GLOBAL SOLUTIONS OF THE GRAVITY-CAPILLARY WATER WAVE
SYSTEM IN 3 DIMENSIONS, I: ENERGY ESTIMATES

Y. DENG, A. D. IONESCU, B. PAUSADER, AND F. PUSATERI

AsTrACT. In this paper and its companion [32] we prove global regularity for the full
water waves system in 3 dimensions for small data, under the influence of both gravity
and surface tension. The main difficulties are the weak, and far from integrable, pointwise
decay of solutions, together with the presence of a full codimension one set of quadratic
resonances. To overcome these difficulties we use a combination of improved energy
estimates and dispersive analysis.

In this paper we prove the energy estimates, while the dispersive estimates are proved
in [32]. These energy estimates depend on several new ingredients, such as a key non-
degeneracy property of the resonant hypersurfaces and some special structure of the
quadratic part of the nonlinearity.
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1. INTRODUCTION

The study of the motion of water waves, such as those on the surface of the ocean, is a classical
question, and one of the main problems in fluid dynamics. The origins of water waves theory
can be traced backEl at least to the work of Laplace and Lagrange, Cauchy [11] and Poisson,
and then Russel, Green and Airy, among others. Classical studies include those by Stokes [64],
Levi-Civita [55] and Struik [62] on progressing waves, the instability analysis of Taylor [66], the
works on solitary waves by Friedrichs and Hyers [33], and on steady waves by Gerber [34].

Y. Deng was supported in part by a Jacobus Fellowship from Princeton University. A. D. Ionescu is supported
in part by NSF grant DMS-1265818. B. Pausader is supported in part by NSF grant DMS-1362940, and a Sloan
fellowship. F. Pusateri is supported in part by NSF grant DMS-1265875.

LWe refer to the review paper of Craik [27], and references therein, for more details about these early studies
on the problem.
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The main questions one can ask about water waves are the typical ones for any physical
evolution problem: the local-in-time wellposedness of the Cauchy problem, the regularity of
solutions and the formation of singularities, the existence of special solutions (such as solitary
waves) and their stability, and the global existence and long-time behavior of solutions. There
is a vast body of literature dedicated to all of these aspects. As it would be impossible to give
exhaustive references, we will mostly mention works that are connected to our results, and refer
to various books and review papers for others.

Our main interest here is the existence of global solutions for the initial value problem. In
particular, we will consider the full irrotational water waves problem for a three dimensional
fluid occupying a region of infinite depth and infinite extent below the graph of a function. This
is a model for the motion of waves on the surface of the deep ocean. We will consider such
dynamics under the influence of the gravitational force and surface tension acting on particles
at the interface. Our main result is the existence of global classical solutions for this problem,
for sufficiently small initial data.

1.1. Free boundary Euler equations and water waves. The evolution of an inviscid perfect
fluid that occupies a domain ; C R"”, for n > 2, at time ¢ € R, is described by the free boundary
incompressible Euler equations. If v and p denote respectively the velocity and the pressure of
the fluid (with constant density equal to 1) at time ¢ and position = € €, these equations are

(Or+v-V)v=—-Vp—gey, V-v=0, x € (U, (1.1)

where g is the gravitational constant. The first equation in (|1.1)) is the conservation of momentum
equation, while the second is the incompressibility condition. The free surface S := 92 moves
with the normal component of the velocity according to the kinematic boundary condition

O¢ +v - V is tangent to UtSt C R;f{l. (1.2)
The pressure on the interface is given by
p(z,t) = ok(z,t), x € Sy, (1.3)

where k is the mean-curvature of S; and o > 0 is the surface tension coefficient. At liquid-air
interfaces, the surface tension force results from the greater attraction of water molecules to
each other than to the molecules in the air.

One can consider the free boundary Euler equations — in various types of domains {2,
(bounded, periodic, unbounded) and study flows with different characteristics (rotational/irrotational,
with gravity and/or surface tension), or even more complicated scenarios where the moving in-
terface separates two fluids.

In the case of irrotational flows, curlv = 0, one can reduce — to a system on the
boundary. Indeed, assume also that €2; C R”™ is the region below the graph of a function
h:R? ! x I, — R, that is

Q= {(z,y) ER" I xR :y < h(z,t)} and S; = {(2,9):y=h(z,t)}.

Let ® denote the velocity potential, V,,®(x,y,t) = v(x,y,t), for (z,y) € Q. If ¢(x,t) =
®(x,h(x,t),t) is the restriction of ® to the boundary S;, the equations of motion reduce to the
following system for the unknowns h, ¢ : R?~1 x I, — R:

8th = G(h)¢7
3t¢:fgh+o'div[ vh

(G(h)¢ + Vh - V¢)? (1.4)
(1+[Vh[2)L/2 '

2(1 + |Vh[?)

1 2
- §|V¢| +
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G(h) == \/1+|Vh|*N(h), (1.5)

and N (h) is the Dirichlet-Neumann map associated to the domain Q;. Roughly speaking, one
can think of G(h) as a first order, non-local, linear operator that depends nonlinearly on the
domain. We refer to [65, chap. 11] or the book of Lannes [54] for the derivation of (L.4). For
sufficiently small smooth solutions, this system admits the conserved energy

1 g 2 ‘Vh|2
H(h, ::/ G(h ~d+/ hd+/ d
(h9):=3 [ G -ddet5 | - Wdrdo | Tr VA (1.6)

Here

~ [IV1Y26][2 + ||(g — 0 A)Y20]) .,

which is the sum of the kinetic energy corresponding to the L? norm of the velocity field and
the potential energy due to gravity and surface tension. It was first observed by Zakharov [76]
that is the Hamiltonian flow associated to .

One generally refers to as the gravity water waves system when g > 0 and o = 0, as the
capillary water waves system when ¢ = 0 and ¢ > 0, and as the gravity-capillary water waves
system when g > 0 and o > 0.

1.2. The main theorem. Our results in this paper and [32] concern the gravity-capillary water
waves system, in the case n = 3. In this case h and ¢ are real-valued functions defined on R? x I.
To state our main theorem we first introduce some notation. The rotation vector-field

Q= 2105, — 2204, (1.7)

commutes with the linearized system. For N > 0 let HY denote the standard Sobolev spaces
on R2. More generally, for N, N’ > 0 and b € [~1/2,1/2], b < N, we define the norms

j N b
A e = D MY Fllavs (g = (V1Y + V)£ - (1.8)
“ J<NY
For simplicity of notation, we sometimes let Hg L= g "0, Our main theorem is the following:

Theorem 1.1 (Global Regularity). Assume that g,0 > 0, § > 0 is sufficiently small, and
No, N1, N3, Ny are sufficiently largd’| (for ezample § = 1/2000, Ny := 4170, Ny := 2070, N3 :=
30, Ny :=T70, compare with Definition . Assume that the data (ho, ¢o) satisfies

1ol NiNg + sup 1L+ |2]) ! * D™ Uyl 2 = 0 < Fo,

Q 2m+|a|<Ni+Ny (1.9)
Uy = (g — o A)/2hg + V|,

HNonH

where g9 is a sufficiently small constant and D = 81?‘183‘2, a = (a',a?). Then, there is
a unique global solution (h,$) € C([0,00) : HNot! x HN0+1/2’1/2) of the system (L1.4), with
(h(0),#(0)) = (ho, ¢o). In addition

(1+6) ") vy Seos (LU e S <o, (1.10)

HHNOHHQ
for any t € [0,00), where U := (g — aA)Y2h 4 i|V[/24.

2The values of Ny and N 1, the total number of derivatives we assume under control, can certainly be decreased
by reworking parts of the argument. We prefer, however, to simplify the argument wherever possible instead of
aiming for such improvements. For convenience, we arrange that N1 — N4s = (No — N3)/2 — N4 = 1/4.



4 Y. DENG, A. D. IONESCU, B. PAUSADER, AND F. PUSATERI

Remark 1.2. (i) One can derive additional information about the global solution (h, ¢). Indeed,
by rescaling we may assume that g =1 and o = 1. Let

Ut) = 1= 2"+, V(1) =eu),  AE) = VIE+IEP. (1.11)
Here A is the linear dispersion relation, and V is the profile of the solution U. The proof of the
theorem gives the strong uniform bound
sup [[V(t)[l5 < <o, (1.12)
t€[0,00)
see Definition . The pointwise decay bound in (1.10)) follows from this and the linear estimates

in Lemma below.
(i) The global solution U scatters in the Z norm ast — oo, i.e. there is Voo € Z such that

: itA _ _
Jim |62 (1) ~ Vel = 0.

However, the asymptotic behavior is somewhat nontrivial since |a(£,t)] > logt — oo for fre-
quencies & on a circle in R? (the set of space-time resonance outputs) and for some data. This
unusual behavior is due to the presence of a large set of space-time resonances.

(iii) The function U := (g — cA)Y2h + i|V |26 is called the “Hamiltonian variable”, due
to its connection to the Hamiltonian . This variable is important in order to keep track
correctly of the relative weights of the functions h and ¢ during the proof.

1.3. Background. We now discuss some background on the water waves system and review
some of the history and previous work on this problem.

1.3.1. The equations and the local wellposedness theory. The free boundary Euler equations
(1.1)-(1.3) are a time reversible system of evolution equations which preserve the total (kinetic
plus potential) energy. Under the Rayleigh-Taylor sign condition [66]

~Vi@op(z,t) <0, x € S, (1.13)

where n is the outward pointing unit normal to €2, the system has a (degenerate) hyperbolic
structure. This structure is somewhat hard to capture because of the moving domain and
the quasilinear nature of the problem. Historically, this has made the task of establishing local
wellposedness (existence and uniqueness of smooth solutions for the Cauchy problem) non-trivial.

Early results on the local wellposedness of the system include those by Nalimov [57], Yosihara
[75], and Craig [22]; these results deal with small perturbations of a flat interface for which
always holds. It was first observed by Wu [72] that in the irrotational case the Rayleigh-
Taylor sign condition holds without smallness assumptions, and that local-in-time solutions can
be constructed with initial data of arbitrary size in Sobolev spaces [71], [72].

Following the breakthrough of Wu, in recent years the question of local wellposedness of
the water waves and free boundary Euler equations has been addressed by several authors.
Christodoulou-Lindblad [14] and Lindblad [56] considered the gravity problem with vorticity,
Beyer-Gunther [9] took into account the effects of surface tension, and Lannes [53] treated the
case of non-trivial bottom topography. Subsequent works by Coutand-Shkoller [20] and Shatah-
Zeng [60, [61] extended these results to more general scenarios with vorticity and surface tension,
including two-fluids systems [12, [61] where surface tension is necessary for wellposedness. For
some recent papers that include surface tension and/or low regularity analysis see [8, 13}, [T 2}, 28].

We remark that because of the physical relevance of the system and the aim of better de-
scribing its complex dynamics, many simplified models have been derived and studied in special
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regimes. These include the KdV equation, the Benjamin—Ono equation, the Boussinesq and the
KP equations, as well as the nonlinear Schrodinger equation. We refer to [22] 58, [7), 67] and to
the book [54] and references therein for more about approximate/asymptotic models.

1.3.2. Previous work on long-time existence. The problem of long time existence of solutions is
more challenging, and fewer results have been obtained so far. As in all quasilinear problems,
the long-time regularity has been studied in a perturbative (and dispersive) setting, that is in
the regime of small and localized perturbations of a flat interface. Large perturbations can lead
to breakdown in finite time, see for example the papers on “splash” singularities [10} 21].

In the perturbative setting the main idea is to use dispersion to control the cumulative effects
of nonlinear interactions. The first long-time result for the water waves system (1.4]) is due to
Wu [73] who showed almost global existence for the gravity problem (¢ > 0, ¢ = 0) in two
dimensions (1d interfaces). Subsequently, Germain-Masmoudi-Shatah [36] and Wu [74] proved
global existence of gravity waves in three dimensions (2d interfaces). Global regularity in 3d
was also proved for the capillary problem (¢ = 0, ¢ > 0) by Germain-Masmoudi-Shatah [37].
See also the recent work of Wang [69, [70] on the gravity problem in 3d over a finite flat bottom.

Global regularity for the gravity water waves system in 2d (the harder case) has been proved
by two of the authors in [46] and, independently, by Alazard-Delort [3, [4]. A different proof of
Wu’s 2d almost global existence result was later given by Hunter-Ifrim-Tataru [40], and then
complemented to a proof of global regularity in [41]. Finally, Wang [68] proved global regularity
for a more general class of small data of infinite energy, thus removing the momentum condition
on the velocity field that was present in all the previous 2d results. For the capillary problem in
2d, global regularity was proved by two of the authors in [4§] and, independently, by Ifrim-Tataru
[42] in the case of data satisfying an additional momentum condition.

1.4. Main ideas. The classical mechanism to establish global regularity for quasilinear equa-
tions has two main components:

(1) Propagate control of high frequencies (high order Sobolev norms);
(2) Prove dispersion/decay of the solution over time.

The interplay of these two aspects has been present since the seminal work of Klainerman [51],
52] on nonlinear wave equations and vector-fields, Shatah [59] on 3d Klein-Gordon and normal
forms, Christodoulou-Klainerman [I5] on the stability of Minkowski space, and Delort [29] on
1d Klein-Gordon. We remark that even in the weakly nonlinear regime (small perturbations of
trivial solutions) smooth and localized initial data can lead to blow-up in finite time, see John
[49] on quasilinear wave equations and Sideris [63] on compressible Euler.

In the last few years new methods have emerged in the study of global solutions of quasilinear
evolutions, inspired by the advances in semilinear theory. The basic idea is to combine the
classical energy and vector-fields methods with refined analysis of the Duhamel formula, using
the Fourier transform. This is the essence of the “method of space-time resonances” of Germain-
Masmoudi-Shatah [36, 37, 35], see also Gustafson-Nakanishi-Tsai [39], and of the refinements in
[43, 144 [38], 45], 46, 147, [48), BT, 30], using atomic decompositions and more sophisticated norms.

The situation we consider in this paper is substantially more difficult, due to the combination
of the following factors:

e Strictly less than |t|~! pointwise decay of solutions. In our case, the linear dispersion
relation is A(€) = \/g|¢| + o|¢|3 and the best possible pointwise decay, even for solutions of
the linearized equation corresponding to Schwartz initial data, is [t|~>/6 (see Fig. [1f below).
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e Large set of time resonances. In certain cases one can overcome the slow pointwise decay
using the method of normal forms of Shatah [59]. The critical ingredient needed is the ab-
sence of time resonances (or at least a suitable “null structure” of the quadratic nonlinearity
matching the set of time resonances). Our system, however, has a full (codimension 1) set
of time resonances (see Fig. [2| below) and no meaningful null structures.

We remark that this combination was not present in any of the earlier global regularity results
on water waves described above. More precisely, in all the previous global results in 3 dimensions
in [36] [74, 37, [69, [70] it was possible to prove 1/t pointwise decay of the nonlinear solutions.
This decay allowed for high order energy estimates with slow growth.

On the other hand, in all the previous long term/global results in 2 dimensions in [73, [46], 3]
4, 140, [41), 48], [42, [68] the starting point was an identity of the form

0E(t) = quartic semilinear term,

where &£ is a suitable energy functional and the quartic expression in the right-hand side does
not lose derivatives. An energy inequality of this form was first proved by Wu [73] for the gravity
water wave model, and led to an almost-global existence result. Such an inequality (which is
related to normal form transformations) is possible only when there are no time resonances for
the quadratic terms. This is essentially the situation in all the 2D results mentioned aboveﬁ

To address these issues, in this paper we use a combination of improved energy estimates and
Fourier analysis. The main components of our analysis are:

e The energy estimates, which are used to control high Sobolev norms and weighted norms
(corresponding to the rotation vector-field). They rely on several new ingredients, most
importantly on a strongly semilinear structure of the space-time integrals that control the
increment of energy, and on a restricted nondegeneracy condition (see (1.24)) of the time
resonant hypersurfaces. The strongly semilinear structure is due to an algebraic correlation
(see ) between the size of the multipliers of the space-time integrals and the size of
the modulation, and is related to the Hamiltonian structure of the original system.

e The dispersive estimates, which lead to decay and rely on a partial bootstrap argument in
a suitable Z norm. We analyze carefully the Duhamel formula, in particular the quadratic
interactions related to the slowly decaying frequencies and to the set of space-time reso-
nances. The choice of the Z norm in this argument is very important; we use an atomic
norm, based on a space-frequency decomposition of the profile of the solution, which de-
pends in a significant way on the location and the shape of the space-time resonant set, thus
on the quadratic part of the nonlinearity.

We discuss these main ingredients in detail in a simplified model below.

1.5. A simplified model. To illustrate these ideas, consider the initial-value problem
(0 +iN)U =VV - VU + (1/2)AV - U, U(0) = Uy,
A(€) = VI + €13, V= P00 RU.

Compared to the full equation, this model has the same linear part and a quadratic nonlin-
earity leading to similar resonant sets. It is important that V is real-valued, such that solutions

(1.14)

3More precisely, the only time resonances are at the 0 frequency, but they are cancelled by a suitable null
structure. Some additional ideas are needed in the case of capillary waves [48] where certain singularities arise.
Morevoer, new ideas, which exploit the Hamiltonian structure of the system as in [46], are needed to prove global
(as opposed to almost-global) regularity.
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of (1.14) satisfy the L? conservation law
U@z = [Uollz2, € [0,00). (1.15)
The model ([1.14) carries many of the difficulties of the real problem and has the advantage

that it is much more transparent algebraically. There are, however, significant additional issues
when dealing with the full problem, see subsection below for a short discussion.

The specific dispersion relation A(§) = \/|¢] + €] in (1.14) is important. It is radial and has
stationary points when |¢] = 7o = (2/v3 — 1)}/? ~ 0.393 (see Figure [1| below). As a result,
linear solutions can only have [t|~%/% pointwise decay, i.e.

e oo 2 [¢] 7,

even for Schwartz functions ¢ whose Fourier transforms do not vanish on the sphere {|¢| = }.

