GLOBAL SOLUTIONS OF THE GRAVITY-CAPILLARY WATER WAVE
SYSTEM IN 3 DIMENSIONS, II: DISPERSIVE ANALYSIS

Y. DENG, A. D. IONESCU, B. PAUSADER, AND F. PUSATERI

AsTrACT. In this paper and its companion [32] we prove global regularity for the full
water waves system in 3 dimensions for small data, under the influence of both gravity
and surface tension. The main difficulties are the weak, and far from integrable, pointwise
decay of solutions, together with the presence of a full codimension one set of quadratic
resonances. To overcome these difficulties we use a combination of improved energy
estimates and dispersive analysis.

In this paper we prove the dispersive estimates, while the energy estimates are proved
in [32]. The dispersive estimates rely on analysis of the Duhamel formula in a carefully
constructed weighted norm, taking into account the nonlinear contribution of special
frequencies, such as the space-time resonances, and the slowly decaying frequencies.
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1. INTRODUCTION

1.1. Free boundary Euler equations and water waves. The evolution of an inviscid perfect
fluid that occupies a domain ; C R"”, for n > 2, at time ¢ € R, is described by the free boundary
incompressible Euler equations. If v and p denote respectively the velocity and the pressure of
the fluid (with constant density equal to 1) at time ¢ and position = € €, these equations are

(Or+v-V)v=—-Vp—gey, V-v=0, x € (U, (1.1)

where g is the gravitational constant. The first equation in (|1.1]) is the conservation of momentum
equation, while the second is the incompressibility condition. The free surface S; := 0§2; moves
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with the normal component of the velocity according to the kinematic boundary condition
Oy +v -V is tangent to UtSt C Rgf. (1.2)
The pressure on the interface is given by
p(z,t) = ok(z,t), x € Sy, (1.3)

where £ is the mean-curvature of S; and o > 0 is the surface tension coefficient. At liquid-air
interfaces, the surface tension force results from the greater attraction of water molecules to
each other than to the molecules in the air.

In the case of irrotational flows, curlv = 0, one can reduce — to a system on the
boundary. Indeed, assume also that €2; C R”™ is the region below the graph of a function
h:R?! x [, — R, that is

Q= {(z,y) ER" I xR :y <h(z,t)} and S; = {(z,9):y=h(z,t)}.

Let ® denote the velocity potential, V,,®(x,y,t) = v(x,y,t), for (z,y) € Q. If ¢(x,t) =
O(x, h(z,t),t) is the restriction of ® to the boundary Sy, the equations of motion reduce to the
following system for the unknowns h, ¢ : R?~' x I; — R:
ath = G(h)¢7
h
8t¢:—gh+adiv[ v

(G(h)¢ + Vh-V¢)? (1.4)
(1+[Vh|2)!/2 '

2(1+ |[Vh[)

1 2
} - §|V¢’ +
Here

G(h) :=\/1+ |[Vh[*’N(h), (1.5)

and N(h) is the Dirichlet-Neumann map associated to the domain Q;. We refer to [65, chap.
11] or the book of Lannes [54] for the derivation of (L.4).

One generally refers to as the gravity water waves system when g > 0 and o = 0, as the
capillary water waves system when ¢ = 0 and ¢ > 0, and as the gravity-capillary water waves
system when g > 0 and o > 0.

The Cauchy problem associated to water wave systems has been studied extensively. The
local existence theory is well understood both in 2 and 3 dimensions, at a suitable level of
generality, see for example [57, [75], 22] [71], [72] 9], 14} 56] 53], 20, 60}, 61, 12], 8, 13} 1 2, 28]. On
the other hand, the long term/global existence theory is much more limited: the only results
are in the case of “small” data with trivial vorticity, in dimension 3, see [36}, [74] 37, [69], [70], and
in dimension 2, see [73, 46, [3], [4] 40, 41, 48], [42] [68]. Moreover, large perturbations can lead to
breakdown in finite time, such as the “splash” singularities in [10, 21]. We refer the reader to
the introduction of the companion paper [32] for a more extensive discussion of the history and
previous work on the water waves problem.

1.2. The main theorem. Our results in this paper and its companion [32] concern the gravity-
capillary water waves system , in the case n = 3. In this case h and ¢ are real-valued
functions defined on R? x I.

To state our main theorem we first introduce some notation. The rotation vector-field

Q =210z, — 204, (1.6)
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commutes with the linearized system. For N > 0 let HY denote the standard Sobolev spaces
on R2. More generally, for N, N’ >0 and b € [~1/2,1/2], b < N, we define the norms

v = D2 19 Fllzes Wl = [V + (V)£ o (17)

J<N'
For simplicity of notation, we sometimes let Hév L= Hg "0 Our main theorem is the following:

Theorem 1.1 (Global Regularity). Assume that g,0 > 0, § > 0 is sufficiently small, and
Ny, N1, N3, Ny are sufficiently largd'| (for example 6 = 1/2000, Ny := 4170, Ny := 2070, N3 :=
30, Ny := 70, compare with Definition . Assume that the data (ho, ¢o) satisfies

HZAOH N N1,N3 sup H(l |x‘)1 5065 SzmuOH 2 = €0 < €o,
HYNoNH
Q 2m~+|a|<N1+Ny (18)

U == (g — o A)2ho +i| V[V 2,

where €9 is a sufficiently small constant and D = 810‘185‘2, a = (al,a?). Then, there is

a unique global solution (h,¢) € C([0,00) : HNo+! x HNot1/21/2) of the system (T.4), with
(h(0),9(0)) = (ho, ¢0). In addition

(1+8)~ |u(t) vovs Seo (L4853 ()| e S 20, (1.9)

HHNOI’WHQ

for any t € [0,00), where U := (g — cA)/2h + |V |2 .

Remark 1.2. (i) One can derive additional information about the global solution (h, ). Indeed,
by rescaling we may assume that g =1 and o = 1. Let

Ut) = (1= A)'Pr+ilv]e, V() =Uu®), A =VIEI+EP. (110)
Here A is the linear dispersion relation, and V is the profile of the solution U. The proof of the
theorem gives the strong uniform bound

sup [V(H)l < eo. (1.11)
te[0,00)

see Definition . The pointwise decay bound in (1.9) follows from this and the linear estimates

in Lemma below.
(i) The global solution U scatters in the Z norm ast — oo, i.e. there is Voo € Z such that

: itA _ _
Jim [[€U(E) ~ Vaol; = 0.

However, the asymptotic behavior is somewhat nontrivial since |Zj(£,t)] = logt — oo for fre-
quencies & on a circle in R? (the set of space-time resonance outputs) and for some data. This
unusual behavior is due to the presence of a large set of space-time resonances.

(iii) The function U = (g — o A)Y2h +i|V|Y/2¢ is called the “Hamiltonian variable”, due to
its connection to the Hamiltonian of the system. This variable is important in order to keep
track correctly of the relative weights of the functions h and ¢ during the proof.

The proof of Theorem [I.1] relies on two main steps:
(1) Propagate control of high order Sobolev and weighted norms;

IThe values of Ny and N 1, the total number of derivatives we assume under control, can certainly be decreased
by reworking parts of the argument. We prefer, however, to simplify the argument wherever possible instead of
aiming for such improvements. For convenience, we arrange that N1 — N4s = (No — N3)/2 — N4 = 1/4.
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(2) Prove dispersion/decay over time by propagating control of a suitable Z norm.

The interplay of these two aspects has been present since the seminal work of Klainerman
[51, 52] on nonlinear wave equations and vector-fields, Shatah [59] on 3d Klein-Gordon and
normal forms, Christodoulou-Klainerman [I5] on the stability of Minkowski space, and Delort
[29] on 1d Klein-Gordon. In our problem, high order energy control was proved in [32], using a
suitable bootstrap argument. The main result in this paper is the following proposition, which
gives the desired dispersive control, thus completing the proof of the main theorem.

Proposition 1.3. (Improved dispersive control) Assume that T > 1 and (h,¢) € C([0,T] :
HNotl % HN0+1/271/2) is a solution of the system (1.4) with g =1 and o = 1, with initial data
(ho, ¢0). Assume that, with U andV defined as in ((1.10)),

ol 700 135 + Vol z < €0 < 1 (1.12)
and, for any t € 0,7,
_ 52
(L8 UD vy g + VB2 o1 < 1, (1.13)

where the Z norm is as in Definition . Then, for any t € [0,T],
V®)llz S o +ef. (1.14)

This corresponds to Proposition 2.3 in [32]; see also Proposition 2.2 in [32] for the other part
of the bootstrap argument, concerning energy norms.
The rest of the paper is concerned with the proof of Proposition

1.3. Main ideas. In the last few years new methods have emerged in the study of global
solutions of quasilinear evolutions, inspired by the advances in semilinear theory. The basic
idea is to combine the classical energy and vector-fields methods with refined analysis of the
Duhamel formula, using the Fourier transform. This is the essence of the “method of space-time
resonances” of Germain-Masmoudi-Shatah [36, 37, [35], see also Gustafson-Nakanishi-Tsai [39],
and of the refinements in [43| 44, 38, [45] [46, [47, 48], 31}, [30], using atomic decompositions and
more sophisticated norms.

We emphasize that the proof of Theorem in this paper and its companion [32] is different
and substantially more difficult than the previous work on global solutions in water wave models
(or any other time-reversible quasilinear evolutions, as far as we know). As explained in the
longer discussion in the subsection 1.4 in [32], the main new difficulty is the combination of slow
(at best |t|~>/%) pointwise decay of solutions, and the presence of a large, codimension 1 set of
quadratic time resonances without matching null structure.

We remark that this combination was not present in any of the earlier global regularity results
on water waves described above. More precisely, in all the previous global results in 3 dimensions
(2D interface) in [36], [74], 37, [69, [70] it was possible to prove 1/t pointwise decay of the nonlinear
solutions. This decay allowed for high order energy estimates with slow growth.

On the other hand, in all the previous long term/global results in 2 dimensions (1D interface)
in 73], 46, [3, (4] [40] 411, 48, [42], [68] the starting point was an identity of the form

0:E(t) = quartic semilinear term,

where £ is a suitable energy functional and the quartic expression in the right-hand side does
not lose derivatives. An energy inequality of this form was first proved by Wu [73] for the gravity
water wave model, and led to an almost-global existence result. Such an inequality (which is
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related to normal form transformations) is possible only when there are no time resonances for
the quadratic terms. This is essentially the situation in all the 2D results mentioned above[]

1.3.1. A simplified model and dispersive analysis. To illustrate the main ideas in the proof of
Proposition [1.3] consider the initial-value problem

(O, +iNU =YV - VU + (1/2)AV -U,  U(0) = Up,
AE) = VIEI+ €13, V= P_10,100RU.

At the level of energy estimates, this simplified model was analyzed in subsection 1.5 in [32].
Compared to the full equation, this model has the same linear part. The precise nonlinearity
is not so important in dispersive analysis; in particular, the L? conservation satisfied by the
solution U does not play a role here.

The specific dispersion relation A(§) = +/[¢] + |€]? in is, however, important. It is
radial and has stationary points when |¢] = v := (2/v/3 — 1)1/2 = 0.393 (see Figure (1| below).
As a result, linear solutions can only have |t|~5/6 pointwise decay, i.e.

(1.15)

e A ]| e = [,

even for Schwartz functions ¢ whose Fourier transforms do not vanish on the sphere {|£| = 70}

0.0 05 10 15 20 25 3.0

FIGURE 1. The curves represent the dispersion relation A(r) = v/73 4+ r and the group
velocity X, for ¢ = 1 = 0. The frequency 77 corresponds to the space-time resonant
sphere. Notice that while the slower decay at vy is due to some degeneracy in the linear
problem, v, is unremarkable from the point of view of the linear dispersion.

2More precisely, the only time resonances are at the 0 frequency, but they are cancelled by a suitable null
structure. Some additional ideas are needed in the case of capillary waves [48] where certain singularities arise.
Morevoer, new ideas, which exploit the Hamiltonian structure of the system as in [46], are needed to prove global
(as opposed to almost-global) regularity.
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In the case of the evolution ([1.15)), the analogue of Proposition is the following partial
bootstrap estimate for the Z norm:

it sup (14 6) 7 U0 oy gaons + 12U (1)l 2] < 1

t€[0,7) Hron (1.16)
then sup [e®2U#)|z < eo + 2. .
t€[0,T]

This can be complemented by a suitable energy estimate to close the full bootstrap argument.
The first main issue is to define an effective Z norm. We use the Duhamel formula, written

in terms of the profile u = u, = e U, u_ =1,
t
A, t) = 0,00+ ) / / e NOFAEDFAD (€, m)TZ (& =1, 8)Tz (n, 5) dnds,  (1.17)
—Jo Jr2

where the sum is taken over choices of the signs 4+, —, and m. . are suitable smooth multipliers.

1.3.2. Space-time resonances and the Z-norm. The idea is to estimate the function u using the
Duhamel formula , by integrating by parts either in s or in 7. According to [36], the main
contribution is expected to come from the set of space-time resonances (the stationary points of
the integral)

SR = {(&m) : ®(€,m) =0, (V,@)(€,m) = 0, m(&,n) # 0}, (1.18)

where

D(E,m) = AE) FAE—n) FAM)

is the so-called phase or modulation, and m = m44. In our case, space-time resonances are
present only for the phase ®(£,n) = A(§) — A(§ —n) — A(n) and the space-time resonant set is

{(&,m) eR* xR?: [¢] =y = V2, n=¢/2}. (1.19)

Moreover, the space-time resonant points are nondegenerate (according to the terminology in-
troduced in [44]), in the sense that the Hessian of the matrix V%ni)(f ,m) is non-singular at these
points. To gain intuition, consider the first iteration of the formula , i.e. assume that the
functions u+ in the right-hand side are Schwartz function supported at frequency = 1, indepen-
dent of s. Assume that s ~ 2"". Integration by parts in 7 and s shows that the main contribution
comes from a small neighborhood of the stationary points where |V, ®(&,7n)| < 2-m/2H0m and
|®(£,m)] <27 up to negligible errors. Thus, the main contribution comes from space-time
resonant points as in . A simple calculation shows that the main contribution to the second
iteration is of the type

u(2)(§) = c(€)p<-m(I]l — ),

up to smaller contributions, where we have also ignored factors of 29, and ¢ is smooth.

We are now ready to describe more precisely the crucial choice of the Z space. We use the
framework introduced by two of the authors in [43], which was later refined by some of the
authors in [44] 38| B1]. The idea is to decompose the profile as a superposition of atoms, using
localization in both space and frequency,

F=2,,Qnl  Quf =@ Pf(w).

The Z norm is then defined by measuring suitably every atom.
In our case, the Z space should include all Schwartz functions. It also has to include functions
like 4(§) = p<—m(|§] — 1), due to the considerations above, for any m large. It should measure
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localization in both space and frequency, and be strong enough, at least, to recover the {—5/6+
pointwise decay. We define
1fllz = Su]f?J AI1EN =Y Qjrf (&)l (1.20)
J’

up to small corrections (see Definition for the precise formula, including the small but
important d-corrections), and then we define the Z norm by applying a suitable number of
vector-fields D and €.

We remark that the dispersive analysis in the Z norm in this paper is more subtle than in
the earlier papers mentioned above. It has some similarities to the analysis in the recent paper
[31] of three of the authors on the Euler-Maxwell system in 2D, but it is more involved because
of the presence of the frequencies of slow decay |£| = .

To illustrate how this analysis works in our problem, we consider the contribution of the
integral over s = 2™ > 1 in , and assume that the frequencies are ~ 1.

1.3.3. Small modulations. Start with the contribution of small modulations,

u'(€) :z/qu(S) /R2 < (®(E,m))e P EMm (&, n)a(€ — n, s)d(n, s) dnds, (1.21)

where [ = —m + dm (6 is a small constant) and g, (s) restricts the time integral to s ~ 2™, and,
for simplicity, we consider only the phase ®(&,n) = A(§) — A(§ —n) — A(n). In this case the
considerations above, leading to the definition of the Z norm, are still relevant: one can integrate
by parts in 7, identify the main contributions as coming from small 2="/2+9™ peighborhoods of
the stationary points, and estimate these contributions in the Z norm.

1.3.4. Higher modulations and iterated resonances. Consider now the contributions of the mod-
ulations of size 2!, I > —m + ém. We start from a formula similar to and integrate by
parts in s. The main case is when d/ds hits one of the profiles u. Using again the equation (see
(1.17)), we have to estimate cubic expressions of the form

() = [Lanto) [ EERED €yt — o (122)

% eisi)'(n,a)n(m U)ﬁ(n — o0, s)ﬂ(O', s) dndods,

where ®'(n,0) = A(n) + A(n— o) — A(o). Assume again that the three functions u are Schwartz
functions supported at frequency ~ 1. We combine ® and ®’ into a combined phase,

O(&,m,0) = @(&n) + ¥'(n,0) = A§) — A& —n) + Aln — o) — Alo).
We need to estimate hy,; according to the Z; norm. Integration by parts in { (approximate
finite speed of propagation) shows that the main contribution in ijh;n,l is when 27 < 2™,

We have two main cases: if [ is not too small, say | > —m/14, then we use first multilinear
Hélder-type estimates, placing two of the factors e u in L™ and one in L?, together with
analysis of the stationary points of ® in n and o. This suffices is most cases, except when all
the variables are close to yg. In this case we need a key algebraic property, of the form

if  V,,®(&n,0)=0 and &(n0)=0 then VB n,0)=0, (1.23)

if |€ —n|,|n — o, |o| are all close to ~o.
On the other and, if [ is very small, | < —m/14, then the denominator ®(£,n) in (1.22) is

dangerous. However, we can restrict to small neighborhoods of the stationary points of ® in 7
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and o, thus to space-time resonances. This is the most difficult case in the dispersive analysis.
We need to rely on one more algebraic property, of the form

if  V,o®En0)=0 and |[B(&n)|+ | (n,0)] <1 then Ved(En,0)=0. (1.24)

See Lemma [7.6| for the precise quantitative claims for both (1.23) and ([1.24]).
The point of both (1.23)) and ([1.24) is that in the resonant region for the cubic integral we

have that Vgi)(f,n,a) = 0. We call them slow propagation of iterated resonances properties;
as a consequence the resulting function is essentially supported when |z| < 2™, using the
approximate finite speed of propagation. This gain is reflected in the factor 27 in .

We remark that the analogous property for quadratic resonances

if V,®(&n)=0 and @®(n)=0 then V2(&n) =0

fails. In fact, in our case |V¢®(&,7)| = 1 on the space-time resonant set.

In proving , there are, of course, many cases to consider. The full proof covers sections
and[5] The type of arguments presented above are typical in the proof: we decompose our profiles
in space and frequency, localize to small sets in the frequency space, keeping track in particular
of the special frequencies of size v, 71,71/2, 270, use integration by parts in £ to control the
location of the output, and use multilinear Holder-type estimates to bound L? norms.

1.3.5. The time derivative of the profile and scattering in the Z norm. The considerations above
and ((1.17) can also be used to justify the approximate formula

(Ou)(&,t) ~ (1/15)2 g5 (£)e™®En ) 1 Jower order terms, (1.25)
J

as t — 0o, where 7;(£) denote the stationary points where V,®(&,7;(§)) = 0. This approximate
formula, which holds at least as long as the stationary points are nondegenerate, is consistent
with the asymptotic behavior of the solution described in Remark (ii). Indeed, at space-time
resonances ®(&,7;(£)) = 0, which leads to logarithmic growth for u(§,t), while away from these
space-time resonances the oscillation of e®®(1i(€)) leads to convergence.

1.3.6. Additional remarks. We list below some other issues one needs to keep in mind in the
proof of the main theorem.

(1) The very low frequencies || < 1 play an important role in all the global results for water
wave systems. These frequencies are not captured in the model . In our case, there is a
suitable null structure: the multipliers of the quadratic terms are bounded by |[£| min(|n|, |{—
n)'/2, see , which is an important ingredient in the proof of Proposition

(2) It is important to propagate energy control of both high Sobolev norms and weighted norms
using many copies of the rotation vector-field 2. This is done in the companion paper [32],
see also [30, BI]. As a result, the values of Ny and N in are large. Because of this
control, we can assume that the profiles in the dispersive part of the argument are almost
radial and located at frequencies < 1. The linear estimates (in Lemma and many of
the bilinear estimates are much stronger because of this almost radiality property.

(3) At many stages it is important that the four spheres, the sphere of slow decay {|¢| = Yo},
the sphere of space-time resonant outputs {|¢| = 71}, and the sphere of space-time resonant
inputs {|¢| = ~1/2}, and the sphere {|¢| = 27y} are all separated from each other. Such
separation conditions played an important role also in other papers, such as [35], 38, [31].
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1.4. Organization. The rest of the paper is organized as follows: in section [2] we summarize
the main definitions and notation in the paper, and state the main Proposition

In sections we prove Proposition The key components of the proof are Lemma |3.4
(integration by parts using ), Lemma (linear estimates involving the Z-norm), the precise
analysis of the time derivative of the profile in Lemmas 4.1 and the analysis of the Duhamel
formula, divided in several cases, in Lemmas [5.4

In section[] we show that Proposition [I.3]follows from Proposition[2.2]and a suitable expansion
of the Dirichlet~Neumann operator, which is proved in section 9 in [32].

In section[7] we collect estimates on the dispersion relation and the phase functions. The main
results are Proposition (structure of the resonance sets), Proposition (bounds on sublevel
sets), and Lemma (slow propagation of iterated resonances).

2. SETUP AND THE MAIN PROPOSITION

2.1. Definitions and notation. We summarize in this subsection some of the main definitions
and notation we use in the paper.

2.1.1. Fourier multipliers and the Z norm. We start by defining several multipliers that allow
us to localize in the Fourier space. We fix ¢ : R — [0, 1] an even smooth function supported in
[—8/5,8/5] and equal to 1 in [—5/4,5/4]. For simplicity of notation, we also let ¢ : R? — [0, 1]
denote the corresponding radial function on R?. Let

(@) = pllal/2) — p(|al/2Y) forany k€Z,  pri= > @ forany I CR,
melNZ

P<B = P(—00,B]y ¥>B = P[B,co)y P<B ‘= P(-c0,B)s P>B = P(B,c0):

For any a < b € Z and j € [a,b] NZ let

;) ifa<j<b,
A=l itj=a, (2.1)
©>p if j =b.
For any xz € Z let x4 = max(z,0) and z_ := min(z,0). Let

T ={(kj) €ZX Ty : k+j>0}.
For any (k,j) € J let

o< k() if k+j=0andk <0,
@gk)(g;) = { ¥<o0 :U) if j=0and k > 0,
p;(x) ifk+j>1andj>1,

and notice that, for any k € Z fixed, ij_min(k 0) @5’{) = 1.

Let Py, k € Z, denote the Littlewood—Paley projection operators defined by the Fourier
multipliers & — ¢ (§). Let P<p (respectively P p) denote the operators defined by the Fourier
multipliers £ — p<p(§) (respectively & — ¢~ p(£)). For (k,j) € J let Qji, denote the operator

(Qirf) (@) = 3\ () - Puf(x). (2.2)
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In view of the uncertainty principle the operators @, are relevant only when 272k > 1, which
explains the definitions above. For k, k1, ko € Z let

Doy ks = {(&,) € (R?)? : [¢] € V74,251, || € [2%274, 28] ¢ — | € 20074, 2]y,

(2.3)
Let A(r) = /|r| + |73, AE) = /I€] + [€]3 = A(€]), A : R? = [0,00). Let
u+ =U, U_:=U, V)=V (t):=eDU), V_(t):=e U (1) (2.4)
Let Ay = A and A_ := —A. For o, u,v € {+,—}, we define the associated phase functions
Doy (§,1) 7= Ao (§) — A€ —n) — Au(n),
: g (2.5)

(bauuﬁ(g?na O') = AG(&) - AM(€ - 77) - Au(n - U) - Aﬁ(O’)
For any set S let 1g denote its characteristic function. We will use two sufficiently large
constants D > D; > 1 (D is only used in section [7|to prove properties of the phase functions).

Let o := 4/ 2\[% denote the radius of the sphere of slow decay and v; := v/2 denote the
radius of the space-time resonant sphere. For n € Z, I C R, and ~ € (0,00) we define
A J(€) = p-n(2"l€] =) - F(8),

= Z A?’L,’Yv ASB,’y = A(foo,B],’yv AZB,'y = A[B,oo),'y'
nel

(2.6)

Given an mteger j > 0 we define the operators Agw, ne{0,...,j+1}, v>27 by

AV = ST A, A =3 Aw,, AV =4, if 1<n<g (27)
n'>j+1 n/<0

These operators localize to thin anuli of width 27" around the circle of radius . Most of the
times, for us v = vy or v = 1. We are now ready to define the main Z norm.

