3epy 30, 23 A2 A2 + My Z(eCDou)2j <
j=1
< ecs2’ PPN AZ A2 4+ M Z(eC’Do,u)j <

J=2

(eC'Dop)?

< eC' DopMr + My~
= OB M Do

< eCDuMr

having imposed the same previous condition D > 2Dy .
We now conclude remarking that by the estimates done we can take eC' Dy < 1
with (see (3.9), (3.10), (2.15), (3.8))

4 = 30728(T+d)+27

C = N AT A A max{ M1, S}
D — oA(r+d)+3
where ¢ = ¢(7, d) is defined in lemma 1.2); this condition is equivalent to
€< €oi= i(ﬂz<12<f+d>+30>u3A4<f+d>(A1A2)‘4A41 min{M, S}, (3.11)
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