0.0 05 10 15 20 25 3.0

FIGURE 1. The curves represent the dispersion relation A(r) = v/r3 + r and the group
velocity X, for g =1 = 0. For 0 < €| < 7 the dispersion relation is well approximated by
the gravity wave dispersion relation +/|¢], while for 7o < |¢| < oo, the dispersion relation
is well approximated by the capillary wave dispersion relation \/W The frequency v,
corresponds to the space-time resonant sphere. Notice that while the slower decay at g
is due to some degeneracy in the linear problem, 7, is unremarkable from the point of
view of the linear dispersion.

1.5.1. Energy estimates. We would like to control the increment of both high order Sobolev
norms and weighted norms for solutions of . It is convenient to do all the estimates in
the Fourier space, using a quasilinear I-method as in [47, 48, [3T]. This has similarities with
the well-known I-method of Colliander—Keel-Staffilani-Takaoka—Tao [L6l I7] used in semilinear
problems, and to the energy methods of [35, [4, 40]. Our main estimate is the following partial
bootstrap bound:

if sup [(1+t)7625(t)1/2+||eitAU(t)||Z] <& then sup (1+t)7628(t)1/2§€0+€?/2, (1.16)
te[0,T] t€[0,7]

where U is a solution on [0,T] of (L.14), £(t) = |U(t)[|5,~ + HU(t)HiIg,,

small size \/E(0) + [|[U(0)||z < €9. The choice of the Z norm here is important; For simplicity,
we focus on the high order Sobolev norms, and divide the argument into four steps.

and the initial data has
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Step 1. For N sufficiently large, let

W=Wx:= (WU,  En(t) ::/ W (&, t)[2 de. (1.17)
R2
A simple calculation, using the equation and the fact that V is real, shows that
d — - ~
GEx= [ mEmW@W V(€ - n)dedn (118)
R2ZxR2
where .. ..
—-n)- £+ 1+ —(1+

2 (1+ [n[2)N/2(1 + [g]2)N/2
Notice that |¢ — | € [2711,2!1] in the support of the integral, due to the Littlewood-Paley
operator in the definition of V. We notice that m(&,n) satisfies

— . 2
m(&,n) =(&mm'(§,m),  where (&, n) = [(511)%(4;57;277)]7

The depletion factor 0 is important in establishing energy estimates, due to its correlation with
the modulation function ® (see below). The presence of this factor is related to the exact
conservation law .

Step 2. We would like to estimate now the increment of En(t). We use and consider
only the main case, when |¢[,|n| ~ 2¥ > 1, and |£ — 7] is close to the slowly decaying frequency
0. So we need to bound space-time integrals of the form

t — e o~
I= / / (& m) BV (1, $) BV (—&, 8) T (€ — 1, 8) X (€ — 1) dédids,
0 R2xR2

m' =~ 1. (1.20)

where x., is a smooth cutoff function supported in the set {¢ : ||{| —v0| < 1}, and we replaced V'
by U (replacing V by U leads to a similar calculation). Notice that it is not possible to estimate
|I| by moving the absolute value inside the time integral, due to the slow decay of U in L*°. So
we need to integrate by parts in time; for this define the profiles

u(t) == U®),  w(t) = AW (). (1.21)

Then decompose the integral in dyadic pieces over the size of the modulation and over the size
of the time variable. In terms of the profiles u, w, we need to consider the space-time integrals

Timp = / 4 (5) / V€ i (¢, ) P (17, ) Pt (—€, 5)
R R2xR2

X (€ =1, 5)xq0 (€ = 0)pp(®(E,m)) dEdnds,

(1.22)

where

(&, m) := A&) — Aln) = A€ —n)
is the associated modulation (or phase), ¢, is smooth and supported in the set s ~ 2™ and ¢,
is supported in the set {z : |z| = 2P}.

Step 3. To estimate the integrals I}, ,,, we consider several cases depending on the relative
size of k,m,p. Assume that k,m are large, i.e. 2 > 1,2™ >> 1, which is the harder case. To
deal with the case of small modulation, when one cannot integrate by parts in time, we need an
L? bound on the Fourier integral operator

Timp(F)(E) = / M o () <p(R(E,m)) X0 (€ — 1) f (1) dn,

RQ
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FIGURE 2. The first picture illustrates the resonant set {n : 0 = ®(&,n) = A() —
A(n) — A(§ —n)} for a fixed large frequency £ (in the picture £ = (100,0)). The second
picture illustrates the intersection of a neighborhood of this resonant set with the set

where |£ — )| is close to 7g. Note in particular that near the resonant set £ — 7 is almost
perpendicular to £ (see (1.20), (1.28)). Finally, the colors show the level sets of log |®|.

where s ~ 2™ is fixed. The critical bound we prove in Lemma (“the main L? lemma”) is
| Temp ()2 Se 27 (2D @2 o op=h2mmiB) | fll o e >0, (1.23)

provided that p — k/2 € [~0.99m, —0.01m]. The main gain here is the factor 3/2 in 2(3/2)(P—F/2)
in the right-hand side (Schur’s test would only give a factor of 1).

The proof of uses a TT* argument, which is a standard tool to prove L? bounds for
Fourier integral operators. This argument depends on a key nondegeneracy property of the
function ®, more precisely on what we call the restricted nondegeneracy condition

Y(&n) = VL, 2 n)[Ve®(&n), VyR(Em)] #0  if &£ n) =0. (1.24)

This condition, which appears to be new, can be verified explicitly in our case, when ||{ — n| —
7| < 1. The function Y does in fact vanish at two points on the resonant set {n: ®(&,n) = 0}
(where ||€ — 1| — 70| = 27F), but our argument can tolerate vanishing up to order 1.

The nondegeneracy condition can be interpreted geometrically: the nondegeneracy of
the mixed Hessian of ® is a standard condition that leads to optimal L? bounds on Fourier
integral operators. In our case, however, we have the additional cutoff function ¢<,(®(&, 7)), so
we can only integrate by parts in the directions tangent to the level sets of ®. This explains the
additional restriction to these directions in the definition of T in .

Given the bound , we can easily control the contribution of small modulations, i.e.

p—Fk/2<—-2m/3 —em. (1.25)

Step 4. In the high modulation case we integrate by parts in time in the formula ({1.22]).
The main contribution is when the time derivative hits the high frequency terms, so we focus
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on estimating the resulting integral

. d - — _
Il{c,m,p = / Qm(s) / els¢(£7n)m(£7 n)di [Pkw(na S)Pk@(—f, 8)]
R R2 xR2 S

(1.26)
~ (pp(q)(é-a 77))
Xu(&—mn,s —n)———-"=d&dnds.
Notice that dyw satisfies the equation
dvw = (V)N [VV - VU + (1/2)AV - U]. (1.27)

The right-hand side of is quadratic. We thus see that replacing w by 0;w essentially gains
a unit of decay (which is [t|~5/%T), but loses a derivative. This causes a problem in some range
of parameters, for example when 2P ~ 2k/2-2m/3 1 « 9k « 9™ compare with .

We then consider two cases: if the modulation is sufficiently small then we can use the
depletion factor ? in the multiplier m, see , and the following key algebraic correlation

it @& <1 then  |m(&m)|S27 (1.28)

See Fig. [2| As a result, we gain one derivative in the integral I ,’C,m,p, which compensates for the
loss of one derivative in , and the integral can be estimated again using .

On the other hand, if the modulation is not small, 27 > 1, then the denominator ®(&,n)
becomes a favorable factor, and one can use the formula and reiterate the symmetrization
procedure implicit in the energy estimates. This symmetrization avoids the loss of one derivative
and gives suitable estimates on [} ,, | in this case. The proof of follows.

1.5.2. The special quadratic structure of the full water-wave system. The model is useful
in understanding the full problem. There are, however, additional difficulties to keep in mind.

One important aspect to consider when studying the water waves is how to describe the flow,
and the choice of appropriate coordinates and variables. In this paper we use Fulerian coordi-
nates. The local wellposedness theory, which is nontrivial because of the quasilinear nature of
the equations and the hidden hyperbolic structure, then relies on the so-called “good unknown”
of Alinhac [6}, 5] 1), 4].

In our problem, however, this is not enough. Alinhac’s good unknown w is suitable for the
local theory, in the sense that it prevents loss of derivatives in energy estimates. However, for the
global theory, we need to adjust the main complex variable U which diagonalizes the system,
using a quadratic correction of the form T,,w (see ) This way we can identify certain
special quadratic structure, somewhat similar to the structure in the nonlinearity of . This
structure, which appears to be new, is ultimately responsible for the favorable multipliers of the
space-time integrals (similar to (1.20))), and leads to global energy bounds.

Identifying this structure is, unfortunately, technically involved. Our main result is in Propo-
sition but its proof depends on paradifferential calculus using the Weyl quantization (see
sectio and on a suitable paralinearization of the Dirichlet—Neumann operator. We include all
the details of this paralinearization in section 9] mostly because its exact form has to be properly
adapted to our norms and suitable for global analysis. For this we need suitable spaces: (1)
the O, hierarchy, which measures functions, keeping track of both multiplicity (the index m)

and smoothness (the index p), and (2) the ML™ hierarchy, which measures the symbols of the
paradifferential operators, keeping track also of the order I.
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1.5.3. Additional remarks. We list below some other issues one needs to keep in mind in the
proof of the main theorem.

(1) A significant difficulty of the full water wave system, which is not present in , is that
the “linear” part of the equation is given by a more complicated paradifferential operator
T, not by the simple operator A. The operator T includes nonlinear cubic terms that lose
3/2 derivatives, and an additional smoothing effect is needed.

(2) The very low frequencies |{| < 1 play an important role in all the global results for water
wave systems. These frequencies are not captured in the model . In our case, there is
a suitable null structure at very low frequencies: the multipliers of the quadratic terms are
bounded by [¢[ min(|n], |§ — n])*/2,

(3) It is important to propagate energy control of both high Sobolev norms and weighted norms
using many copies of the rotation vector-field, see also [31} B0]. Because of this control, we
can assume that all the profiles in the dispersive part of the argument are almost radial and
located at frequencies < 1. The linear estimates and many of the bilinear estimates in [32]
are much stronger because of this almost radiality property.

(4) At many stages it is important that the four spheres, the sphere of slow decay {|¢| = 70},
the sphere of space-time resonant outputs {|¢| = 71}, and the sphere of space-time resonant
inputs {|¢| = 71/2}, and the sphere {|{| = 2y} are all separated from each other. Such
separation conditions played an important role also in other papers, such as [35] 38, [31].

1.6. Organization. The rest of the paper is organized as follows: in section [2| we state the
main propositions and summarize the main definitions and notation in the paper.

In sections[3}6] we prove Proposition 2.2 which is the main improved energy estimate. The key
components of the proof are Proposition (derivation of the main quasilinear scalar equation,
identifying the special quadratic structure), Proposition (the first energy estimate, including
the strongly semilinear structure), Proposition (reduction to a space-time integral bound),
Lemma (the main L? bound on a localized Fourier integral operator), and Lemma (the
main interactions in Proposition . The proof of Proposition uses also the material
presented in sections [§ and [0] in particular the paralinearization of the Dirichlet-Neumann
operator in Proposition [9.1

In section [7] we collect estimates on the dispersion relation A and the phase functions ®.
The main results are Lemmas (the restricted nondegeneracy property of the resonant
hypersurfaces), which are used in section |§| in the proof of the main L? bound.

1.7. Acknowledgements. We would like to thank Thomas Alazard for very useful discussions
and for sharing an unpublished note on paralinearization, and Javier Gémez-Serrano for discus-
sions on numerical simulations. The third author would like to thank Vladimir Georgescu for
inspiring discussions on the Weyl quantization. The last author would also like to thank Jalal
Shatah for generously sharing his expertise on water waves on many occasions.

2. THE MAIN PROPOSITIONS
Recall the water-wave system with gravity and surface tension,
8th = G(h)¢7

3t¢:fgh+o'div[ vh

(1+|Vh[?)1/2

(G(h)¢ + Vh-V¢)? (2.1)
21 +|Vh*)

1 2
- §|V¢| +
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where G(h)¢ denotes the Dirichlet-Neumann operator associated to the water domain. Theorem
1.1]is a consequence of Propositions and below.

Proposition 2.1. (Local existence and continuity) (i) Assume that N > 10. There is € > 0
such that if
[hollzrn+1 4 l[@oll rasryzae <€ (22)

then there is a unique solution (h,®) € C([0,1] : HNTL x HN+/21/2) of the system with
g =1 and o = 1, with initial data (hg, ¢o).

(ii) Assume Ty > 1, N = N1 + N3, and (h,$) € C([0,Tp] : HN*' x HNTY21/2) is g solution
of the system with g =1 and o = 1. With the Z norm as in Deﬁnition below and the
profile V defined as in , assume that for some ty € [0, Tp]

V(to) e HN nHY"™ 0z, |[V(to)| gy < 22 (2.3)

Then there is T = T(||V(to) | gpNonu~1.Nsnz) such that the mapping t = (V)| yny o gNiNs 48
Q

continuous on [0,Tp] N [to, to + 7], and

sup V(t)
t€[0,To]N[to,to+7]

v, < 2IV(k0)] (2.4)

”HNOOHS’L HNomHgl,Ng,mZ.

Proposition is a local existence result for the water waves system. We will not provide the
details of its proof in the paper, but only briefly discuss it. Part (i) is a standard wellposedness
statement in a sufficiently regular Sobolev space, see for example [71, [1].

Part (ii) is a continuity statement for the Sobolev norm H™V° as well as for the Hg 0N and Z
norm Continuity for the H™0 norm is standard. A formal proof of continuity for the Hg 1,V
and Z norms and of requires some adjustments of the arguments given in the paper, due
to the quasilinear and non-local nature of the equations.

More precisely, we can define e-truncations of the rotational vector-field 2, i.e. Q. := (1 +
€2|z|?)~1/2Q, and the associated spaces ng N3 with the obvious adaptation of the norm in

. Then we notice that
QT,b="To b+ T,Q200+ R
where R is a suitable remainder bounded uniformly in €. Because of this we can adapt the
arguments in Proposition [3.4] and in appendices [§ and [J] to prove energy estimates in the e-
truncated spaces ng Vs For the Z norm one can proceed similarly using an e-truncated version
Z, (see the proof of Proposition 2.4 in [44] for a similar argument) and the formal expansion of
the Dirichlet-Neumann operator in section 6 in [32]. The conclusion follows from the uniform
estimates by letting ¢ — 0.
The following two propositions summarize our main bootstrap argument.

Proposition 2.2. (Improved energy control) Assume that T > 1 and (h,¢) € C([0,T] : HNo+1 x

HNoH1/21/2) s g solution of the system [2.1) with g = 1 and o = 1, with initial data (ho, ¢o).
Assume that, with U and V defined as in (1.11)),

ol oy rvaovs + Vol z < €0 <1 (2.5)
and, for any t € [0,T],
52
(1+8)7° AN g prvnovs + V()2 < e1 <1, (2.6)

4Notice that we may assume uniform in time smallness of the high Sobolev norm HY with N = N; + Na,
thanks to the uniform control on the Z norm, see Proposition and Definition
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where the Z norm is as in Definition 2.5, Then, for any t € [0,T],

NNy S €0t 5?/2' (2.7)
Q

_s2
A+ MU yvons,

Proposition 2.3. (Improved dispersive control) With the same assumptions as in Proposition

above, in particular (2.5)—(2.6), we have, for any t € [0,T],
IVt)lz S o +ef. (2.8)

It is easy to see that Theorem follows from Propositions and by a standard
continuity argument and Lemma (for the L> bound on ¥ in ([L.10)).

The rest of this paper is concerned with the proof of Proposition Proposition which
is our main dispersive estimate, is proved in [32].

2.1. Definitions and notation. We summarize in this subsection some of the main definitions
and notation we use in the paper.

2.1.1. The spaces Oy, ,. We will need several spaces of functions, in order to properly measure
linear, quadratic, cubic, and quartic and higher order terms. In addition, we also need to track
the Sobolev smoothness and angular derivatives. Assume that No =40 > N3+ 10 and Ny (the
maximum number of Sobolev derivatives) and N; (the maximum number of angular derivatives)
and N3 (additional Sobolev regularity) are as before.

Definition 2.4. Assume T'> 1 and let p € [-N3,10]. For m > 1 we define Oy, as the space
of functions f € C([0,T] : L?) satisfying

1 £llop, = sup (14 &) DG/6=208)=0 [ ey 1@l 2 vt
t€[0,T] 2 (2‘9)
+ (1 + t)5/6_26 ||f(t)H’W’g1/27N2+p] < 00,

where, with Py denoting standard Littlewood-Paley projection operators,

Nk j
lglln ==Y 2| Pegll e IIQIIWéw,N =) 1 l5n-
keZ J<N'

The spaces W are used in this paper as substitutes of the standard L> based Sobolev spaces,
which have the advantage of being closed under the action of singular integrals.

Note that the parameter p in O, , corresponds to a gain at high frequencies and does not
affect the low frequencies. We observe that, see Lemma [8.2]

Omp C Opyp if 1 <n <m, OmpOnp € Omgnyp if 1 <m,n. (2.10)
Moreover, by our assumptions (2.6) and Lemma the main variables satisfy
(1= 2)*Rlloy e + | [V[V?0lloy, S &1 (2.11)

The L? based spaces Op,p are used mostly in the energy estimates in this paper. However,
they are not precise enough for the dispersive analysis of our evolution equation in [32]. For this
we need the more precise Z-norm defined below, which is better adapted to the equation.
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2.1.2. Fourier multipliers and the Z norm. We start by defining several multipliers that allow
us to localize in the Fourier space. We fix ¢ : R — [0, 1] an even smooth function supported in
[—-8/5,8/5] and equal to 1 in [~5/4,5/4]. For simplicity of notation, we also let ¢ : R? — [0, 1]
denote the corresponding radial function on R?. Let

on(z) == o(|z|/2F) — o(|z|/2" ) for any k € Z, o1 = Z ¢©m for any I C R,
melnZ

P<B = P(—00,B]y P>B = PBoo)y P<B T P(—c0,B): P>B = P(Boo)-

For any a < b € Z and j € [a,b] NZ let

©; ifa <j<b,
b ep
tpg-a’ )= ¥<a if j =a, (2.12)
©>p lfj =b.
For any z € Z let x4 = max(z,0) and z_ := min(z,0). Let

J:={(k,j) €L X2y : k+j >0}
For any (k,7) € J let

_k(x) ifk+j=0andk <0,

p<
@gk)(g;) = q ¥<o0 :U) if j=0and k > 0,
p;(x) ifk+j>1andj>1,

and notice that, for any k € Z fixed, 3 ;> 1 ink.0) &;k) =1.