Definition 2.1. Assume that §, No, N1, Ny are as in Theorem[1.1. We define

Zy:={f € *R*): |fllz, == sup |Qjrflz, < oo}, (2.8)
(k,g)eTd
where
lgll s, == 20729 sup 270240 AD) g .. (2.9)
0<n<j+1
Then we define, with D := 6?182“2, a = (al,a?),
7 = {f € L2(]R2) Nfllz = sup |IDQ™ fllz, < oo} (2.10)

2m+|a|<N14Ng, m< Ny /2420
We remark that the Z norm is used to estimate the linear profile of the solution, which is
V(t) := e U(t), not the solution itself.
2.2. The Duhamel formula and the main proposition. In this subsection we start the
proof of Proposition . With U = (V)h +i|V|'/2¢, assume that U is a solution of the equation
(8t+iA)U=N2 + N3 +/\/’24, (2.11)

on some time interval [0, T], T > 1, where N3 is a quadratic nonlinearity in U, U, N3 is a cubic
nonlinearity, and N>4 is a higher order nonlinearity. Such an equation will be verified below, see
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section @ starting from the main system ({1.4)) and using the expansion of the Dirichlet—Neumann
operator. The nonlinearity N> is of the form

No= Y Nl (FNulF.9)© = [ mul&nfie - mamdn,  (212)
M,VE{'F,—} R
where 4, = U and U_ = U{. The cubic nonlinearity is of the form

Ny= > NupUy,U,Us),
#7V)B€{+?_} (213)

(PNl £ D) € = [ sl 00F(E = n)in = )hto) dn

The multipliers m,,, and n,,g satisfy suitable symbol-type estimates. We define the profiles
V,(t) = el (t), o € {+,—}, as in (1.10). The Duhamel formula is

(DV)(€,s) = € MNONG(E, 5) + e MNONG (€, 5) + e MONTY (€, 5), (2.14)

or, in integral form,

t
D(E,t) = V(E,0) + Wale,t) + a6, 1) + / NORTL (€, 5) ds, (2.15)
0
where, with the definitions in ,
Wagt) = Y [ e, €Dy~ o) Valn, ) duds, (2.16)
0 R2
M,V€{+-_}
t ~
W3(&,t) := Z / / eisq>+“”ﬁ(§’”’”)nwg(§,n,a)
wv,Be{+.—} 0 JRZxR? (217)

X ]//;(5 -, s)l/);(n — o, 3)17;(0, s) dndods.
The vector-field 2 acts on the quadratic part of the nonlinearity according to the identity
ORa6.) = 30 [ (O [l A~ Wh (5] .
}I,,VE{-F,—}

A similar formula holds for 95/\73(5, s). Therefore, for 1 < a < Ny, letting mi’w = (Qg—i—Qn)bmW
and nbyﬁ = (Q + Q) + Q)05 we have

[
QLOV)(E, 5) = e*MOENG (€, 5) + e*MOQING (€, 5) + BN OQENL (€, 5), (2.18)
where
SELTAEE D DD S IR A )
w,ve{+,—} a1+az+b=a R? (2.19)
X (V) (€ = n,5)(22V,) (n, 5) dn
and
eiSA(S)QgA//}?) (6’ 3) = Z Z / eis&?uruuﬁ (ﬁyﬂ,U)nZVB (5, n, 0')
R2xR2

wv,Be{+,—} a1taztaz+b=a (2.20)

X (QMV,)(€ = 0, 8) (V) (n = 0,5) (V) (0, ) dipdo.
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To state our main proposition we need to make suitable assumptions on the nonlinearities
Na, N3, and N>4. Recall the class of symbols S defined in (3.5).
e Concerning the multipliers defining N, we assume that (¢ + Q,)m(&,7) = 0 and

Hmk’,kl,k‘QHSOO SJ 2k2min(k1,k2)/27
||D7a,mk’k1’k2HL°° §|a\ 2(\Of|+3/2)mﬂX(|k1\7|k2\)’ (2.21)

| Dbk <) 2(al+3/2) max(kl bl kal)
for any k,ki,ky € Z and m € {my, : p,v € {+,—}}, where

mPER2 () = (€, ) - ok (€)pn (€ — 0)ony (0)-
e Concerning the multipliers defining N3, we assume that (Q¢ + Q, + Qs)n(§,n,0) =0 and

||nk’k1’k2’k3||soo 5 2min(k,k1,k2,k3)/223max(k,kl,kg,kg,O)

[ Df g5 o

k,k1,k2,k 7/2 k|,\k1],] k2], |k
| DgnRRks | e < 2o +7/2) max(|kl [k, k2l |ksl)

)

gl max([ka . el [kal /1) g (7/2) max([ks]. kol [hs]) (2.22)

lal

for any k, ki, ko, k3,1 € Z and n € {n,,53 : p,v € {+,—}}, where

nFRuRs (¢ o) = n(E,n, 0) - r(€)Pr (€ — 1) Prs (1 — 0)pry (),

PRk (e, o) == n(En,0) - er(©)pr, (€ = M)k (1 — ) pry (0)@i(n).
Our main result is the following;:
Proposition 2.2. Assume that U is a solution of the equation
(O +iA)U = Na+ N3 + N>y, (2.23)

on some time interval [0,T], T > 1, with initial data Uy. Define, as before, V(t) = e U(t).
With 6 as in Definition |2.1], assume that

8ol g gy + Vollz < 20 < 1 (2.24)

Q

and
(1+ )7 e (2)
(1 +t)2|N=a(2)

for allt € [0,T]. Moreover, assume that the nonlinearities No and N3 satisfy (2.12)(2.13) and
(2.21)—(2.22]). Then, for any t € [0,T]

IVt)llz S eo + i (2.26)

HHNOmHgl’N3 +V@)lz <ea1 <1,

(2.25)

2 .
HHNO*N?JmHgl’O + 1+ t>1+6 HeltANZ4(t)HZ < 5%;

We will show in section [6] below how to use this proposition and a suitable expansion of the
Dirichlet—-Neumann operator to complete the proof of the main Proposition [1.3
3. SOME LEMMAS

In this section we collect several important lemmas which are used often in the proofs in the
next two sections. Let & = &, as in (2.5
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3.1. Fourier multipliers and Schur’s lemma. We will work with bilinear and trilinear mul-
tipliers. Many of the simpler estimates can be proved using the following basic result (see [406,
Lemma 5.2] for the proof).

Lemma 3.1. (i) Assume | > 2, fi,..., fi, fix1 € L*(R?), and m : (R?)! — C is a continuous
compactly supported function. Then

‘/ m(Ers e 1) o &) Fr (=6 — . = &) dey ... dg

(R2)! (3.1)
SIF ) allfllzen - il g,

for any exponents p1,...p+1 € [1,00] satisfying pil +...+ ﬁ =1.

(i) Assume l > 2 and Ly, is the multilinear operator defined by

F{Lnlfr,-- f1}E) = /(RQ)H &, )i =) - fia(mes = m) film) ds . d.

1

Then, for any exponents p,qi,...q € [1,00] satisfying qil +...+ % = 5, we have
[ Ll fr, - il S NFT ) [ gl fillzor - 1 fillzan. (3.2)
Given a multiplier m : (R?)? — C, we define the bilinear operator M by the formula
FIMI.D)(E) = 15 [, m&n) F& = mit . (33
With € = 2105 — 2201, we notice the formula
QM(f.g) = M(Qf. g) + M[f, Q9] + M|f.g]. (34)

where M is the bilinear operator defined by the multiplier m(&,m) = (Qe + Q)m(§,n).
For simplicity of notation, we define the following classes of bilinear multipliers:
5% :={m: (R*)™ = C : m continuous and ||m||gee := || F'm/|11 < oo},
S = {m: (R*? — C: m continuous and ||m||S€20 i= sup [|(Q + Q) m|s= < 0o} (3.5)
I<N;

We will often need to analyze bilinear operators more carefully, by localizing in the frequency
space. We therefore define, for any symbol m,

mPFR (€ ) = o (€)pr, (€ = m)prs (Mm(E, 7). (3.6)

We will often use the Schur’s test:

Lemma 3.2 (Schur’s lemma). Consider the operator T given by

71O = [ K man

Assume that
sup/ |K (& m)|dn < K, sup/ |K (&, m)|d§ < Ko.
¢ JR? n Jr2

Then
T fllre S VE K| fllL2-



14 Y. DENG, A. D. IONESCU, B. PAUSADER, AND F. PUSATERI

3.2. Integration by parts. In this subsection we state two lemmas that are used in the paper
in integration by parts arguments. We start with an oscillatory integral estimate. See [44]
Lemma 5.4] for the proof.

Lemma 3.3. (i) Assume that 0 < ¢ < 1/e < K, N > 1 is an integer, and f,g € CN(R?). Then
| [ egds| s (KN Y D], (37
R? la|<N

provided that f is real-valued,

Vafl > Lappg,  and  [DSf - Lappgllize Sv '™ 2 < Ja| < V. (3:8)
(i) Similarly, if 0 < p < 1/p < K then
[ e ds] s (o) N[ o197l ], (39)
R? m<N

provided that f is real-valued,
1Qf] > Lauppg,  and  |Q™f - Luppglle Sy p' ™™, 2<m < N. (3.10)

We will need another result about integration by parts using the vector-field 2. This lemma
is more subtle. It is needed many times in the next two sections to localize and then estimate
bilinear expressions. The point is to be able to take advantage of the fact that our profiles are
“almost radial” (due to the bootstrap assumption involving many copies of 2), and prove that
for such functions one has better localization properties than for general functions.

Lemma 3.4. Assume that N > 100, m > 0, p,k,k1,ko € Z, and
27]61 S 22m/5, 2max(k,k1,k2) S U S U2 S 2m/107 U2 + 23|]€1‘/2 S 2p+m/2. <311)
For some A > max(1,27%) assume that

sup [[|Q%llz2 + 19°f || 2] + sup ATDOf 2 < 1,
0<a<100 lal<

; (3.12)
sup sup (27" Inl)‘o"lDa (&m] < 1.
£ |al<N

Fiz £ € R? and let, for t € [2™ — 1,2mH1],
I(f,9) = /R2 D (€, 1)op (P (E,1)) k() pry (€ — n)ry (1) £ (€ — n)g(n)dn.

If 20 < U2lkl/2+100 gng A < 2mU~2 then
1, (f.9)] Sn (20Fm) " NU2N [9m/2 4 gV g o= 10m, (3.13)
In addition, assuming that (14 0/4)v > —m, the same bound holds when I,, is replaced by

L(f.g) = /RQ e PEMD o, (D(€,7))m(E, 1) p(®(E, 1) (€) Pk, (€ — 0k (1) £ (€ — n)g(n)dn.

A slightly simpler version of this integration by parts lemma was used recently in [31]. The
main interest of this lemma is that we have essentially no assumption on ¢ and very mild
assumptions on f.
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Proof of Lemma([3.4 We decompose first f = R<p/10f + [I — Remsiolfs 9 = Remyiog + [ —
R<m /10] g, where the operators R<y, are defined in polar coordinates by

(R<ph)(rcosf,rsinf) Zcp<L e if  h(rcos,rsinb) Zh )el™?. (3.14)
nez neZ

Since  corresponds to d/df in polar coordinates, using (3.12)) we have,
H[I - Rgm/IO]fH[; + H[I - RSm/lO]gHLQ S 2710m.
Therefore, using the Holder inequality,
1L, (I = Remy10lf>9)| + p(Remrof, [T — Remyiolg)| S 2710

It remains to prove a similar inequality for I, := I, (fl, gl), where f; := Oy —2,k1 +2] 'Rgm/lOfv
91 = Plhy—2.ko+2] * R<my109- It follows from (3.12) and the definitions that

1991112 Sa 2910 Q4D full 2 Sa 210AN, (3.15)
for any a > 0 and |a| < N. Integration by parts gives

~a

i m(&, 1)k, (§ — 1)@k, (1
= cau(e) [ enoienn, {EDEE D2 0,006 Al - (o) | dn
R2 th@(é’ 77)
Iterating IV times, we obtain an integrand made of a linear combination of terms like

it (Em) 1 R
e (€) <t9n¢’(§77)> x Qt{m(&, M)k, (§ — n) k(1) }

Qutle  Qutle
X Qn2f1(£ —-n)- Qg1 (n) - Qf@p(gnq)(f’ n)) - Qe Q9

where Y a; = N. The desired bound follows from the pointwise bounds
|92 {m(&,m)or, (€ — m)ory (M)} S 272,

a+l (3.16)

2a9am/2

|250p (2@ (€, m))| + Qq) < UPegem/2,

which hold in the support of the integral, and the L? bounds
196591 ()] 2 S 274, (317)
1925 £1.(& = 1) or () or (Mp<pra(®(E, )l 2 S U [27/2 + A2,
The first bound in (3.16]) is direct (see (3.11)). For the second bound we notice that
A€ = nl)
Q&-nt)=—E-n Q&) =&, (&) = LE——(E ),

€ 1) e = e,

28 m| S AE =D (1€ —n72l& - 0| + |€ —nl U]

Since N (|€ —n]) ~ 2/¥11/2 in the support of the integral, we have |¢ —n|~2|¢ - nt| ~ 22— F1—Ik1l/2,
The second bound in follows once we recall the assumptions in .

We turn now to the proof of . The first bound follows from the construction of g;. For
the second bound, if 27 > 2lkil/2+min(kk2) then we have the simple bound

1925 £1(€ = m)en(€)prs () 12 S [A2MIH) - 70 1000,
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which suffices. On the other hand, if 27 < 2lk1l/2+min(kk2) then we may assume that £ = (s,0),

s = 2F. The identities (3.18) show that p<,+2(Q,®(£,1)) # 0 only if |¢ - nt| < 2p+202k—lkl/2]

which gives || < 2PF302k1=1k11/29=F  Therefore || < 251, so we may assume that | —s| ~ 2¥1.
We write now

—Q f1(§ —n) = (MmO2fr —n201f1)(§ —n) =

(@A)~ ) = @) )

By iterating this identity we see that Q7 f1 (€ —n) can be written as a sum of terms of the form

Pl ()" () D e - )

§—Mm s—=T

where b+c+d+e <a, |bl,c,d,e € Z, |b| > d, and P(s,n) is a polynomial of degree at most a
in s,n1,n2. The second bound in follows using the bounds on f; in and the bounds
proved earlier, |sny| < 2P2k1—1k1l/2 1n) — 5| ~ 2k1,

The last claim follows using the formula , as in Lemma below. O

3.3. Localization in modulation. Our lemma in this subsection shows that localization with
respect to the phase is often a bounded operation:

Lemma 3.5. Let s € [2™ —1,2™], m >0, and —p < m — 26’m. Let ® = @4, as in (2.5) and
assume that 1/2 =1/q+ 1/r and x is a Schwartz function. Then, if |m| s~ <1,

<o) [ eo¥emmienxiz o mfe - na

S osup e AN g g e oA gllLr+2 mmeHLzHgHLz,
lpl<2-p+o2m

(3.19)

where the constant in the inequality only depends on the function x.

Proof. We may assume that m > 10 and use the Fourier transform to write
@B ) = [ TR ). (3.20)
R

The left-hand side of (3.19)) is dominated by
¢ [170ecton(®) [ 20D mie nFie —n)g

Using (3.2)), the contribution of the integral over |p| < 29°m is dominated by the first term in the
right-hand side of (3.19). The contribution of the integral over |p| > 29%m ig arbitrarily small
and is dominated by the second term in the right-hand side of (3.19). O

3.4. Linear estimates. We note first the straightforward estimates,
1P fll > < min{20 7500k 2= Nk £ 2, (3.21)

for N > 0. We prove now several linear estimates for functions in Z; N Hg . As in Lemma
it is important to take advantage of the fact that our functions are “almost radial”. The
bounds we prove here are much stronger than the bounds one would normally expect for general
functions with the same localization properties, and this is important in the next two sections.
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Lemma 3.6. Assume that N > 10 and
[fllz, + S 1Q°Pefllrz < 1. (3.22)

€l,a<

Let &' := 500 + 1/(2N). For any (k,j) € J andn € {0,...,j+ 1} let (recall the notation (2.1)))
fik = PocanrnQunf.  Finanl© = o5 0@00E - Fis©- (323)
For any & € R?\ {0} and k,p € [0,00) let R(&o; K, p) denote the rectangle
R(&oik, p) = {£ € R? 1 |(€ — &) - &o/I&ol| < p, |(€ = &0) - & /1%l| < K} (3.24)
(i) Then, for any (k,j) € J, n €[0,§+ 1], and s, p € (0,00) satisfying r + p < 210

Forn(rf (16 < 9(1/2-498)n—(1-48");
H QSSSI; | fiken(r0)] HLQ(rdr) + H QSSSPI | fikn(r0)] ||L2(7,d7,) = ) (3.25)
/ (&)1 (epsn,) (€) d S 12777927499 min(1,27p2~4)1/2, (3.26)

RQ
— - 9(6+(1/2N))ng—(1/2—48")(j—n) if |k| < 10, )
Hfj,k,n”[,oo ~ 275/k27(1/275/)(j+k) Zf ‘k’ Z 10’ <3 7)
and
DAF - 2lBlig(d+1/(2N))ng—(1/2=8")(i=n)  4f k| < 10, 598
VD% sl 611\ gletig-otig-1/a-ien i Ikl > 10. (329
(ii) (Dispersive bounds) If m > 0 and |t| € 2™ — 1,2™1] then

le™ fikmll oo S [ Fihnll 2 S 2P277F20727800m, (3.29)
e fiko| oo S 23/227mH5005 1 if k| > 10. (3.30)

Recall the operators Ay, , defined in [2.6). If j < (1 —86%)m+ |k|/2 and |k| + D < m/2 then we

have the more precise bounds

—m+26%meo—(j—n)(1/2—8") on(5+1/(2N :
le™™ A<o 50 fikn[ oo 2 2m2 o // , 2O 21, (3.31)
U, sy L ~ 2*m+26 m2k27(1/276 )«] Zf n = 0

Moreover, forl > 1,

—m~428%2mod’jom/2—5/2—1/2—max(4,1)/2 : .
e Ay g Figeo|| oo S 2 22 foifactfammm GO if 24 max(j, 1) 2 m, (3.32)
703 RO1Loe ) 9 —m+282mod’jo(1—j)/2 if 2l +max(j,1) < m.

In particular, if j < (1 —6%)m + |k|/2 and |k| +D < m/2 then
He_itAASO,’yofj,kHLoo 5 2—m+262m2k2j(5+1/(2]\/))’
Z HeiitAAl,'yofj,k S 9—m+282mod'jo(m—35) /6 (3.33)
>1

For all k € 7 we have the bound

He_itAAZL’YOPkaLoo 5 2—5m/6+262m_
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Proof. (i) The hypothesis gives

175kl 22 ,s 2“/2—495)”—“—505”, 9% ikl 2 S 197 Peflle < 1. (3.35)
The first inequality in follows using the interpolation inequality
| sup |h O |2y S L0l + L2V [0 (3.36)

for any h € L?(R?) and L > 1. This inequality follows easily using the operators R<j, defined

in (3.14). The second inequality in (3.25) follows similarly.
Inequality ((3.26) - ) follows from (3.25)). Indeed, the left-hand side is dominated by

C(F&Q esuspl/ ‘fjkn TH)“R(EO,/{ p)(rﬂ) rdr S SUP Hf]k‘n (r0) HLz rdr) (K27 )[2 min(p, Zk—n)]1/27
S

which gives the desired result.
We now consider (3.27)). For any 6§ € S! fixed we have

15k (O 2o S 27211 Fiokan (rO) | 22 ary + 277721100 Fiokn) (r0) | 22 ar)
< 2722782 £k (rO) | L2 rary,
using the support property of @, f in the physical space. The desired bound follows using ((3.25)

and the observation that m =0 unless n = 0 or k € [—10,10]. The bound follows also
since differentiation in the Fourier space corresponds essentially to multiplication by factors of
27 due to space localization.

(ii) The bound follows directly from Hausdorff-Young and (3.35). To prove (8.30), if
|k| > 10 then the standard dispersion estimate

| /R =D oy (€)ei® de| < 22K (1 [|2hHIAI/2)~1 (3.37)
gives
e ol S ikl S 508 (3.38)
PERIET N 4 e 2k/27 0 1+|t|2’f/2 ' '

The bound (3.30) follows (in the case m < 10 and k£ > 0 one can use (3.29)).
We prove now (3.31)). The operator A<q~, is important here, because the function A has an

inflection point at vy, see ([7.3)). Using Lemma (i) and the observation that [(VA)(¢)| ~ 2/¥I/2
if [¢] ~ 2%, it is easy to see that

‘(e*itAAgoﬁofj’k’n)(a:)‘ < g~ lom unless |z| ~ omtIkl/2,
Also, letting fj’kn = Re<mysfjkn, see (3.14), we have || fjx.n — janL2 < 27N/5) therefore
le™ A<o0 (fikn = Fmdll oo S [ Fiem = Fianllpn S 272725 (3.39)

On the other hand, if |z| ~ 2m+lkl/2 then, using again Lemma and m)
(e—it/\ASO/Yo J/kn)(w) =C eiql(g)@(ﬁflvg\ﬂ)w(n(glggq,)
T (3.40)
X [ e n(©e>—100(I€] — 70)dE + O(2710m),
where
U= —tA(E) +a €,y o= 20 (2R 4 9d) gy i 90 mamEkHRI/D2 (3 47)
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We notice that the support of the integral in (3.40)) is contained in a k X p rectangle in the
direction of the vector z, where p < sozfiie=r and £ S gagfryzs £ S p- This is because the

function X\’ does not vanish in the support of the integral, so \’(|¢]) & 2/¥I/2=F Therefore we can

estimate the contribution of the integral in using either or . More precisely,
if j < (m+|k|/2 — k)/2 then we use while if j > (m + |k|/2 — k)/2 then we use
(and estimate min(1,27p27%) < 27p27F); in both cases the desired estimate follows.

We prove now . We may assume that |k| < 10 and m > D. As before, we may assume
that [z] ~ 2™ and replace fjx,0 with f; ;. Asin (3-40), we have

(™ Ao fino) (@) = C [ VO p(2m/2=0ma p)
R? (3.42)

% T7 0 (€)p—i-100(€] — 70)d€ + O(272™),

where W is as in (3.41). The support of the integral above is contained in a Kk X p rectangle in
the direction of the vector z, where p < 27 and x < 27™/2H0*m  Gince |%(£)| < 279/249)
in this rectangle (see (3.27)), the bound in the first line of follows if [ > j. On the other
hand, if [ < j then we use to show that the absolute value of the integral in is
dominated by C'277+9'7 /-;,01/ 2 which gives again the bound in the first line of .

It remains to prove the stronger bound in the second line of in the case 2] +max(j,1) <
m. We notice that \’(|¢]) ~ 27! in the support of the integral. Assume that x = (z1,0)
r1 ~ 2", and notice that we can insert an additional cutoff function of the form

oler (e — N (1G] sgn (61))]  where  r, = 207m(20mD/2 1 9d 4ol

in the integral in , at the expense of an acceptable error. This can be verified using Lemma
(i). The support of the integral is then contained in a x x p rectangle in the direction of the
vector z, where p < £,272! and k < 27/ 2+8"m  The desired estimate then follows as before,
using the L>° bound ({3.27)) if 2j < m — [ and the integral bound if 25 >m —1.

The bounds in follow from (3.31)) and (3.32)) by summation over n and [ respectively.
Finally, the bounds in follow by summation (use if 5 > (1 —6%)m or m < 4D, use
(3.30) if 7 < (1 — 8%)m and |k| > 10, and use if j < (1—6%)m and |k| < 10). O

Remark 3.7. We notice that we also have the bound (with no loss of 220°™  used only in [32])
le™** A<ap 3 A<ap s S| poo S 272F27 /270200, (343)

provided that j < (1 — 6%)m + |k|/2 and |k| + D < m/2. Indeed, this follows from if
j > m/10. On the other hand, if j < m/10 then we write e_itAAggp’,YOAggpm fik as in .
The contribution of |VeV| < k &~ o(m+Ikl/2=K)/2 s estimated as before, using , while the
contribution of |VeW| > £k is estimated using integration by parts in &.

4. DISPERSIVE ANALYSIS, I: THE FUNCTION 0

In this section we prove several lemmas describing the function 0;V. These lemmas rely on
the Duhamel formula ([2.18)),

QLOV)(E, 5) = e“MOQNG (€, 5) + e MOQING (€, 5) + *MOQINL (€, 5), (4.1)
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where

MO (&) = Y Y /Rz6is¢+“"(£’")muu(€,77)(9“19;)(6—77,8)(9“21//;)(71,8)@7

w,ve{+,—} a1t+az=a

(4.2)
and
ez’ssA(é)Qg/\//g(f7 s) = Z Z / ei8<1>+uu5(§777,0)n‘w/5(§, n,0)
p,Be{+,—} a1+aztaz=a ' RZXR? (4.3)
X (V) — .8) (V) (0 — 0, 8)(QVs) 0, 8) dido.
Recall also the assumptions on the nonlinearity N>4 and the profile V (see (2.25)),
2
VO gyvogvaovs < er(l+ 0", IVlz <e, "
V=4Ol gy vo-rappgi S ef(1+1)77
and the symbol-type bounds on the multipliers m,,. Given ® = ®,,, as in (2.5)) let
E=Ew&n) = (VyPouw)(&n) = (VALE —n) — (VA)(0), 2:R* x R* » R?,
A (1€ =nl) (4.5)
O = Gu(§>7l) = (an)aul/)(gvn) = ﬁ(& : nL)7 O: ]R2 X R2 —R.