Let Py, k € Z, denote the Littlewood—Paley projection operators defined by the Fourier
multipliers £ — ¢ (§). Let P<p (respectively P p) denote the operators defined by the Fourier
multipliers £ — ¢<p(§) (respectively & — ¢~ p(§)). For (k,j) € J let Qji denote the operator

(Qikf) (@) =3 (@) - Prf(x). (2.13)

In view of the uncertainty principle the operators @ are relevant only when 272%F > 1, which
explains the definitions above. For k, k1, ko € Z let

Doy ks = {(&,) € (R?)? : [¢] € [2M74,25H), || € [2%274, 28], ¢ — | € 20074, 2],

(2.14)
Let A(r) = /Ir[ +[r%, A(€) = V/I&[ + [€]* = A([€]), A - R? = [0, 00). Let
U =U, U :=U, V(t)=Vi(t):=DUR), V_(t):=eDU_(1). (2.15)
Let Ay = A and A_ := —A. For o, u,v € {+,—}, we define the associated phase functions
Doy (&) = Ao (§) — Au(§ —m) — Au(n),
! ! (2.16)

iauuﬁ(&% o) = As(§) - Au(g —n)—A,(n—0) - Aﬁ(a)-

For any set S let 1g denote its characteristic function. We will use two sufficiently large
constants D > Dy > 1 (D is only used in section |7 to prove properties of the phase functions).
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Let o := 4/ 2\/3_3 denote the radius of the sphere of slow decay and v := v/2 denote the
radius of the space-time resonant sphere. For n € Z, I C R, and « € (0,00) we define
Any (&) = - (2'[€] = 11) - F(©),

Ap, = ZAM, A<pry=ACooBly AsBry = ABoo)s
nel

(2.17)

Given an mteger j > 0 we define the operators Agw, ne{0,...,j+1},v>2" by
AV = N A, AV =N A, AV =4, 0 1<n<j (218)
n/>j+1 n/<0

These operators localize to thin anuli of width 27" around the circle of radius «. Most of the
times, for us v = 7y or v = 1. We are now ready to define the main Z norm.

Definition 2.5. Assume that 6, Ny, N1, Ny are as in Theorem[1.1. We define

Zy:={f € L’(R*): || fllz, == sup ||QjrfllB, < oo}, (2.19)
(k,g)ed
where
lgllp, := 20770 sup 27029 AG) g . (2.20)
0<n<j+1
Then we define, with D := 6?182“2, a = (al,a?),
7 = {f € L2(]R2) Nfllz = sup |IDQ™" fllz, < oo} (2.21)

2m+|a|<N1+Ng, m<Ni/2+20

We remark that the Z norm is used to estimate the linear profile of the solution, which is
V(t) := e U(t), not the solution itself. The Z norm is used extensively in the dispersive analysis
n [32]. In this paper, however, we only need several simple linear estimates concerning the Z
norm. These estimates, and others, are proved in Lemma 3.6 and Remark 3.7 in [32].

We emphasize that it is important in many of these estimates to take advantage of the fact
that our functions are “almost radial” (due to the presence of the spaces HY). The resulting
bounds are much stronger than the bounds one would normally expect for general functions
with the same localization properties.

Lemma 2.6. Assume that N > 10 and
£l z, + s Q2P f[| 2 < 1. (2.22)

€Z,a<

Let ¢’ := 506+ 1/(2N). For any (k,j) € J andn € {0,...,j+1} let (recall the notation (2.12)))

fik = Prapra@if.  Tran(© = o570@00E - )@ (223)
For any & € R?\ {0} and x,p € [0,00) let R(£o; K, p) denote the rectangle
R(éo; w,p) = {€ € R? : [(€ — o) - &o/Ibol| < o, [(€ = &0) - & /6ol < v} (2:24)
(i) Then, for any (k,j) € J, n€[0,§+ 1], and k,p € (0,00) satisfying r + p < 2+~10

| sup Imw)l | 2oam 11 SUD [ Fison PO || o, gy S 20/2490m=(1=005 2.25
(rdr) (rdr) (2.25)
peSt peSt
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and
— < 9(6+(1/2N))ng—(1/2=8")(j—n) if |k| < 10, 5 96
il S 9—0'kg—(1/2—8")(j+k) if |k| > 10. (2.26)
(ii) (Dispersive bounds) If m > 0 and |t| € 2™ — 1,2™H1] then
le™ Fiknll oo S [ Frkmll 0 S 2F27TH027 %00, (227)
e fiko| oo S 23/227mH5000 - if k| > 10. (2.28)

Recall the operators An ., defined in 2.17). If j < (1 — 8%)m + |k|/2 and |k| + D < m/2 then
we have the more precise bounds

HefitAA§2D ofi kHLoo < 2—m+262m2k2j(6+1/(2N))7

Z He_itAAlryo ikl oo S gm0 mgdig(m=30)/6, (2:29)
1>1
and the additional bound (with no loss of 220°™m)
e Acap g Acap ny Fik || oo S 27 2P (/270200 (2.30)

For all k € Z we have the bound
HeiitAASO,’yOPkaLOO S (2]6/2 4 22]{)277}1 [2515m 4 2m(26+1/(2N))]7

He_itAAZL’YOPkaLoo < 9—5m/6+26%m (2.31)

2.1.3. Paradifferential calculus. We need some elements of paradifferential calculus in order to
be able to describe the Dirichlet—Neumann operator G(h)¢ in (2.1). Our paralinearization relies
on the Weyl quantization. More precisely, given a symbol a = a(x, (), and a function f € L2,
we define the paradifferential operator T, f according to

~

FN© =1 [ x(E5)ate - n. (€ + /2 Fman, (2.32)

where a denotes the Fourier transform of a in the first coordinate and x = p<_20. In section
we prove several important lemmas related to the paradifferential calculus.

3. ENERGY ESTIMATES, I: THE SCALAR EQUATION AND STRONGLY SEMILINEAR STRUCTURES

3.1. The main propositions. In this section we assume (h,¢) : R? x [0,7] — R x R is a
solution of (2.1 satisfying the hypothesis of Proposition in particular, see (2.11)),

V) hllowe + 11V 26ll04, S €1 (3.1)

Our goal in this section is to write the system ([2.1]) as a scalar equation for a suitably constructed
complex-valued function, and prove energy estimates. The first result is the following:

Proposition 3.1. Assume that (3.1)) holds and let A\pn be the symbol of the Dirichlet-Neumann
operator defined in (9.5), let A := \/g|V|+ o|V|3, and let

o 0;h0;h
Uz, Q) := Lj(x)G¢ — A2h> L;j = W( i — W), (3.2)

be the mean curvature operator coming from the surface tension. Define the symbol

Y= \/)\DN(9+£) (3.3)
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and the complez-valued unknown

U:=T jgoh +iT5T) ) jgpw + ilyw, m' = ;\/d%, (3.4)
where B,V and (the “good variable”) w = ¢ — Th are defined in . Then
U= /g+0|V]2h+i|V|'%w + 204, (3.5)
and U satisfies the equation
(O + iT5 + iTy.c)U = Ny + Qg + Cu, (3.6)
where
e The quadratic term Ny has the special (null) structure
Ny = al[Ts, Ty ) T5'U + eo[Ts, Ty . | T 'U (3.7)
for some constants c1,co € C;
e the quadratic terms Qg have a gain of one derivative, i.e. they are of the form
Qs =A (UU)+ A, (UU)+A__(U,U) €209, (3.8)
with symbols ae,e, satisfying, for all k, k1, ko € Z, and (e1€2) € {(+4), (+—), (=)},
Haicl,l:;,kQHS&o < g~ max(kik2,0) (1 | g8min(kika)y, (3.9)
e Cy is an O3 cubic term, i.e. it satisfies for any t € [0,T]
1COl yagpgiovs S O Cullgn s, < €)Y AH (3.10)

Let us comment on the structure of the main equation . In the left-hand side we have
the usual “quasilinear” part (0; + iTx + iTv.c)U. In the right-hand side we have three types
of terms: (1) a strongly semilinear quadratic term Qg, given by symbols of order -1; (2) a
semilinear cubic term Cy € 5%03,0, whose contribution is easy to estimate; and (3) a quadratic
term Ny with special (null) structure, see also Remark below. This special structure, which
is a consequence of the choice of the symbol m/, allows us to obtain more favorable energy
estimates in Proposition [3.4]

This proposition is the starting point of our energy analysis. Its proof is, unfortunately, tech-
nically involved, as it requires the material in sections [§]and [0} One can start by understanding
the definition of the decorated spaces of symbols ME™, the simple properties 7,

and the statement of Proposition (the proof is not needed). The spaces of symbols My"™
are analogous to the spaces of functions Oy, p; for symbols, however, the order [ is important
(for example a symbol of order 2 counts as two derivatives), but its exact differentiability is less
important.

In Proposition we keep the parameters g and o due to their physical significance.

Remark 3.2. (i) The symbols defined in this proposition can be estimated in terms of the
decorated norms introduced in Definition . More precisely, using the hypothesis (3.1]), the
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basic bounds (8.43) and @, and the definition (9.5)), it is easy to verify that

(g +al¢?) a(¢-Vh)? A*h o —22
40 = MO+ M),
0= T ere ok iy oM M)
CPIVAZ = (C-VR) | [CPAK = (GO o
= ¢ (1+ e + ocp el MU, + MRS, ),
(3.11)
uniformly for every t € [0, T|. Therefore we derive an expansion for ¥,
YX=A+31+ 222,

12
El — 1 A(C) I:Ah C’LCja h:l <<> _ 1 |C| A2h ce M1/2 1 E>2 c €1M3/22 (3 )

40 IS 2 A(C)

The formulas are slightly simpler if we disregard quadratic terms, i.e.

A = 1CP (L + pA (2, ¢) /[¢] + MO,
(g+ 0P = (g +al¢*)P(1 = pA%h/ (g + ol¢?) + MY _,), (3.13)
S = AL+ Z1(, Q) /A + MY _,),

for p € [—2,2], where )\(0) (z,¢) = WQOZ()(C) as in Remark . The identity O¢h =

G(h)¢ = |V|w + €10y _1 5 then shows that
og+ 1= (g+0lC) 2 A(g - oA)w/2] +EIMYE, € MR +eIMYE
1
8,5 )\DN = 7&&)\&0) + €%M}\{32 24 S 1M 1/2 ! + 2M11\{32 24, (314)

2/I¢l

O = 0% + MY € el MY + MY

(i) It follows from Proposition that V. € €10y _1/3. Therefore m' e 61./\/lN "~y and the
identity . follows using also Lemma- Moreover, using Proposztwn again,

Vi=Vi+Vs, Vi:=|V|7V2VSU, Va €10, 1 pn. (3.15)

Remark 3.3. A simple computation shows that, for F € {U,U},

_ . 31
[Tv.g, TE]Tg Lp=iT 9430012 Cil; 8~VrF + Fh + 6?0370 = ET,YF + I + 8?1’0370, (3.16)

2(g+ol¢|?) [¢12 7Y

where Fy denotes quadratic terms of the form (3.8])-(3.9) and

(w,0) = fdc V] 1/20,0;(SU) (2). (3.17)

We then see that

~ GG minj <
(1:0) = = 1,750 )

and remark that the angle ¢ - 1 in this expression gives us the strongly semilinear structure we
will use later (see also the factor d in (3.22)).
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Proposition [3.1] is the starting point for the construction of our energy functionals. To prove
it we first paralinearize and symmetrize the system in subsection see Lemma and
Proposition Finally, we choose a suitable multiplier m’ as in in order to achieve the
special structure , up to strongly semilinear quadratic terms and cubic terms.

From now on we set ¢ = 1 and o = 1. We can take derivatives, both Sobolev-type derivatives
using the operator T5; and angular derivatives using §2, to prove energy estimates. More precisely:

Proposition 3.4. Assume that (3.1) holds. Then there is an energy functional Eior satisfying

)2 oo S Gt + 2L, Eua(®) S IUOI yiva +1 (319)

where U(t) = (VYh(t) +i|V|/2¢(t) as in Proposition|2.4. Moreover
d

St =Bo+Bi+ B, [Be()] <1+ (3.19)
The (bulk) terms By and By are finite sums of the form
B = X[ G- W den (3.20)
2>< 2

Geg, WW'ew,
where U and ¥ are defined as in Proposition Uy, :=U,U_:=U, and
G :={QUV)Us : a < Ny /2 and b < N3 + 2},
Wo = {QT%'Uy : either (a =0 and m < 2Ny/3) or (a < Ny and m <2N3/3)}, (3.21)
Wi =WoU{(1-A)Q*T¥'Us : a <Ny —1 and m <2N3/3)}.
The symbols p = i, aww, | € {0,1}, satisfy

—_ — 2
o6 = e~ o, o= () (Eo ) eec

(3.22)

H:U’I?IHJQ ||SOo S 92— max(k1,k2,0) 23kf7

for any k, k1, ke € Z, see definitions ({8.5)) f.

This proposition is proved in subsection [3.3] Notice that the a priori energy estimates we
prove here are stronger than standard energy estimates. The terms By, B; are strongly semilinear
terms, in the sense that they either gain one derivative or contain the depletion factor d which
gains one derivative when the modulation is small (compare with )

3.2. Symmetrization and special quadratic structure. In this subsection we prove Propo-
sition We first write as a system for h and w, and then symmetrize it. We start by
combining Proposition [9.1] on the Dirichlet-Neumann operator with a paralinearization of the
equation for 0;¢, to obtain the following:

Lemma 3.5. [Paralinearization of the system] With the notation of Proposition and Propo-
sition we can rewrite the system (2.1]) as

Oth =Ty, yw — div (Tvh) + G2 + 6?0371,
Oww = —gh —Tyh — TyVw + Qs + 8?0371,

where £ is given in (3.2) and

(3.23)

1 1
Qo = QH(’V‘“’? V]w) — iH(Vw, Vw) € 5%02,2- (3.24)
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Proof. First, we see directly from and Proposition that, for any ¢ € [0,7],
G(h)g, B, V, 0th € €101 _1 9, O € €101, 1,
B =|V|w+ 8%027,1/2, V=Vw+ 8%027,1/2.
The first equation in comes directly from Propostion To obtain the second equation,
we use Lemma (i) with Fy(z) = 2;//1 + |z[? to see that
Vh
Ve

Next we paralinearize the other nonlinear terms in the second equation in (2.1). Recall the
definition of V', B in (9.3). We first write

1.2 (Gh)$+Vh-Ve)? \V +BVh2 (1+|Vh]2)B2 B2—2BV-Vh—|V]?
2 2(1+|Vh|%) 2 2 2
Using ([2.1)), we calculate 0th = G(h)¢p = B —V - Vh, and

8tw = 8t¢ — TatBh, - TBath

(3.25)

Fl(Vh) = TakFl(Vh)akh + 6‘;’0373, hence odiv [ _TijCjCkh + 6?03,1.

= —gh—Tr,¢c.h + %(32 — 2BV -Vh—|V|*) = Ty,gph — TgB + Tp(V - Vh) + 103 1.
Then, since V = V¢ — BVh, we have
TyVw=TyV¢ — Ty (VIgh) =Ty V + Ty (BVh) — Ty, (VIgh),
and we can write
Oyw = —gh — TrcicoroBh —TyVw + I+ 11,
I:= %32 —TpB — %\V\Q +TyV = %H(B,B) - %?—[(V, V) =Qy+e03,,
IT:= —BV -Vh+Tg(V - Vh) + Ty (BVh) — Ty (VTgh) + £ 03.1.
Using (3-25)), (9-3), (2-1), and Corollary (ii) we easily see that
LjrCiCr + 0B = LixCiCr + V|01 + €302, 9 = £ + 104 _3.
Moreover we can verify that I is an acceptable cubic remainder term:
IT = ~TyvnB +H(B,V-Vh) + Ty (BVh) — TyTgVh — Ty Tygh + €303 1
= ~Ty.vuB + Ty Ty B + Ty H(B,Vh) — Ty Typh + 5031
=703,
and the desired conclusion follows. O

The symmetrization that will be performed below will allow us to write the main system in
the form . Notice that the leading order operator is symmetric (the symbol is real valued)
and is the same in both equations. This symbol will then be the natural notion of “derivative”
associated to . Moreover, this will allow us to derive a single scalar equation for a single
(complex-valued) unknown.

Before we proceed we observe that, using the notations of Proposition 8.5

_ )
IsTy ) ygve = Toxpnm + B, (g +0) Y2, moe= W{vg + 4,/ Apn}- (3.26)
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Since our purpose will be to identify quadratic terms as in (3.8))-(3.9)), we need a more precise
notion of strongly semilinear quadratic errors.

Definition 3.6. Given t € [0,T] we define 8%0571 to be the set of finite linear combinations of
terms of the form S[T1,T5] where Ty, To € {U(t),U(t)}, and S satisfies

F(SIF.0)(©) = g |, s(€m (e~ natn)an.

”Sk,kl,kg ||SS%° 5 9— max(kl,kg,O)(l + 23 min(kl,kg)).

(3.27)

These correspond precisely to the acceptable quadratic error terms according to (3.9)).
We remark that if S is defined by a symbol as in (3.27)) and p € [—5,5] then
S[Omvlﬁ Omp] g Om+n,p+1- (328)

This follows by an argument similar to the argument used in Lemma [8:2] As a consequence,
given the assumptions (3.1)) and with U defined as in (3.4)), we have that O3, C Oa.

In addition, using (3.13]) and Lemma we see if that H =T, ;ph and ¥ :=T5T) ) pmw +
Tww (as in (3.31) below) then

H=RU)+e020, Vg+0|V]2h=R(U)+ 104y, (329)
U =S(U) + 102, V|20 = S(U) + £102. .

As a consequence, if T1,Ty € {U, U, H, ¥, (g — cA)/2h,|V|'/2w}, and S is as in (3.27), then
S[Ty,To] € 1051 + £103.0. (3.30)

We are now ready to isolate the main dispersion relation and quasilinear terms in the system.

Proposition 3.7 (Symmetrization). Assume that H and ¥ are given by

1 divV —1,1
H .= Twh, V.= TETI/\/WW + Thyw, m = iﬁ S 81MN372’ (331)

where (h, @) satisfy (3.1). Then, for any t € [0,T],
21

OH — TxVW + iTv.CH = 3

. 1 «
[1—7‘/4‘7 TE]TZ 1]J — (§T\/9devh + Tm/EW) + 5%0271 + 5?03,0,

| i . 1 )
oV +TsH +iTy. ¥ = g[Tvg, Te)T5 'V — (T (grah — §deivvw) +e103; +¢10s0.

(3.32)
Proof. We compute first
1 H{V-( ¢} U|C|2 GiCj 24 40,2
V-, +0}=— = Vi + et My, _,.
Vot VI S T e Y
Combining this with Lemma and (3.16]), we find that for F' € {H, ¥},
. _ 2 —1 2 y* 3
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We examine now the first equation in the system (3.32)). The first equation in (3.23) gives

. 21 _ 1
O H-TxV + ZTV-CH — g[TV‘O TE]TE 'H + (§TWdivVh + megw)
= (T\/QWT)\DN — TZTZTUW)W — (TETm/ — Tmlz)w

: 2 1 (3.34)
+ Z(TV(H - T\/WTV{h — g[Tv.C, TE]TE H)

1
+ Tat /g_’_zh - §(T /g-i,-ZTdiVV - T /g+édivV)h + T /g_,’_zGQ + E?T /g_,'_e(,)g’l.

We will treat each line separately. For the first line, we notice that the contribution of low
frequencies P<_gw is acceptable. For the high frequencies we use Proposition to write

(T\/g-i-ﬁT)\DN - TETETl/\/g+€)P2*8w

i i
= (Dapavre + 5T tvareson) ~ (Topvgmn + 5 Tieyvary) ) Prosw (3.35)
+[E(Wg+ 6 pN) — E(E,2)Ty ) grr — BE(5?,1/1/g + 0] P> _sw. (3.36)

Since

ApnVg+L=32/\/g+1, {Vg+ € pn} ={%1/\/g+ 1}

we observe that the expression in (3.35)) vanishes. Using (3.13)) and Lemma we see that, up
to acceptable cubic terms, we can rewrite the second line of (3.34]) as

2
[B(/g+ 1R + Bl dl) = (A1) + B(51,A))(g - 02) ™2

Vg +alC?

A%h 1 i
,—————————— ) —2E(AY, ——=) — =Tiamn — E(A, ’]P_ + £303..
Using (8.39)) these terms are easily seen to be acceptable 5%05,1 quadratic terms.

To control the terms in the second line of the right-hand side of (3.34)), we observe that
2
3

— E(A?

2 _ _ _
Tyv.cH =T gmTv.ch = 5[Tv.¢, TElTy 'H = ([T, T\/m]T\/glw [Tv.c, Ts|Ts, ) H

and using (3.33)), we see that

_ 2 _ »
[Ty, Tygal T gt = 30vo TxlTy 'H + +¢105 ) +€{050.

Finally, for the third line, using (3.14)), (3.15)), and Lemmas and we observe that
Tovgrah =Tiauoswh + £10s.0,

g+ol¢|?

(T\/g-l-ﬂTdiVV - Tdiva/g—l—Z)h = (ZT{ /g+0o|¢|2,divii} + E( vV 3 + O-|C|25 dlv‘/l))h + 5?03,07
TWGQ = T\/WGQ + 6%03’0,
T\/ﬂ@g,l - 03,0.

Using (8.39), the bounds for G5 in (9.6)-(9.7), and collecting all the estimates above, we obtain
the identity in the first line in (3.32]).
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We now use (3.31)) and (3.23) to compute
. { _ 1
PAES szH—l-ZTv.C\I/ - g[Tv.g, Tz]TZ Ly + (Tm/(g+g)h — iT\/WdiV(V)w)
= (5T g7 — TTh ) gmaToro)h + (Tow gy — T Tyi0) e
, 1 -
+i(Ty. ¥ — g[TV.Q, T T — (T5Ty ygrr + T ) Ty ) (3.37)

1 1
+ §(T2T1 svariLavy — T gy divy )W + §Tm/Tdivvw
+ [0, TTy ) ygrr + Towlw + (TTy ) ygrg + T ) (22 + €3 03.1).

Again, we verify that all lines after the equality sign give acceptable remainders. For the terms

in the first line, using Proposition (3.13), and Lemma
(TsT jgg — TsTy ) ygralyre)h = =TsE(1/\/g + £, g + O)h
A%h
Fl—————— H_EQ1/y 2 A2h)|h 4 €305.
Using also (8.39)), this gives acceptable contributions. In addition,
i .
(Tm/Tg+g — Tm/(g+g))h = iT{m/’ngg}h + E(m', g+ E)h = ZO’TC.Vwm/h + E(m', O"C‘Q)h + 6?0370.

This gives acceptable contributions, in view of (3.31f) and (8.39)).
(13.37) we observe that

For the terms in the second line of the right-hand side of
1 _
Ty. ¥ — g[TV.C, T T ' — (T T, et T T Ty cw

- [TV,C,Tng/W](TZTI/W)_l\I' — é[Tv.C,TE]Tglxp
+ [T2T) ) ygre Tv J(TsTy varr)  Toww + [Ty.¢, T Jw
= [Ty, T8Ty ) gzl (T2 Ty ) ™0 — %[Tv-ca TSI ' + €103y,
where we have used and Lemma for the last equality. Using also Lemma we have
[Ty.c. T5Ty ) gl (T5Ty ) yg) ™10 = [Ty, VY2V 720 + 6303
=T, ci;o,v; U+ €705 1 + €5 030.

2 ¢
Using now ([3.16)), it follows that the sum of the terms in the second line is acceptable.
It is easy to see, using Lemma and the definitions, that the terms the third line in the
right-hand side of (3.37)) are acceptable. Finally, for the last line in (3.37]), we observe that

[&g, TETI/\/W + Tm/]w = TatETl/\/‘mw + TZT@(I/W)W + Tatm/w

b 3
= Tosi Tguolcpy-12w — AT sw—otre W+ 5T5,divv)(g+olcP) /2w T €1030,
2(g+0¢[2)3/2

where we used (3.13) and (3.14]). Since d;h = |V|w + 6%027_1/2 and 9,V = —V(g + o|V[})h +
5%(92,_2 (see Lemma and Proposition , it follows that the terms in the formula above are
acceptable. Finally, using the relations in Lemma

(TETI/\/W + Tm/)(Qg) = E?Og,o + &‘%O;J, (TZTI/\/QW —+ Tm/)(€?0371) = 8?0370.



24 Y. DENG, A. D. IONESCU, B. PAUSADER, AND F. PUSATERI

Therefore, the terms in the right-hand side of (3.37)) are acceptable, which gives (3.32)). O

Proof of Proposition[3.1l Starting from the system ([3.32]) we now want to write a scalar equation
for the complex unknown
. . . ) leV ~11
U:=T /—h+ilsT Tyw=H+ iU, = e My .
Vet sy ygp e = M40 ™=y Jare < e

Using (3.32)), we readily see that
U +iTsU +iTy.cU = Qu + Ny + €103 | + €503,

1 . i
Qu = (_iT\/g—i-?divV = 1T (gyo)h + (=T + §TVADN aivv)w =0,
i . i _ 77
Ny = 5Ty, T Ty (2H +iW) = 5[ Tve TolTy Y(3U +U) + 1030,
where QQy vanishes in view of our choice of m’, and Ny has the null structure as claimed.  [J

3.3. High order derivatives: proof of Proposition To derive higher order Sobolev
and weighted estimates for U, and hence for h and ]V|1/ 2w, we need to apply (a suitable notion
of) derivatives to the equation (3.6). We will then consider quantities of the form

W, == (Tx)"U, n€[0,2Ny/3], Yo p = QP(Tx)"U, pe€[0,Ni], me[0,2N3/3], (3.38)
for U as in (3.4]) and ¥ as in (3.3). We have the following consequence of Proposition
Proposition 3.8. With the notation above and ~y as in (3.17)), we have

OW,, + iTsW,, + iTy . Wy, = Ty (W, + du W) + Bw,, + Cw,., (3.39)
and

OYmyp +115Ymp + 11y . Ymp = Ty(cmYmp + dnYmyp) + By, , +Cy,, (3.40)

for some complex numbers cy,d,. The cubic terms Cw, and Cy,, , satisfy the bounds
w22 + 1ICy,, 22 S €31 +)72. (341)

The quadratic strongly semilinear terms By, have the form
BWn = Z FL?LQ [Ubu UL2]? (3'42)
tit2€{+,—}

where Uy == U, U_ = U, and the symbols f = f",  of the bilinear operators S™, satisfy

L1L2 L1t2

ka,kl,kg HSOO < 2(3n/2—1)max(k1,k2,0)(1 + 23min(k:1,k2))‘ (3.43)
The quadratic strongly semilinear terms By,, , have the form
By,,= > {GrU,, U, + > HPPor2[Qry, QP20 Y, (3.44)
vita€{+,—} p1+p2<p,max(p1,p2)<p—1

where the symbols g = g, ;b and h = hy};5P'P? of the operators G1\ib and H[PPVP? satisfy

||gk,k:1,k2HSOO < 2(3m/2—1) max(k:l,kz,())(l + 23min(k1,k2))’

Hhkz,khkz HSOO < 2(3m/2+1) max(kl,kQ,D)(l + 2min(k1,k2)). (3.45)
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We remark that we have slightly worse information on the quadratic terms By,, , than on
the quadratic terms By, . This is due mainly to the commutator of the operators €2 and Ty .¢,
which leads to the additional terms in . These terms can still be regarded as strongly
semilinear because they do not contain the maximum number of 2 derivatives (they do contain,
however, 2 extra Sobolev derivatives, but this is acceptable due to our choice of Ny and Ny).

Proof of Proposition[3.8 In this proof we need to expand the definition of our main spaces O,
to exponents p < —N3. More precisely, we define, for any ¢ € [0,77],

Iflloy,, = lfllom, ifp=—Ns,

Il , = (B [ sy (] i p <Ny, )
compare with . As in Lemmas and we have the basic imbeddings
TuO0p € Orvmnip—tso (TaTo = Tan) Orpy € Oy v p—ty 1+ 1 (3.47)
ifa e /\/lll’m1 and b € /\/llz’m2 In particular, recalling that, see (3.12),
S-Aea MY, S-A-3 €M, (3.48)
it follows from that, for any n € [0,2Ny/3],
TRU € e10] 3,79,  TRU = A"U = HZIA" M Te A)TRU € 610) g, 9. (3.49)
1=0
Step 1. For n € [0,2Ny/3], we prove first that the function W,, = (Tx)"U satisfies
(% + iTs + Ty ) Wa = Ty(caWa + da W) + N + €305 3.
Non= > B0, U, €10y 4.1, (3.50)

ti2€{+,—}
H(bn )k,kl,kgnsgzo 5 (1 +23min(k1,k2)) . (1 + 2max(k1,k2))3n/271'

L1t2

Indeed, the case n = 0 follows from the main equation (3.6 and (3.16]). Assuming that this is
true for some n < 2Ny/3 and applying 7%, we find that

(O +iTs + iTy.c) Wyt = Ty (enWog1 + dnWag1) + i[Ty.c, Ts) Wy, + [0, T5]W,
+ [T, Ty (en Wy, + dn W) + T Ns +51T203 3n/2-

Using (3.47} and it follows that
[8t, Tg] = TaiglAnU +105 gy e TeNon = ANsn + 6505 50,41)/2:
and, using also Remark [3.3]
[T, T ) (cnWo + W) = [Ta, Ty )(enA"U + dyA"T) + 230410

3 n
[Ty, Te]Wa = [Tvi.¢, TAlWa + €105 _3(,41)/0 = gTanH +N'(SU,A"U) + €105 3112

where N(SU, A"U) is an acceptable strongly semilinear quadratic term as in . Since
Oth = |V|w + €105 _1 2, and recalling the formulas and (3.29), it is easy to see that all
the remaining quadratic terms are of the strongly semilinear type described in . This
completes the induction step.
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Step 2. We can now prove the proposition. The claims for W, follow directly from (3.50]).
It remains to prove the claims for the functions Yy, ,. Assume m € [0,2N3/3] is fixed. We start
from the identity (3.50) with n = m, and apply the rotation vector field €. Clearly

(B +iTs + iTy-)Ymp = Ty (cmYimp + dinYmp) + PN +50°0 5
[P, TS Wy — i[9, Ty | Wiy + [P, T5) (e Wi + o Wi ).

The terms in the first line of the right-hand side are clearly acceptable. It remains to show that
the commutators in the second line can also be written as strongly semilinear quadratic terms

and cubic terms. Indeed, for o € {2,V - (,v} and W € {W,,, Wy, },

p—1
[P, T, W = ey T, s Qr'w. (3.51)
p'=0
In view of (3.49)),
125 Wl + [(Z) NN W |12 S e18)”, (3.52)
m m 2_ )
12N (W = AUl 2 + (V)N (Woy — A™U |12 S €3()*1 /0
and, for g € [0, N1/2]
199 Wanllips S 1@ 0, QWi = AU s S F@F7 24 (3.53)
By interpolation, and using the fact that Ny — N3 > 3Ny /2, it follows from (3.52]) that
10UV 2 Wl 2 S e1(8), [ QUV)Y (Wi — A0 12 S 3 ()21 50 (3.54)
for ¢ € [0, Ny — 1]. Moreover, for o € {3,V - (,v} and g € [1, N;], we have
1) 208 ol aane S 1, 1) T2Q (0 = 01) vt S €100, (3.55)
while for ¢ € [1, N1 /2] we also have
2_ _ 2_
Q)20 ol man e S €170, IO 20 (0 = o) Mo S €12 (3.56)

See (8.20) for the definition of the norms Myg 4. In these estimates o1 denotes the linear part
of o, i.e. o1 € {E1,Vi-(,v}. Therefore, using Lemma 8.7 and (3.53)—(3.56),

Qp o YwW="1, o AU+ e}(t) L2 = TQP_CPI(TlQP/AmUi+a:f<t>’8/5L2,
for p’ € [0,p — 1] and W € {W,,,, W,,,}. Notice that TQmCUlQp?AmUi can be written as

H 7 PPeP ey, P20, ], with symbols as in (3.45), up to acceptable cubic terms (the loss of 1
high derivative comes from the case o3 = Vi - (). The conclusion of the proposition follows. [

We are now ready to prove the energy estimates

Proof of Proposition[3.4, We define our main energy functionals

1 1
Eoti=5 D, IWaliatg Do X [WampllZe: (3.57)

0<n<2Ny/3 0<m<2N3/3 0<p<N;

The bound - ) follows from (3.5)) and ( -,

D)2 s s + HWP/%( O g s S U2 v vy + 25 S Eunl) + €.
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To prove the remaining claims we start from (3.39) and (3.40). For the terms W,, we have
d1
dt 2

since, as a consequence of Lemma (ii),

%(iTEWn + iTv.CWn, Wn> =0.

[Wall32 = R(Ty (caWi + dn W), Wa) + R(Bw,,, Wy) + R(Cw,, W), (3.58)

Clearly, |(Cw,,, Wa)| < e3(t)=3/2+28% 5o the last term can be placed in Bg(t). Moreover, using
and the definitions, (T, (c, Wy, + d,W,,), W,,) can be written in the Fourier space as part
of the term By(t) in (3.20)).

Finally, (B, , W,) can be written in the Fourier space as part of the term Bi(¢) in plus
acceptable errors. Indeed, given a symbol f as in , one can write

f(&n)

) = 5 A HFAE=n)")+ (1 + Alnp)"” ; s = .
Flem = m(€n) - [+ AE =) + (LA m(&n) = 5 g
The symbol p; satisfies the required estimate in (3.22)). The factors 1+ A({ —n)™ and 1+ A(n)"
can be combined with the functions U,, ({—n) and U,, () respectively. Recalling that A"U—-W,, €
5%0’2 _3n/2r S€€ 3.49)), the desired representation (3.20)) follows, up to acceptable errors.

The analysis of the terms Y, , is similar, using (3.44)-(3.45)). This completes the proof. [

4. ENERGY ESTIMATES, II: SETUP AND THE MAIN L? LEMMA

In this section we set up the proof of Proposition [2.2] and collect some of the main ingredients
needed in the proof. In view of (3.18), it suffices to prove that |Et(t) — Eor(0)| < €2 for any
t € [0,7). In view of (3.19)) it suffices to prove that, for [ € {0,1},

\/Ot Bi(s) ds

for any ¢ € [0,T]. Given t € [0,T], we fix a suitable decomposition of the function 1y, i.e. we
fix functions qo,...,qr+1 : R = [0,1], |L —logy(2 + t)| < 2, with the properties

S+ 0¥,

suppqo € [0,2], suppqr41 C [t —2,t], suppgm C 2™ 127 for m € {1,..., L},

L+l t (4.1)
Z am(s) = L 4(s), gm € CY(R) and / lg0,(s)|ds <1 forme {1,...,L}.
m=0 0
It remains to prove that for [ € {0,1} and m € {0,...,L + 1},
( / By(5)gm(s) ds’ < £3928%m (4.2)
R

In order to be able to use the hypothesis | V(s)||z < e1 (see (2.6)) we need to modify slightly
the functions G that appear in the terms B;. More precisely, we define

G = {QYV)U,: 1€ {+,-}, a < Ny/2and b < N3 + 2}, (4.3)
where U = (V)h +i|V|/2¢, U, = U and U_ = U. Then we define the modified bilinear terms
= > [ G- oW-cdan (@4
X

GeG', WW'ew,
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where the sets Wy, W are as in , and the symbols g and pp are as in 1_' In view of
BA), Ut)—U(t) € e204p. Therefore snnple estimates as in the proof of Lemma |8.2|show that

Bi(s)| S ef(1+5)7Y |Buls) = Bi(s)| S ef(1+5)7°.
As a result of these reductions, for Proposition it suffices to prove the following;:

Proposition 4.1. Assume that (h,¢) is a solution of the system (2.1) with g =1, 0 =1 on
0,T], and let U = (V)h +i|V|/2¢, V(t) = ™ U(t). Assume that

()= e (t Ol grongons +IVOz < e, (4.5)
for any t € [0,T], see . Then, for any m € [D? L] and | € {0,1},
[ L antshntemGle = n W)W (=¢.5) dsinds] < 227, (a.6)

where G € G’ (see (4.3))), and W,W' € W' := Wy (see (3.21)), and qm, are as in (4.1). The
symbols g, p1 satisfy the bounds (compare with (3.22]))

_ _ 2
po(&,m) = 1€ —nl*a(&m), (&) ZZX(EJ;)(é—Zr ' éiZO ’

(4.7)
Hlullﬁkl,lm ||SOo 5 9— max(kl,k2,0)23k1~' ]

The proof of this proposition will be done in several steps. We remark that both the symbols
o and pq introduce certain strongly semilinear structures. The symbol pg contains the depletion
factor 0, which counts essentially as a gain of one high derivative in resonant situations. The
symbols pp clearly contain a gain of one high derivative.