In this section we prove three lemmas describing the function 0,V .
Lemma 4.1. (i) Assume {1)-([@4), m >0, s€ 2™ —1,2"H) k€ Z, 0 € {+,—}. Then
26—5m/6+652
H(atv(,)(s)HHNO,NmHg1 < £295m/6+687m, (4.6)

sup |e=¥A P, DY (0, Vy)(5)|| Lo < 5%2_57”/3%52’”. (4.7)
a<N1/2420, 2a-+|a|<N1 4Ny

(i) In addition, if a < N1/2 4 20 and 2a + |a| < Ny + Ny, then we may decompose
P.D*Q%(0V,) = €1 > > Agpoiaaas | 3P B, (4.8)
a1+az=a,a1+az=a, pre{+,—} [(k1,j1),(k2,52)| € X i

where
| PLES (5)|| 2 S 27 8m/2H5om, (4.9)

Moreover, with m+ul/(£7 77) = m,ul/(gv 7))7 m*,ull(g’ 77) = m(—p,)(—l/)(_€7 _77)7 we have

—

FUGSHE ) = [ ¥ EDm (€ man O] 1 (€~ no) T (n)dn, (410)

where

w1 . a1 (a1 v _ -1 ) a2 (a2
jik1 €1 P[k1—27k1+2]QJ1k1D Q V/“ sz,k:z =& P[k2—27k2+2]QJ2k2D Q=Y.
The sets Xy, and the functions Az,l,;?‘yla_i’zai have the following properties:

(1) X = 0 unless m > D?, k € [-3m/4,m/N}]| and
X € {[(k1,41), (k2,42)] € T x T : k1, ka € [=3m/4,m/Ng], max(j1,j2) < 2m}.  (4.11)
(2) If [(k1, j1), (k2, j2)] € X i and min(ky, kg) < —2m/N|, then
max(ji,j2) < (1 —6%)m — |k|, max(|k; — k|, |ko — k|) <100, p=rv, (4.12)
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and ,
al,a1;a2,00 2kog—m~+65“m
| AR (s)]] o S 22027mH00m, (4.13)
(3) If [(kl,jl), (kQ,jQ)] S Xm,k; min(kl, kg) > —5m/N(/], and k < min(kl, ]{72) — 200, then
maX(jlva) S (]- - 52)7’77, - |k’7 max(|k:1|, |k2|) S 107 H ==V, (414)
and
AR @l S 202, (419
(4) If (K1, j1), (k2, j2)] € Xk and min(k, k1, ko) > —6m/N; then
either  j1 <b5m/6 or |ki| <10, (4.16)
either  jo <5m/6 or |ka| <10, (4.17)
and
min(ji, j2) < (1 — 6%)m. (4.18)
Moreover,
a1,01;a2,0 ko—m~+4dm
HAk;lkl,ljl;?gz,]z'g (S)HLQ S 272 + ) (419)
and
if max(ji,72) > (1 — 52)m — |k| then HAZlk?lgf?@ajg(S)HL2 < 9 4m/3+46m, (4.20)

(iii) As a consequence of (4.9), (4.13), (4.15), (4.19), if a < N1/2+420, and 2a+|a| < N1+ Ny
then we have the L? bound

| D> (0, V)|

L2 5 E% [2k2—m+56m + 2—3m/2+55m] ] (421)

Proof. (i) We consider first the quadratic part of the nonlinearity. Let I7*” denote the bilinear
operator defined by

FAgl} (€)= [ | et em(em) (e~ mindn.

e T i

(4.22)

where, for simplicity of notation, m = m,,,. For simplicity, we often write ®, =, and © instead
of 5,1, Zuv, and O, in the rest of this proof.
We define the operators Plj for k € Z4 by Plj' ;= P, for £k > 1 and POJr := P<¢p. In view of

Lemma (ii), (4.4), and (3.34), for any k£ > 0 we have
1P 17 Vo, Vo ()| o -y S 20N > 25281 2| PEV(s) || 2l P V(s) | e
0<k1<kg,ka>k—10
< 8%2—]@2—5m/6-|—652m

I

(4.23)
which is consistent with (4.6)). Similarly,
|PFI7[Q%2V,, Q%Y ()| 12 S 2 k32 dm/6+60%m g0 L ag < N (4.24)

by placing the factor with less than Nj/2 Q-derivatives in L°°, and the other factor in L2
Finally, using L* estimates on both factors,

6%2—5m/3+662m if k < 20,

£291kg—11m/64520m i 1 > 90, (4.25)

”e_iSA“P]jIU‘MV [DO‘?QCLQVM, DQ™YV ()|l S {
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provided that as + ag = a and ay + ag = a. The conclusions in part (i) follow for the quadratic
components.

The conclusions for the cubic components follow by the same argument, using the assumption
instead of , and the formula . The contributions of the higher order nonlinearity
N>4 are estimated using directly the bootstrap hypothesis (4

(ii) We assume that s is fixed and, for simplicity, drop it from the notation. In view of ( .
and using interpolation, the functions f# := ¢; 1D Q92V, and f¥ :=¢;] 1DV, satisfy

12 , , v 252
If HHNOOZMgl N g e < (4.26)

where, compare with the notation in Theorem
N{ = (N7 — N4)/2 = 1/(26), No (No — N3)/2 — Ny = 1/0. (4.27)

In particular, the dispersive bounds (3.29)—(3.34) hold with N = N = 1/(26).
The contributions of the higher order nonlinearities N3 and N>4 can all be estimated as part
of the error term P,Ey”, so we focus on the quadratic nonlinearity A>. Notice that

a1,01;a2,002 o Uy
ksk1,715k2,52 = Dl (

Proof of property (1). In view of Lemma [3.1 and (3.33)), we have the general bound

H a1,a1;a2,02 H < gk+min(k1,k2)/2  9—5m/6+56%m
kik1,g15k2,52 1 L2 ~

)
Jji,k1? Ja,k2 /"

min [27(1/276) max(j1 ,]'2)7 27N6 max(k‘l,kg)] )

This bound suffices to prove the claims in (1). Indeed, if k > m/N} or if k < —3m/4 + D?
then the sum of all the terms can be bounded as in (4.9)). Similarly, if k € [-3m/4 4+ D?,m/N)
then the sums of the L? norms corresponding to max(ky, k2) > m/N{, or max(ji,j2) > 2m, or
min(ky, ko) < —3m/4 + D? are all bounded by 273™/2 as desired.

Proof of property (2). Assume now that min(ki, k2) < —2m/N{ and jo = max(ji, j2) >
(1 — 6%)m — |k|. Then, using the L? x L™ estimate as before

k k1,k2)/20—5m/6+552 1-506 —3m/2
[PLITH 1 f5 s Ao [ || o S 2FTmm(k2)/29=0m /61507 m)=j2(1-500) < 9=8m/

~

Moreover, we notice that if A>1,, f7, ;. is nontrivial then [k2| < 10 and k1 < —2m/Ng, therefore
o 2 -
HPkI ;w[ 2 A>1 71f2 s HL2 S 2k+k1/22 —m~+50 mo —j2(1/2-96) < 92 3m/2+3§m
if 1 < (1 — 6%)m, using (3.31) if k; > —m/2 and (3.30)) if k&1 < —m/2. On the other hand, if
41 > (1 — 6%)m then we use again the L? x L™ estimate (placing f” K D L?) to conclude that

[P I7E A £ o S 24P/ 22 0082 < om,

The last three bounds show that

H a1,t1;a2,002

& .
k;k1,j1;k2,J2HL2 S2 sm/2som max(j1, j2) > (1 — 52) — |kl. (4.28)

Assume now that
k1 = min(k1, ko) < —2m/Ny  and  max(j, j2) < (1 —6%)m — |k|.

If ky > ki + 20 then |V, @(&,n)| 2 2/F11/2, so [|Afye1ea2 || ) <273 in view of Lemma [3.3] ().

On the other hand, if k, ks < k1 + 30 then, using again the L? x L> argument as before,

| PLITH[F2 4 £ po]| o S 2R 7m0 (4.29)
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The L? bound in (4.9)) follows if k + k; < —m/2. On the other hand, if k + k; > —m/2 and
max(|k; — k|, |[ke — k[]) > 100 or p=—

then \Vn@(ﬁ,n)\ > gk—max(ki.k2) in the support of the integral, in view of (7.18). Therefore
|| Ajpoiazaz HL2 <9-sm iy view of Lemma (i). The inequalities in (4.12)) follow. The bound

~

1 "kik,g13k2,72
4.13)) then follows from .

Proof of property (3) Assume first that
min(ky, ko) > —5m/N§, k< min(ky, ko) — 200, max(j1,j2) > (1 —6%)m — |k| — |ka|. (4.30)
We may assume that jp > j;. Using the L? x L™ estimate and Lemma (ii) as before

BRIt 10 s A2, £ k)] S 244 20 m 6385 mgm2(12500) < g=8m/2

if ng < D. On the other hand, if ng € [D, jo| then

opr (j2) v — oy I3 (j2) v
PpI [ j1,k1? Anzﬂl j2,k2] =Pl [Azlﬁl jl,kl’Amﬁl j277€2]‘

If j1 < (1 — 62)m then we estimate

[PeI™ [As 100 £y 1y AR o]

ko—m~+562m+26meo—ja(1/2—35) —3m/2+36m+85%m
n2,71J ja2,k2 S 2727 2" < 2

L2 ~
Finally, if jo > j1 > (1 — 62)m then we use Schur’s lemma in the Fourier space and estimate
w k n2)/2 w
“PkIUuV[Agll,)’Yl j1,k1’A7(1]227)’Y1 J2,k2 HL2 SJ 2727 (r1.ma2)/ HA7(1]117271fJ1,k1HL2HA712771 Jz,szLz
< 2k225 m2—max(nl,ng)/22—j1(1—505) (1/2—496)n | 92— jo(1— 506)2(1/2 496)n2
< 22(52m2min(n1,n2)/22—j1(1—505)2—495(n1+n2)2—j2(1—505)

< 2262m27(27252)(17505)m2(1/27985)m

(4.31)
for any ny € [1, j1 + 1], ng € [1, jo + 1]. Therefore, if (4.30) holds then
b ; b 6
H Z;lkiljla;?fz():;zHL? S2 /2 . (4'32)

Assume now that
min(ky, ko) > —9m/No, k < min(ky, ko) — 200, max(ji,j2) < (1 —62)m — |k| — |ka|. (4.33)
If, in addition, max(|k1],|k2|) > 11 or p = v then |V, ®(&,n)| 2 2572 in the support of the

integral. Indeed, this is a consequence of ([7.18]) if & < —100 and it follows easily from the
formula (7.22)) if & > —100. Therefore, HAal’al.;a2’a2. HL2 < 273 ysing Lemma (i). As a

kik1,j13k2,52 ~
consequence, the functions Azlk’fljfi;‘; can be absorbed into the error term P,FE5 ™ unless all

the inequalities in (4.14]) hold.
Assume now that (4.14) holds and we are looking to prove . It suffices to prove that

[P A 2 s Azt S pormt, (434

after using (3.31)) and the L% x L argument. We may assume that max(j1, j2) < m/3; otherwise
([4.34)) follows from the L? x L estimate. Using ([3.27) and the more precise bound (3.32),

[Apnohlle S 25m2 P2 e Ay gl S 27 min (202, 27277,
where h € {fj, k1> Gjo,ko }» P > 1. Therefore, using Lemma

ouv iz v ko—m+562mo— max(p1,p2)/2 mln(pl,pg)/Q
HPkI [Aph“/o jl,klvA’meo jQ,kg] S 2727 2" 2

L2 ~
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The desired bound ([5.80)) follows, using also the simple estimate

iz v k6286%me—(p1+p2)/2
jl,k‘l’APQ»’YU j27k2]HL2 ’S’ 272 2 .

This completes the proof of (4.15]).

Proof of property (4). The same argument as in the proof of (#.32)), using just L? x L>®
estimates shows that ||A3192%2 ||, < 2=3m/2440m if either (4.16) or (4.18)) do not hold. The

HPkIUuV [Apl,’Yo

kik1,15k2,52
bounds (4.20) follow in the same way. The same argument as in the proof of (4.34)), together

with L? x L™ estimates using (3.33) and (3.29), gives (4.19). O

In our second lemma we give a more precise description of the basic functions A;,l,flj;ﬁi’;i (s)
in the case min(k, k1, k2) > —6m/Nj.

Lemma 4.2. Assume [(ki,j1), (k2,j2)] € Xk and k, ki, ky € [=6m/Ngy, m/Nj] (as in Lemma
(ii) (4)), and recall the functions Azlk?ljfz;;(s) defined in (4.10).

(i) We can decompose
3 3

a1,a1;a2,002 a1,o15a2,02;8 Z [4]
Ak§k17j1;k27j2 - Ak;kl,jukz,jg - G ) (435)

i=1 =1

—

FApeveesle o) .= /]R M m (& mer(EXTE M 4, (€ =097, 1o (0. 5)dn, (4.36)
where ¥ are defined as

XM (Em) = 021D (€, 1)) (25, B (€, 1)) 110 5m 6 (max (1, J2)),
X&) = =121 D(€, 1)) (222, (€, 7)),
O )

The functions Aal’a“@’a%m(s) are nontrivial only when max(|k|, |k1|, |ka|) < 10. Moreover

kik1,j15k2,52
HG[I](S)HL2 5 2—m+45m2—(1—505) max(jl,jg)’ (437)
HG[2](S)HL2 S/ 2k2—m+46m’ HG[S](S)HL2 S/ 2—3m/2+4¢5m' (4.38)
(ii) We have
P A<D AT N9 o S (27 4 221800 (4.3

As a consequence, if k > —6m/N} + D then we can decompose
A<D-102700tf] 1, = h2 + hoo, (4.40)
lha(s)llz2 S 2752F50m 0 lhoo (s) || Lo S (27F 4 2%F)27m 90, '

(iii) If j1,j2 < m/2+ dm then we can write
GUI(, ) = el @2Re @2 gl (¢ 5)p (2% ([€] — 1)) + AII(E, 5),
||D?g[1] (S) ”Loo SOC 2—m+45m2|a|(m/2+45m)’ ”asg[l] (S) ||LOo 5 2—2m+186m’ (441)

1R (s) ][0 S 274,
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Proof. (i) To prove the bounds (4.37] ,@ we decompose
le;iljﬁifjé Z 4, A = Byl [fjl k1> jy27k’2]’ (4.42)

o~

FULF NS = [ e mie,m () F(E — nandn, (1.43)

where m = m%! , and x; are defined as

i

X1(€,m) = 9>1(22°"0(¢, ),

X2(&,m) == 0=1(2' "R (&, 7)) (22O (€, 7)),

X3(&,n) = @(2'%°™D(£,7))p(22°O(£, 1)) (5m/6,00) (Max (1, j2)), (4.44)
Xa(&,n) = e(2'%°™D(£,1))p(2°%O (£, 1)) >1(2*PE(E, 7)) Lo 5m/6) (max(j1, j2))
X5(6,m) == 0(2'%MD(£,1)) (22 O(£, 1)) (22 Z (€, 1)) L0 5m ) (max(j1, j2)).

Notice that Ay = G, A5 = Gl and Ay + As + A4 = GBJ. We will show first that
A2 + HA3HL2 + [ Al 2 S 27RO, (4-45)
It follows from Lemma and (£.16)—([4.18) that ||A1]|f2 < 272", as desired. Also, [|A4l[z2 <
( )-

274m as a consequence of Lemma It remains to prove that
| A 2 < 273/, (4.46)

Assume that jg > 5m/6 (the proof of (4.46) when j; > 5m/6 is similar). We may assume that
|ka| < 10 (see ([@.17))), and then |k, |k1| € [0,100] (due to the restrictions |®(£,n)| < 271%™ and
|©(&,1)| <2729 see also (7.6)). We show first that

1PeTs 5 s Ao Sl o S 2750280, (4.47)

Indeed, we notice that, as a consequence of the L? x L® argument,

HP’“IUW/[ J1,k1° A<0’71 J2,k2 HL2 5 2" 3m/2

where 17" is defined as in (#.22)). Let I!l be defined by

~

FUNFGHE) = [ Emie e (e m)fE —namdn (@49
Using Lemma and , it follows that

The same averaging argument as in the proof of Lemma gives (4.47]).
We show now that

—3m/2
P/i‘IH[fjli7k17A§0771 Y |l S 278

HP’“]?’ fh k1 s A1 f}, J2.k2 ”L2 ~ S 27 dm/akaom, (4.49)

Recall that |ko| < 10 and k, |k;1| € [0,100]. It follows that |V, ®(¢,n)] > 277 in the support of
the integral (otherwise || would be close to 71 /2, as a consequence of Proposition [7.2] (iii), which
is not the case). The bound (4.49)) (in fact rapid decay) follows using Lemma (i) unless

g2 > (1 — 8*)m. (4.50)
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Finally, assume that (4.50) holds. Notice that PyI3[A>1~f}, 1 s A>1,31 [} ,) = 0. This is due
to the fact that [A(v1) £ A(y0) £ A(y1 £ )| 2 1, see Lemma (iv). Moreover,

HPk‘I MV[A<O,’YO Ji,k1? A>17’Yl J2,k2 HLQ S27 8m/2+86m-+65"m

as a consequence of the L? x L> argument and the bound . Therefore, using Lemma

3m/2+36m+652m
HP’JH A<070f31 k1 s Ax1: 17, Jo,k2 HL2 S2 m/ "

The same averaging argument as in the proof of Lemma [3.5] shows that

_ 2
| PeI3[A<0,6 jl,kpAzlm Y ol S 2 3m /2+36m+662m

and the desired bound (4.49) follows in this case as well. This completes the proof of (4.46]).
We prove now the bounds (4.37). We notice that |n| and |{ — n| are close to 1/2 in the
support of the integral, due to Proposition (iii), so

Glil(e) = /Rz SED (&, ) (EXINE M) Ast o 2 o (€ = 1) Asime 27, (M),

Then we notice that the factor ¢(23°™V,®(¢, 7)) can be removed at the expense of negligible
errors (due to Lemma (i)). The bound follows using the L? x L> argument and Lemma [3.5]

The bound on G(s) in - ) follows using - -, and (| -

(ii) The plan is to locahze suitably, in the Fourier space both in the radial and the angular
directions, and use ([3.26) or (3.27)). More precisely, let

By, () = / (e o (€) ol E(E M) ey O ML 1y (€= ) FE i (), (4.51)

where kg and k, are to be fixed.
Let j := max(j1,j2). If

min(ky, k2) > —2m/Nj, j<m/2

then we set x, = 220m="/2 (we do not localize in the angular variable in this case). Notice that

[ FLAG a5y} (&) = Brg e, (O] S 274 in view of Lemma (i). If [|€] — 20| > 272 then we

use Proposition (ii) and conclude that the integration in 7 is over a ball of radius < 2*lx,..
Therefore

k E1,k2) k w
By, (€)] < 2 +min(k1,k2 /2(2| | A2 " leL‘X’H jl;,kQHL‘x’ <

< (2—k + 23k)2—m+105m. (452)
If

min(ky, k2) > —2m /N, J € [m/2,m — 106m]

then we set r, = 220m+i=m ) — 936m=m/2 Notice that | FLARSG 1) = Brgwn ()] S 2727

in view of Lemma (i) and Lemma If ||£] — 20| > 272P then we use Proposition (ii)
(notice that the hypothesis holds in our case) to conclude that the integration in 7 in the
integral defining Bi, x,.(£) is over a O(k X p) rectangle in the direction of the vector &, where
K = 2WkI20m g, 5= 9lkle . Then we use for the function corresponding to the larger j
and to the other function to estimate

’Bng,m(f)’ < 2k/€273+5153p49622632862m < (246 + 23k)27m+105m' (4.53)
If

min(ky, k) > —2m/Nj, j > m—100m
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then we have two subcases: if min(ji,j2) < m — 10dm then we still localize in the angular
direction (with kg = 239™~"/2 ag before) and do not localize in the radial direction. The same
argument as above, with p < 220m gives the same pointwise bound . On the other hand,
if min(jy, j2) > m — 100m then the desired conclusion follows by Holder’s inequality. The bound
follows if min(k1, ko) > —2m/N|.

On the other hand, if min(ki, k2) < —2m/N{ then 2% ~ 2% ~ 2% (due to ([£12))) and the
bound can be proved in a similar way. The decomposition is a consequence of
and the L? bounds .

(iii) We prove now the decomposition ([4.41)). With  := 9=m/2HImAEm e define

g,5) = [ e me N M1y (€ = 1Ty ()l (€ m))n,

WG ) = [ e, o X E M (€ = 1T (1510 (6 (6 m))ln,
(4.54)

where ®'(£,7) = ®op(§,1) — Ao (§) +2A5(£/2). In view of Proposition (iii) and the definition
of YU, the function GI is nontrivial only when p = v = o, and it is supported in the set
{11€] = 1] < 27199m} The conclusion ||hY(s)||ge < 274" in follows from Lemma (1)
and the assumption ji,jo < m/2+ dm.

To prove the bounds on gl'! we notice that @'(£,n) = 2A,(£/2) — Ag(€ — 1) — Ay(n) and
In—¢/2| < & (due to (7.21)). Therefore |'(&,n)| < &2, [(Ve®')(&, )l S 5, and [(Dg®")(€,n)] Sjay
1 in the support of the integral. The bounds on ||Dgg[1} (8)|| e in follow using L*° bounds

on E(s) and @(S) The bounds on ||3sg!"(s) |z~ follow in the same way, using also the

decomposition (4.40) when the s-derivative hits either fﬁ K (8) or 7;( ) (the contribution of
the L? component is estimated using Holder’s inequality). This completes the proof. O

Our last lemma concerning 0;V is a refinement of Lemma (ii). It is only used in the proof
of Lemma 5.4 in [32].

Lemma 4.3. For s € 2™ —1,2"H] and k € [~10, 10] we can decompose

F{PrA<D 2+, (D QO V5)(8) HE) = ga(€) + goo(§) + g2() (4.55)
provided that a < N1/2 4+ 20 and 2a + |a| < Ny + Ny, where

lgall 2 S 72722200 gl S €

R ) 16m/9— 4.56
sup FH e P gy S a0, (4.56)
|p|<27m/9+40m

2—m—45m

i

Proof. Starting from Lemma (ii), we notice that the error term Eg can be placed in the
L? component go (due to It remains to decompose the functions A" ™ . We may
assume that we are in case (4), k1, k2 € [-2m/Nj, m/N)]. We define the functions By, ., as in
(4.51). We notice that the argument in Lemma (ii) already gives the desired conclusion if
J = max(j1, ja) > m/2 + 200m (without having to use the function g ).

: : a1,a1;a2,02
It remains to decompose the functions A<p oy, Ay 0 ]2( s) when

J = max(j1, jo) < m/2 + 206m. (4.57)
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As in let
Bf{r(g) = /]RQ ZS(D&W (5 ﬁ)@k(f)@(ﬁ;lE(fﬂﬁ) J1, k1(§ 77) J2, k2( )d% (458)

where £, := 2399m="/2 (we do not need angular localization here). In view of Lemma (1),
|F AZ},;%T%’;; (€) — By, ()] £ 274", It remains to prove that
H]_— 1{6 i(s+0)A () o1 (2190 |¢] — 240|) B }HLoo < 9=16m/9-56m (4.59)

for any kajlvkl)j27 k;27p ﬁxed’ |p‘ < 27m/9+4§m‘

In proving (#.59), we may assume that m > D2. The condition |Z(£,7)| < 2k, shows that
the variable 7 is localized to a small ball. More precisely, using Lemma [7.2] we have

[n—=p(&)] < kr, for some  p(&) € P (§), (4.60)

provided that ||{|—2vo| 2 1. The sets P,, (&) are defined in ([7.15]) and contain two or three points.
We parametrize these points by pe(€) = qe(I§))€/1€], where q1(r) = /2, qa(r) = p412(r), ¢3(r) =
r—pyqo(r)if u=v,or q1(r) = p1-1(r),q2(r) =7 — py_1(r) if u = —v. Then we rewrite

By, (&) = Z e84 (8) gisAulE=pe()+A (e, (¢) (4.61)
L

where
Hy(€) = /RZe“[q)(g’")_q)(f’”“”m(E,n)«pk(ﬁ)sﬁ(%r_lE(ﬁ,n))
T (€ =) J7 o (22319 0y — pg(€) ).

Clearly, [®(&,n) — @&, pe(€)] < In = pe(), [Ve[@(&,m) — 2§, pe(&)]] S In — pe(€)]- Therefore

|DPHy(€)] S 27mHT00mlBllm/2850m) i lg] — 290] 2 1. (4.63)

(4.62)

We can now prove ([£.59). Notice that the factor e?*Av(&) simplifies and that the remaining
phase & — A (& — pe(§)) + Au(pe(€)) is radial. Let I'y = I'y,, be defined such that I'y(|{]) =
A€ = pe(§)) + Au(pe(€)). Standard stationary phase estimates, using also (4.63), show that
(4.59) holds provided that

IT(r)| =1 and |TY(r)|~ 1 it re[272,2%) |r — 2y > 273772, (4.64)

To prove ([4.64)), assume first that g = v. If £ = 1 then py(§) = £/2 and the desired conclusion
is clear. If £ € {2,3} then +T¢(r) = A(r — p142(r)) + A(p442(r)). In view of Proposition [7.2] (i),
r—270 > 277, pyia(r) € (0,70 — 27%P], and N (r — py42(r)) = N (p4+2(r)). Therefore

Tp(r)] = N(r = pega(r)), TP =[A"(r = prya(r) (1 = Py ya(r))]-

The desired conclusions in ([4.64) follow since |1 — p/,_ ,(7)| ~ 1 in the domain of 7 (due to the

identity A”(r — piia(r))(1 — pl5(r)) = A (p142(r))p)y15(r))-
The proof of (4.64]) in the case p = —v is similar. This completes the proof of the lemma. O
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5. DISPERSIVE ANALYSIS, II: PROOF OF PROPOSITION [2.2]

5.1. Quadratic interactions. In this section we prove Proposition We start with the
quadratic component in the Duhamel formula (2.15)) and show how to control its Z norm.

Proposition 5.1. With the hypothesis in Proposition for any t € [0,T] we have

sup ID*Q“Wa ()| 2, < €3 (5.1)
0<a<N; /2420, 2a+|a|<Ni+Ny

The rest of this section is concerned with the proof of this proposition. Notice first that
U= S X [ e @€ ) @) 05 dnds.

H’V€{+7 }a1+a2 =a
(5.2)

Given t € [0,7T], we fix a suitable decomposition of the function 1jg,, i.e. we fix functions
q0,---,qr+1 : R = [0,1], |[L —logy(2 + t)| < 2, with the properties

supp qo C [0,2], suppqr1 C [t —2,¢, suppgm C 2™, 2" for m € {1,..., L},
L+1

t 5.3
Z am(s) = 1j94(s), gm € C*(R) and / g, (s)]ds <1 form e {1,...,L}. (5:3)
0

For pi,v € {+,—}, and m € [0, L + 1] we define the operator T""", by

-~

FT I} (€) = / nls) [t (€ )€~ 0.3 )dnds. (54
In view of Definition 2.1} Proposition [5.1] follows from Proposition [5.2] below:

Proposition 5.2. Assume that t € [0,T)] is fized and define the operators T"", as above. If
ataz=a, a1 +ay=a, p,ve{+,—}, me[0,L+1], and (k,j) € J, then

Z |QirTh,[Pry D*1QY,, Py, D*2Q2V), ] HB < 9 0Pmg2, (5.5)
k1,ko€Z

Assume that a1, a9, b, a1, ag, p, v are fixed and let, for simplicity of notation,
fPi=e ' DMOMY,, Y= DAY, B i=dyy, moi=mu, Tni=T0. (5.6)
The bootstrap assumption (2.25)) gives, for any s € [0, ],

m , v , < 5?2
M gyt 17O gt S (9% 57)

We recall also the symbol-type bounds, which hold for any k, ki, ks € Z, |a| > 0,
H §7k17k2HSoo 5 2k2min(k1,k2)/2’
[ k, kl’k2||Loo Sjal 9(le+3/2) max(|ka | [k2]) | (5.8)

k,k1,k2 al|+3/2) max(|k1|,|k2],|k
| DEmbAk | o < 2llab+3/2) max(ballbal k),

where mk k1,2 (&,n) =mo(&,m) - (&) er, (& —n)er, ().
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We consider first a few simple cases before moving to the main analysis in the next subsections.