We will need to further subdivide the expression in (4.6) into the contributions of “good
frequencies” with optimal decay and the “bad frequencies” with slower decay. Let

Xea(2) = 027 (J2] = 70)) + 027 (|2 = 711)),  Xgo() = 1 = xpa(), (4.8)
where 79 = 2‘[% is the radius of the sphere of degenerate frequencies, and v; = /2 is the

radius of the sphere of space-time resonances. We then define for [ € {0,1} and Y € {go, ba},
AP )= [[ | aen € -nBE - DT B ddn. (@)
X

In the proof of (4.6) we will need to distinguish between functions G and W that originate
from U = U, and functions that originate from U = U_. For this we define, for + € {+, -},

G = {QYV)U, : a < N;/2 and b < N3 + 2}, (4.10)

and
W, = {(V)Q*TS'U, : either (a =c =0 and m < 2Ny/3)

4.11
or (c€{0,2}, ¢/24+a < Ny, and m < 2N3/3)}. (4.11)
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4.1. Some lemmas. In this subsection we collect some lemmas that are used often in the proofs
in the next section. We will often use the Schur’s test:

Lemma 4.2 (Schur’s lemma). Consider the operator T given by

Ty(e) = / K(&m)f(n)dn.
R2
Assume that
sup / K(€,n)ldn < K1, sup / K (€.m)|dé < Iy,
¢ JR2? n JR2

Then
ITfllz2 S vV E1K:| fllz2-

We will also use a lemma about functions in G/, and W/ .

Lemma 4.3. (i) Assume G € G/, see (4.10). Then

sup DGz Sers NGO yny o pyriizto S E1(B) (4.12)
|| +2a<30 Q
for any t € [0,T]. Moreover, G satisfies the equation

(0r +iM)G = Ng, NG| vy —ampyi/2-20 S e2(t)7O/6+9, (4.13)

Q

i1) Assume W € W', see (4.11)). Then
+

2

W ()]l S ex(t)” (4.14)

for any t € [0,T]. Moreover, W satisfies the equation
(O + iAW = Qw + Ew, (4.15)
where, with ¥>9 =X —A—-%; € E%M%ff? as in (3.12),
Qu = —iTs, W — Ty W,  [(V) ™26 2 S £2(t)~5/6%. (4.16)
Using Lemma we see that for allk € Z and t € [0,T]
(PR Ty.c W) ()12 S €125 ()5 F | Py g gy W (#) ] 24
I(PiTs, W) (1) 22 S €725 /2(8) /%4 Pye_p g W () 12

Proof. The claims in (4.12) follow from Definition 2.5, the assumptions (4.5)), and interpolation

(recall that Nog — N3 = 2Np). The identities (4.13) follow from (3.4)—(3.6), since (0; + iA)U €
€20y 5. The inequalities (4.14)) follow from (3.49). The identities (4.15)—(4.16]) follow from
Proposition since all quadratic terms that lose up to 1/2 derivatives can be placed into Eyy .

Finally, the bounds (4.17) follow from ({8.22]) and (8.48)). O

Next we summarize some properties of the linear profiles of the functions in G, .

(4.17)

Lemma 4.4. Assume G € G, as before and let f = e @G. Recall the operators Qjr and

Ap oy AD) defined in [@13)-@218). For (k,j) € J andn € {0,...,j + 1} let
fik = Pr_ok12Qjkf, Jikm = AS& Jik-
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Then, if m >0, for all t € [2™ —1,2™F] we have

2
| |8121p<30 HDaQafHZ1 Ser, ||f||HlegmHg1/271,o < 5125 m
a|+2a<
||Pk:atfHL2 < 6%2—8k+2—5m/6+5m7 ||Pke_itA6tf||Loo < 5%2—5m/3+(5m'

Also, the following L™ bounds hold, for any k € Z and s € R with |s — t| < 2m~™,

e Acop 1o P f || oo S €1 min(2F/2, 274k)g=mo520m,

i _ 2
||€ lSAA22D+1,’yOPkaLOO S 512 5m/6+36°m

Moreover, we have

e A F I < oy min(2k, 2 4k)9 508

.]7 L ~Y

”e_iSAfj,k:HLoo 5 £1 min(23k/2, 2—4k)2—m+505j Zf ‘]{7| > 10.
Away from the bad frequencies, we have the stronger bound

le™*** A<op yo A<op y ikl oo S €127 min(2F, 27 )27/,
provided that j < (1 —6%)m + |k|/2 and |k| + D < m/2.

Finally, for alln € {0,1,...,j} we have

[T | oo S £12207m2 4K 9300 . 9=(1/2-550)(j—n),

2 A+t _ ;
H Sup ‘fjkn 7”9 H'LQ rdr) E1226 mo 4k 2n/22 J+555]‘

Proof. The estimates in the first line of (4.18]) follow from (4.12)). The estimates (4.19]

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

-7

and (4.22)) then follow from Lemma While the estimate (4.21)) follows from 1_' Fmally,

the estimates on 0y f in (4.18]) follows from the Lemma 4.1 in [32].

O

We prove now a lemma that is useful when estimating multilinear expression containing a

localization in the modulation ®.

Lemma 4.5. Assume that k,k1,ko € Z, m > D, k := max(k, k1, ko), |k| < m/2, p > —m.

Assume that Ko and p, are symbols supported in the set Dy, kk, and satisfying

Bo&sm) = po(§mn(&m),  p(§m) = m(Emn(&n),  linlls= S 1,
o(&m) = € —nf*2(&,m), (€ mlls= S 2 F

compare with g Forle {0,1} and ® = ®4,, as in let
Zi(F: H 1) = [ / 1€, ) (B(E. 1) PLF (€ — ) Py 1 () Py Ha( € ),

where ¢ € C3°(—1,1) and ¥p(x) :=(27Px). Then
|Z01F; Hy, Ho]| < 2%%/% min(1, 27?2max(2p’3k+)2*2k)N(PkF) || Pry Hill 2| Pry Hall L2
o+
|2y [F; Hy, Ho)| S 2% 8 N(PF) - || P, Hul| 2| Py ol 2,
where

N(PyF):= sup [ e#*PuF| oo 427" PF | 2.
pl<2-paom

(4.23)

(4.24)

(4.25)
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In particular, if 28 ~ 1 then

T+
| Z0[F; Hy, Hy)| < min(1, 22" ~F \N(PF) - || Py, Hy || 12| P Ha | 12,

. (4.26)
|y [F: Hy, Ha)| S 278 N(PGF) - || Py Hil| 2| Pro Ha |l 2
Proof. The proof when [ =1 is easy. We start from the formula
Upl@(Em) = C [ B(s)e T ds. (127)
R

Therefore
Tt 1) = 0 | 66 [ e, P& ) P T ) PRI ()

Using Lemma (i) and (4.23)), it follows that
~ T+ s o
| T, [Fs Hy, Ho)| S / [ ()| 2% [|e™52 A PUF | ool | Py Hu | 21| Pry Ho | 2 ds.
R

The bound for [ =1 in (4.26) follows.
In the case | = 0, the desired bound follows in the same way unless
k" 42k > max(2p, 3kt) + D. (4.28)
On the other hand, if (4.28]) holds then we need to take advantage of the depletion factor ?.
The main point is that if (4.28) holds and

2R (2% + 2387
922k

Indeed, if holds then k > D and p < 3k/2 — D/4, and we estimate
() < <\§| - |77|>2 < (TWIA(I&) - A(\nl)!>2 < 27 (|2, m)| + A(I€ = 7))
€=l 2" I
in the support of the function 9, which gives . To continue the proof, we fix a function
X € C§°(R?) supported in the ball of radius 2¥++! with the property that Zve(2k+z)2 x(x—v) =1
for any x € R2. For any v € (2¥+7Z)?, consider the operator @, defined by

— ~

Quf (&) = x(§ = v)f(E).

In view of the localization in (§ — 7), we have

it [@(,n)| $2” then d(&n) <

(4.29)

P;v1,v27

LF;H, H) = > I Lo = T[F; Qu, Hi, Qu, Ha). (4.30)

|v1 42| 525+

Moreover, using ([4.29) we can insert a factor of <p(27%(¢ —n) - v1) in the integral defining
IIIQ[F; Qu, H1, Qu, Ho] without changing the integral, where 2% a (2P 4 23F7/2)2k/2 et

My (§,1) = 11§, M) * Plry—2.k0+2 () Ple—2,642)(§ — M Pty +2(n — v1)p<p (27X (€ —n) -w1).
We will show below that for any v; € R? with |v;| ~ 2F

H}Ll(mm)HLl(R?xR?) < 93k/2 | 22)(2721@272%_ (4.31)
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Assuming this, the desired bound follows as before. To prove ([4.31]) we recall that || F~*(ab)||: <
|F 1 (@)[| g1 | F~1(b)]| 1. Then we write

(E=m) - (E+m) =2(E—m) - vi+ €0 +2(6=n) - (n—v1).
The bound (4.31)) follows by analyzing the contributions of the 3 terms in this formula. O
Our next lemma concerns a linear L? estimate on certain localized Fourier integral operators.

Lemma 4.6. Assume that k > —100, m > D?,

—(1=-6m<p—k/2< —om, M2 < 5| < 22, (4.32)
Given x € C§°(R) supported in [—1,1], introduce the operator L, ), defined by
Ly f(§) == ¢>-100(¢) /]1%2 "M\ (27PD(E, n))or(n)alé,n) f(n)dn, (4.33)

where, for some p,v € {+,—},

(&m) = AE) — Au(€—n) — Au(n), a(€,n) = A&, n)xsa(& =17 —n),
DALz, Sjay 2°m73,

Ty N

(4.34)

Il 20 S 1

Then
| Lpiflle < 2500m 2B/ W=k/2) 4 gp=h/2=m/8)| £l 5.

Remark 4.7. (i) Lemma which is proved in section @ below, plays a central role in the
proof of Proposition[{.1. A key role in its proof is played by the “curvature” component

Y(&n) = (VZ,2)(&n) [(VER)(E n), (V@) (& )], (4.35)

and in particular by its non-degeneracy close to the bad frequencies vy and 1, and to the resonant
hypersurface ®(&,m) = 0. The properties of T that we are going to use are described in subsection

[7.2, and in particular in Lemmas (7.3, and[7.3,

(ii) We can insert S symbols and bounded factors that depend only on & or only on n in the
integral in (4.33)), without changing the conclusion. We will often use this lemma in the form

], o mute male. ) P A P (—¢) dedn

< 2200 (BRWRZ) g gp k2R | P By |2 || PeF | 2,
provided that k, k1 > —80, (4.32) and (4.34) hold, and ||pu||s~ < 1. This follows by writing

u(€,m) = / / P(z,y)e eV dédn,
R2 xR2

with ||Pl|p1r2xr2) S 1, and then combining the oscillatory factors with the functions Fi, Fy.

(4.36)

5. ENERGY ESTIMATES, III: PROOF OF PROPOSITION
In this section we prove Proposition thus completing the proof of Proposition Recall
the definitions (4.8))-(4.11). For G € G' and W1, Wy € W' let
AynlG W2 Wl = [ an(s) [ a(emor (€ = G~ 0.5 Wi, ) Ta(~¢, ) dednds,
X
(5.1)
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where | € {0,1}, m € [D?, L], Y € {go,ba}, and the symbols p; are as in ([{.7)). The conclusion
of Proposition is equivalent to the uniform bound

AL [GL W, Wa)| S ef220m, (5.2)

In proving this bound we further decompose the functions Wy and Ws dyadically and consider
several cases. We remark that the most difficult case (which is treated in Lemma [5.1)) is when
the “bad” frequencies of G interact with the high frequencies of the functions W; and Wa.

5.1. The main interactions. We prove the following lemma.

Lemma 5.1. Forl € {0,1}, m € [D} L], G € G, and W1,Ws € W we have

Yo AL G Py W, P, Wa)| S (5.3)
min(kq,k2)>—40

The rest of the subsection is concerned with the proof of this lemma. We need to further
decompose our operators based on the size of the modulation. Assuming that Wo € W,
WieW,, Geg,, ov,puec{+,~},see ([4.10)-(4.11)), we define the associated phase

(&,n) = Poun(&,m) = Ao (&) — Au(§ —n) — Au(n). (5.4)

Notice that in proving (5.3) we may assume that o = + (otherwise take complex conjugates)
and that the sum is over |k; — ka| < 50 (due to localization in £ — 7). For k > —30 let

pr(8) = Y [P0 gerao)Wi(s) 2 + 2567027 F2 N Py g s 10w (9)| 2,
i€{1,2} i€{1,2} (5'5)

P = [ 12 ans) + ()
where &y, , are the “semilinear” nonlinearities defined in (4.15)). In view of (4.14) and (4.16)),
2
> phn S (5.6)

k>—30
Given k > =30, let p = |k/2 — 7m/9] (the largest integer < k/2 — 7m/9). We define

ALPF, Hy, Hy) = / / (€ m) 2 (@(€. 1) X (€ — ) B (€ — ) s () Fla(—€) déd, (5.7)
R2xR2

where p € [p,00) (here @,[Jp’ ®) = = pif p>p+1and cp[p’ ©) = = <p if p=p). Assuming that
|/€1 - k’ < 30, |]€2 — k’ < 30, let
AL P WL P = [ an() ALIGE) PLWA). PWa]ds. (53)

This gives a decomposition 'Aba m szp .Aé’f ., as a sum of operators localized in modulation.
Notice that the sum is either over p € @3{/2 +D] (ifv=+orif v =— and k < D/2) or over
lp—3k/2| <D (if v = — and k > D/2). For (5.3) it remains to prove that

AL LG P, Wi, Py, W | S 212702, (5.9)

ba,m
for any k > —30, p > p, and ki, ko € Z satisfying |k — k| < 30, |k2 — k| < 30.
Using Lemma (see (4.26])), we have

ARG (5), Py Wi(s), Py Wa(s)]| S €122+ ~F275m/SH0m | B W ()| 2 | Py, Wa(s) 12,
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for any p > p, due to the L* bound in (4.19). The desired bound (5.9)) follows if 2p; — &k <
—m/5+ D. Also, using Lemma we have

8 —m—om
Ay (G, Py Wi, Pey Wal(s)] S 20277 | Py Wi (8) | 2| Py Wa () 22,

using ([4.36)), since 227%/2 < 2-Tm/9 apd ||€iSA“G(5)||ZlmHN1/3,0 < £129™ (see (#.12)). Therefore
Q
(5-9)) follows if p = p. It remains to prove (5.9) when

p>p+1 and ke [=30,2ps +m/5], [k — k| < 30, [ka — k| < 30. (5.10)
In the remaining range in ([5.10) we integrate by parts in s. We define

AGP(F, Hy, Hy] = // 1 (€, 0)Bp(@(E,m)) xoa (€ — n)E(€ — n)Hy () Ha(—€) dedn,  (5.11)
R2xR2

where @p(x) := 2Pz L, (x). This is similar to the definition in (5.7)), but with ¢, replaced by
¢p- Then we let Wy, := P, W1, Wy, := P, W> and write

0= [ Zo{am (A6 Wi, (9. Wi (9]} ds
_ /R @ ()AL [G(5), Wiy (8), Wiy (8)] ds + To P (k1 ka) + TP (kv ka) + TaP (ki ka)  (5.12)

2 [ () AIG () Wiy (5), Wi (5] ds.
where
T (1, ko) == /IR G (8) AP [(Ds + iM,)G(s), Wiy (5), Wiy (5)] ds,
To (ky k) = /R G () AP [G(5), (D5 + i) Wiy (), Wiy (5)] ds, (5.13)
Titolhn k) = [ () ALICE), Wi (51, (04 80 ) Wi (5] s
The integral in the last line of is the one we have to estimate. Notice that
2P| AP [G(s), Wiy (5), Wiy (s)]] S 27727250 W, () | 12| Wiy ()] 2
as a consequence of Lemma and . It remains to prove that if holds then
2P| Tl (k1 ko) + TpFy (ke k) + Tyly (B ko) | S €127 pf - (5.14)
This bound will be proved in several steps, in Lemmas and [5.4] below.

5.1.1. Quasilinear terms. We consider first the quasilinear terms appearing in ([5.14)), which are
those where (9; +iA) hits the high frequency inputs Wy, and Wy,. We start with the case when
the frequencies k1, ks are not too large relative to py.

Lemma 5.2. Assume that (5.10) holds and, in addition, k < 2p; /3 + m/4. Then

27 [ T30y (ks )| + [Tl (ks o) ] S €127 0 (5.15)
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Proof. 1t suffices to bound the contributions of ‘jblc’f 1 (K1, kz)‘ in (5.15)), since the contributions
of ‘jbl(fQ(kl7 k)| are similar. We estimate, for s € [2m~1, 2™+,

105 + M) Wi, (3)ll 2 S er27Pm/6+0m (ghs 4 ga/2p=5m/0) () (5.16)

using f. As before, we use Lemma and the pointwise bound to estimate

[AIG (). (0s + i) Wi (5). Wiy ()]

< min(1, 2%+ 7H)e 275 SR (9 A )W, ()] 22| Wiy (9) ] 2

The bounds fﬁce to prove when p > 0 or when —m/2+k/2 <p <0.

(5-15)

It remains to prove when

(5.17)

p+1<p<—m/2+k/2, kE<m/5. (5.18)
For this we would like to apply Lemma We claim that, for s € [271 2m+L]
A7 1G(5), (05 + M) Wi, (5), Wiy (5)]]
< 27 e 2%0m (2B WTRZ) g gp= KRSy (D 4 A, )W, ()] 12| Wi, () 2
Assuming this and using also , it follows that
2*1)“_71)1(;1771(11{;1’ kg)’ < opgm. Elpi7m2*5m/ﬁ+405m(2(3/2)(P*k/Q) + QP*k/2*m/3)
< 61pzQO/GHo&m(2;0/2—31<:/4 4 9 k/2=m/3y,

and the desired conclusion follows using also ([5.18]). '
On the other hand, to prove the bound (5.19)), we use ([#.36). Clearly, with g = @G, we
2 _ . . . .
have HgHZmHgl/?”o < £120"m see ([@.18)). The factor 27% in the right-hand side of (5.19) is due

to the symbols pg and pq. This is clear for the symbols w1, which already contain a factor of
2% (see ([@.7)). For the symbols pg, we notice that we can take

A(&,m) = 2k°(§7 n)p<a(P(E, U))‘P[k2—2,k2+2] (5)@[710,10} (&—mn).
This satisfies the bounds required in (4.34]), since k& < m/5. This completes the proof. O

(5.19)

We now look at the remaining cases for the quasilinear terms and prove the following:
Lemma 5.3. Assume that (5.10) holds and, in addition,
p >0, ke 2p/3+m/4,2p+ m/5]. (5.20)
Then l l
2P| TP, (K, ko) + TPy (kas k)| S €127 7 - (5.21)
Proof. The main issue here is to deal with the case of large frequencies, relative to the time
variable, and avoid the loss of derivatives coming from the terms (0; £4iA)Wj 2. For this we use
ideas related to the local existence theory, such as symmetrization. Notice that in Lemma [5.3
we estimate the absolute value of the sum jlff L+ jblép 5> and not each term separately.
Notice first that we may assume that v = + = o, since otherwise jbl(’lpn(kl, ko) =0,n € {1,2},

when k£ > 2p/3 +m/4. In particular 2P < 2k/2 We deal first with the semilinear part of the
nonlinearity, which is &y, in equation (4.15)). Using Lemma and the definition (/5.5)),

|ALP(G(5), Pry Ew, (), Wi ()] S €127/ | P Egwr (5)|] 12| Wika (5) | 2
S 812—5m/3+26m2k/2pk(8)2.
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Therefore
2—p/ }A Pk15W1( ) Wk2 ‘ds Se12” m/4 2
R

It remains to bound the contributions of Oy, and Q. Using again Lemma we can
easily prove the estimate when k£ < 6m/5 or when [ = 1. It remains to show that

2_,,/ (5)[ A0 [G(5), Pey Quw (), Wiy ()] + AP G(5), Wiy (5), Py Quva (5)]] ds
R (5.22)
S e27p} s
provided that
v=o0=-+, ke [2p—D,2p+m/5], k> 6m/5. (5.23)

In this case we consider the full expression and apply a symmetrization procedure to recover
the loss of derivatives. Since Wi € W/, and Wy € W', recall from (4.16)) that

le = —iT222W1 — iTV-CW17 QW2 = iTZZQWQ + iTV.CWQ.
Therefore, using the definition ,
-’zlvgép[G’ Pkl QWl ) Wkg] = Z // H0 (f? 77)
oe{Sag, ¢y T RIXR?
X Ep(@(Em)Xta(€ = MGE = 1) - @i, (1) (=) T W1 () - @1y () Wa(—E) ddn,
and
‘AO,p[Gv Wklvpkz QW2] = Z // 5 77
RQXRQ

0e{¥>2,V-(}

X Bp(® (&) xba(€ = MG(E =) - o1 (MW (0) - Py ()T Wa (=€) dédln.
We use the definition ([2.32)) and make suitable changes of variables to write

A [G Pkl QWI’ Wk2] + Ab [G kapkz QWz]
- X [, TG~ e ) deyin,

oe{S52,VC}

where él; = Xba G and

|

12n + af

2n+«a
2

28 — «
2

(6M)(€,m, @) = po(€,1m + )Pp(P(€,n + a))a(a, )x( )Pk, (1 + @) pry (€)

|

)x( % — ol )@k (M)pry (€ — @)

— po(€§ — o, n)Pp(P(§ — a,n))o(«,
For (5.22) it suffices to prove that for any s € 2™, 2™+ and o € (So0,V -}
2_”‘ // (R2)3 Wi(1, 8)Wa( =€, )G (€ =1 — a,5)(OM)(€, 1, @, 5) dédnda

R

5 Elpk(8)22_m_6m.

(5.24)
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Let
M(&,m, a;61,02) := po(§ — b1,m+ a — 01)0p(R(§ — b1,m + a — 61))
_ a | (5.25)
.y —0 S0 (o
X Pk (& = O1)em (1 + o = 61)a(an+ 5 +0)x(i5 = ==a).

therefore
(OM)(&m, o) = M(&,m,0;0,0) = M (&, 50,6 — 1 — @)
= (pﬁk*D(a)[a : v91M(§7777 a; 0, 0) + (E /i 04) : v@zM(§7777 a; 0, 0)] + (eM)(‘Sa m, Oé).

Using the formula for po in (4.7) and recalling that o € 51/\/1%32;12 (see Definition , it follows
that, in the support of the integral,

[(eM)(& )| S (L+[af)P(a)27 222, |1+ |a])*P 2 S 27

The contribution of (eM) in (5.24)) can then be estimated by 27720m27%/2¢| p;.(5)? which suffices
due to the assumptions ([5.23]).
We are thus left with estimating the integrals

I= / / G~ 1~ )i p(@)[(€ ~ 71— ) - Vo, M(E1,05.0,0)] W (n) Wa(—€) dadyde,

IT = / / Gral€ — 11— a)pip(@) [ Vo, M(€,1,050,0)] Wi (1) W3 (—€) dadnde.

If o] < 2’C we have
(€ —n—a)- Vo, M(§,n,050,0) = po(& 0 + a)@p(P(E, 1 + @)) ok, (§) ok, (n + @)
X (€=n—a)- (Vo) (an+3).
We make the change of variable o = 8 — 1 to rewrite

I=c / / / Gon(€ — B)o(&, B)Bo(®(€, B))(E — B) - FLPiy Tooy p5eaW1}(B) Py Wa(—€) dBd.
(R2)3

Then we use Lemma (4.19), and (8.22) (recall o € 61./\/1%32;12) to estimate
27P|I(s)| S 2772 Fe 2SN | By Tp_, v oW () L2 )| Pey Wa(s) | 2
5 512—3m/22p—k/2pk(5)2.

This is better than the desired bound (/5.24]). One can estimate 27P|I1(s)| in a similar way, using
the flexibility in Lemma [4.5| due to the fact that the Symbol Hy s allowed to contain additional
S symbols. This completes the proof of the bound ( and the lemma. O

5.1.2. Semilinear terms. The only term in (5.12) that remains to be estimated is jé’p(kl, k2).
This is a semilinear term, since the J; derivative hits the low-frequency component, for which
we will show the following;:

Lemma 5.4. Assume that (5.10) holds. Then
27| Tk (k, Ko)| S €127} (5.26)
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Proof. Assume first that p > —m/4. Using integration by parts we can see that, for p € R,

H]:_l{eipA(E)QD[—QO,QO](g)}HLQIC S1+pl (5.27)
Combining this and the bounds in the second line of (4.18) we get

Z ||ei,0A[(aS + iAu)P[qo,lo]G(S)]HLoo <(27P + 1)275m/3+25m.

lp|<2-p+om

Using this in combination with Lemma [£.5 we get
7 . _ _

[ A1 + 18 G(5), Wiy (5), Wi (5)]] S (277 4 1)27 53420y (5)2, (5.28)

which leads to an acceptable contribution.
Assume now that
p+1<p<-m/4

Even though there is no loss of derivatives here, the information that we have so far is not
sufficient to obtain the bound in this range. The main reason is that some components of

(0s + iA,)G(s) undergo oscillations which are not linear. To deal with this term we are going
to use the following decomposition of (9s + iA,)G, which follows from Lemma 4.3 in [32],

Xba(€) - FL(0s +iA,)G(5)}E) = ga(§) + goo(§) + g2(8) (5.29)
for any s € [2771, 2+ where Xpa(T) = @34(27)(]30\ - %)) + ¢§4(2D(|xl — 1)) and

269—3m/2420dm 29—m—4ém
12 / ’ 12 )

g2l S e 9ol S €

su}) ) ||}-—1{eipAgd}||Loo < 6%2—16m/9—45m‘ (530)
[p|<27m/9+40m

Clearly, the contribution of g4 can be estimated as in ([5.28)), using Lemma On the other
hand, we estimate the contributions of go and g, in the Fourier space, using Schur’s lemma.
For this we need to use the volume bound in Proposition 7.4 (i) in [32]. We have

SUP [ Zp((€ M)xta(€ = Mg (€~ My S 2070 g || oo S 201727 (1AM,

and also a similar bound for the ¢ integral (keeping 7 fixed). Therefore, using Schur’s lemma
| AL [ F L gao (), Wi, (5), Wiy (5)]| S 201-0pg-(Ha0)mg2, ()2

and the corresponding contribution is bounded as claimed in ([5.26)). The contribution of g, can
be bounded in a similar way, using Schur’s lemma and the Cauchy—Schwarz inequality. This
completes the proof of the lemma. O

5.2. The other interactions. In this subsection we show how to bound all the remaining
contributions to the energy increment in (5.1). We remark that we do not use the main L2
lemma in the estimates in this subsection.
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5.2.1. Small frequencies. We consider now the small frequencies and prove the following:
Lemma 5.5. Forl € {0,1}, m € [D? L], G € G, and W1, W € W we have

Z ’Aéa,m[G’ Py, Wi, PkQWQH S 6?' (5.31)
min(kq,k2)<—40

Proof. Let k := min{kj, k2}. Notice that we may assume that k < —40, max(k1, k2) € [-10, 10],
and [ = 1. We can easily estimate

Ay [G Py W1, P, Wal | S sup 2725 G ()| 2 || Py Wi () | 2| Py W ()| 2

se[2m—1,2m+1]

In view of (4.12)) and (4.14)), this suffices to estimate the sum corresponding to k < —m — 3dm.
Therefore, it suffices to show that if —(1 + 3J)m < k < —40 then

|Aéa,m[G7 Pkl Wla Pk2W2” S 5%2_5m- (532)

As in the proof of Lemma assume that Wo € W_,, W1 € W,, G € G, o,v,n € {+, -},
and define the associated phase ® = ®,,, as in (5.4). The important observation is that

(&, m)| ~ 28/ (5.33)

in the support of the integral. We define A;C’Lp and Aél’lp ., as in (5.7)—(5.8), by introducing the
the cutoff function ¢,(®(£,n). In view of (5.33)) we may assume that |p — k/2| < 1. Then we
integrate by parts as in (5.12)) and similarly obtain

|A;(fm [Ga Pk’l W17 Pk'2 WQ” S 2—p‘ /]R{ q;n(S)AV;&p[G(S), Wk1 (5)7 sz (S)] dS‘

(5.34)
+ 27| Fpb (K, ko) | + 27| T (ke ko) | + 277 Tty (e Ko

see (5.11]) and ([5.13)) for definitions.
We apply Lemma (see (4.26))) to control the terms in the right-hand side of ([5.34)). Using
[@.14) and ([@.19) (recall that 277 < 27k/2+dm < om/2430m) “the first term is dominated by

05?2—p26m2—5m/6+6m S 8?2—1%/4'
Similarly,

2_p’*7b2?1(k1’ kz)’ + 2—p’jb1a,g(k1, kg)’ S Eili2m2—p2—5m/6+5m2—5m/6+26m SJ E?Q—m/lo.

For \j;;%(kl, k2)| we estimate first, using also ([5.27) and (4.18)

2_p"~7112,13)(k17 ]{2)’ 5 Eil’;QmQ—p(2—p2—5m/3+6m)25m S 5?2—2p2—2m/3+26m‘

We can also estimate directly in the Fourier space (placing the factor at low frequency in L!
and the other two factors in L?),

2_p"-7b1a7§)(k17 k?g)’ S, €?2m2—p2ﬁ2—5m/6+35m S €?2p2m/6+36m.

These last two bounds show that 277 ]jbla’%(kl, ko)| < e327™/10 The desired conclusion (5.32))

follows using (|5.34)). O
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5.2.2. The “good” frequencies. We estimate now the contribution of the terms in , corre-
sponding to the cutoff x4,. One should keep in mind that these terms are similar, but easier
than the ones we have already estimated. We often use the sharp decay in to bound the
contribution of small modulations.

We may assume that Wo € W, Wi € W/, and G € G/,. For it suffices to prove that

ST AL PG, P Wi, P, W) | S e5220°m (5.35)
k,k1,ko€Z

Recalling the assumptions (4.7]) on the symbols p;, we have the simple bound

AL [PLG Py Wi, Py Wol| < 2m2min(ikik) 9265 gy || G (s) | 2| Py Wi (5) | 12 || P W (5) | 2.

go,m
’ Selm

Using now (4.12) and (4.14)), it follows that the sum over k > 2dm or k < —m — ém in (5.35)) is
dominated as claimed. Using also the L> bounds (4.20) and Lemma we have

ALy W [PeG. Py Wi, Py Wa)| S 222" sup || PG (s)|| 1< || Pey Wi (5) 22 || i W (s) | 22

go,m
SEIm

< 2mo?kt SUp e 287500 B W (5)| 2 || P, W (s) | 2
se m

if |[k| > 10. This suffices to control the part of the sum over £ < —526m. Moreover

Z |A_lqo,m[PkG) Pklwla Pk2W2]| S, 5?2767”
min(k1,k2)<—D—|k|
if k € [—=52dm,20m]. This follows as in the proof of Lemma once we notice that ®(&,n) ~
omin(k1,k2)/2 i the support of the integral, so we can integrate by parts in s. After these

reductions, for (5.35)) it suffices to prove that, for any k € [—52dm, 26m)],

> ALy [PeG. Py Wh, P, W) | S 3225 ma Ik, (5.36)
kl,kQE[_D_|klvoo)

To prove (5.36) we further decompose in modulation. Let k := max(k, ki, k2) and p =
LE+/2 — 1106m|. We define, as in (5.7))—(5.8)),

Agtp ) = [ e el ™ @6 mxals — P~ i) Ta(=¢) dedn, (5.37)
and

AP (PG, Py Wh, Py Wa) = /R Gon (5) AL (PG (s), Py Wi (), Py Wa(s)] ds. (5.38)
For p > p+ 1 we integrate by parts in s. As in (5.11)) and (5.13) let

Agir ) = [ (€)@ m) ool P~ ) Fa(~6) dgin,  (5.39)
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where @, (z) := 2Pz~ 1, (z). Let Wy, = Py, W1, Wy, = Py, Wa, and
Tyotb k) i= [ 0 (VALLPL + i0,)GHs), Wi (5), Wi (5] .
Tt Enk) s= [ an(s) AP 01 + i) Wiy (5). Wi(5)] ds.
Jga Po(k1, ko) := /qu(s);q;g[PkG(s), Wi, (5), (0s + iA_o) Wy, (s)] ds.

As in (5.12)), we have
|ALE L [PeG, P, Wi, P, Wa)| < 2 P) / (8)ALL[PLG(s), Wiy (), Wiy (5)] ds‘

(5.40)
+27 p‘ klak2)+jgo,1(k17k2)+jgozj2(klvk2)}-
Using Lemma [4.5] (|4.14|) and (4.19), it is easy to see that
S 2| [ ARG, W ) W) s Stz G

k1,ka€[—D—|k|,00) pZp+1

Using also (5.27)) and (4.18)), as in the first part of the proof of Lemma we have

> " 2| TR (k)| S ef270m (5.42)

k1,ko€[—D—|k|,00) p2p+1

Using Lemma (4.19), and (5.16), it follows that

> > 2P| Tk (ks ko) | + | Ty (ke o) || S ed2mom. (5.43)
ki1,k2€[—D—|k|,6m/5) p>p+1

Finally, a symmetrization argument as in the proof of Lemma [5.3] shows that
> > 2o PITEP (R, K) + Ty (R, kg)\ < efoaom, (5.44)
kl,kge[ﬁm/5710700) pZB‘i‘l

In view of (5.40)—(5.44)), to complete the proof of ([5.36)) it remains to bound the contribution
of small modulations. In the case of “bad” frequencies, this is done using the main L? lemma.
Here we need a different argument.

Lemma 5.6. Assume that k € [—526m,20m| and p = LE+/2 —110dm]. Then
> ALL [PuG, By, W, Py, Wi | < 3228 mo—0lk| (5.45)
min(ki,k2)>—D—|k|
Proof. We need to further decompose the function G. Recall that G € G/, and let, for (k,j) € J
f(s) =€ G(s), fix = Pr-2k+2Qjnfs ik = A<aproA<ap o fin (5.46)

Compare with Lemma [2.6} - The functions g;; are supported away from the bad frequencies 7o
and v1 and ) _; gjk(s) = ¢*AG(s) away from these frequencies. This induces a decomposition

L
Agom[PuG, Py Wi, P, Wo] = ) Aghmle™ 2 g; 1, Py W1, Py, W),
j>max(—k,0)
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Notice that for j < m —dm we have the stronger estimate (.21]) on [[e~*"g; x|/ .. Therefore,
using Lemma [4.5] if j < m — dm then

L,p i Y S
[Agomle™"* g1, Py Wi, P, Wo| S 12272 279/ SUp ([ Pie, Wi ()| 2| Py W (5)| 2
SEIm
Thereford]
l, _ 2,0
> > [Agsmle™ " gk, Pi, W, P, Wo]| S e3220 270K,
jgmfdm min(kl,kg)Z—D—|k|
Similarly, if j > m + 605m then we also have a stronger bound on ||e~*g; ;|| in the first line
of (4.20]), and the corresponding contributions are controlled in the same way.
It remains to show, for any j € [m — dm, m + 60dm],

l, . _
> | Agom[e g 1y Poy Wi, Pry Wa| < e327°M, (5.47)
min(k1,k2)>—D—|k|

For this we use Schur’s test. Since min(k, ki1, k2) > —53dm it follows from Proposition 7.4 (i) in
132] and the bound ||zl 2 < 127 8% 27945997 that

— it e ,
/R2 |12 (&, ) |0 <p(R(E, MG (€ — M) Plky—2 00 +2) () dip S €127 F /2)/2Hm o =i+508]

for any ¢ € R? fixed with |¢] € [2+274 2+2+4]. The integral in & (for 7 fixed) can be estimated in
the same way. Given the choice of p, the desired bound ([5.47)) follows using Schur’s lemma. [

6. PROOF OF THE MAIN L? LEMMA

In this section we prove Lemma We divide the proof into several cases. Let
X (@) =02 (2] =), 1€{0,1}.