Recall (see (3.34])) that, for any k € Z, m € {0,..., L+ 1}, and s € I;, := supp ¢m,
1P (3l 2 + I1Pef” (5)ll e S 2™ min{2(1=209k 9=Nok),

. . (5.9)
HPke*”A“f“(s)HLoo + ‘|PkeilSAyfy(S)HLoo g 2352m min{2(27506)k’ 275m/6}.
Lemma 5.3. Assume that f*, f are as in (5.6) and let (k,j) € J. Then
v 52
> 1QixTon [P 1, Pry f 3, S 277, (5.10)
max{k1,k2}>1.01(j+m)/N},—D?
Y
Z HijTm[P’ﬂvaPkay]HBj SJQ ° " (511)
min{k1,k2}<—(j+m)/2+D?
if 2k < —j —m+495] — 6m then Y QT Pr, f*, Poy £, S 270, (5.12)
k1,k2€Z
o n v < 9—62m
if j > 2.1m then > QT Pey ., Pry 3, S 270 (5.13)
—j<k1,k2<2j/N}
Proof. Using (5.9)), the left-hand side of (5.10) is dominated by
c 2 i maPhegminlin k) /2 sup || By ()| 2| Pro ()12 S 27,
max{k1,ks}>1.01(m-+j)/Nj—D2 s€lm
which is acceptable. Similarly, if ky < kg and k1 < D? then
27| PeTon [ Pi, f*, Py f¥]|| 2 S 272k R /2 SUp [ Prey S () 2 | P 7 (5) | 2
s€lm
S 2j+m2(5/27506)k1 27(N671) max(k2,0)7
and the bound (5.11)) follows by summation over min{k,ko} < —(j +m)/2 + 2D2.
To prove (5.12)) we may assume that
2k < —j —m+4955 —om,  —(j+m)/2 < ki, kg < LO1(j +m)/N. (5.14)
Then
1QsxTom [Pr, £, P £V 35 S 27075 PUTn [ Pay £, Pay )] 2
< 99(1-508) gmok-+min(ky k2)/29k sup [ Pey f4(5) | 2| Pro f* () 22
s€lm
< 9=0(j+m)/2
Summing in ki, k2 as in (5.14]), we obtain an acceptable contribution.
Finally, to prove (5.13|) we may assume that
j>21m,  j+k>j/10+D,  —j <k, ka <2j/N,
and define
Fy = Pi—2m+2 @ik s I ks = Plra—2k42) Qb /- (5.15)

If min{j1,j2} > 995/100 — D then, using also (3.26)),
HP’CTm[ijl,klv jyg,kg]HLQ SJ 2m2k+min(k1,k2)/2 seulp H ﬁ,kl(s)“LlHijka(s)HLQ
SCim

< 2m2k+3k1/22—(1—5’)j1—(1/2—6)]'22462m



THE 3D GRAVITY-CAPILLARY WATER WAVE SYSTEM, II 31

and therefore

-4
3 S 1QuTnl 2 o ]l S 270

—j<ki1,ko<2j/N} min{j1,j2}>995/100—D

On the other hand, if j; < 995/100 — D then we rewrite
v ~(k
QuiTnlfly gy [y o) (@) = O3 (@)

. _ _ (5.16)
x /R 4m(5) /R 2 { /R ey (€ (€,0) T 4, (6~ 1, s)dg] 77 (1, )dnds.

In the support of integration, we have the lower bound |V [s®(&,n) + 2 - €]| = |z| ~ 27. Inte-
gration by parts in £ using Lemma |3.3| gives

QTS gy Pl (@)] 5 271 (5.17)

which gives an acceptable contribution. This finishes the proof. O

5.2. The main decomposition. We may assume that

j+m 101 +m) —j—m+495j — 6m )
_ > < 2. > .
k:l,k‘QG[ 5 N7 }, k> 5 , j<21m, m>D*/8
(5.18)
Recall the definition (2.1]). We fix I_ := |—(1 — 0/2)m], and decompose
Tm[fu g] = Z Tm,l[fa g]a
= (5.19)

—

Tpalf,g)(€) == /qu(S) /R2 s EM =& (¢ n)ymo(€,m) F(E =, 5)G(n, 5)dnds.

Assuming (5.18)), we notice that T, ;[ P, f*, P, f¥] = 0 if I > 10m/Nj. When | > [_, we may
integrate by parts in time to rewrite T}, ;[Px, f*, P, f*],
Lo [ Pry s Pry 7] = 1Am 1 [Prey 11, Py f¥') + 1B 1 [Py Os f* Pry f7] + B i [Pry ", Pry 05 £,

Al F29€) = [ n(s) [ 2 G ( m))mal, ) = .51 ) dnds,

o — ~

Budl-6)(€) = [ ans) [ 027 Gl mymoen) Fi§ = . 2)i(n. ) dnds.

(5.20)
where @;(xz) := 2'a7 ¢ (x). For s fixed let Z; denote the bilinear operator defined by
L[S g)(8) = /Rz P EMI G (D(E,m))mo(€,n) F(& — m)(n) dn. (5.21)

It is easy to see that Proposition [5.2 follows from Lemma [5.3] and Lemmas below.
Lemma 5.4. Assume that holds and, in addition,
j > m+ 2D + max(|k|, |k1|, |k2])/2. (5.22)
Then, for 1 <1< 10m/N{,
2090 Qyy T [Py £, P f 1l 12 S 272,
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Notice that the assumptions (5.18]) and j < m + 2D + max(|k|, |k1], |k2|)/2 show that

k ki, ko € [-4m/3 —2D,3.2m/N}],  m > D?/8. (5.23)
Lemma 5.5. Assume that (5.23)) holds and, in addition,
Jj < m+ 2D + max(|k|, |k1], |k2])/2, min(k, k1, ka) < —35m/N6 (5.24)

Then, forl_ <1 <10m/N{,
201759003 Q1 Tyt [Py 4, Prog 112 S 2727,
Lemma 5.6. Assume that holds and, in addition,
Jj < m+ 2D+ max(|k|, |k1], |k2])/2, min(k, k1, ko) > —3.5m/Nj,. (5.25)
Then, forl_ <1< 10m/N}

v 14 — 2
1Qk Tt [Pry 15 Py 11| B, + |1QjkAm a [Py ', P )3, S 2720

Lemma 5.7. Assume that (5.23) holds and, in addition,

J < m+ 2D + max(|k|, | k1], |k2])/2, min(k, k1, ko) > —3.5m /N, [ >-m/14. (5.26)
Then A ,

25| Q By 1 [Pry S, Pry0sf 12 2720

Lemma 5.8. Assume that (5.23)) holds and, in addition,

j <m+ 2D + max(|k|, |k1|,|kz|)/2, min(k, ki, ko) > —3.5m/N}, - <1< -m/14. (5.27)
Then ,

1Q kT a [Py 1, iy |3, S 2727

We prove these lemmas in the following five subsections. Lemma takes advantage of the
approximate finite of propagation. Lemma [5.5|uses the null structure at low frequencies. Lemma
5.6] controls interactions that lead to the creation of a space-time resonance. Lemmas[5.7]and
correspond to interactions that are particularly difficult to control in dimension 2 and contain
the main novelty of our analysis (see also [31]). They rely on all the estimates in Lemmas

and and on the “slow propagation of iterated resonances” properties in Lemma
We will use repeatedly the symbol bounds (5.8)) and the main assumption ([5.7)).

5.3. Approximate finite speed of propagation. In this subsection we prove Lemma [5.4]
We define the functions fj”1 Ky and f]’-’ as before, see (5.15)), and further decompose

2,k2
Ji+1 Jo+1
[ H A v
fjl,kl - Z fjhkhm’ Jo.ke T Z J2,k2,n2 <5'28)
n1=0 no=0

as in . If min{j1,j2} < j — dm then the same argument as in the proof of leads to
rapid decay, as in . To bound the sum over min{ji, j2} > j—dm we consider several cases.
Case 1. Assume first that
min(k, k1, ko) < —m/2. (5.29)
Then we notice that

1P BT o Sl e S 202572 st (175 4y 1 )]

< 2m2252m2k2—(1/2—6)(j1+j2) .
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Therefore, the sum over ji, jo with min(j1,j2) > j — dm is controlled as claimed provided that
k < —m/2. On the other hand, if k1 = min(ky, k2) < —m/2 then we estimate

IPTon o Sl S 2724202 s 172 s oo 175 ) 2]

< 2m2252m2k+k1/22k12—(1—506)j12—(1/2—6)j22—4max(k2,0)‘

(5.30)

The sum over ji, jo with min(j1,j2) > j — dm is controlled as claimed in this case as well.
Case 2. Assume now that

min(k, k1, ko) > —m/2, I < min(k, k1, k2,0)/2 —m/5. (5.31)
We use Lemma[7.5} we may assume that min(k, k1, k2) + max(k, k1, k2) > —100 and estimate

Iz v maok+min(ki,k2)/295 max(k1,k2,0)ol/2—n1/2—n2/2
HPkTml fjl,kl,m’ j27k2,n2]HL2 5 272 2 2

sup [[[supl £ 4, o, (0 | Lagra | 520 13, sy e (2 )1 2 ]

m

Using (3.25)), (5.7), and summing over nq, ne, we have

— j v max 2 ’
o(1 505)]HP7€Tm,l[f;j,kl> Y HL2 527 ax(k1,k2,0) 9m28°m o (1-508)j9l/29—(1-8") (ji+j2)

The sum over j1, jo with min(j1,j2) > j — dm is controlled as claimed.
Case 3. Finally, assume that

min(k, k1, ko) > —m/2 [ > min(k, k1, k2,0)/2 —m/5. 5.32
(K, k1, k2) /2, (k, k1, k2,0)/ / (5.32)

We use the formula (5.20). The contribution of A,,; can be estimated as in (5.30]), with 2™
replaced by 27¢, and we focus on the contribution of B 1| Pry f*, Pr,0s f¥].  We decompose
951" (s), according to (4.8)). The contribution of Py, E;*“* can be estimated easily,

HPkBm,l[ o

Jik1’ HPI@EEZ’% (S)HLQ]

Pk2E32’a2] ||L2 < gmo—lok-+min(ky,k2)/2 Sseujp [Hf;;kl (S) HLl

< 2m2252m2m/5—min(k,k1,kQ,O)/22k+k2/22k1 2—(1—515)j1 2—3m/2+5(5m

< 27(17515)j1 2fm/47
(5.33)

and the sum over j; > 7 — dm of 2(1*505)j||PkBm,l[ ]“1 jrs Do |lz2 is suitably bounded.

We consider now the terms A>3/ 05 (s) in (4.8), [(k3,73), (k1, ja)] € Xin ks a3 + s = g,

az + a4 < ap. In view of ([@.12), [E.14), and ([£.20), A58 (s)lle S 9—4m/3+45m
if max(jz, ja) > (1 —8%)m —|ky| or if |k‘2| +D/2 < min(|ks], [k4])-

The contributions of these terms can be estimated as in (5.33]). On the other hand, to control the
contribution of ijBm,l[fj“hkl Az;’:g;ﬁ‘f}z“ﬂ] when maX(jg,j4) (1—6%)m— |ko| and |ko| +D/2 >
|k3|, we simply rewrite this in the form

@) [an) [ Frnmo)] [ ol G @, 6.6 - )
R r2 7 R2 xR2

X @k(€)Pky (& = MW (&€ = Mmyps (€ =1, 0) f1 1. (6= 0 — 0,5) f] 1, (0, 5) ddor | dnds,

57427052]

(5.34)
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where @' (&,7,0) := A(€) — Au(n) —Ag(§ —n— o) — Ay(o). Notice that
(Velz - &4 sA(E) — sAu(n) — sAg(§ —n — o) — sAy(0)]| = |z] = 27, (5.35)

We can integrate by parts in £ using Lemma (i) to conclude that these are negligible contri-
butions, pointwise bounded by C27°™. This completes the proof of the lemma.

5.4. The case of small frequencies. In this subsection we prove Lemma The main point
is that if k := min(k, k1, ka) < —3.5m/N}, then |®(¢,n)| 2> 25/2 for any (£,1) € Dy, ky» a8 &
consequence of (7.6 and (5.23]). Therefore the operators T,,,; are nontrivial only if

l>Ek/2-D. (5.36)

Step 1. We consider first the operators A,, ;. Since | > —2m/3 — 2D, it suffices to prove that
_ _ _ 52

2U=50)m=E/2) | BT (s), f4 1 (s HLQ < g m (5.37)

for any s € I,,, and ji, jo, where Z; are the operators defined in , and fﬁ g, and f]’.’Q’/,€2 are
as in (5.15). We may assume k; < k9 and consider two cases.
Case 1. If k = k; then we estimate first the left-hand side of (5.37)) by

02(1—505)(m—ﬁ/2) X 2/{:+E/22—l ZtAH 1

[SiuQI?n He J1,k1 )HLOOH jVQJC?(S)HL? + 2—8m]

< 9(1-500)(m—k/2) | 2k2662m [2E2—m+505j1 9—dkt 4 2—8m]

)

using Lemma |3.5| and (3.30)). This suffices to prove (5.37)) if j1 < 9m/10. On the other hand, if
g p j :
p.37)

J1 > 9m/10 then we estimate the left-hand side of (5.37)) by
02(17505)(7717&/2) . 2k+E/227 [ Sup Hf k —itAy, v
J1,R1

He J2,k2 (S) HLOO + 278m]

Ol

< 2(1—505)(771—&/2) . 2k2652m [2—(1—505)j1 2—5m/62—2k+ + 2—8m]

using Lemma and (3.34)). This suffices to prove the desired bound ([5.37)).
D37

9

Case 2. If k = k then (5.37)) follows using the L? x L™ estimate, as in Case 1, unless
max(|k1|, |ka|) < 20, max(j1,j2) < m/3. (5.38)
On the other hand, if m holds then it suffices to prove that, for |p| < 2™~ P,

2(1 508)(m— k/2)2 k/QHPkIO < 9- 35%2m

Ji, k1( ) JV2 kz(s)]HLz ~

BTl = [ | e D™ eDmo(e.n) F(e ~ ngn) dn.

Indeed, (5.37) would follow from (5.39) and the inequality | > k/2 —D > 2m/3 — 2D (see
(5.23)—(5.36) ), using the superposition argument in Lemma On the other hand, the proof

of (/5. 39‘ is similar to the proof of (4.15)) in Lemma

Step 2. We consider now the Operators B,,1- In some cases we prove the stronger bound

(5.39)

V a2
=SB | BT f, 1, (5), Peads S (8)]]| 2 S 270, (5.40)
for any s € I, and j;. We consider three cases.
Case 1. If kK = ky then we use the bounds
Pk 8 fl/ S 5 5 2—m+55m 2]{?2 +2—m/2 ,
[ Piy Os f* (5) I ( ) (5.41)

He_iSAVPk28SfV(S)HLOO 5 2—5m/3+652m

?
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see (4.21)) and (4.7). We also record the bound, which can be verified easily using integration
by parts and Plancherel for any p € R and k' € Z,

HefipAPk/ —ipA(€

oo S 1FHe o} S1+ K725 p). (5.42)
If
ki >-m/4,  j <(1-6)m (5.43)
then we use , , and Lemma to estimate the left-hand side of (5.40)) by
CoFTn/patre a2t swp eI g () 1P (9) a2 + 2757
5 26k+ 2k1/227405m'

This suffices to prove (5.40) when (5.43)) holds (recall the choice of &, No, Ny in Definition [2.1)).
On the other hand, if

ky > -m/4,  j1>(1-86)m (5.44)
then we use (5.42)), (3.29), (5.41), and Lemma [3.5] to estimate the left-hand side of (5.40) by

C2k+k1/22(1 508)(m— k/2)2m[ —lH " kl( )HL2 sup ||€ i(s+p)A ”Pk28 fu( )HLOO +2—8m]
|p|<2-tH+40%m

S 910k 2—2m/3+106m2—2l.

This suffices to prove (5.40), provided that ([5.44]) holds.
Finally, if k&; < —m/4 then we use the bound

i(s+p)Ap fh (S)HLOO S.; 2(3/27256)]61 27m+506m252m

sup le” b

lo|l<2m=P
which follows from (3.29)—(3.30)). Then we estimate the left-hand side of (5.40) by
022k++k1/22(1—505)(m—k/2)2m . 2—12(3/2—255)’61 2—m+515m2—m+55m < 26]{:+2105MQ]€1.

The desired bound ([5.40) follows, provided that k1 < —m/4.
Case 2. If k = k then ((5.40)) follows using L? x L™ estimates, as in Case 1, unless

max(|k1], [k2|) < 20. (5.45)
Assuming (5.45)), we notice that
sup Hefi(sﬂJ)AuAS(M0 jul,kl(s)”L"" < 9—m+35m if < (1 52)m
[p|<2m=P (5.46)
sup [le TN ALy ot ()]l S 27 it m/2<j1<(1-6)m
|p|<2m =P ’

as a consequence of ([3.33). Therefore, using the L? x L™ estimate and , as before,

05K/ | BT Ay, 72 (5), Pras(5)] o 2—352 (5.47)
if j1 < (1 —4%)m, and
508/ 23| P T A 2 (5), Peae(5)] o S 27557, (5.43)

if m/2 < j; < (1-8%)m.
On the other hand, 1fj1 > (1—02)m then we can use the L bound |le=*** Py, s f*(s) || 1 <

~

9—5m/3+68%m i , together with the general bound (5.42)). As in (5.28) we decompose
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fj“l,kl = 3111:0 j”i,khm’ and record the bound ”fﬁ,k1,n1(s)|’L2 < 91450851 9n1/2—496n198*m | ot
X = 2(1—505)("1—@/2)2”"””Pk1l[ J“l kg (5)s Pk2(93f”(s)]HL2. Using Lemma it follows that

X < 20500 m=k/Dgmgko=l gk ()2 sup (e EFIN PO Y (s) | pee + 275

Ji.ki,ma pl<2i+25%m
< 2—k/22—2m/32n1/2—495n1245777,‘
Using only L? bounds, see (5.41)), and Cauchy-Schwarz we also have
—508) (m— - — 49811 066
X < 22 92T 1 4y () 2| PO (5) | 2 S 2M2m /27100900,
Finally, using (3.26)), we have
X £ 0 Dgm gy I ()4 Py (9)]] 2 S 240

We can combine the last three estimates (using the last one for n; > m/4 and the first two for
n1 < m/4) to conclude that if j; > (1 — §2)m then

2(1=500)m=k/2gm | BT [ 2 | (5), Prydsf” (5)]]| o S 2727 (5.49)
In view of (5.47)—(5.49), it remains to prove that, for j; < m/2,
- m— m v —38%m
=000k | BT [As1 o 2 4, (8), ProOs S (9)]]| f2 S 2757 (5.50)

To prove (5.50) we decompose Py,dsf"(s) as in ([4.8). The terms that are bounded in L? by
2—4m/3+40m Jead to acceptable contributions, using the L? x L argument with Lemma and
(3.34). It remains to consider the terms AZ;’;Z‘;%“,}CT% (s) when max(j3,j4) < (1 — 6%)m and
ks, ky € [—2m/Ng, 300]. For these terms, it suffices to prove that

| PLTi A0 f5y g, (8), ARt ()] e S 270 (5.51)

Notice that Azgfz;;g‘}g‘lﬂ(s) is given by an expression similar to (4.10f). Therefore

—

FAPTIAz1 0055, 1 (8): Al iasis (HE) = /R s €S (€= )
X

x p<—101(1€ = 1 = 70)2 7 PP (€, 1)) 1 (€) 1 (1) (5.52)

—_ —

X muu (57 U)muﬁv (777 O-)fg’k?) (77 -0, S) JlJm (07 S) dUdT]a
where ®(&,7,0) = A(€) — A& —n) —Ag(n— o) — Ay(o). The main observation is that either
[Va®(&,n.0)| = |VALE —1) = VAs(n — )| 2 1. (5.53)
or B
|Vo®(&,n,0)| = [VAs(n — o) = VAL ()] 2 1, (5.54)

in the support of the integral. Indeed, ||n] — 0| < 27% in view of the cutoffs on the variables

¢€and £ —n. If VU%(g,n,U)‘ < 27P then max(|ks|, |k4]) < 300 and, using Proposition (i)
(in particular (7.17))), it follows that | — o| is close to either ~y/2, or py_1(v) > 1.179, or
P+-1(70) — 70 < 0.990. In these cases the lower bound follows. The desired bound (5.51])
then follows using Lemma (1).

Case 3. If k = k9 then we do not prove the stronger estimate . In this case the desired
bound follows from Lemma [5.9 below.
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Lemma 5.9. Assume that holds and, in addition,
j <m+2D+max(|k|, |ki], |k2])/2, ko < —2D, 270 <200m 4 9=k/24D (5 55)
Then, for any j1,
20571 Q 1Bl Sy gy PraOsf g S 2757 (5.56)
Proof. We record the bounds
| P8y (s)ll 2 S 27 50m (2ke 4 9=m/2),

sup ‘|e_i(s+p)AVPk265fy(5)HLOO S 2—5m/3+1062m(2k:2/2+106m + 1)’ (557)
|p‘§24+252m

see , , and (5.42)). We will prove that for any s € Z,,
_ ; 952
20750099 QT2 1 (9), Pry0s ()]l 22 S 2790, (5.58)
Step 1. We notice the identity

QikTilfY 4, (5).Pe,ds £ (5)](x) = O3 () /R . el ®EmteLo=iz (o€, 7))

X o ©)mo(& )™ 1 (€ = 1, 5)Prds ] (n, 5) déd.

Therefore Hij:Il[ 3“1 kl(s), Pk268f”(s)]HL2 < 27%m_ using integration by parts in ¢ and Lemma
(i), unless
29 < max {2j1+5m’ 2m+maX(|k|7|k1|)/2+D}. (5.59)

On the other hand, assuming (5.59)), L? x L> bounds using Lemma the bounds (5.57)), and
Lemma show that (5.58|) holds in the following cases:

either k1 < —10 and j; <m — dm,
or ki <—10 and j; >m—dm,
or k1 > 10 and  j; <2m/3,
or k1 > 10 and  j; > 2m/3.

(5.60)

See the similar estimates in the proof of Lemma above, in particular those in (Step 2, Case 1)
and (Step 2, Case 2). In each case we estimate e ~*(5+2)Ax [, g, (s) in L% and e~ st P B, V()
in L? when j; is small, and we estimate e‘i(sﬂ’)Aufj’i g, (8) in L? and e~ tIN P9, Y (s) in
L™ when j; is large. We estimate the contribution of the symbol mg by 2(-TF1+k2)/2 in all cases.

It remains to prove the desired bound (5.58) when k,k; € [—20,20]. We can still prove this
when fﬁ,kl(s) is replaced by ASO,Vofﬁ,k1(3)7 or when j; > m/3 —dm, or when ky < —m/3+dm,
using L? x L™ estimates as before.

Step 2. To deal with the remaining cases we use the decomposition (4.8). The contribution
of the error component Py, E,*“? can also be estimated in the same way when j; < m/3 — dm.
After these reductions, we may assume that

k,ki € [-20,20], j1<m/3—dm, j<m+2D, ko€ [-m/3+dm,—2D],

9=l < 9105m | o—k2/2. (5.61)
It remains to prove that for any [(ks, j3), (K4, j1)] € Xon ko

p— y ; - 2
2T QT A o AR 1 5275 (562
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The L? x L> argument still works to prove ([5.62) if
as3,a3;a4,04 < 9—Tm/6+106m
”Akz;k3,j3;k4,j4(8)HL2 S2 : (5.63)

We notice that this bound holds if max(js,j1) > m/3 — dm. Indeed, since ko < —2D, we have

P, "M [ Az 0 £, 1y (8): Az 100, 1, ()] = 0,
and the bound (5.63) follows by L? x L arguments as in the proof of Lemma
Therefore we may assume that j3, 74 < m/3 — dm. We examine the explicit formula (5.52)).

We claim that |F{PZi[A>1, j‘i’kl(s),Azzzz?f’”jz%}ci‘fj4(s)]}(§)| < 2710m if |ks| > D/10. Indeed, in

this case the 1 derivative of the phase ® is > 2/%31/2 in the support of the integral (recall that
|k1] < 20). Integration by parts in 7, using Lemma (i), shows that the resulting integral is
negligible, as desired.

In view of Lemma [4.1] (ii) (3), it remains to prove (5.62) when, in addition to (5.61)),
ks, ky € [_107 10]7 J3,Ja < m/3 - 5m’ /B = 7. (564)

We examine again the formula (5.52) and notice that the (1,0) derivative of the phase @ is

> 1 unless ||n — o] — 40| < 27% and ||o| — y| < 2798, Therefore we may replace fyi ks With

As_ 5., J’i s, and f]'.im with A>_5 ., ;L,W at the expense of negligible errors. Finally, we may
assume that [ > —D if y = —, and we may assume that j < m + ko + D if up = + (otherwise
the approximate finite speed of propagation argument used in the proof of (5.13) and Lemma
which relies on integration by parts in &, gives rapid decay). Therefore, in proving (5.62)

we may assume that

2—[2(1—505)j 5 2(1—505771)(1 + 2k2/2+105m)' (565)

Let x, := 20°m2k2/2=m/2  \We observe now that if IIn — ol — vl + |lo] = 7| < 27 and
!5/37(77, o)l = ‘(VQQZ/BW)(H, 0)| < 2k, then

llo| =0l = 2271 [ln— o] = 70| > 28710 (5.66)

Indeed, we may assume that o = (01,0), n = (71,m2), lo1 — 70| < 279, |n| € [2k2—2, 2k2+2],
Recalling that 8 = —v and using the formula (7.22), the condition |Eg,(n, )| < 2k, gives

o
Vo) = =B | <20, LN (o - a) < 2x,

Since ky € [-m/3 + dm, —2D] and k, = 25 ™Hk2/2=m/2 it follows that |ny| < k.20 < 2k2D,
Im | € [2F273,2%243] and |N(01) — N (01 — n1)| < 4k,. On the other hand, if |o; — 0| < 2k2~10
and || € [2F273,2%243] then |N(01) — N (01 —m)| = 22%2 (since N’(79) = 0 and N (vo) ~ 1),
which gives a contradiction. The claims in follow.

We examine now the formula and recall and . Using Lemma (i) and
integration by parts in o, we notice that we may insert the factor ¢(x, 'Z,(n, o)), at the expense
of a negligible error. It remains to prove that

20502 H | 2 S 2740, (5.67)



THE 3D GRAVITY-CAPILLARY WATER WAVE SYSTEM, II 39
: — I — B — v
where, with g1 := A>1 4, jl’kl(8)7 g3 = A[—20,20—k2},’yofj3,k3(8)7 94 = A[—QO,QO—kz],’yofj47k4(S)?

H(€) := ¢k (€) /R O WIgi (¢ — )2 (P (€ 0) ) (€ )G (1)

G2(n) = ¢k, (1) /R ettt halnm el = @, . (1, 0) o1y Zpy (1, 0))33(1 = 0)Ga(0) dor
We use now the more precise bound (3.32]) to see that
i i _ 2o
He zsABg?)HLOO + He lSAwg4HL°° <2 m+46%mo—ka /2
This bound is the main reason for proving (5.66). After removing the factor ¢(x, 'Zs,(n, ) at
the expense of a small error, and using also (3.2) and ([5.42)), it follows that
Hef’i(S+P)AyG2HLOO S (1 4 ‘p‘2k2/2)2k’2 . 272m+852m27k2 5 (1 + ’p|2]{2/2)27217’L+8527n7

for any p € R. We use now the L? x L> argument, together with Lemma to estimate

HHHL2 < 2k52/227l i (1 4 27l2k2/2)272m+1252m < 272m+1252m2k2/227l(1 + 2105m+k2/2)'
The desired bound ([5.67)) follows using also ((5.65|). O

5.5. The case of strongly resonant interactions, I. In this subsection we prove Lemma

This is where we need the localization operators Agf; )71 to control the output. It is an
instantaneous estimate, in the sense that the time evolution will play no role. Hence, it suffices
to show the following: let y € C°(R?) be supported in [—1,1] and assume that j, 1, s, m satisfy

—m+0m/2<1<10m/N}, 2"t <s<omt (5.68)

Assume that

+ gl <1, (5.69)

HfHHNémHg{mzl HN6AHY N2,
and define, with x;(z) = x(27z),

—

TFA©) = [ M@ (€ m)malé miF(€ ~ natn)n

Assume also that k, k1, ko, j, m satisfy (5.23)) and (5.25)). Then
27207 QI [Pry f, Proy9lllm, < 277 (5.70)
To prove " we define fj1,k1agj2,k25fj17k1,n1ﬂgj2,]€27n2 as in " (klvjl)v (kQaj2) € ja

ny € [0,71 + 1], ne € [0, jo + 1]. We will analyze several cases depending on the relative sizes of
the main parameters m, 1, k, j, k1, j1, ko, jo. In many cases we will prove the stronger bound

25m/22—l2(1—505)j ”ijl[fj17k1 ’ gj%kz] HL2 S 2—662m' <571)
However, in the main case ([5.73)), we can only prove the weaker bound
_ _as2
222N Qk [Fjy by o ko]l S 2760 (5.72)

These bounds clearly suffice to prove (5.70]).
Case 1: We prove first the bound ([5.72)) under the assumption

max(jl,jg) S 9m/10, 21 § min(k‘, ]{21, k‘g, 0) —D. (573)

We may assume j; < jo. With
Ky 1= 2—m/2+62m’ Ky = 252m (2—m/2+3max(\k|7|k1|,\k2|)/4 + 2j2—m)
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we decompose

Fl[fj17k1agj27k2] =Ri1+Ra +NR,

Ra(€) = /R O (@(E,m)mol&, me (s E(Em) (s O M) Ty (€ = 1) gais (m)
Ro(€) = [ | XM (B(E.n))molé il S w1 (v (€ 1) B (€ = W (),

NR(E) = / e VEN ) (B(€, 7))mo (€, )51 (5 EE ) Fo (€ — )T ().

R2
With ¥1 1= ©<1-_5/4)m and Y2 := @~ (1_5/4)m, We rewrite
NR(E) = C2INR1(€) + N Ra(€)],

&= [ [ DTN (Amol mp 2 m) Fre (€ ~ 1) )

Since Y is rapidly decreasing we have ||or-NRa|[z < 274" which gives an acceptable contribu-
tion. On the other hand, in the support of the integral defining N'Rq, we have that |s+ \| & 2™
and integration by parts in 1 (using Lemma (1)) gives |log - NR1||pe < 274

The contribution of R = Ry 4+ Ro is only present if we have a space-time resonance. In
particular, in view of Proposition (iii) (notice that the assumption is satisfied due to
(5.73)) we may assume that

— 10 < k, ki, ke <10, E(o,pv) = (+,+,4), |[€l—m|+mn—¢&/2 <277 (5.74)
Notice that, if R(§) # 0 then
€] = m| S18(&£/2) S1R(&m)| + |®(&,m) — B(€.£/2) S 28 + K2 (5.75)

Integration by parts using Lemma shows that |¢y - Rl < 27°™/2) which gives an accept-
able contribution. To bound the contribution of R we will show that

20297 sup |(1 4+ 2™ 1€ — m|)Ra(€)| < 290/, (5.76)

[€l~1

which is stronger than the bound we need in ((5.72). Indeed for j fixed we estimate

sup 2(1 506)]2 n/2+496nHAn'le]k]: RlHLZ

0<n<j
< 9(1-508)j9—n/2+496n [—4.,0] 9100 |¢| _ R
< s o2 @l = R (@)l 2 (5.77)
< ZQ (1-500) 32 n/2—(1/2— 496)m1n(n,j)H<p( OOO](2IOOH€| _71|)R1(€)HL207

n>0

and notice that (5.72)) would follow from (5.76]) and the assumption j < m + 3D.
Recall from Lemma [3.6)and (5.74) (we may assume fj, k; = fj1 k1,05 jasks = jo,ks,0) that

21270000 £ ey [lpee + 207000 sup [ fir e (PO L2y S 15
S

(1/2=8"j2 || 7= (1=6")j2 77 (5.78)
2 |2l + 20700 sup 1755 (O 20y 1
S
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We ignore first the factor x;(®(£,7n)). In view of Proposition (ii) the n integration in the
definition of R (&) takes place essentially over a kg X K, box in the neighborhood of /2. Using

(5.75) and (5.78), and estimating f/? Lo S 1, we have, if jo > m/2,
J1,R1
(14 27| = MDR(E)] S 27(2 + k)20 Feguelf2 S (21 4 i2)22(1/28)926%m,
On the other hand, if jo» < m/2 we estimate ||‘)71?1 |l + ||]72?2 L= < 1 and conclude that
|1+ 27]1€] = IR1(E)] S 2 rory S 2220

The desired bound ([5.76)) follows if x227! < 272/4,
Assume now that x2 > 2/272/% (in particular j, > 11m/20). In this case the restriction
|®(&,7m)] < 2! is stronger and we have to use it. We decompose, with p_ := [logy(2//2k;1) 4+ D],

Ri€) = >, RI©),

pE[p-,0]
RE(E) = /R2 S ED \(D(€,7))mo (€, m) ol (kT EE, M) (k5 OE M) v (€ — 1) T7a e ().

As in (5.75)), notice that if RY(£) # 0 then |[¢] — 1| < 2%Pk2. The term R} (€) can be bounded
as before. Moreover, using the formula , it is easy to see that if £ = (s,0) is fixed then the
set of points 7 that satisfy the three restrictions |®(¢,1)| < 2%, |V, ®(&,n)| = 2Pk, |€ -0t S Ko
is essentially contained in a union of two kg X 212_1”/@; I boxes. Using , and estimating

| i k1 llLee S 1, we have
[(1+ 2™ — 71|)’R€(§)| < 2m+2p,€$2—j2+5/j2KG(ZZQ—pKT—l)1/2 < 23P/22—m+462m2l/22j2/2+5/j2.

This suffices to prove (5.76) since 27 < 1, 2742 < 2m/2 and 272 < 29m/10_ see (5.73).
Case 2. We assume now that

20 > min(k, k1, ko, 0) — D. (5.79)

In this case we prove the stronger bound (5.71)). We can still use the standard L? x L> argument,
with Lemma and Lemma to bound the contributions away from 7. For (5.71)) it remains
to prove that

212U =S HM BT As 1 0 fjo s As100G0,ke] 22 S 270 (5.80)

The bound ([5.80) follows if max(j1,52) > m/3, using the same L? x L® argument. On the
other hand, if j1,jo < m/3 then we use (3.27) and the more precise bound (3.32) to see that

|Apaohlie S 2772, e Apaghllee £ 27 min (27/2,27/277),
where h € {fj, ks Gjo ks }> » > 1, and ¢ ~ 2. Therefore, using Lemma
1Pk T Apy o i1 ks> Aps o Ginsko]ll 2 S 2827 mexprp2)/2 g=me20mgmin(pr 22)/2
The desired bound ([5.80)) follows, using also the simple estimate
HPkI[AmﬁofjhklvApz,’vong,kz]HL? 5 2k~ (P1Fp2)/2,
Case 3. Assume now that

max(j1,j2) > 9m/10, j < min(j1, j2) +m/4, 2l < min(k, k1, k2,0) — D.
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Using Lemma and (3.25)) we estimate

HPkI[fjhkl,nlvgj2,k27n2]”L2
< 2k/22305m2l/2—n1/2—n2/2

—

H QSSSE |fj1,k1,n1 (?”9)‘ HLQ(rdr) H QSSSE |gj2’k27n2 (TG)H‘LQ(TW) (5'81)
5 2k/22l/22*j1+5/j1 2*j2+5'j2230('57n7

and the desired bound (5.71]) follows.
Case 4. Finally, assume that
jo > 9m/10, > ji +m/4, 21 < min(k, k1, ko, 0) — D. (5.82)

In particular, j; < 7m/8. We decompose, with kg = 9—2m/5

I[fj17k17gj27k2] = I|‘[fj17k17gj27k2] + IJ-[fjl,kNng,kz]v

~

MR = [ "M a(@le, Moty (e m) Fe ~ mimin, 5.83)

o~

IR = [ (@6 m)(1 = (5 2 B(E ) F(E ~ min)dn.

Integration by parts using Lemma shows that H]—"Pk.ﬂ (i1 ks Gjo ko) < 275m/2 1p addi-

tion, using Schur’s test and Proposition (1), (iii),

| Ped|([fi1 k10 Gioskamalll L2 S 2906m2l"3é/2||fj1,k1 Lo | G ams || 2 S 29%0m2l=m/5=(1=500)j29n2/2

[P

which gives an acceptable contribution if ny < D.

It remains to estimate the contribution of I}[f;, ks Gjs,kams] for na > D. Since |n| is close
to v1 and |®(&,n)| is sufficiently small (see ), it follows from that min(k, ki, ko) >
—40; moreover, the vectors £ and 7 are almost aligned and |®(&,n)| is small, so we may also
assume that max(k, k1, k2) < 100. Moreover, |V, ®(£,n)| 2 1 in the support of integration of

L [fj1 k1> Gja kama) s I view of Proposition [7.2] (iii). Integration by parts in 1 using Lemma 3.3 (i)

then gives an acceptable contribution unless jo > (1 — §2)m. We may also reset ry = 98%m—m/ 2
up to small errors, using Lemma
To summarize, we may assume that

G2 (L=0%m, j>ji+m/d, kK ky €[-100,100], ny>D, ky=2""""/2 (584)
We decompose, with p_ := [1/2],

I||[fj1,klvgj2,k2,ﬂ2]: Z Iﬁ[fj1,klvgj2,k2,n2]v
p-<p<D

~

TFale) = [ ¥ a@(Em)olis OEm)lt =P (Ved(em) 6 — mita)an
It suffices to prove that, for any p,
2712(17506)]’HijIﬁ[fjl,kl7gj2’k27n2]”[/2 5 Qiém' (5'85)

As a consequence of Proposition (iii), under our assumptions in ([5.84]) and recalling that
V,®(&,m)| 2 1 in the support of the integral,
n ~

up /R2 (@& M)l O(E,m)p<—pja(In] = 1) 1py s,y (€0 S 272 kg,
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and, for any p > p_,
SUP/R Xu(@(E, )5 O(E, 1) ep(Ve®(E, M) p<—pyo(nl — 11)1p, ., (€. 1)dE S 272 Py,
n 2

Using Schur’s test we can then estimate, for p > p_
- - 2 T - -
||Pklﬁ[fj1,k1’gj2,/€27n2”|L2 S2 p/2glg=m/2+49 m||fj1,k1||L°°ng2,/€27n2”L2 S2 p/2glg=m+5om

The desired bound ([5.84]) follows if j < m + p+ 40m. On the other hand, if j > m + p+ 4dm
then we use the approximate finite speed of propagation argument to show that

HQJ'kIﬁ[fjhklvgjmkz,nz]HL? S 27%m, (5.86)

Indeed, we write, as in Lemma@ xi(®(&,m) =2 [, (2 p)e?®EM dp and notice that ‘Vg[x-
E+(s+p)P(&, n)” ~ 27 in the support of the integral, provided that || ~ 2/ and |p| < 2™. Then

we recall that 7 > ji1 + m/4, see (5.84)), and use Lemma (i) to prove (5.86). This completes
the proof of Lemma [5.6

5.6. The case of weakly resonant interactions. In this subsection we prove Lemma
We decompose Py, 0 f” as in (4.8) and notice that the contribution of the error term can be
estimated using the L? x L™ argument as before.
To estimate the contributions of the terms Ay3:3:%4:%4.
- ka;k3,jaika,j4
trilinear operators. With ®(¢,n,0) = A(§) — A (§—n) —Ag(n—0) — Ay(0) and p € Z we define
the trilinear operators J; , by

we need more careful analysis of

Talfoglie,s)i= [ | D fe 2 a® o 6n)p(B(6 7. ) -
X Pk ()W (€)M, (0, )G (0 — ) (o) dodln.

Let ‘717§p = qup ‘71711 and ~7l = EqEZ \7l,q- Let

Ciplfig,h] == /RQm(S)jl,p[f’ga hl(s)ds,  Ci<pi= Cig  C=) Cig (5.88)

q<p q€Z
Notice that
1 as3,a3;04,0 _ I B Y
Binlfj, j0s Akaihagaiienial = CllT ko Fiae Fimal: (5.89)
To prove the lemma it suffices to show that
1—506); 1% B Y —352
2l )]Hijcl[fjl,kl’fj3,k3’fj4,k4]HL2 S 2 " (5.90)

provided that
k ki, ko € [=3.5m/N},3.2m/N{], j < m+ 2D + max(|k], |k1], |k2])/2,

5.91
l > _m/14’ m > D2/87 ka k37 k4 < m/N(/]a [(kS,jS), (k:4,j4)] € Xm,k2' ( )

The bound ([5.42)) and the same argument as in the proof of Lemma show that
| Pei<plf 9, h](s)|| o S2UHHIHR) 2otk tha) 207 min {| £ oo gla| Ploos | Floolglool 2, (5.92)

_ 2 _
(127203 max®20/2) | £lo|gloo hloo } + 271" Fl2|glalhl2,
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. _ _ _ 052
provided that s € I, 277 + 2 ! < 2m 20 "= P[k1—87k’1+8]f7 g = P[k3—87k3+8]gy h =
P[k4—8,k4+8]h7 and7 for F' € {f7g7 h}7

|F|, = sup |2 F || L. (5.93)
[tlel2m—4,2m+4)

In particular, the bounds (5.92)) and (3.33]) show that
1-506); 8 5
2( M}'ijcl[fﬁ’klyfj&k?,af]"i,]ﬁl]HLQ g 27om
provided that max(j1,j3,j4) > 20m/21. Therefore, it remains to prove ((5.90) when
max(j1, js, ja) < 20m/21. (5.94)
. L 8

Step 1. We consider first the contributions of Cl,p[fj’i’kl,fjg’kg, f;;,lm] for p > —11m/21. In

this case we integrate by parts in s and rewrite

Cl,P[fj;i7k17f£7k37 fzhm] = i27p{ Aq%(s)ﬁ,p[fﬁ,kla fﬁ7k3v f]"z,kél](s) ds

5 8 5 8 5 8
+CuplOs £, o Fi ke Fiawdd  CnlFfy p 055 g Fiwad  CunlFGy ks T pgr 055 0] }

where the operators jl,p and (A?Vl’p are defined in the same way as the operators J; , and C; p,, but
with gop@)(f,n,a)) replaced by @p(ti(g,n,a)), Pp(x) = 2Pz~ 1p,(z), (see the formula (5.87)).
The operator jl,p also satisfies the L? bound . Recall the L? bounds on Os Py fo.
Using (with s Py f, always placed in L2, notice that 272 < 2™/7) it follows that

ST 20 B e Pl S 270

p>—11m/21
Step 2. For (5.90)) it remains to prove that
1-508) —362
2( > )JHijCl,g—llm/m[fjul,kl:f£7k37fj1,k4]HL2 SJ 2 . (5-95)

Since max(j1, j3,j4) < 20m/21, see (5.94)), we have the pointwise approximate identity
Pkcl,gfllm/Zl [fjulykla fji’]%a fj’z,kél]
= PiCi<—11m/21[AsDr o 1 1 AsDi-100 F 5 ks A5 Dr—2070 Fs 1] (5.96)

—4
+ PieCr<c11my21[A<Di o G, 3y s A<Di4+10,70 gks,ASDﬁm,% o]0,
where D; is the large constant used in section [7} This is a consequence of Lemma (i)
and the observation that [V, ,®(£,n,0)| 2 1 in the other cases. Letting g1 = A>p, 0 f}, 4,

_ B _ Y _ I _ B _
gs = Ale—lo,yofj&;%a g4 = A2D1720,’yofj47k;4) h’l — A<D1,’Yofj1,k1’ h’3 - A§D1+107’Yofj3,k3’ h4 -
’\/ . .
A<D 42040 Ju ks 1T TEMAINS to prove that

21509031 Q1.Ch < 11my21191, 95, 94] 2 S 9=30"m, (5.97)
and ' ,
21750903 Q14 Ch <1121 [P1, b, hal|| o S 2750 (5.98)

~

Proof of (5.97). We use Lemma (i). If I < —4m/N{ then \V,W&)(g,n,a)\ 2 1 in the
support of the integral (due to (7.66])) and the contribution is negligible (due to Lemma [3.3] (i)
and (5.94)). On the other hand, if

| > —4m/N} and j < 2m/3 + max(j1, 3, ja) (5.99)
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then we apply (5.92). The left hand side of (5.97)) is dominated by
02(17505)]'2771(1 + 272l)275m/3+852m27max(jl,jg,j4)(17505) < 27105’

as we notice that max(k, ki, ko, k3, k4) < 20. This suffices to prove ((5.97) in this case.
Finally, if
| > —4m/N} and j > 2m/3 + max(j1, j3, ja) (5.100)
then max(ji, j2,74) < m/3 4+ 10dm and j > 2m/3. We define the localized trilinear operators

~

f{uﬁ,gp,m[fa.% h]}(é—v 5) = /]%2><R2 eis;f(g,n,a)f(g - 77)2_l§5l((1>+,u1/(§7n))soﬁp(&)(é-vna U)) (5 101)

X (kI 0 B(E, 1, 7)) Pks ()W (€, M)Wy, (1, 0)G(1) — o) h(0) dodn,

which are similar to the trilinear operators defined in (5.87]) with the additional cutoff factor in
Vioe®(€,n,0). Set k := 2-m/2+8"m and notice that

I F{T1,<—11m21(915 935 94] — Tt <—11m/21,61915 93, gal Lo < 27om,

as a consequence of Lemma (i). Moreover, |V§<AIS(§, n,0)| < 2%/3 2 2722m/63 in the support
of the integral defining J; <_11m/21,x91, 93, 94], due to Lemma (i). Therefore, using the
approximate finite speed of propagation of argument (integration by parts in &),

|Qik Tt <—11m/21,£191, 935 9a]l| L S 270m,
The desired bound ([5.97) follows in this case as well (in fact, one has rapid decay if (5.100)
holds).
Proof of (5.98]). The desired estimate follows from (5.92)) and the dispersive bounds ([3.31))—
(3.32) if max(j1, js,ja) > m/3 or if j <2m/3 or if | > —10dm. Assume that

max(ji, js, ja) <m/3,  j>2m/3, 1< —106m. (5.102)
As before, we may replace Jj <_11m/21[h1, h3, ha] With T <_115m/21,x[01, h3, ha], at the expense
of a small error, where k = 27™/2+200m  Noreover, |V§<5(§,17,U)| < k in the support of the
integral defining J; <_11m/21,x[P1, h3, hal, due to Lemma (ii). The approximate finite speed

of propagation of argument (integration by parts in &) then gives rapid decay in the case when

(5.102)) holds. This completes the proof.

5.7. The case of strongly resonant interactions, II. In this subsection we prove Lemma
Let k := max(k, k1, k2,0). It suffices to prove the lemma in the case

k,ki,ko € [~k —20,k], j<m+3D+k/2, k<Tm/(6N)), lop<l<—-m/l4. (5.103)

Indeed, we can assume that k, ky, ks > —k — 20, since otherwise the operator is trivial (due to
(7.6)). Moreover, if max(ki, k2) > 7m/(6N}) — 10 then the L? x L> argument (with Lemma
3.5]) easily gives the desired conclusion due to the assumption .

We define (compare with the definition of the operators T}, ; in (5.19)))

Tl = [ anls) [ D ol 006 m)ar (&, mImol&, mT(E . 5130, s)ends,
R R2

where kg 1= 2-m/2F6k+6*m et Tntl = Ty — TTU”, and define Al'nl and Blrlnl similarly, by

inserting the factor ¢(x, '©(&, 7)) in the integrals in (5.20). We notice that
T [Py £, Piy ) = Ay, [Po ¥, Pey ) + 0B, [Phy 06 f", Phy ) 48, [ Pes . Py 0",
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It remains to prove that for any ji, jo

_ ; v _qs2
20N QT g Foko oz S 2750, (5.104)
2
||ijA|7|n,l[f]1 k17f]2,k2]HBj ~ 2" 30%m ) (5105)
and ]
1QuB 172 1. 0sPiy 1 ll, S 275 (5.106)
Proof of (5.104). We may assume that min(jy, j2) > m — 2k — §?m, otherwise the conclusion

b it _ Uit
follows from Lemma We decompose P anzo fiikimas ijQ,kg = D =0 Jj2.kamy and

estimate, using Lemma 7.5, and -

HPk m,l f]l,kl,nlusz,kz,ng HLQ

2k omol/2—n1 /2—ns2 /2 2 N
< 2°F2™2 H gggli | i1 k1m0 (70)] HL2(rdr) H gggli | fi2 k2o (10)] HL2(rdr)
< 22E2m2l/22662m2*j1+515j1 27]'24’515]'2.
Therefore, using also ((5.103)), the left-hand side of (5.104]) is dominated by
9(1-508); 2662m22E2m21/22—j1+515j12—j2+515j2 < 28521/22545771.

This suffices to prove the desired bound, since 2//2 < 27™/28 and 98k9543m < 9649m < gm/30,
Proof of (5.105). In view of Lemma it suffices to prove that

—506) 1 38
207507 QA s P2 S 2750

This is similar to the proof of (5.104]) above, using Lemma and ([3.25)).
Proof of (5.106)). This is the more difficult estimate, where we need to use the more precise
information in Lemma [4.2} - We may assume j; < 3m, since in the case j; > 3m we can

simply estimate || f]“ pll S 27 71451071 (see ([3.26])) and the desired estimate follows easily. We

v a3,a3;a4,004 3 a3,a3;a4,04;(1] :
decompose 0P, f¥ as in , and then we decompose 14111627,6303,1{4’]4 =) AT J, asin

ka:k3.j3;ka,]4
(4.35]). Notice that since kg > —3m/(2N}) (see (5.103))), it follows from Lemma (ii) (2) that

min(kg, k3, k4) > —2m/N{, so Lemma applies. It remains to prove that

HijBl'n,l[ ke Pl ls; S g—48m (5.107)
and7 for any [(k3aj3)7 (k4 ]4)] € X’m koo (XS {172>3}7
. <[q _ 2
QB Ly A i M, S 27 (5.108)

These bounds follow from Lemmas 5.10] [5.11], and [5.12] below. Recall the definition

BLS.0O) = [ an(s) [ Mgl e m)2 G@E mImol (€ ~ 1,930, )inds.
R R2

(5.109)
Lemma 5.10. Assume that (5.103) holds and kg = 2~™/2+6k+3°m  Tpep
_ 2
1QBY, 12 4y Bl S 274, (5.110)

provided that, for any s € I,
h(s) = Pry-spgsnh(s),  [|h(s)] g2 S 273m/2s00m=22k (5.111)
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Proof. The lemma is slightly stronger (with a weaker assumption on h) than we need to prove

(5.107)), since we intend to apply it in some cases in the proof of (5.108]) as well. We would
like to use Schur’s lemma and Proposition (iii). For this we need to further decompose the

operator B‘T‘n ;- For p,q € Z we define the operators B;, , by

Bl = [ aul) [ "0t 0l m)2 (6 )

X @p(Ve®(&,m))0q(Va®(&,m)mo(€,m) f(€ —n,5)g(n, s)dnds.