We start the most difficult case when | — 7] is close to vp and 2% > 1. In this case T can vanish
up to order 1 (so we can have 29 < 1 in the notation of the Lemma below).

Lemma 6.1. The conclusion of Lemma holds if k > 3D1/2 and g is supported in the set
{11€] = yol <2713,

Proof. We will often use the results in Lemma below. We may assume that v = + in the
definition of @, since otherwise the operator is trivial. We may also assume that u = +, in view

of the formula ([7.30)).
In view of Lemma (ii) we may assume that either (¢ —n) - &+ ~2F or —(€ —1n) - €+ ~ 2F
in the support of the integral, due to the factor x(27P®(£,n)). Thus we may define
ai(é’n) :a(gvn)l:t((g_n)fl)a (61)

and decompose the operator L, = L;tk + L;k accordingly. The two operators can be treated
in similar ways, so we will concentrate on the operator L;k.

5This is the only place in the proof of the bound ([5.2)) where one needs the 228" factor in the right-hand side.
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To apply the main T7T™ argument we need to first decompose the operators L, . For x :=

9—D%/? (a small parameter) and ¢ € C§°(—2,2) satisfying } -,z ¥ (. +v) = 1, we write

+ _ r.J
Lp,k - Z ZLp,k’,q’

q,r€Z j>0

L f@) = /RZ DN (2PD(w, ) )pq (Y, 9)) (279 (2, y) — )k (y)af (2, 9) f (y)dy,

o0)

ot (2,y) = Az, y)xy (@ — 9L (@ —y) - 2H)Gi (@ —y), g5 1= Asonole] ™ gl

(6.2)
In other words, we insert the decompositions
9=> g 1= @u(Y(x,y)e(x 27" (z,y) — 1)
Jj=0 q,r€Z

in the formula (4.33)) defining the operators L, ;. The parameters j and r play a somewhat
minor role in the proof (one can focus on the main case j = 0) but the parameter ¢ is important.
Notice that ¢ < —D/2, in view of (7.15)). The hypothesis HgHZmHgl/S’O < 1 and Lemma

show that

< 27j(1/27556)7 < 27j(17555).

sup [ (r0) [l L2(rary S (6.3)

1G5/ Lo |
feS!t

Note that, for fixed z (respectively y) the support of integration is included in S;jqf r(x)
(respectively Sg,gr(y)), see (|7.18)—(7.19). We can use this to estimate the Schur norm of the
kernel. It follows from ([7.20)) and the first bound in (6.3)) that

sup [ IR 0))en (Tl )n(o)af (o )ldy 5 e Shi (0] £ 207422795 (6.4

A similar estimate holds for the x integral (keeping y fixed). Moreover, using (7.21]) and the
second bound in (6.3)) to estimate the left-hand side of (6.4) by C277+5%979P=k/2 In view of
Schur’s lemma, we have

VLD, o g S min(20H0—h/20=3/3 9=3+558i90/2p-k/2)

The desired conclusion follows, unless

k m

qZDeraX{%(pfg),fg} and 0§j§min{— ff(pff)}. (6.5)

Therefore, in the rest of the proof we may assume that (6.5) holds, so k27 > 2=5 . We use
the T argument and Schur’s test. It suffices to show that

sup/ |K (x,&)|d¢ + sup/ |K(x,&)|dx < 26527"(23(1’_%) + 22(7’_%)2_%’”) (6.6)
z JR2 £ R2
for p, k,q,r, 7 fixed (satisfying (4.32)) and (6.5))), where

K(z,8) = /R2 O\ (2P (2, ) )X (2P (E, y)) g (2. &, y)af (z, y)af (€, y)dy,

O(z,&,y) i= ®(z,y) — (&, y) = A(x) — A(€) — Alw —y) + A(E — p), (6.7)
Y (2, €,9) = 0a(T (@, 1) (T(E, )W (k1279 (2, y) — 1) (k' 27IT(E, y) — r)on(y)>.
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Since K (z,§) = K (&, z), it suffices to prove the bound on the first term in the left-hand side
of . The main idea of the proof is to show that K is essentially supported in the set where
w =z — £ is small. Note first that, in view of ([7.20]), we may assume that

lw] = |r =& S k2T < 1. (6.8)

Step 1: We will show in Step 2 below that if

if  |w| > L= 22"m[op=k/297a  gimamm 4 9=2m/3=d]  then  |K(z,6)] S 27 (6.9)

Assuming this, we show now how prove the bound on the first term in . Notice that
L <« 1, in view of (4.32) and (6.5). We decompose, for fixed z,

/|K<x,£>|d§s/ |K<sc,:c—w>\dw+/ K (2,2 — )] dov.
R2 {lwl<L} {lw>L}

Combining and , we obtain a suitable bound for the second integral. We now turn to
the first integral, which we bound using Fubini and the formula (6.7)) by

Cllaf ||z~ /R Jaf @)@ e )ey Do ([ P - o) de)dy,

{lwl<L}
(6.10)
We observe that, for fixed z,y satisfying ||z — y| — 70| < 1, |z| = 2¥ > 1, we have

/ IX27P®(z — w,y))| dw < 2P7F/2L (6.11)
{lw<L}

Indeed, it follows from that if z = (x—y—w) = (pcos b, psinb), |w| < L, and |(y+2,y)| <
2P, then |p — |z — y|| < L and 6 belongs to a union of two intervals of length < 2P~%/2. The
desired bound follows.

Using also and ||a;||~ < 279/3, it follows that the expression in (.10) is bounded by
C22(—k/2)2-21/394], The desired bound follows, using also the restrictions .

Step 2: We prove now (6.9). We define orthonormal frames (e1,e2) and (V1, V),

I(I) ) @ )
VAW ymet, vim Yy

el = = ,
1 Vy®(z,y)] (6.12)

w=1x—§&=uwier + waes.

Note that wy, wy are functions of (x,y, £). We first make a useful observation: if |©(z,§,y)| < 2P,
and |w| < 1 then

wr] S 2782 (2P + |w?). (6.13)
This follows from a simple Taylor expansion, since
|B(2,y) = P(&,y) —w - Vi@(2,9)] S |wf*.

We turn now to the proof of . Assuming that z, ¢ are fixed with |x — ¢| > L and using
(6.13]), we see that, on the support of integration, |ws| ~ |w| and

Vo V,0(z,&y) = Vo Vy {-A(z —y) + A —y)}
=V V2 ,0(z,y) - (x — &) + O(lw[?) (6.14)
= wa X (z,y) + O(lwi | + |w]?).
Using (6.5), (6.9), and (this is where we need k < 1), we obtain that
V2 - VyO(z,&,y)| = 2%wa| ~ 29|w|
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in the support of the integral. Using that

15O ¢ 15O o
- V- V,e5©, DO < |wl,
and letting ©(y) := V3 - VO, after integration by parts we have

; 1
: 150 l
K(x,ﬁ)—z/Qe 8l{V2

521

N2 PR(2, )X PR Y)W (@,€ y)a] (2, 9)af (€ 1) fdy.
We observe that

V3Oi[x(277® (2, )X (2P (€, )] = 2770 - [X(27P (2, )X (2P0 (£, )]
This identity is the main reason for choosing V5 as in (6.12]), and this justifies the definition

of the function Y (intuitively, we can only integrate by parts in y along the level sets of the
function ®, due to the very large 277 factor). Moreover

1Dy g (&) S 279 |Djaf (v,y)] Sa 21V 42192 v € {a, €3,

in the support of the integral defining K (z,&). We integrate by parts many times in y as above.
At every step we gain a factor of 2724|w| and lose a factor of 27P2%|w| 4+ 279 + 27 4 2™/3, The
desired bound in follows. This completes the proof. O

We consider now the (easier) case when |£ — 7] is close to 1 and k is large.

Lemma 6.2. The conclusion of Lemma holds if k > 3D1/2 and g is supported in the set
{llg] =l <271}

Proof. Using ([7.15]), we see that on the support of integration we have |?(§ ,n)| = 1. The proof
is similar to the proof of Lemma in the case 2?9 ~ 1. The new difficulties come from the less
favorable decay in j close to «y; and from the fact that the conclusions in Lemma (iii) do not

apply. We define a;-t as in (6.2)) (with v replacing vo and gj := A>4, [gpg.o’oo) - g]), and

L% f () := p<_p(x — x0) /R PN @D, y))pr(v)af (2, 9) f(y)dy, (6.15)
for any xzo € R?. We have
Igillcee <2%7, | sup | Ay 95 (PO [ L2 rary S 2027490073 01=550), (6.16)
€

for n > 1, as a consequence of Lemma (i). Notice that these bounds are slightly weaker than
the bounds in (6.3)). However, we can still estimate (compare with (6.4))

sup/ IX(27P0(z,))pr(y)al (z,y)|dy S 207F/2 . 27 (1755007, (6.17)
R?

T
Indeed, we use only the second bound in , decompose the integral as a sum of integrals
over the dyadic sets ||z —y| —y1| = 27", n > 1, and use and the Cauchy-Schwarz in each
dyadic set. As a consequence of , it remains to consider the sum over j < 4m/9.

We can then proceed as in the proof of Lemma 6.1} Using the TT™ argument for the operators
L;?kj,] and Schur’s lemma, it suffices to prove bounds similar to those in (6.6). Let w = = — ¢,
and notice that |w| < 27P+10. This replaces the diameter bound and is the main reason
for adding the localization factors ¢<_p(x — o) in (6.15). The main claim is that

it |w| > L= 22m(op /2 gimm 4 9=2m/3) then K (x,€)] < 27 (6.18)
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The same argument as in Step 1 in the proof of Lemma [6.1] shows that this claim suffices.
Moreover, this claim can be proved using integration by parts, as in Step 2 in the proof of
Lemma 6.1l The conclusion of the lemma follows. O

Finally, we now consider the case of low frequencies.
Lemma 6.3. The conclusion of Lemma holds if k € [—-100, 7D, /4].

Proof. For small frequencies, the harder case is when | — 7] is close to 71, since the conclusions
of Lemmal7.3| are weaker than the conclusions of Lemma [7.2] and the decay in j is less favorable.
So we will concentrate on this case.

We need to first decompose our operator. For j > 0 and | € Z we define

oy (x,y) = A,y (@ —)ef (=) aD)G@—y), g5 = Asan [0 Pggal, (6.19)

where goli (v) := 1+ (v)p;(v). This is similar to (6.2)), but with the additional dyadic decomposi-
tion in terms of the angle |(z — y) - 2| ~ 2!. Then we decompose, as in (6.2)),

Lyk=3_ 2.0 D Lyig: (6.20)

q,r€Z j>0 I€Z et

where, with x = 2P and Y € C§°(—2,2) satisfying ) ., (. —v) = 1 as before,
9, 47l7 - ; Pl -
L 1) = eanf@) [ 203270 )) 61
X 0 (T(, )bk~ 279Y (2, ) — r)or(y)ay (=, y) f (y)dy.
We consider two main cases, depending on the size of q. ‘
Case 1. ¢ < —D;. As a consequence of ((7.32)), the operators L;’jk’l(’; are nontrivial only if

2% ~ 1 and 2! ~ 1. Using also (7.31)) it follows that
V. ®|~1, |V,T-Vid|~1, (622

T7j7l7l’

in the support of the integrals defining the operators Lp b -
Step 1. The proof proceeds as in Lemma [6.1] For simplicity, we assume that ¢ = +. Let

Spari(@) = {z:l[z] = | <27PF |®(2, 2 — 2)] <22 V(2,2 — 2)| < 2972,

1T (z, 2 — 2) — rr29| < 10K29, z - ot € [2172, 2142}, (6.23)
Recall that, if z = (pcosf, psin®) and = = (|z|cos a, |z|sin a) then
O(x,x — 2) = M|z|) — pX(p) — U)\(\/\:EP + p? — 2p|z| cos(b — ). (6.24)
It follows from and the change of variables argument in the proof of Lemma (iii) that
(@] S 270, diam(S),,(2)) S 20 + K20 (6.25)
if || ~ 1 and 2! ~ 1. Moreover, using , for any x and p,
{0 : z = (pcosb, psinb) € S;qul(a:)ﬂ < 2k (6.26)

Therefore, using (6.16)) and these last two bounds, if |z| ~ 1 then

/ IX(27P@(2,9))pq (Y (. 9))or(y)a (z,y)|dy < min(2PT920%7, 2P~ F5507), (6.27)
R2 ’
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One can prove a similar bound for the x integral, keeping y fixed. The desired conclusion follows
from Schur’s lemma unless

4 2
L) vsi {22
Step 2. Assuming (6.28)), we use the TT* argument and Schur’s test. It suffices to show that

¢ > D + max { (6.28)

sup/ | K (z,8)] d§+Sup/ K (z,€)|dx < 265m(23p n 22p_2m/3) (6.20)
xz JR2 ¢ Jre
for p, k,q,r, j,1 fixed, where

K(.’IT, f) = 902—100(1:)902_100(5) / 6“6(%&9)

R? (6.30)
X X(27P0 (2, y))X(27PR(&, ) o (2, €, y)a) (2, y)at (€, y)dy,

and, as in ,
O(z,8,y) == 0(z,y) — 2(§,y) = Alz) — A() — Au(z —y) + Au(€ — y),
Gar(®,6,9) = @g(T(2,9))pg(T(& 9)) (k12710 (2, y) — 1) (k12790 (€, y) — r)er(y)”.
Let w:=z —£. As in the proof of Lemma the main claim is that

if |w| > Li=20m(2r 1 4 2070 4 90 2m/3y  then K (2,€)] < 2747 (6.31)

The same argument as in Step 1 in the proof of Lemma using , shows that this claim
suffices. Moreover, this claim can be proved using integration by parts, as in Step 2 in the
proof of Lemma, The desired bound follows.

Case 2. ¢ > —D;. There are several new issues in this case, mostly when the angular

parameter 2! is very small (and bounds like (6.26)) fail). As in the proof of Lemma we also
need to modify the main decomposition ((6.20]). Let

L2 f(2) = (@ — ) / PN (277D (@, y) g (T(,y))pr (W)l (2,9) F(y)dy. (6.32)

R2
Here x¢ € R?, |2o| > 279 and the localization factor on = — zo leads to a good upper bound
on |x — ¢| in the TT* argument below. It remains to prove that if ¢ > —D; then
Jil §215—6255305 3/2 —m/3
1250 oo < 27129900 (80200 4 gp=mi3) (6:33)
Step 1. We start with a Schur bound. For z € R? with || € [27120,2P1+10] Jet

Spaa(@) = {2 llel =l < 2777 |B(r,0 - )] < 27, (6.3)
T (z, 2 — 2)| € [2972,29%2), 2. 2t e [2072, 2142}, '
The condition |Y(z,z —z)| > 27 P14 shows that |V, [®(z,z — 2)]| € [274P1,2P1] for z € S;,ql(x)'
The formula (6.24) shows that

{0 : 2 = (pcos b, psinb) € S;,qjl(x)}| < 20t (6.35)

~

Moreover, we claim that for any x,

S,

(@) S optl, (6.36)



48 Y. DENG, A. D. IONESCU, B. PAUSADER, AND F. PUSATERI

Indeed, this follows from (6.35)) if I > —D. On the other hand, if I < —D then 0y[®(z,z — 2)] <
27P/2 (due to (6:24)), so 0,[®(z,x — 2)] > 27°Pt (due to the inequality |V,[®(z,2 — 2)]| €
[274P1 2P1]). Recalling also (6.16)), it follows from these last two bounds that

- X270 (2, 9))eq (Y (@, 9))pr(y)a), (2, y)|dy < min(20%727F, 2774550901, (6.37)

if || € [27120,2P1+10] In particular, the integral is also bounded by C'2P277/2+319]  The integral
in z, keeping y fixed, can be estimated in a similar way. The desired bound (/6.33|) follows unless

Jj <min(2m/3,—p) — D, [ > max(p/2,—m/3) + D. (6.38)
Step 2. Assuming , we use the TT* argument and Schur’s test. It suffices to show that
sup /R K (2,8l dg < 2550m (93P 4 92p=2m/3) (6.39)
for p, k, q, o, j, 1 fixed, where O(z,§,y) = ®(z,y) — ®(§,y) and
K(@,6) i= pe-ple — a)pep(€ —a0) [ 00N (28(z,y))x(2 P B(E )

R? (6.40)
X g (T (2, 1)) (T(&, ) ok (v)al, (x, y)at, (&, y)dy.

Let w = — &. As before, the main claim is that
if  w| > L:=2"(2P + 27 4 272/3)  then |K(z,£)] <27 (6.41)

To see that this claim suffices, we use an argument similar to the one in Step 1 in the proof
of Lemma, Indeed, up to acceptable errors, the left-hand side of (6.39) is bounded by

Cllajllz=  sup oy (@, )X (277 R (2, ) g (T (2, y))
|z—x0|<2-P+2 JRR2

(6.42)
< ( /{ KOG ) o) dy.

Notice that if | Y (z,y)| > 272172 then |(V,®)(z,y)| > 274P1, thus |(V,®)(z — w,y)| > 274P1~1
if |w| < L < 27P. Therefore, the integral in w in the expression above is bounded by C2PL.