Let Hyq := PyBB, ,[f5 1, h]- Using the bounds || f}, , [ < 22071950°m9519k < 9T0m (gee ([3.27)),
Proposition (111) and (5.111f), we estimate

H%MmSﬁW@®Mﬂ%%”ﬂﬁm2ﬂmMMJWMWMW

(5.112)

(5.113)
< 2—4E2—p,/22—q,/22—m+435m
where z_ = min(z,0). In particular
> 217500 BB, [ 1 s Wl S 270 (5.114)
p>—46m, q>—4ém
We show now that
S BB Bl S 270 (5.115)

p<—4ém, qEZ
For this we notice now that if p < —4ém then P.B,, [f" k1 Pro E7] is nontrivial only when ||
is close to 71, and [¢[,|€ — n| are close to 71/2 (as a consequence of Proposition (iii)). In
particular 2F < 1,29 ~ 1, and Nis k&= s S 920%m9—j1/2+513j1 in the support of the integral.
Therefore we have the stronger estimate, using also ((7.44)) (compare with ((5.113]))
| Hpgllr2z S 2™ Llky min(2~ P/2 op/2= l/2)2‘S m sup Hfl k1( $)||zee IR ()] 12

(5.116)
< 9- 71/2+518751 mln(2 p/2’2p/2 l/2)2—m+365m.

The desired bound ([5.115)) follows if j; > j—dm or if j < 3m/4—5dm, since min(2_p/27 2p/2_l/2) <
2-L/4 < 9m/4 On the other hand, if

Jj1<j—0dm and j>3m/4—5m
then the sum over p > (j — m) — 100m in (5.115) can also be estimated using (5.116]). The

remaining sum over p < (5 —m) — 100m is negligible using the approximate finite speed of
propagation argument (integration by parts in £). This completes the proof of ((5.115|).
Finally we show that

Yo QB fh ks hllsy S 270 (5.117)
PEZL, q<—4dm

As before, we notice now that if ¢ < —4dm then PpBj [ fj“1 k> 1] is nontrivial only when [¢|
is close to 71, and |n],|§ — n| are close to v1/2 (as a consequence of Proposition (iii)). In
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particular ok <1, 2? &~ 1 and we have the stronger estimate (compare with ([5.116)))

24/2

| Hpgllze S 9—J1/2+518j1 min(2*Q/2, 2q/271/2)27m+365m < 9—m+366m_ (5.118)

™~ 24 4 21/2
Moreover, since |®(¢,7)| < 2! and |V, ®(¢,7)| < 29, the function ﬁ;] is supported in the set
{11€] = m| < 28+ 229} (see (7.21)). The main observation is that the B; norm for functions
supported in such a set carries an additional small factor. More precisely, after localization
to a 2/ ball in the physical space, the function F{Q;1B, [ ]“1 ko M) is supported in the set

{11€] = 71| < 284229 4 277+20m) up to a negligible error. Therefore, using (5.118)),
1QjkBy g fh 4y Pra B2y S 27750 (21 4 220 4 27/ 420m) 122490 g,

Ji,k1? ~

L2
2q/2— 1004¢q

< 2j—505j2—m+365m(21/2 4929 4 2—j/2+5m)
~ 2¢ + 21/2

< 2q/82—45m.

The bound ([5.117)) follows. The bound (5.110]) follows from ((5.114)), (5.115)), and (5.117)). O
Lemma 5.11. Assume that (5.103) holds and kg = 2~™/2+6k+8°m  Tpep

,o3504,045(1 —462
1QukBl L2 4, Al , < 27407, (5.119)

Proof. Notice that AZ;Z‘; g“,}i“}g] is supported in the set ||n| — 1| < 27P. Using also the condi-

tions ®(&,71) < 2! and O(¢,n) < kg, we have
lnl =ml <277, Jel 1€ —nl € 27°,2%), min(|l¢] =l [|€ =l =m]) =27 (5.120)
: : : [ _ pa3,03504,045[1]
in the support of the integral defining F{P;B,, j“hkl,G[l]](f)}, where G = AZ?Z;E&“M .
Case 1. Assume first that
max(js, ja) > m/2. (5.121)
In this case |G|z < 273m/24300m (see ([(£.37)), and the conclusion follows from Lemma,
Case 2. Assume now that
max(Js3, ja) < m/2, Jj1>m/2. (5.122)
The bound ([5.119) follows again by the same argument as in the proof of (5.110) above. In
this case ||GI(s)| L~ < 274 (due to ([@41) and || A<q ., PR O[FES 920°m9—j1+50351 (5ee
(3.27))). We make the change of variables n — £ — 7, define ®'(£,n) = ®(£, £ —n) and define the

operators By, as in (5.112), by inserting cutoff factors ¢, ((Ve®')(£,7)) and ¢q((Ve®')(€,7))-
In this case we notice that we may assume both p > —D and ¢ > —D. Indeed we have

®'(&m)| < 277 and [[€ —n| — | < 277, s0 |[(Ve®')(&n)| 2 1 and |(V,@)(§,7)] 2 1 in the
support of the integral (in view of Proposition (iii)). Then we estimate, using (7.42)),

| PeBBy ,[A<0, ﬁ,kl’G[l]]||L2 < 9150819 —m/2+55m.

The bound ([5.119)) follows by summation over p and q.
Case 3. Assume now that

max(J1, js, ja) < m/2, Jj<m/2+ 106m. (5.123)
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We use the bounds |Gl (s)||pe < 2749 (see ([@.37) and || )l S 230m - Moreover,

|V, ®(&,m)| 2 1 in the support of the integral. Therefore, using the first bound in (7.42),

|FLPBL 1 U] e

o _ A )
Tk 2" g2 2 sup [GU(s)l| o< 1, ()l oe S 272050,
S

~ j17k1
m

The desired bound (5.119) follows when j < m/2 + 10dm.
Case 4. Finally, assume that

max(j1,J3,j4) < m/2, Jj > m/2+ 10dm. (5.124)

We examine the formula ((5.109), decompose G as in (4.41)) and notice that the contribution
of the error term is easy to estimate. To estimate the main term, we define the modified phase

p(&n) = Py (& n) + Av(n) — 20 (n/2) = A(&) — Ap(€ —n) — 2A0(n/2). (5.125)
For r € Z we define the functions G, = G, 1 j, by

Go(6) = [ an(e) [ (5 012 (Bl mmo(Eon)

(5.126)
X o (Vb (&)L 1, (€ =, 5)gM (0, 5) (2% (In] — 1) )dnds.
Notice that the functions G, are negligible for, say, » < —10m. It suffices to prove that
2799 QkGrll 2 S 27°°™  for any r € Z. (5.127)

We notice first that ||PyGr||r2 < 274 if r > §?m + max(—I — m, —m/2), in view of Lemma
(i). In particular, we may assume that » < —D. In this case, the functions G, are nontrivial
only when —pu = v = + and ¢ is close to n/2. Therefore p(&,n) = A(&) + A(n — &) — 2A(n/2),
and we have, in the support of the integral defining G, (&)

[Vap(& )| = 1€ —n/2[ = [Vep(€,n) = [Ve®(E,m)] = 27,
Ip(&,n)| = € —n/2* ~ 2,

Il =l = [A(n) = 2A(n/2)| S @& )| + (€ n)| S 2"+ 27,
1] = /2l S 28+ 2"

(5.128)

The finite speed of propagation argument (integration by parts in &) shows that [|Q;rGr| 2 S
274 if § > §%m + max(m + r, —r). To summarize, it remains to prove that

)17505

2™+ 2 ) PG e S 270 i < 8Pm4 max(—1 —m,—m/2).  (5.129)

For ¢ fixed, the variable 7 satisfies three restrictions: n-&+ < kg, ®(&,1) < 2!, and [n—£/2| <
2". Therefore, using also (4.41)), we have the pointwise bound

= 2m m— : T —m s T 7

1G9 < 22 min(27, 27" min(27,2") sup || f4 . (5)|z= g™ ()| o
s€lm (5.130)

< 289M in(27,27™/2) min(27 7, 1).

The desired bound (5.129) follows, using also the support assumption |[¢] —v1/2| < 28 + 27 in
(5.128), if r < —m/2 or if r € [-m/2,—m/3].
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It remains to prove when —m /3 < r < —1 —m + §*m. The main observation in this
case is that |p(&,n)| ~ 29" is large enough to be able to integrate by parts is s. It follows that

G(6)] < / / 22|y O, 1) 2 F(B(E, 1)) ipr (T (€, 1) (2™ (] — )|

X |04 1k1(§ 1, 8)g™M (1, 5)qm ()] |dnds.

For ¢ fixed, the integral in supported in a O(kg x 2!) rectangle centered at n = 2¢. In this
support, we have the bounds, see Lemma [4.2] (ii) and (iii),

— 2 _ _
1P )l S 25°m, gl(s) ][ S 2740 [[9ygl(s) | e < 27218,
Oft o = hat hooy  |[ha(s)]|p2 S 273250 I h ()| pe S 27180,

The integrals that do not contain the function hs can all be estimated pointwise, as in (5.130)
by C272r2-lg=m+200m (9l < 9=2rg=3m/2+216m The integral that contains the function hy can
be estimated pointwise, using Holder’s inequality, by

02_2T2_12_3m/2+106m(2l1€9)1/2 < 2—2r2—l/22—7m/4+116m < 2—2r2—5m/4+115m‘

Therefore, using also the support assumption ||¢| — v1/2] < 2" in (5.128)), and recalling that
r>-m/3,1 < —m/2, we have

2m+rHPkngL2 5 2—r/22—m/4+116m.

This suffices to prove (5.129)), which completes the proof of the lemma. O
Lemma 5.12. With the same notation as in Lemma and assuming ((5.103)), we have
asz,as;a4,04;(2] —462
QB 4 o A My S 27457, (5.131)

Proof. The main observation here is that, since [®1,,(¢,7)| < 2! and |®,5,(n,0)| 2 2710 we

have @(5, n,0)| = 271%™ thus we can integrate by parts in s once more. Before this, however,
we notice that we may assume that

ks, ky € [-2m/N{, 2m/N{], min(j3, j4) < m — 40m. (5.132)
Indeed, the first claim follows from Lemma [4.1] (ii) (2), (3). For the second claim, we notice that
if min(js,j4) > m — 46m then we would have HAZS’?;;“,Z“;]H < 273m/2480m (1 the same

argument as in the proof of (4.31] - and the desired bound would follow from Lemma
Step 1. For r € Z we define (compare with - the trilinear operators jl .

~

T 068 = [ P Fle ol O(Em)2 B D 61)

X r(®(&,m, )X (0, 0)pry (n)mb, (&, Mm%, (n,0)G(n — o) (o) dodn.

(5.133)

Let
Pt = [ anT170.1(s) ds. (5.134)
and notice that

I u b1,b2,b3,[2] Z ¥
Bm,l [fj17k1’Ak2J€5 J37k4,J4 - C j1 k?l’ Js ks3? j4,k4]'
r>—116m
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We integrate by parts in s to rewrite

[ J1, kl’fj3 ks> J ja, k4] - 1‘27“{/]1{(];,1(8)‘7[2}177"[ J1s kl’f3k3’ Ja, k4](s) ds

B 8 8
+C[2]lr[a J1, k1’fj3,l€3’ Ja, k4] +C[2]l7"[ J1, k1’85 J3:k37 7 ja, k4] +C[2]l7’[ Ji, kl’fJ3,k3’8S xlk4]}

where the operators 712 1,r and cl2l 1,» are defined in the same way as the operators jﬁ and

Cl[i}, but with gop(tf(ﬁ,n,a)) replaced by {5,,(5(5,77,0)), Pp(x) = 2Pz~ Lp,(2), (see the formula
(5.133)). It suffices to prove that for any s € I, and r > —11dm,

295083, T2, [, g, h]l| 2 < 27120, (5.135)

where [f,g,h] = [f4  F1 oo £l )(5) or [fog, k] = [270sft o, £2 1 £ )(s) or [f.g.h] =
[]1k1’ mafsks’ j4,k4]( s)or [f,g,h] = [J1/€1’f3ks’2m8 ]4k4]( 5)-
Step 2. As in the proof of Lemma |3.5 the function @, (®(&,n,0)) can be incorporated with

the phase 61'5213(5”7’0)7 using the formula (3.20) and the fact that 277 < 2'19™_ Then we integrate
the variable o and denote by Hi, Hs, and Hj3 the resulting functions,

H1 :I[z [fm k3( ) ;1](?4( )]’ H2 _1[2][8 f]3k3( ) ]PZI%( )] H _I[Q][fjgk?,( ) 6 j4k4( )]’
f{I[Q] [g,h}}(n) — /R2 61(s+)\)‘1>y57(77,0)x[2] (7770')90142 (n)my%v(n,o')@\(n — o’)/}\L(U) do.

We claim that

1H1 |2 + 27| Ha|| 2 + 27| Hy[| 2 S 275/6F10m, (5.136)
Notice that the bound on H; is already proved (in a stronger form) in the proof of . The
bounds on Hy and H3 follow in the same way from the L? x L* argument: indeed, we have
]\8Sfjﬁs7k3( MWizz +10sf7, 1, ()2 < 2-m+7m (due to (4.21))). Then we notice that we can remove
the factor (220m@4(n, ) from the multiplier x?/(n, o), at the expenses of a small error (due
to Lemma and ) The desired bounds in follow using the L? x L* argument

with Lemma [3.5]
Step 3. We prove now ) for [f,g,h] = [f* ok ]3 ks s, k4]( s). It suffices to show that

gdkgm— 800m | g (), . S1 (5.137)

for any s € I,,,, where

F{S[f,g1}(€) := \w(&)\/RQ | F(€ = melrg O, M2 EU(@(E, M) er, (M)G(0)| dn.  (5.138)

This follows using Schur’s lemma, the bound ([5.136|), and Proposition (iii). Indeed, we have
IV, ®(&,m)|+|Ve®(€,m)| 2 2749 in the support of the integral (due to the location of space-time
resonances), therefore the left-hand side of (5.137)) is dominated by

024k2m7306m271(210k,£923l/4246m) |’fﬁ,k1 (S) HLOO ”E HL2 S 230k27l/427m/3.

This suffices to prove 1| since 27! < 2™, Moreover, 1' follows in the same way
fOI‘ [fag7h] = [ 1k1 2ma f3k37f4k4]( ) or [f>g’h] = [ J/‘ikl f]g,kg 2m8 J4k ](8)7 Since the L2
bounds on 2mH2 and 2™ Hjz are the same as for H;.
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It remains to prove (5.135)) for [f, g, h] = [2™0s . kl,fji,kg, jl,kz;](s)' It suffices to prove that

9kgm=300m || gromy, (), e S 1 (5.139)

for any s € Ip,. Let f = 2M0; i kl(s) and foy, 1= A>p_11,2¢,f. We decompose, using (4.40)),

f=Foot fot foor foollze S 207, (| follze S 2725 e < 25RHISOM,

The contribution of fo, can be estimated as before, using Schur’s lemma, ([5.136f), and Proposition
(iii). To estimate the other contributions, we also use the bound (see (4.39))

T 3ko—m+145
[Hioollpoe < 2°727mFH4™ where  Hy = Hiy0 + Hioo = A>Di12v0H1 + A<D 290 Hi-

As before, we use Schur’s test and Proposition (iii), together with the fact that space-time
resonances are possible only when ||, ||, |§ — n| are all close to either 1 or /2. We estimate

HS for Hy oo HL2 < (210EH9231/4245m)HJ?2”L2H@HLOO < 220E27l/4272m+406m7
HS Frro Hioo HL2 < (210EE0231/4245m)||f/2;HLQHEEHLOO < 220E2fl/4273m/2+406m7
HS For Hi 2y, HL2 < (210%%621246m)1/2”f2”L2||m||L2 < 215%2—1/22—19771/12+206m7
S[f2v0> H1,2+0] = 0.
These bounds suffice to prove , which completes the proof of the lemma. O

5.8. Higher order terms. In this subsection we consider the higher order components in the
Duhamel formula (2.15)) and show how to control their Z norms.

Proposition 5.13. With the hypothesis in Proposition for any t € [0,T] we have
t

Wa®llz + || | e *Noats)as],
0

The rest of this section is concerned with the proof of Proposition The bound on N>4

follows directly from the hypothesis [|e**N>4(s)|z < €2(1 + s)7179* see (2.25). To prove the
bound on W3 we start from the formula

= S5 [ o)

p,Be{+.—~} artaz+az=a (5.141)
X (V)€ = 0,9)(Q=V,) (5 = 0,5)(Q* V) (0, 5) dndods.
We define the functions ¢, as in (5.3) and the trilinear operators C,,, = C’y’fﬁf

<l (5.140)

~

F{Cumlf, 9,1} (&) == /R Gm(5) /R - =P EnDng (g, m,0)f(€ — 1, 8)§(n — 0, 5)h(0, 5) dndods,
X

(5.142)

where ® := fI)ﬂw@ and ng := n,,g. It remains to prove that, for any (k,j) € J and m € [0, L+1],

Z 2j_505jHijcm[Plealﬂalvﬂa PkQDOQQaQVVv PksDQSQasvﬂ] HL2 SJ 2_6 " i;’ (5143)

kl,kQ,k3€Z

for any u,v, 8 € {+,—}, provided that a; + as + a3 = a and a3 + ay + as = . Let

f” — 6_1Da1Qa1V#, fu — 5_1DO‘2QQ2VV, fﬁ — 5—1Da39a3vﬁ‘ (5.144)
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The bootstrap assumption (2.25)) gives, for any s € [0,¢] and v € {u, v, 5},
g , ;< (1+8)%. 14
7 gt S (0 5) (5.145)
Simple estimates, as in the proof of Lemma show that the parts of the sum in ([5.143))
over max(ky, ko, k3) > 2(j + m)/N} — D? or over min(ky, k2, k3) < —(j + m)/2 are bounded as
claimed. For ([5.143) it remains to prove that

25| QjiConlPiy ', Pro " Paa ]| 2 S 272070 (5.146)
for any fixed m € [0, L + 1], (k,j) € J, and ki, ko, k3 € Z satisfying
k1, ko, k3 € [—(5 +m)/2,2(j +m) /N, — D). (5.147)

Let k := max(k, ki, ko, k3,0), k := min(k, k1, k2, k3) and [k] := max(|k|,|k1], |kz|, |k3|). The
S° bound in (2.22)) and Lemma (ii) show that

Hcm[th#, Pk2fya f)ki‘sfﬁ]HL2

< 2412059 up |65 Py 4] o e~ Py | e~ Py P gy O 1AD)
s€lLn
if p1,p2,p3 € {2,00} and 1/p1 + 1/p2 + 1/p3 = 1/2. The desired bound (5.146)) follows unless
j>2m/3+[k]/2+D? (5.149)

using the pointwise bounds in (3.34). Also, by estimating || PyH|| 2 < 2F||P.H| 11, and using a
bound similar to (5.148]), the desired bound (5.146f follows unless
k>—(2/3)(j +m/6+ dm). (5.150)

Next, we notice that if j > m + D + [k]/2, and (5.150) holds then the desired bound ([5.146)
follows. Indeed, we use the approximate finite speed of propagation argument as in the proof of

(5.13). First we define J“l ko ko ]i ky @8 1D (5.15). Then we notice that the contribution in
the case min(ji, j2,73) > 97/10 is suitably controlled, due to ((5.148). On the other and, if
min(j17j27j3) < 9.]/10a

then we insert the cutoff functions ¢<;(n) and ¢~;(n) in the definition (5.142)) of the operator
Cpn, where | = —j + 0. The contribution of the integral containing ¢~;(n) is negligible, using
integration by parts in § as before. On the other and, the contribution of the operator Cp,
containing ¢<;(n) is bounded by 9momo2l < 9=2j+26j9m+om in [2 which again suffices to prove
(5.146)). To summarize, in proving (|5.146)) we may assume that

2om/3 + [k]/24+D* < j<m+D+[k]/2, max(j,[k]) <2m+2D, k<6m/Nj. (5.151)
We define now the functions fj“ ky fj”2 Ky fji g, 88 In (5.15). The contribution in the case

1

max(Jj1, j2,j3) > 2m/3 can be bounded using (5.148]). On the other hand, if max(j1, j2,j3) <

2m/3 then we can argue as in the proof of Lemma when 2! ~ 1. More precisely, we define
o - (5.152)

As in the proof of Lemma see (5.96])—(5.89), (and after inserting cutoff functions of the form
w<i(n) and ¢=;(n), l = m — dm, to bound the other terms) for (5.146]) it suffices to prove that

27=500] |QjxCimlg1, 92, g3] HLz S270m, (5.153)

R 12 R v
91:=A>D 00 S5 ks 92 = AsDi—1000 ok A>Di—2070
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In proving (5.153)), we may assume that max(j1, j2,73) < m/3 and m < L (otherwise we could
use directly (5.148))) and that k > —100 (otherwise the contribution is negligible, by integrating

by parts in  and o). Therefore, using (5.151)), we may assume that
[k] <100, m<L, 2m/3+D*<j<m+2D, ji,j2js€[0,m/3.  (5.154)
As in the proof of Lemma we decompose the operator C,, in dyadic pieces depending on

the size of the modulation. More precisely, let

—

TlFah(€s) = [ g, @(6n0)nalé.n.0)

~

(€ -1, 3)§(U - 0, S)E(U7 S) dUd??
Let J<p = qup Jiq and

Conplfs 9. 1] = /]R 4 ()Tl 9, B (5) ds.

For p > —2m/3 we integrate by parts in s. As in Step 1 in the proof of Lemma using also
the L? bound (#.21)), it follows easily that

27=500] Z HPka,p[91792=g3]HL25276m'
p>—2m/3

To complete the proof of (5.153)), it suffices to show that

27 =504j9m Squ HijJS,m/Q[gl,gg,gg](s)HLQ < g7om, (5.155)
s€ilm

Let k = 27™/3 and define the operators jg_m/27§0 and jg—m/Q,l by inserting the factors
go(/ﬂflvn,C,&)(f,n,o)) and gol(/flvn,off({,n,a)), [ > 1, in the definition of the operators 7,
above. The point is to observe that |V§<T>(£,n,0)| < 27m/3+P in the support of the integral
defining the operator J<_,, 2 >0, due to Lemma (i). Since j > 2m/3 + D?, see , the
contribution of this operator is negligible, using integration by parts in &.

To estimate the operators J<_,, 2; notice that we may insert a factor of o
the expense of a negligible error (due to Lemma (i)). To summarize, we define

22m/3+176m77)7 at

—

AT NGOES /R o TRV B 1,0 )P my2((E,m, 0))
X

X (22T (€,m, 0) F(€ = 1, 8)§(n — 0, 5)h(o, 5) dodn,
and it remains to show that, for [ > 1 and s € I,
2j‘50‘5j2mHiju7é—m/2,z 91, 92, 93)(8)]| .- S 272 (5.156)

The bound (5.156)) is clear when [ > m /3 — dm, since 2/ < 2™ (see (5.154))). On the other hand,
if I <m/3 — dm then the operator is nontrivial only if

5(57”70) = A(g) - A(£ - 77) - Av(n - U) + AV(U)> ve {+7 _}7

due to the smallness of |, |VU€I;(€,77,O')‘, and @({,7],0)\ (recall the support restrictions in
(5.152))). In this case |V¢®(€,n,0)| < 2-™/2 in the support of the integral, and the contribution
is again negligible using integration by parts in £&. This completes the proof of Proposition [5.13
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6. PROOF OF PROPOSITION [L.3]

We show now that Proposition [I.3] follows from Proposition The starting point is the
system ([1.4]). We need to verify that it can be rewritten in the form stated in Proposition
For this we need to expand the Dirichlet—Neumann operator

G(h)p = |V|op + Na[h, @] + Ns[h, h, ¢] + Quartic Remainder,

and then prove the required claims. To justify this rigorously and estimate the remainder, the
main issue is to prove space localization. We prefer not to work with the Z norm itself, which is
too complicated, but define instead certain auxiliary spaces which are used only in this section.

We need some results about the Dirichlet—-Neumann operator, which are proved in section 9
n [32]. We recall that potential loss of derivatives is not an issue in this paper, so we do not
need the results concerning paralinearization in subsection 9.2 in [32]. Assume (h, ¢) are as in
Proposition and let Q := {(x,2) € R® : 2 < h(x)}. Let ® denote the unique harmonic
function in Q satisfying ®(x, h(x)) = ¢(x). We define the Dirichlet-Neumann map as

G(h)p = 1+ |Vh2(v - V) (6.1)

where v denotes the outward pointing unit normal to the domain €.
We use a change of variable to flatten the surface. We thus define

u(z,y) := ®(z, h(z) + y), (z,y) € R? x (=00, 0],

6.2
O(z,2) = u(z, z — h(x)). (6.2)

In particular wj,—g = ¢, dyuj,—g = B, and the Dirichlet-Neumann operator is given by
G(h)p = (14 |Vh*)Oyupy—o — Vah - Vauy,—q. (6.3)

The main formulas we need in this section, see Lemma 9.4 in [32], are

u=e'Vg+ L),

0 0
L(u) := —%eyIVI /_ es\Vl(Qa(s) — Qp(s))ds + ;/_ e—\y—sl\VI(Sgn(y — $)Qa(s) — Qu(s))ds,
(6.4)

where Q,[u] = Vu - Vh — |[Vh[29,u and Qplu] = R(d,uVh), and

0yuly) ~ [ luty) = Qul) + [ Tl I (Qy(s) — Quls))ds. (6.5)

—0o0

Step 1. We assume that the bootstrap assumption ((1.13]) holds. Notice first that

sup > 222 Qy DU () |12 S 11+ 1), (6.6)
2a+|a|<N1+Ng,a<N1 /2420 (k)T

sup > 227N QuuD oUWl S 21148/ (67)
2a+|a‘§N1+N4’a§N1/2+20(kJ)EJ

for 6 € [0,1/3], where the operators @ are defined as in (2.2). Indeed, let f = A QDU (t)
and assume that ¢ € [2™ — 1,2™F1], m > 0. We have

52
71 g+ 17122 S 1277, (6.8)



56 Y. DENG, A. D. IONESCU, B. PAUSADER, AND F. PUSATERI

as a consequence (1.13), where, as in (4.27), N := (N1 — Ny)/2 = 1/(26) and N := (Np —
N3)/2 — Ny =1/5. To prove we need to show that
Z 29]'2709“6\/2Hcgjkefz't/\f”[/2 S 5120m+652m‘ (69)
(k.j)ed
The sum over j < m + §?m + |k|/2 or over j < |k| + D is easy to control. On the other hand,
if j > max(m + 62m + |k|/2,|k| + D) then we decompose f = S nes [inw as in (3.23). We
may assume that |k’ — k| < 10; the contribution of 5 < j — 625 is negligible, using integration
by parts, while for 5 > j — 625 — 10 we have
Qe ™™ firall Lz S £12” ™ min(27 /% 27 Nok+ ),
The desired bound follows, which completes the proof of . The proof of (6.7)) is similar,
using also the decay bound ([3.34). As a consequence, it follows that
. 2
Z 20197 0M2)1Q; kg(t)]| 12 S e 20mT6™,
(k.j)eT
o _ 2
Z 90i9 0|k|/2HQ]’,]€g(t)HLoo <2 5m /6+0m-+66 m
(k.j)ed
for g € {D*Q(V)h, D*Q%|V|'/2¢ : 2a + |a| < Ny + Ny, a < N1/2+ 20} and 6 € [0,1/3].
Step 2. We need to define now certain norms that allow us to extend our estimates to the
region {y < 0}.

(6.10)

Lemma 6.1. For ¢ >0 and 0 € [0,1], p,r € [1,00], define the norms

o -
1 llvp, @2y = > 292 Qyk f e Il gy, m2x(-oc0) = > 2figdk 1Qjkf Ly re-
(kg)ed (k.g)eg

(i) Then, for any p € [2,00] and 6 € [0,1],
7 g + V12 f e < 1l (6.11)

and

H /_(;O V| 1/2e=ls=vlIVIg (5 — S)f(s)ds‘

o Yo (6.12)
eIy ], S W,
(it) If p1,p2,p,r1, 72,7 € {2,00}, 1/p=1/p1 4+ 1/p2, 1/r =1/r1 + 1/r3 then
16Dy, o SISl lollgenge, (6.13)
provided that 01,05 € [0,1], 61 + 02 € [62,1], ¢ > §%2. Moreover
G egyz o S Wlaevie, ol (6.14)

Proof. The linear bounds in part (i) follow by parabolic estimates, once we notice that the
kernel of the operator eV P, is essentially localized in a ball of radius < 27% and is bounded
by C22(1 + 2F|y[)~*.

The bilinear estimates in part (ii) follow by unfolding the definitions. The implicit factors
2-0%i9=8"F" in the left-hand side allow one to prove the estimate for (k, j) fixed. Then one can
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decompose f =" fj, k1> 9 = D Gjsko as in (3.23)) and estimate ||Qjx(fj k, -ng,;CQ)HLng using

simple product estimates. The case j = —k > min(j1, j2) requires some additional attention; in
this case one can use first Sobolev imbedding and the hypothesis 6; + 02 < 1. O

Step 3. Recall now the formula (6.4]). Let
uV) = e¥Vlg, u™ ) = WVl 4 L™, n > 1. (6.15)

We can prove now a precise asymptotic expansion on the Dirichlet-Neumann operator.
Lemma 6.2. We have
G(h)p = |V|¢ + Nalh, 6] + Ns[h. ¢] + |V *Na[h, ¢], (6.16)
where

PNl 6IHE) = 175 [ ma(€nlh(€—mamydn. maf&on)s=€-n—lellnl. (617

FNl 0 = g [ moleon e —mhtn — 0)5(0) dder

_ _[€llo] N oD = (£ — ) (m —
n3(§,m,0) = GENE (Il = ID(Inl = lo]) = (€ = m)(n — o)],
and, for 0 € [62,1/3] and V € {D*Q%: a < N1/2 + 20, 2a + |a| < Ny + Ny — 2},

IV N[k, 6]y < efgdim—sm/2+25"m, (6.19)

—352,1-352 "

Proof. Recall that h is constant in y. In view of (6.10) we have, for t € [2™ — 1,2m+1],

(6.18)

IV VR | pooyz, S 2", 9 e [0,1/3], (6.20)
and
VYTV (1) | Lo yeg < e12fm—om/S+6m g e [0,1/3], (6.21)
for Ve {D*Q% : a < N1/2+ 20, 2a + |a] < N; + Ny — 2}. Moreover, using Lemma 9.4 in [32],
2
IV IVa)llzms + 1@, Vu) (Ol 2 S €122, (6.22)
for operators V' as before. Therefore, using (6.14]),
< ~200m—5m/6+1262m
VIQEllgya , S5 ,

for Q € {Q,,Qp} and 0 € [§2,1/3]. Therefore

Om— 5?2
IVIVE@Igra , 410V E@ g | S d2mm/sssim  (3)
using (6.11))—(6.12)). Therefore, using the definition,
Om— 52
I91VIe = uPllggys 10V = lgya | S F2omom/enain (64)

Since u — u® = L(u — u(!)), we can repeat this argument to prove that for § € [62,1/3] and
Ve {D*¥Q%:a < Ni/2+ 20, 2a+ |a| < Ny + Ny — 2},

PN ) _ 2 < -3920m—5m/3+186%m
IVIVE = a0V u® gy e . (625)
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To prove the decomposition ((6.16)) we start from the identities and (| ., which gives
G(h)¢ = Oyu — Qq. Letting an) = Qa[u(n)]v Qz(, Qb[ ] n e {1 2} it follows that

G(h)p = |V|é + /0 Ve BIVIQP) (s) — QP (s)) ds + Ny,
0 - (6.26)
Ny = / 91e 1Y@, — Q) (5) — (Qu — Q) ()] ds.

In view of (6.25)), (6.21)), and the algebra rule (6.14]), we have

_ < ~4930m—5m/2+2456%m
IV(@-Q¥ >um29 L, Sei2 :

for Q € {Qq, Qp}. Therefore, using , ]V| 1/2N471 satisfies the desired bound (6.19)).
It remains to calculate the integral in the first line of (6.26). Letting o = |Vh|? we have

FluM} (&, y) = e/€6(¢),
(1) _ b N ylnl7) b ylnl
FLQVYEw) =~z [ (€ =) -ne s —m)dln)dn— 15 [ nles —mdto) dn

FQMNEw) = s [ S50 S e - n>$<n>dn

(6.27)

Therefore
L[ slel gy [E=m-n  [nl(€—m)-¢
FONEw) = gz [ 09— [t — s

L b (ey|£| _ey\m)[(ﬁ—ﬁ)‘ L nl€=mn) f)}ﬁ(g_n)(g(n) i

]Tl(ﬁ n)é(n) dn

8 =&l +1Inl  1€l(=lgl + nl
+ El (é.a y)v
where ,
< 3920m—5m/3+1856°m

||W|VE1||L;jy229_25271_252 + |’ayVE1HL§Y226_252 g2 S E1 2

After algebraic simplifications, this gives
1 ~ ~ -
FUL@ONED) =~ o3 [ @ = e afie =)t dn + Br(c.).

Since u® — u = L(uM) we calculate

F{QP — QW) (¢, y)

16171' /( lo[(§ —n) - (eylnl_eylol) (€ — 77) (n — )(g( )dnda+E2(§ 9) (6.28)
and
Flap - o) ew)
:Flﬂ - o€ |g) (e — o1e" V(e — mhn — 0)3(0) dndo + Ba€,y) (6.29)
where
IV Exl 2y + |V Es| 2y < ig¥mom/2:245%m

30-362,1—362 93521352N
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We examine now the formula in the first line of (6.26). The contributions of Ey and Fs3 can
be estimated as part of the quartic error term, using also (6.12)). The main contributions can

be divided into quadratic terms (coming from Qél) and ngl) in (6.27))), and cubic terms coming
from (6.28])—(6.29)) and the cubic term in Q((ll). The conclusion of the lemma follows. O

Step 4. Finally, we can prove the desired expansion of the water-wave system.

Lemma 6.3. Assume that (h, ) satisfy (1.4) and (1.13). Then
(O + AU = Na + N3 + N>y, (6.30)
where U = (VYh 4 i|V|Y2¢ and Ny, N3, N>4 are as in subsection .
Proof. We rewrite (|1.4]) in the form
Vh (G(h)p + Vh-V¢)?
T 5 ] (6.31)
(14 |Vh2)Y 2(1+[Vh|)

We use now the formula (6.16|) to extract the linear, the quadratic, and the cubic terms in the
right-hand side of this formula. More precisely, we set

Ny = (V)|V|¢ +i|V[V2(—=h + Ah) = —iAU,

AU = <V>G(h)¢+z‘yV|1/2[—h+ div[ ]—%|v¢\2+

N = (V)No[h, ¢] + | V| /2] - %lWIQ + %UVWL (6.32)
N := (V) Ns[h, h, ¢] +i|V|/2] — %div (VAIVAP) + V|6 (Na[h, ¢] + Vh - V)],

Then we substitute h = (V)Y (U +U)/2 and |V|'/2¢ = (U —U)/(2i). The symbols that define
the quadratic component A5 are linear combinations of the symbols

§-n—[&ln| 12E=m) -n+ 1§ —nln|
n2,1(€,m) = v1+ €2 ) n22(§,n) = [¢] -
/2T + € —n? € = n|'/2[n|1/?
It is easy to see that these symbols verify the properties (2.21f). A slightly nontrivial argument
is needed for ng 1 in the case k; = min(k, k1, k2) < k.
The cubic terms in N3 in ((6.32]) are defined by finite linear combinations of the symbols

_ L+ [P €l e ol (D (n — o
n?”l(g’n’a)\/(1+§—nl2)(1+|?7—0|2)IS\HUI[('{’ D (Inl = lol) = (€ =n)(n — )],

€-E=n)n—0)-0)
VI+IE=nP) A+ —oP)A+[0]?)
n o) = €112 — p|1/2|5|1/2 lo| — [ .
3,3(€7777 ) ‘§’ ‘g 77’ ‘ ’ \/m

It is easy to verify the properties (2.22)) for these explicit symbols.
The higher order remainder in the right-hand of (6.31]) can be written in the form

N>y = V"N, sup ID*Q*Nylly> S ef2?m2Hom  (6.33)
a<N1 /2420, 2a+|o|<N1+Ns—4 1-4,1-4

using (6.19)), (6.10]), and the algebra property (6.13[). Moreover, using only the O hierarchy as
in the proof of Corollary 9.7 in [32], we have |[N>4llo, _, S ef, ie.

IV all prvo-s + [INSall vy va—a S e3275m/240m, (6.34)

113’2(5, 7, O') - |§’1/2
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These two bounds suffice to prove the desired claims on N>4 in (2.25)). Indeed, the L? bound
follows directly from (6.34]). For the Z norm bound it suffices to prove that, for any (k,j) € 7,

sup 2j(1_505)“ijeitADo‘QaNZ4]]Lz < gfammom, (6.35)
a<N1/2420,2a+|a|<Ni+Ny4

This follows easily from (6.34) and (6.33]), unless
j>3m/2+ (No/4)kT +D and j>3m/2—k/2+D.
On the other hand, if these inequalities hold then let f = D*Q%N>y, a < N1 /2420, 2a + |of <
N1+ Ny, and decompose f =3~ ines fir e as in (3.23). The bound (6.33) shows that
Z 2—4max(k’,O)Qj’(l—(S)Hfjl,k,HL2 S 84112—3m/2+5m' (6.36)
(K'.5")ed

The desired bound (6.34) follows by the usual approximate finite speed of propagation argu-
ment: we may assume |k’ — k| < 4 and consider the cases j' < j — ¢ (which gives negligible
contributions) and j’ > j — §; (in which case (6.36] suffices). This completes the proof. O

7. ANALYSIS OF PHASE FUNCTIONS

In this section we collect and prove some important facts about the phase functions ®.

7.1. Basic properties. Recall that
©(£7 77) = q)auu(gu 77) = AO’(&) - A,u(f - 77) - AI/(n)v g, vV € {+7 _}7

(7.1)
Aw(§) = Ax(l€]) = wA(E]) = sVIE] + €I
We have
1+ 322 3zt + 622 — 1 3(1 + 522 — 5z — 29)
V(z) = N(x) = - N (z) = 7.2
(@) 2Vz + 2% (=) Az +a3)3/2 7 (@) 8(z + 23)5/2 (7.2)
Therefore
2v/3 — 3
N'(z) >0 if z >, N'(z) <0 if z € [0,70], Yo = \fg ~ 0.393. (7.3)
It follows that
A(70) = 0.674, N (y0) ~ 1.086, N (7o) &~ 4.452, N (40) ~ —28.701. (7.4)

Let 71 := v/2 ~ 1.414 denote the radius of the space-time resonant sphere, and notice that

7 23
A1) = \/3V2 ~ 2.060, N(y1)= ~1.699, X'(11)=—F——==~00658  (7.5)
2v/3v2 44/54/2

The following simple observation will be used many times: if Us > 1, £, € R2, max(|¢], |n], |¢—
nl) < Uz, min(€]. ], € = nl) = a < 27°U; ", then

|D(&,n)] > A(a) — bes[ufl)] ]()\(a +b) — A(b)) > Aa) — amax{\N(a), N (Us + 1)} > Xa)/4. (7.6)
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Lemma 7.1. (i) The function N is strictly decreasing on the interval (0,vo] and strictly in-
creasing on the interval [yg, 00), and

. / . /

The function X is concave up on the interval (0,1] and concave down on the interval [1,00).
For any y > N (%) the equation X' (r) =y has two solutions r1(y) € (0,70) and r2(y) € (70, 00).
(ii) If a # b € (0,00) then

(7.7)

3ab + 1)(3a%b% + 6ab — 1)
1 —9ab )
In particular, if a # b € (0,00) and N (a) = X (b) then ab € (1/9,~2].
(iii) Let b : [y0,00) — (0,70] be the implicit function defined by X' (a) = X' (b(a)). Then b is a
smooth decreasing function an

N(a) =N(b) if and only if (a—b)*= ( (7.8)

b (a) € [-1,—b(a)/al, a+ b(a) is increasing on [y, 00), b(a) =~ 1/a, (7.9)
—b/(a) =~ 1/d?, V(a)+ 1= (a—)/a. '
In particular,
PURY
o+ b(a) — 290 ~ LT (7.10)
Moreover,
— [N'(b(a)) + X'(a)] ~ a=*(a — 70)*. (7.11)
(iv) If a,b € (0,00) then
4+ 8ab — 32a%b?
AMa+b) = Xa) + AX(b)  if and only if (a—b)* = + 8; 7 34(1 . (7.12)
ab —
In particular, if a,b € (0,00) and Xa + b) = A(a) + A(b) then ab € [4/9,1/2]. Moreover,
if ab>1/2 then A(a+0b)— A(a)— A(D) >0,
f / (a+b) = Ma) = A(b) (7.13)

if ab<4/9 then A(a+b)— Aa)— A(b) <O0.
Proof. The conclusions (i) and (ii) follow from (7.2)—(7.4)) by elementary arguments. For part
(iii) we notice that, with Y = ab.

. —9Y3 —21Y? -3Y +1 32/81

2 _ . — _v2? _
(a+0b(a))"=F():= Y —1 +4Y = oY —1 Y“ 4+ 14Y/9 — 49/81,
as a consequence of ([7.8). Taking the derivative with respect to a it follows that
2(a+b(a))(1+V(a)) = [ab/ (a) + b(a)]|F'(Y). (7.14)

Since F'(Y) < —1/10 for all Y € (1/9,~3], it follows that ¥/ (a) € [—1, —b(a)/a] for all a € [y, 0).
The claims in the first line of ((7.9) follow.

The claim —b'(a) ~ 1/a? follows from the identity \”(a) — \’(b(a))¥’(a) = 0. The last claim
in ([7.9) is clear if a — 79 2 1; on the other hand, if a — 9 = p < 1 then ((7.14) gives

14 (a)
—_~1 —bla) = p.
V@) + by = 0@

In particular 1 — b(a)/a =~ p and the last conclusion in (7.9)) follows.

3In a neighborhood of o, X (z) behaves like A+ B(z —v0)? — C(z —70)?, where A, B,C > 0. The asymptotics
described in (7.9)—(7.11]) are consistent with this behaviour.
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The claim in (7.10) follows by integrating the approximate identity &'(x) + 1 ~ (z — v)/x
between vy and a. To prove (7.11]) we recall that \”(a) — \”(b(a))b'(a) = 0. Therefore
" " " / " 1 + b/(a)
—IV(ba)) + X (@] = ~Xbl@)(1+ ¥ (@) = X)L,
and the desired conclusion follows using also ((7.9)).

To prove (iv), we notice that ([7.12]) and the claim that ab € [4/9,1/2] follow from (|7.2)—(|7.4])
by elementary arguments. To prove (7.13)), let G(z) := A(a + z) — A(a) — A(z). For a € (0, 00)
fixed we notice that G(z) > 0 if = is sufficiently large and G(x) < 0 if z > 0 is sufficiently small.
The desired conclusion follows from the continuity of G. 0

7.2. Resonant sets. We prove now an important proposition describing the geometry of reso-
nant sets.

Proposition 7.2. (Structure of resonance sets) The following claims hold:
(i) There are functions py+1 = p——1 : (0,00) — (0,00), p142 = p——_2 : [270,00) — (0,70],
pi—1 =p_11:(0,00) = (y0,00) such that, if o, pu,v € {+,—} and £ # 0 then
. : £ £
(Vo) (€)= 0 if and only if 1 € Fu(€) i= {pun(€]) 57, € ~ pua€l) 1+ € (1,2},

(7.15)
(i1) (Space resonances) With Dy i, i, as in (2.3), assume that

(&,1) € Dijoy s and  |(Vy®@ou)(&,n)] < g < 27 Prof-max(krka) (7.16)

for some constant Dy sufficiently large. Then ||ki| — |ko|| < 20 and, for some p € Pw(g)ﬁ
o if |k| <100 then max(|ki|, |ka|) < 200 and

either u=—v, |n —p‘ < €2,
€ 1
or p=v, |(n—p)- /€l S e, and |(n—p)-&/IEl S sm7E—; (7.17)
e/ +|1€1-270|
o if K < —100 then
either u= —v, ki,ks € [—10,10], and ‘7] —p| < 2kl (7.18)
or p=v, ki, ky € [k —10,k +10], and |n — /2| < 273k/2¢,; '
o if k> 100 then
In—p| < e22V/2. (7.19)

(ii1) (Space-time resonances) Assume that (&,m) € Dy iy ko>

|Poyu (€,m)| < e < 27 ProminEkuk2 002 y(7, ®,,)(€,m)] < e < 27 Prohmmaxtbka)g 2k
(7.20)
Then, with v = /2,

t(omv)=(HH4), n-—pra@l=m-¢2Se [E-n|Sa+dq.  (7.21)
Proof. (i) We have

é:Z\ ~ m’(;ny)ﬁ (7.22)

4The set Py, (£) contains 2 points if (1, ) € {(+.—), (—, +)} and at most 3 points if (x, ) € {(+.+), (—, —)}.

(Va@ouw)(&m) = uX (1€ —nl)
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Assume that £ = ae for some a € (0,00) and e € St. In view of (7.22), (V,®u)(&,n) = 0 if
and only if

n=Pe, BER\{0,a}, pXN(la—pB|)sgn(e—B)=vN(|f])sgn(B). (7.23)

We observe that it suffices to define the functions p4 41, p442, and p4 1 satisfying ((7.15)), since

clearly p-—1 = py 41, p——2 = p1y2, and p_11 = pi 1.
If (u,v) = (+,+) then, as aconsequence of (7.23)), B € (0, ) and X' (a—B) = N (8). Therefore,

according to Lemma - —(iii), there are two possible solutions,

B =piy1(a) == a/2,

B = pii2(a) uniquely determined by /\’(ﬁ) = X(a — ) and 8 € (0,7). (7.24)

The uniqueness of the point pyio(a) is due to the fact that the function x — x + b(x) is
increasing on [yp, 00), see . On the other hand, if (u, ) = (4, —) then, as a consequence of
(7.23), 5 < 0 or > o and N (|la— B]) = N(|8]). Therefore, according to Lemma [7.1] there is
only one solution 5 > g,

B =pi_1(a) uniquely determined by N (8) = N (8 — ) and 8 € [max(a, o), @+ y0]. (7.25)

The conclusions in part (i) follow.

(ii) Assume that (7.16)) holds and that (u,v) € {(+,4+),(+,—)}. Let £ = e, le] =1, a €
[2k—4 2k+d] ' = 564—1} v-e =0, (B24]|v|?)1/? € [2k2=4 2k2+4]. The condition |(V,®eu)(€,7)] <
€2 gives, using (7.22)), ||k1| — |k’2|‘ < 20 and

o (a-p) _ N(g—aD _ X(n)
X e =D, Rl o

Since o > 2% and |€ — 9|7 N(|¢€ — ) = 2/F11/2=k1 the first inequality in (7.26)) shows that

[v| < ea. (7.26)

—v\(|n *‘ < é
(1 Dlnl

pX (1€ = 1)) P I/)\'(|77|)‘§"Z2k+k:1|/2—k1'

€ =l
Since 1/|3| > 27%2~4 using also the second inequality in (7.26) it follows that
and
‘ N =) VX nl) ‘ > ok-+lki/2—k1—ks
[l u

In particular |v| < 2-202min(kik2)

|Inl — 18]  eg272kmlt2hatke i | — o — g|| S 272 IlthiTke, (7.28)
Using the first inequality in ([7.26]) it follows that

X' (Jac = Bl)sgn(a — ) — X (|B])sgn(B)| < ep + Cega 2 hnl/zrzmaxtiuta), (7.29)

Proof of (7.17). Assume first that |k| < 100. Then max(|k1[, |k2|) < 200, since otherwise
(7.29) cannot hold (so there are no points (§,n) satisfying (7.16])). The conclusion ‘(77 - p)-

&H/I€l] S e2 in (717) follows from (7.27).
Case 1. If (u,v) = (+, —) then (7.29) gives

[N(la = B) = N(I8])| < 2e2,  sgn(a — B) +sgn(B) = 0.
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Therefore either 8 > a and [N (8 — &) — N(B)| < 2ez, in which case 8 — o < 79, 8 > 70, and

18 —pi—1(a)| S €2, 0r B <0and [N(a— ) —N(—B)| < 2e2, in which case a — 8 > 70, —8 < 70,

and | — 8 — py—1()| < €. The desired conclusion follows in the stronger form |n — p| < €.
Case 2. If (u,v) = (+,+) then gives

[N (o= B) = N(IB])| < 2e2,  sgn(a — B) = sgn(B).
Therefore
B € (0,a) and [N (o= B) = XN(B)| < 2e,. (7.30)
Assume « fixed and let G(8) := N (8) — N (a — ). The function G vanishes when 3 = a/2 or
B € {pt+2(a), 0 = pija(@)} (if a > 27).
Assume that a = 299 + p > 279, p € [0,2'1°]. Then, using Lemma (iii),
pi+2(a) <y < /2 < a—pipa(a), a/2 =0 =p/2, Y0 — P++2(a) = /D, (7.31)
where the last conclusion follows from with a = a — p442(a), b(a) = p4+2(a). Moreover,
IG'(B)| = [N'(B) + N'(a = B)| = pif B €{a/2,psya(a),a — piya(a)}, using (7.11) and (7.31).
Also, |G"(B)| = IN"(B) = N(a—B)| S pif |B— /2| S \/p, therefore
G'(B) ~p if BETni={w: min (jr—a/2], |r—pssa(a)], [r—atpisa(a)]) < v//Col, (7.32)

for some large constant Cj.

If p < 0363/3 then the points /2, p412(a), & — py42(a) are within distance < 0616;/3. In this

case it suffices to prove that |G(5)| > 3ey if |5 — /2| > 20616;/3. Assume, for contradiction,
that this is not true, so there is 5 < vy — 0365/3 such that [N (8) — N (a— )| < 3ez. So there is =

close to 3, |z — 8] < 63/3, such that X' (x) = N (a— ). In particular, using (7.10)) with a = a—§,
b(a) = z, we have « — f+x — 279 > 0563/3. Therefore a — 2y > Cgeg/?), in contradiction with
the assumption o — 299 = p < C’éeg/ 3,

Assume now that p > C’éeg/ . In view of (7.32), it suffices to prove that if § ¢ I, then
|G(B)| > 3ea. Assume, for contradiction, that this is not true, so there is § € (0,a/2] \ I,
such that [N(8) — N(a — )| < 3ex. Since f < a/2 — /p/Co, we may in fact assume that
B < v — /p/(2C), provided that the constant Dy in (7.16) is sufficiently large. So there is x
close to 3, |z — B| < e2//p, such that X' (z) = N(a — ). Using (7.9), it follows there is a point
y close to z, |y — z| < ea/p, such that N (y) = N(a — y). Therefore y = p;12(«). In particular
|8 — py42(a)| S e2/p, in contradiction with the assumption 3 ¢ I, so |3 — piy2(a)| > /p/Co
(recall that p > C’é‘eg/‘%).

The case o = 29— p < 27y is easier, since there is only one point to consider, namely «/2. As
in ,|G'(B)] = pif |[& —a/2| < \/p/Cy. The proof then proceeds as before, by considering
the two cases p < 0363/3 and p > Caleg/?’.

Proof of (7.18)). Assume now that k& < —100, so |k; — k2| < 20, and consider two cases:
Case 1. Assume first that (u,v) = (+,—). In view of (7.22)) we have

7 w
Nl i X<|w|>,w‘\ <e,  wherew =g & (7.33)

If min(|n], |w|) < v0 — 27 or max(|n], |w|) > yo + 270 it follows from (733)) that |X'(|n|) —
)\’(|w|)’ < €2, therefore ‘|77| - |w|| < €27 IFl/2+k1 - Therefore
1

‘i _ E‘ < 2 ml2 ang )i _ 7‘ < ey lal/2—k
Il fwl Il |wl
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As a consequence | — w| < e271F11/2+k1 - On the other hand |n —w| = || > 2%, in contradiction
with the assumption ey < 27P128=F1 Therefore either |n| or |w| has to belong to the interval
[Yo — 2710, v9 4+ 2710]. Since |n — w| < 27 it follows that

nl,ln—¢l € o—2"%+27". (7.34)

In particular ki, ks € [~10,10], as claimed. Moreover |v| < e22/#! as desired, in view of (7.27).
The condition (|7.29)) gives

[N(la = B) = N(IB)] < e2 + Ces27F, sgn(a — B) +sgn(8) = 0.
Without loss of generality, we may assume that
B> a, IN(B—a) = XN(B)| < e+ Ces27 2. (7.35)
Notice that py_1(a) € (70, +70). We have two cases: if e > 27P122% then we need to prove
that |3 — 0| < 2P1e2/F. This follows from (7-33): otherwise, if |8 — yo| = d > 2'Pre 2lkl >

23P12k then ‘|77| - 70| ~ d and ’|w| - fyo‘ ~ d, using also ((7.27). As a consequence of ([7.33)), we
have ||n| — |w|| < e2d™?, so

1
‘l—ﬂlgeg and 7‘§62d71.
il [wl |wl

‘i _
ul
Thus | — w| < €3 + e2d™! < €9 4+ 2874P1 | in contradiction with the fact that |n — w| = [£] > 2F.

On the other hand, if e; < 27P12% then (7.35) gives |N(8 — a) — N(B)| < 26 and 3 €
(70,70 + @). Let H(B) := N (8) — N (8 — ) and notice that

[H'(B)] Z 18 =0l + |8 —a =0l 2 2"
if B is in this set. The desired conclusion follows since H(p4_1(a)) = 0.
Case 2. If (u,v) = (+,+) then (7.29) gives

})\/(a o ﬂ) o )\/(/6)‘ S €9 4 063272k7|k1|/2+2max(k:1,k2)’ ﬁ c (07 Oé)

This shows easily that ki, ks € [k — 10, k+ 10] and |o — 23| < 2731k/2¢,. The desired conclusion

follows using also (7.27)).
Proof of (7.19). Assume now that k£ > 100 and consider two cases:

Case 1. If (u,v) = (+,—) then (7.29) gives
(N (Jae = BI) = N(IB])] < e + Ceg22hal/zrzmaxtiuia) = gon(a — 8) + sgn(f) = 0.

We may assume 8 > «, |max(ki, k2) — k| < 20, and |N(8 — a) — N'(8)| < 2e;. In particular
B € (a,a+). Let H(B) := N(B) — V(B — «) as before and notice that |H’'(8)| = 23#/2 in this
set. The desired conclusion follows since H (p4—_1(«)) = 0, using also (7.27).

Case 2. If (u,v) = (+,+) then (7.29) gives
IXN(a—B) = N(B)| < ea + Ceo 2~ Ilnl/zR2max(knka) - g e (0, ). (7.36)

If both 8 and a — 3 are in [, 00) then gives |8 — a /2| < €2%/2, which suffices (using also
(7.27))). Otherwise, assuming for example that 8 € (0,p), it follows from that g < 27++20,
Let, as before, G(8) := X(B) — N (a — B) and notice that |G'(8)| > 23%/2 if 8 € (0,27%+2°]. The
desired conclusion follows since G(p442(a)) = 0, using also (7.27).

(iii) If & < —100 then ®,,,(£,1) 2 2%/2, in view of and ([7.18)), which is not not allowed
by the condition on €;.
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If k > 100 and (u,v) = (4, —) then py_1(a) — a < 27510 < 2k=10 < 4 and
D&, m)| = | £ A@) = Ap+-1(@) + Api-1(a) — )| = Cex2",
for some constant C' sufficiently large. Moreover, in view of Lemma (i), a(pr-1(a) —a) <
72 < 0.2. In particular, using also Lemma (iv), |®(&,n)| = 27%/2, which is impossible in view
of the assumption on €;. A similar argument works also in the case k¥ > 100 and (u,v) = (+,+)
to show that there are no points (£, n) satisfying (7.20)).

Finally, assume that |k| < 100, so |ki|, |k2| € [0,200]. If (p,v) = (4, —) then there are still
no solutions (&,n) of (7.20), using the same argument as before: in view of Lemma (i),
a(py—1(a) —a) <92 <0.2, 50 |®(£,1)] = 1 as a consequence of Lemma (iv).

On the other hand, if (u,v) = (4, +) then we may also assume that o = 4. If 5 is close to
Pyt2() or to @ — prya(a) then ®(£,n) 2 1, for the same reason as before. We are left with
the case |8 — a/2| < ea and a > 1. Therefore |n — £/2| < e2. We notice now that the equation
A(z) — 2A(z/2) = 0 has the unique solution = = /2 =: 1, and the desired bound on ||£| — 1|
follows since

€] = 1] S 1Pop(€,€/2)] S 1Pow (&) + [Poyus (€, €/2) = Popu(&,0)| S €1 + 6.
This completes the proof of the proposition. O
7.3. Bounds on sublevel sets. In this subsection we analyze the sublevel sets of the phase

functions ®, and the interaction of these sublevel sets with several other structures. We start
with a general bound on the size of sublevel sets of functions, see [31, Lemma 8.5] for the proof.

Lemma 7.3. Suppose L, R,M € R, M > max(1,L,L/R), andY : Bg :={z € R" : || < R} —
R is a function satisfying VY ||ci(pyy < M, for some l > 1. Then, for any € > 0,

{z € Br:[Y(2)| <eand > [05Y(z)| > L} S R*ML' e (7.37)
o<
Moreover, if n =1=1, K is a union of at most A intervals, and |Y'(x)| > L on K, then
{z e K:|Y(z)| <e}| S AL e (7.38)

We prove now several important bounds on the sets of time resonances. Assume ® = ®,,,,
for some choice of o, u, v € {+.—}, and D; is the large constant fixed in Proposition

Proposition 7.4 (Volume bounds of sublevel sets). Assume that k, ki, ks € Z, define Dy, k,
as in , let k := max(k, k1, ko), and assume that

min(k, k1, ka) + max(k, k1, k2) > —100. (7.39)
(i) Let
By koie = (€M) € Dir o+ |2(E,m)| < €}
Then
SUP/ 1Ek,k1,k2;e (&,m)dn < 27@26 log(2 + 1/6)24min(k;r’k;),
i _ . (7.40)
8171]p /R2 LB sy e (&) dE S 27F/2¢log(2 + 1/€)2t Min(k5AT),

(ii) Assume that ro € [27P1,2P1], ¢ < 2min(kkik2.0)/2=D1 o < 1 and let
El/c,kl,kg;e,e' = {<£777) € ,Dk,kl,ka @(5;77)’ <€ ’f - 77’ - 7"0‘ < 6/}'
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Then we can write Ej = E| U E} such that

kose, e
swp [ A€ mdn-tsup [ (6 n)de S clog(1/e)- 2 (¢) (7.41)
n

(iii) Assume that € < gmin(kk1k2,0)/2=D1 o <1y ¢ <0, and let

El,fl,kl,kz;é,n = {(6777) € Dk7k17k27 |‘I)(577I)| <e |(QT](I))(§777)| < ’Q}'

Then
S“p/ g, (6 mez(Vy@(Em) dy £ 28D elog(1/c) - m2 2%,
¢ ) (7.42)
sUp /]R gy, (Emezp(Ved(§,m) de < 28k elog(1/e) - n2772%,
. ke,
As a consequence, we can write By, .= E{ UEy such that
sup / 150(€,m) di + sup / 1y(€,m) de S elog(1/e) - 21, (7.43)
& JR2 n JR2
Moreover, if k < 2 8max(kkik2)=D1 ypep
sup /R LB (EMe<g(Va®(Em)) din S k2125,
¢ (7.44)

swp [ Loy, (€mosy(Teb(Em) e S w22,
n Jr2 ~PRLR2ier
Proof. The condition is natural due to , otherwise |®(&, n)| ~ 2min(kk1.k2)/2 iy Dy ey oo -
Compare also with the condition ¢ < 2min(kk1k2,0)/2=D1 iy (i) and (iii).

(i) By symmetry, it suffices to prove the inequality in the first line of . We may assume
that ko < k1, so, using ,

k1, max(k, ko) € [k — 10, k], k, ko > —k — 100. (7.45)
Assume that £ = (s,0),n = (rcos,rsinf), so
—B(&,1) = —oA(s) + VA() + pA((s? 4+ r? — 2sr cos 0)V/?) =: Z(r, 0). (7.46)
We may assume that € < omin(k,k2)9k/2=D1 Notice that
‘%Z(r, 9)‘ = [N((s? + % — 251 cos 0)1/2) e T;ﬁ S;;lfcose)l S| (7.47)
Assume that |s — 7| > 2k—100 ¢ ¢ [2k—4 2k+4] ¢ [2k2—4 2k2+4] Then, for r, s fixed,
o e0,2n]: [Z(rno) <[ S > ‘ (7.48)

be{0,1} \/ZE/QQmi“(kka)(e + Z(r, b))

Indeed, this follows from ([7.47)) since in this case ‘69Z(r, 9)’ ~ 2min(’“’k2)2E/2| sin@| for all 6 €
[0,27]. Next, we observe that

[{r € 27274 2024 s — 7 > 257190 and | Z(r,bm)| < k2MIRIIR/2Y| < ok (7.49)
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provided that k > 200 and b € {0, 1}. Indeed, in proving (7.49) we may assume that x < 2-D1,
Then we notice that the set in the left-hand side of ((7.49)) is nontrivial only if

cither + Z(r,br) = A(s) — M(s £7) £ A(r) and s € [2F710,2F+10) . ¢ [9F~10 9-F+10)
or £ Z(r,br) = A(r) — A(r £ 5) £ A(s) and r € [2F710 2FH10] 5 ¢ [o7F~10 o=k+10],

In all cases, the desired conclusion ([7.49)) follows easily, since |0, Z(r, br)| is suitably bounded
away from 0. Using also (|7.48]) it follows that

[{n: Il € 2527425244, [|g] = |nl| = 210 and [®(¢, )| < e}] S 277224 (7.50)

provided that |£] € [2F=4,2F+4] k > 200, and holds.

The case k < 200 is easier. In this case we have 2F 2F1 2%2 ~ 1, due to . In view of
Proposition [7.2] (iii), if |Z(r,br)| < & < 272P1 and |8, Z(r,br)| < 272P1 then s is close to y1, 7
is close to 71/2, b = 0. As a consequence |02Z(r,br)| 2 1. It follows from Lemma [7.3| that

‘{r € [2k2_4,2k2+4] Ds—r| > 9k=100 and | Z (r,brr)| < H}‘ < %1/2,
provided that k < 200 and x € R. Using (7.48) again it follows that
[{n: Inl € [28274, 2544, Jjg| — ]| > 261 and |D(¢, m)| < €}] S elog(2+1/e)  (7.51)

provided that |¢] € [2F=4,254] and k < 200. -
Finally, we estimate the contribution of the set where [|¢] —[n|| < 2¥71%°. In this case we may
assume that k, k1, ko > k — 20. We replace (7.48)) by

€

: (7.52)

{02 2m =277 |Z(r,0)| < e} S =
V22 (e + Z(r,m))

which follows from (7.47) (since ‘agZ(r, 9)’ ~ 23E/2|sin 0| for all § € [27P1 2 — 27P1]). The
proof proceeds as before, by analyzing the vanishing of the function r — Z(r,m) (it is in fact
slightly easier since |Z(r,7)| = 23%/2 if k > 200). It follows that

(= Il € (257" 254, [lg] — Inl| < 271 and [B(&,m)| < e}] < elog(2+1/e)2"/2.

The desired bound in the first line of ([7.40)) follows using also (7.50)—(7.51)).

(ii) We may assume that min(k, k2) > —2D; and that ¢ < 27P1. Define
Ei = {(5777) S Ellc,kl,kg;e,e’ : |V77(D(§,77)| > 2720/D1}7
Eé = {(5’7]) € El’ﬂ,k1,k2;6,€/ : |V£<I>(§,7I)| > 2_20D1}'

It is easy to see that E , . . .= Ej U Ej, using Proposition (ii). By symmetry, it suffices
to prove ([7.41)) for the first term in the left-hand side. Let £ = (s,0), n = (r cos 6, rsin@), and

e :=1{n:(&n) € By, |sing| < (€)%},
Ei,g,z :={n:(&n) € Ey, |sinf| > (6/)1/22_21@}.

(7.53)

(7.54)

It follows from Lemma ﬁ that |E1’£71‘ < e (¢)1/2. Indeed, since |V, ®(&,n)| > 272071 and

|sin@] < (¢)1/2272k2_ it follows from formula (7.46) that |9,[®(&,n)]| > 272Dt in B¢y The
desired conclusion follows by applying Lemma for every suitable angle 6.
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To estimate ‘E{ ¢ 2| we use the formula ([7.46)). It follows from definitions that
Elen C{n:re 2729 A(r) € Koy, [sing] = ()1/227202, [0(&, )| < e},

where K, ,, is an interval of length < €’ and ky > —2D;. Therefore, using the formula as
before, 175,2’ < 2%k2¢(¢)1/2 ] as desired.

(iii) For it suffices to prove the inequality in the first line. We may also assume
that holds, and that x < 2¢-2max(kkik)=D1  Agsume, as before, that € = (s,0), n =
(rcosf,rsinf). Since

N (1€ —nl)

1€ —n)

(€2, @) (& )| = (&0,

the condition |(Q,®)(&,n)| < & gives
|sin @] < k2R —h—ha=lkal/2, (7.55)
in the support of the integral. The formula ([7.46)) shows that

1 N (1€ —nl)
r ’aﬁq)(éun)‘ ‘6_77|
in the support of the integral. Therefore |0, ®(&,n)| > 297* in the support of the integral.

We assume now that ¢ is fixed satisfying (7.55)). If ||ka| — |k1|| > 100 then [0,®(, n)| 2
olkil/2 4 olkal/2 for all (€,1) € Dy ky» and the desired bound follows from (7.37), with [ =1
and n = 1. If ||k2| — |k1]| < 100 then we use still use to conclude that the integral is
dominated by

s|sin | < k27k2

Ce272a90lkl/2 | ok —k—[ki|/2 < er2 24kl
This suffices to prove (7.42)) if 2¢ > 2-6max(kkik2)=D1  Fipally, if
||k’2| _ |l€1|| < 100’ 29 < 2—6max(k‘,k‘1,k2)—D1’ K < 2q—2max(k,k1,k‘2)—'D17

then we would like to apply (7.38). For this it suffices to verify that for any 6 fixed satisfying
the number of intervals (in the variable r) where |0,®(&, n)| < 297% is uniformly bounded.
In view of Proposition (iii) these intervals are present only when k, ki, ko € [—10,10], |s —
1| <1, |r—v/2| < 1, and ®(&,n) = £[A(s) — A(r) — M((s% + 72 — 257 cos #)'/2)]. In this case,
however |02®(¢,n)| > 1. As a consequence, for any s and 6 there is at most one interval in r

where |0, ®(&,1)| < 2974, and the desired bound follows from (7.38]).
The decomposition ([7.43)) follows from ((7.42)) and Proposition (iii), by setting 2P = 27 =
2—2'D12—2max(k‘,k1,k2)‘

To prove the first inequality in ([7.44]), we may assume that ¢ < —5 max(k, k1, k2) —D; (due to
(7.55))). In view of Proposition (7.2)) (iii) we may assume that k, k1, ke € [—10,10], |s — 11| < 1,

Ir—~1/2] < 1and ®(€,7) = £[A(s) = A(r) = A((s>+72 —2s7 cos 0)'/2)]. As before, |02®(£,7)| > 1
in this case. As a consequence, for any s and 6 fixed, the measure of the set of numbers r for
which |0,®(&,n)| < 29 is bounded by C29, and the desired bound follows. O

We will also need a variant of Schur’s lemma for suitably localized kernels.

Lemma 7.5. Assume that n,p < D/lO k,ki,ke € Z, | < min(k, kl,kz, 0)/2 —D/10, p1,p2 €
{v0,7}. Then, with Dy, k, as in , and assuming that H SUP,est |f rw)| HLQ(MT) <1,

H—n )/2

H/ 1D, 0, (6 @U(@(E,M)n (1€ — 0l — p1) F(€ = 1)G lgllrz,  (7.56)
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H /RZ1Dk,k1,k2<§,n)sol(@(s,n))son(f—nr p1)ep(nl — p2) F(E — )G

(7.57)

and

| [ 120 6o met@c ) s~ ma (dn|, < 2RZAL Dlgli (758)

Proof. In view of ([7.6]), we may assume that min(k, k1, kg)—i—k > —100, where k = max(k, k1, k2).
We start with (7.56)). We may assume that min(k, k1, k2) > —200. By Schur’s test, it suffices
to show that

sup /RQ 1D, 0, (6 @U(®(E,M)n (1€ — 0l — p1)|F(€ — )| dnp S 205772,

¢ (7.59)

sup /RQ 1D, s, (6 )@U@(EM)Pn (€ — 0| — p)IF (€ — )] de < 2072,

n
We focus on the first inequality. Fix ¢ € R? and introduce polar coordinates, = & — rw,
r € (0,00), w € St. The left-hand side is dominated by

2k1 +4

C/ / 1p, k1ko (€, §—rw)p l(¢(§>§_rw))(;0n(7”—p1)‘f(7“w)‘rd7”dw,
west Joki—4

for a constant C sufficiently large. Therefore it suffices to show that

0 [ Ay (66 )06 € ) d £ 202002 (7.60)

r, €

which is easily verified as in Proposition using the identity . Indeed for ¢ and r

fixed, and letting w = (cos#,sin @), the absolute value of the d/df derivative of the function

6 — ®(£,€ — r(cosh,sinf)) is bounded from below by c|sin f|2Ftk1—k29lkal/2 > | gin g|2~1k1l/2,

The bound follows using also . The second inequality in follows similarly.
We prove now . We may assume that k, ki, ko € [—80,80] and it suffices to show that

sup /R2 1D, 0, (&)@ (@(E,M)0n (1€ — 0l = p1)p(Inl — p2)| F(§ — )] dyp < 22 min(2', 27),

Sup /RQ 1D, 0, (6 @U(@(E,M)n (1€ — 0l = p1)p(Inl — p2)| F(€ — m)| dg S 2772,

We proceed as for (7.59)) but replace (7.60) by

sup Sup/ UD(E, € —1w))pn(r — p1)pp(|€ — Tw| — p2) dw < min{2', 27},
el T Jwest (7.61)

supsp [ @G+ n))en(r = pglal = p2)esoln + ) do S 2.
n T we

The bounds follow easily, using also the formula to prove the 2! bounds, once we
notice that |siné| 2 1 in the support of the integrals. For this we only need to verify that the
points & and 7 cannot be almost alligned; more precisely, we need to verify that if £ and 7 are
alligned then |®(&, € —n)| + ||€ — 0| — p2| + ||n] — p1| Z 1. For this it suffices to notice that

[ AN £Mp) £A(p2)| 21 i ¢l 2 1and £[[£p1£p2=0.
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Recalling that p1, p2 € {70,71}, it suffices to verify that A(2v9) —2A(70) # 0, A(271) —2A (1) # 0,
ﬁyo-i-’h) —Av0) —=A(71) # 0, A(—=y0+71) +A(70) — A(71) # 0. These claims follow from Lemma

(iv), since the numbers 3,72, 071, and yo(y1 — o) are not in the interval [4/9,1/2].

We now turn to (7.58). By Schur’s lemma it suffices to show that

p [ (€M) T, (€ MIFE )l £ 271250410,

sup /Rz Cu(®(E,n)1p, ., (&I F (€ — )l de < 27F1123/4 (1 4 1)),

We show the first inequality. Introducing polar coordinates, as before, we estimate

[ @€ § = N1, (6.6 = )l )] s

[ @ e =i, (6.6~ )

’S H Sgp \f(rw)| HL2(rdr) L2(rdr)

(7.62)

rg “()0§1+2((I>(§7§ - n))le,kl,kQ (§7§ - 77)”L% HQPSZJrQ((I)(g?g - rw))lpk,kl,kg (Evé - Tw)HLgoLE)

< 25IkI3/4 (1 41y,

using Proposition [7.4] (i) and (7.60). The second inequality in ([7.62]) follows similarly.
g Prop quality y

O

7.4. Iterated resonances. In this subsection we prove a lemma concerning some properties of

the cubic phases

B(E,n,0) = Dy (E,m,0) = AE) = A€ — 1) = As(n — o) — Ay (0).

These properties are used only in the proof of Lemma and Lemma [5.8]
Lemma 7.6. (i) Assume that £,m,0 € R? satisfy

max(|[¢ — n| =, |In — o] = 0l [lo] = 70[) < 27P/2,
and
Vo ®(E,m,0)| < Ky < 27900,
Then, for v € {+,—},
A&) = A€ —n) = Au(n) 2 -
Moreover,
if |V§£Iv>(§,77,a)] > ko > 2Pk, then @(f,n,a)\ > K:;,/z.
(ii) Assume that £,m,0 € R? satisfy |€ —n|, |n — o, |o| € [2719,210] and
(@4 (€ )] = [A(E) = Ap(€ — 1) — Au(n)] < 27271,
[@ugy(0,0)| = A () — Ag(n) — o) — As ()] < 2721

If
|v7770'&)(€777>0')| <k < 274’D1
then

ﬂ:_aV:6:7:+7 |77_20-‘+’£_0-|§H7 |V§€>(§Jl30)|§“~

(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

(7.68)

(7.69)

(7.70)
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Proof. (i) If (7.64) and (7.65)) hold then the vectors £ — 1,7 — 0,0 are almost aligned. Thus
either || < 27P1/2410 or ||| — 20| < 2-P1/2+10, We will assume that we are in the second case,

|n| = 20| < 27P1/2+10 (the other case is similar, in fact slightly easier because the inequality
(7.66) is a direct consequence of (7.6)). Therefore either ||£] — 37| < 27 P1/2+20 and in this case
the desired conclusions are trivial, or ||£] — 40| < 27P1/2+20 In this case (7.66) follows since
IA(70) = A(70) = A(70)] 2 1; it remains to prove ((7.67) in the case p = —, 5 =~y = +,

B(&,m,0) = AE) + A(E —n) — Ay — o) — A0),
IIn| = 270 < 27 P1/2+20, €] = 70| < 27 P1/2+20,

In view of (7.65), the angle between any two of the vectors {& —n,n— 0,0} is either O(k1) or
7+ O(k1). Given o = ze for some e € S!, we write n = ye+1/, ¢ = ve+&, withe-n/ =e-&' =0
and ||+ |¢'| < k1. Notice that |®(€,1,0) — ®(ze, ye, ze)| < k2. Therefore, we may assume that
9—D1/2+30,

(7.71)

|z =50l + |y = 270[ + [z =0l <
Ny —2) = N(2)| <261, Ny—z)—Ny—2)| <261, [N)—Ny—2)|>~K/2,

and it remains to prove that
|B(we, ye, ze)| = [A(@) + Ay — &) — Ay — 2) — A(2)] = w5/ (7.73)

Let 2’ # z denote the unique solution to the equation A'(z’) = X' (z), and let d := |z—~p|. Then

|2'—70] &~ d, in view of ((7.10]). Moreover d > /k1; otherwise |y—z—o| < /K1, [y—2—70| < VF1,
so | — | < y/K1, in contradiction with the assumption [N (z) — N (y — )| > k2/2. Moreover,

(7.72)

there are 01,09 € {z,2'} such that |y — z — 01| + |y — 2 — 09| < K1 /d. (7.74)

In fact, we may assume d > 2*D1/4/£§/2, since otherwise |z — vo| + |y — 2 — 70| < d, and hence
IN(x) — N(y — )| < d?, which contradicts ((7.65).
Now we must have o1 = z; in fact, if o9 = 2/, then x = 2 4+ 2’ — 09 + O(k1/d), thus

(N (z) = N(02)| < k1,
which again contradicts . Similarly o9 = 2’. Therefore
y=2z+0(k1/d), =22—2+0(k/d), y—x=24+0(k/d). (7.75)
We expand the function A at g in its Taylor series

A(©) = A(0) + e1(v = 70) + e3(v —0)* + O(v = 70)*,

where c1,c3 # 0. Using we have
(e, ye, ze) = ca[(x —70)* + (y —x — 70)* = (2 = 20)* = (y — 2 — 70)*] + O(d")

=c3((22 — 2/ —0)2 + (2 — 70)® — 2(z — 1) + O(d* + k1d).
In view of (7.10), z+2 =2y = O(d?). Therefore ®(ze,ye, ze) = 24(z — v)® + O(d* + r1d)
which shows that |®(xe,ye, ze)| = d®. The desired conclusion follows.

(ii) The conditions |®,4-(n,0)| < 272P1 and |(Ve®,4,)(n,0)| < k show that n corresponds
to a space-time resonance output. It follows from Lemma (iii) that

n—yel+|o—ye/2| Sk, Jy—m| S22, v=B=1, (7.76)

for some e € S'. Let b ~ 0.207 denote the unique nonnegative number b # ~y; /2 with the property
that \'(b) = N(71/2). The condition |V,®(§,n,0)| < k shows that £ — 7 is close to one of the
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vectors (y1/2)e, —(71/2)e, be, —be. However, A(b) =~ 0.465, \(y1 + b) &~ 2.462, A\(y1 — b) ~ 1.722,
A(71) & 2.060. Therefore, the condition |®,,,(¢,7)| < 272P1 prevents ¢ — 7 from being close
to one of the vectors be or —be. Similarly & — n cannot be close to the vector (v1/2)e, since
A(71/2) &~ 1.030, A(371/2) ~ 3.416. It follows that (¢ —n) + (y1/2)e| < 2720, |€] —711/2| <
272Dt = — v = +. The condition |Vn<f>(§,77,a)| < k then gives |(n — &) — (n —0)| S K, and
remaining bounds in follow using also ([7.76)). O
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