Using also ((6.37)), the expression in (6.42)) is bounded by

026§j2pL . 2p2—j/2+326j S 25m23p + 2405m22p+j/2—m + 26m22p—2m/3

The desired bound ((6.39) follows using also that j < 2m/3, see (6.38]).
The claim (6.41)) follows by the same integration by parts argument as in Step 2 in the
proof of Lemma once we recall that |(V,®)(z,y)| > 277t and |(V,®)(x,y)| > 27471 in the

—D+4

support of the integral, while |w| < 2 . This completes the proof of the lemma. O

7. THE FUNCTION T

In this section we collect and prove some important facts about the functions ® and T.
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7.1. Basic properties. Recall that
Q(fﬂ?) = q)O'MV(fﬂ 77) = AU(é.) - A,U/(g - 77) - AV(T,)7 o, U,V € {+7 _}7

(7.1)
Aw(§) = Au(l€]) = wA(IE]) = wV/ 1€l + [
We have
1+ 322 3zt 4+ 622 — 1 3(1 + bz? — 5t — 20)
)\/ _ - 7 )\// = 7 - A,// — 72
(=) 2V 4 23 (=) 4(x + 23)3/2 7 () 8(x + x3)5/2 (7:2)
Therefore

2v/3 -3
N'(z) >0 if > o, N'(z) <0 if z € [0,7)], Yo := 1/ \/;) ~ 0.393. (7.3)

It follows that

A(0) ~ 0.674, N (7o) ~ 1.086, N (y0) ~ 4.452, X" () ~ —28.701. (7.4)
Let 71 := v/2 ~ 1.414 denote the radius of the space-time resonant sphere, and notice that
7 23
A1) = V3vV2~ 2060, XN(y1)= ~1.699, N'(y1)=——=~0.658. (7.5)
2v/3v2 44/54v/2

The following simple observation will be used many times: if Us > 1, £, 1 € R?, max(|¢|, |n], |€—
nl) < Uz, min([¢], [n], 1€ = n]) = a <271°U; ", then

[B(&,m)| = Ala) — sup (Aa+b) — A1) > Aa) — amax{N(a), N Uz + 1)} > AMa)/4. (7.6)

b€la,Us

7.2. The function Y. The analysis in the proofs of the crucial L? lemmas in section@ depends
on understanding the properties of the function T : R? x R? — R,

Y(&n) == (VE,2)&n) [(VE@)(E ), (V@) (E n)]. (7.7)
We calculate
(F4)(€m) = =X, () s+ Ml = 1) =0
‘ 7 e 1 (7.8)
(Ve®)(E:m) = Xo(1€l) gy = Xu(I€ = Z,,

and

(& —mi)(& —ny)
1€ —nl?

(7.9)
/ 8i1€ = nl* = (& — ma) (& — )
A — J g5
+ A€ =nl) € P
Using these formulas we calculate
)\/ _ _ _ )\// _ )\/ )\/
(e, = e =D \f ;7| p1E =D Xo (€D X ) 1
= & hl 7.10)
N(]€ = '
T e - (7, 0)(Em).

1€ — 7
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Using (7.8) and the identity (v - w')? + (v-w)? = |v|?|w|?, this becomes, with z := ¢ —n,
_ =D AL (1D A (ml)

- — Cely2
Az 1y Ao (1€]) / A, (Inl) '
+ S DIzl = 25 2 el = 22
We define also the normalized function '/f,
T(En) = LI 7) : (7.12)
[(Ve@)(&,m)] - [(Vy®@)(E,m)]

We consider first the case of large frequencies:

Lemma 7.1. Assume that c =v =+, k> Dy, and p — k/2 < —D;.
(i) Assume that

B¢, m <28, ¢l Inl € 22287, 27 < g — g < 2% (7.13)
Let z := & —n. Then, with p™ = max(p, 0),

oL ) .
S P S U < grt—k/2 (7.14)
€Izl Inll=|

Moreover, we can write
—pY(&n) = N'(]z)AEn) + B(&, 2)B(n, 2), r15)
A&, )] 225, DAl Sa 25, |Blle 207, [ DOB|lre Sa 22 '

(ii) Assume that z = (pcosf, psinf), |p| € [2720,2%0]. There exists functions 0 = (9‘15| . and

6% = 9|2n\ i such that,

if 2P <E <2 and |B(§,€—2)[ <27 then min 0 — arg(€) 70 (p)] S op—k/2,

(7.16)
if 2"72 < |n| <2842 and |®(n+z,n)| < 2P then min |0 — arg(n) T 6%(p)| < 227F/2.
:F

Moreover
0% (p) — /2| + |0(p) — m/2| S 27F/2, 10,01 + 10,07 < 2742, (7.17)

(iii) Assume that |€|, |n| € [2872,2F2]. For0 < k < 27P' and integers r, q such that ¢ < —Dy,
|kr| € [1/4,4], define
LF (o) o fo. ~15 515 _ p
Spigr(&) :={z: [zl € [277,2 ],1 (&, ¢ DZ)|2S 2, (718)
|arg(z) — arg(€) F 0" (p)| < 2772, |T(€,€ - 2) — rr2| < 10827},

and
SEF (n) :={z: |2| € 27,2, |®(n + z,7)| < 27, 710)
|arg(z) — arg(n) F 0" (p)| < 2722, |T(n + 2,m) — kr2?] < 1052}, '

Then, for any v € {+,—},

Sy )+ Spen (D] S 207772 diam(Sy,(€)) + diam(Spg . (m) S 2772 4+ w20 (7.20)
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Moreover, if 2775/2 <« k29 then there exist intervals I}, and I2 . such that

P.gT Psgr
Spar(€) S {(pcost, psing) - p €Ly, 10— arg(§) FO' ()| S 272}, |1, ] < w2%, 721)
Sz;r(n) C {(pcosb,psinf): pe quw 10 — arg(n) T 0%(p)| < 20772}, |12 gl S K27
Proof. (i) Notice that if |{] = s, |n|, and z =& —n = (pcos B, psinf) then
2-n=r"+5—p",  22-6=p+5" 1% 2z.p=s—1" )%
(7.22)

(277 . fJ')Q _ 47"282 . (7”2 + 82 _ P2)2-

Under the assumptions (7.13), we see that |A(r) — A(s)| < 2P", therefore |r —s| < 27%/22P" The
bounds ([7.14)) follow using also (7.22)). The decomposition ([7.15)) follows from (7.11]), with

Mgy o= XEDNUD @t gy VD gy X, )

x|yl eyl |23/ [w]

The bounds in the second line of (7.15)) follow from this definition and ([7.14)).
(ii) We will show the estimates for fixed &, since the estimates for fixed 7 are similar. We may
assume that £ = (s,0), so

P(E, € —2) = A(s) — Aul —)\(\/82+p2—2SpC089). (7.23)

Let £(0) := —A(s)+Au(p) +A(v/s% + p2 — 2spcosf). We notice that — f(0) > 2k/2 | f(m) = 2K/2,
and f'(0) ~ 2¥/%sin 6 for 0 € [0, 7]. Therefore f is increasing on the interval [0, 7] and vanishes
at a unique point 6'(p) = 6 u(p). Moreover, it is easy to see that | cos(01(p))| < 27%/2, therefore

01 (p) — 7/2| < 27%/2. The remaining conclusions in (7.16)(7-17) follow easily.

(iii) We will only prove the estimates for the sets Spﬂ, (&), since the others are similar. With
z = (pcos@, psinf) and £ = (s,0), we define F(p,0) := ®(£,£ — z) and G(p,0) := Y(&,€ — 2).
The condition |Y(&,& — 2)| < 27P1 shows that |T(€,€ — 2)| < 251, thus |p— 0| < 27P1/2 (see
(7.15)). Moreover, |0 — /2| < 2-P1/2 in view of (7.16)(7.17). Using (7.23),

|06 (p,0)] = 282, |9,F (p,0)| S 227 P1/2
in the set {(p,0) : |p — 0| < 27P/2, |6 — w/2| < 27P1/2}. In addition, using (7.15) we have
A(&,f — Z)

[A(€) = AL(2)[[N(€ = 2) — AL(2)]
196G (p,0)] = 027" + X" (p)])-

+0@27P + [N (p)),

— u0,G(p,0) = \"(p)

Therefore, the mapping (p, ) — [27%/2F(p,0),G(p,0)] is a regular change of variables for p, 6
satisfying |p — vo| < 27P1/2, 10 — /2| < 27P1/2, The desired conclusions follow. O

It follows from (7.11)) and (7.22)) that if |£| = s, || =7, | —n| = p then
s r o pNip)

TS NG NG T M) s = (7.24)
+ [2 o)y Nlp) a2 |
Py~ [y =)

We assume now that |£ — | is close to 7y and consider the case of bounded frequencies.
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Lemma 7.2. If || =s, In| =7, [£—n| = p,

p— fyo‘ < 27801 and 2720 < r s < 2?P1 then
@&, + [T 2 1. (7.25)

Proof. Case 1: (o,pu,v) = (+,+,4). Notice first that the function f(r) := \r) + A(y) —
A(r + 70) is concave down for r € [0,7] (in view of (7.3])) and satisfies f(0) = 0, f(y0) > 0.1.
Therefore f(r) = 1 if r € [2720,y¢], so

|®(&,n)| 21 if r<~ or s< 2. (7.26)
Assume, for contradiction, that (7.25)) fails. In view of (7.24)), |®(¢,n)| < 1 and
N (p) 2.2 2 N(p) 2, 2,2
‘[Qpr)\/(r)—l—(p +r —s)][stX(s)—(p +s —7‘)H<<1—|—5—|—r. (7.27)
It is easy to see that if |®(&,n)| = |A(s) — A(p) — A(r)| < 1, 7 > 100, and |p — vo| < 273P1 then
A(p) — 0.1 A(p) — 0.1
r<s-— BUOR and s>r+ N
Therefore, using ((7.2)—(7.4), if » > 100 then
N(p) 2, .2 .2 2s /
-2 —re > Alp) — 0.1 — pA >
PN TP TS T2 e M) PN (p)) 2 Vs
N(p) 2.2, 2 2r / 2
-2 —p°— > Alp) — 0.1 — pA —p° 2.
PNy T2 A,(T)( () =0.1=pX(p)) = p* 2 V7

In particular, (7.27]) cannot hold if » > 100.
For y € [0, 00), the equation A(z) = y admits a unique solution z € [0, o),

YW Y(y) = (27y2 + V27 2Tyt + 4)1/3 (7.28)
= v T3 y) = 5 : :
Assuming |p — 70| < 27871, 299 < 5 < 110, and |A(s) — A(r) — A(p)| < 1, we show now that
N(p) 2.2 2 N(p) 2., 2,2
—2pr/\,<r)—p —rf4s° 21, —2st(8)+p +s°—re 2 1. (7.29)
Indeed, solving the equation A(r(s)) = A(s) — A(y0) according to ([7.28]), we define the functions
N (70) N (70)
FI(S) = 82 - ’73 - T(S)Q - 2’)/(]7“(8) A,(T(S))’ FQ(S) s _2708 )\/(S) + ’Yg + 82 - T(S)Q'

A simple Mathematica program shows that Fj(s) 2 1 and Fy(s) 2 1 if 299 < s < 1. The bound

(7.29) follows. This completes the proof of ([7.25) when (o, u,v) = (4, +,+).
Case 2: the other triplets. Notice that if (o, u,v) = (4, —, +) then

Spy(&m) = =Py s (0,8), Top (&) = =Tt (0, 6). (7.30)

The desired bound in this case follows from the case (o, u,v) = (4, +, +) analyzed earlier.

On the other hand, if (o, u,v) = (+,—, —) then ®(&,n) = A(s) + A(r) + X(p) 2 1, so (7.25)
is clearly verified. Finally, if (o, p,v) = (4,4, —) then ®(&,n7) = A(s) + A(r) — A(p) and we
estimate, assuming 1074 < r < p/2,

A(s) +A(F) = Alp) 2 A(r) + Alp — 1) = Ap) = /0 "N(@) = N+ p—r)ds 2 1.

A similar estimate holds if 107* < s < p/2 or if 5,7 > p/2. Therefore ®(£,1) > 1 in this case.
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The cases corresponding to o = — are similar by replacing ® with —® and YT with —Y. This

completes the proof of the lemma.

Finally, we consider the case when |{ — 7| is close to ;.
Lemma 7.3. If |¢|=s, [n| =7, | —n| =p, |p— 11| < 27D, and 2720 < r, s then
Y& | (Ve X)(Em) - (V5 @)(E n)l

e g (GETT—,
Yl | (Ven)Em  (Vi)En)
D g T R
and
e N (G ) e
T ) E=n) - (VER)(En)]
I (SRR

O

(7.31)

(7.32)

Proof. Case 1: (o,u,v) = (+,+,+). Notice first that the function f(r) := A(r) + X(m1) —

)
A(r 4+ 1) is concave down for r € [0,0.3] (in view of (7.3])) and satisfies f(0) = 0, f(0.

Therefore f(r) > 1if r € [2720,0.3], so
|®(&,n)| 21 if r <03 or s<v +0.3.
On the other hand, if |®(¢,1)| < 1, » > 100, and |p — 1| < 277 then

A . .
(p) +0.4 and TZS_/\(p)—i-OZL
N(r) N(s)

Therefore, using also ([7.5)), if » > 100 then

/

s<r+4

N(r) — N(r)
P 7S S V() = )~ 0.4) = P 2 V5,
pA"(p)
D 2 (24— ) 2

Using the formula (7.24)) and assuming |p — 1| < 2771, it follows that
if |[®(¢,m)| <1 and 7> 100 then —Y(&,n) 2

Therefore both (7.31)) and ([7.32)) follow if » > 100.
It remains to consider the case y; + 0.3 < s < 110. We show first that

if 3<s<110 and |A(s)—A(r) —A(p)] <1 then —Y({,n) 2 1.

3) > 0.02.

(7.33)

(7.34)

(7.35)

Indeed, we solve the equation \(r(s)) = A(s) — A(71) according to (7.28]), and define the function

G1(s) :== G(s,r(s),71), where

"
G(s,r,p): = PA"(p) [47”232 —(r?+ 5% - p2)2]

X (p)
+ [st ;\\123 —p? =5+ 1"2} [Zpri:x; e 32},

(7.36)
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compare with ((7.24). A simple Mathematica program shows that Gi(s) 2 1if 3 < s < 110. The
bound ([7.35)) follows, so both (7.31)) and ((7.32) follow if 3 < s < 110.

On the other hand the function G1(s) does vanish for some s € [y; + 0.3, 3] (more precisely
at s ~ 1.94). In this range we can only prove the weaker estimates in the lemma. Notice that

1 X(p) N(s) N(r)
_ZG(Sarap) P3 s r .

(& n) =T Inl. 1€ = nl), Y(s,7,p) =

Then, using also , we have
(VaX)(Em) - (Va®)(&m) = (rp) " (- €N [0, ) (5,7, p)X (p) — (8,X) (5,7, p)N ()],
(V) (&) - (VED)(En) = (sp) (& M) [(@5T) (5,7, p)N (p) + (9 ) (5,7, p) X (5)].
It is easy to see, using the formulas (7.22) and (7.24)), that
D&, )|+ 0 +]E-nH 21 (7.38)
if s € [y1 +0.3,3]. Moreover, let
Gui(s) = (9, 7)(s,7(s), 11)XN () = (8, 1) (s, 7(5), )X (r(5)),
Gha(s) := (9 1)(s,7(5), )N (1) + (9,1) (5, 7(5), )N (s),
(s
1

(7.37)

where, as before, r(s) is the unique solution of the equation A(7(s)
(7-28). A simple Mathematica program shows that G1(s) + G1i(s

if s € [y1 +0.3,3]. Using also and it follows that
T(& )]+ \(Vn’r)(&??) A(Vy®)Em) 21,
Y&+ [(VeN) () - (VE@)(En) 2 1,

if s € [y1+0.3,3], |®(£,n)| < 1, and |[p—10| < 27P1. The bounds (7.31]) follow from (7.33))—(7.35))

and ([7.39). The bounds ([7.32)) follow from (|7.33))—(7.35)), and ([7.38]).

Case 2: the other triplets. The desired bounds in the case (o, u,v) = (+,—,+) follow
from the corresponding bounds the case (o, p, ) = (+,+, +) and (7.30). Moreover, if (o, p, ) =
(4, —,—) then ®(&,n) = A(s) + A(r) + A(p) 2 1, so (7.31)—(7.32)) are clearly verified.

Finally, if (o,u,v) = (4,4, —) then ®(&,n) = A(s) + A(r) — A(p). We may assume that
s,7 € [2729 41]. In this case we prove the stronger bound

[, m)|+ [T (En] = 1. (7.40)

Indeed, for this is suffices to notice that the function z — A(x) + A(y1 — ) — A\(71) is nonnegative
for x € [0,71] and vanishes only when x € {0,71/2,v1}. Moreover Y((71/2)e, (71/2)e) # 0 if
le| =1 (using (7.10)), and the lower bound follows.

The cases corresponding to 0 = — are similar by replacing ® with —® and T with —Y. This
completes the proof of the lemma. O

) = A(s) — A(m), according to
) Z 1 and Gl( ) +G12(8) Z 1

(7.39)

8. PARADIFFERENTIAL CALCULUS

The paradifferential calculus allows us to understand the high frequency structure of our
system. In this section we record the definitions, and state and prove several useful lemmas.

8.1. Operators bounds. In this subsection we define our main objects, and prove several basic
nonlinear bounds.
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8.1.1. Fourier multipliers. We will mostly work with bilinear and trilinear multipliers. Many of
the simpler estimates follow from the following basic result (see [46, Lemma 5.2] for the proof).

Lemma 8.1. (i) Assume | > 2, fi,..., f1, fix1 € L*(R?), and m : (R?)! — C is a continuous
compactly supported function. Then

‘/ m(&n,. ) AG) - &) fra (=& — . = &) dér ... dg
(R2)! (8.1)
SNF )|l fllzer o fgallpeen
for any exponents pi,...p+1 € [1,00] satisfying p% +...+ plil =1.
(i) Assume l > 2 and Ly, is the multilinear operator defined by
F{Lmlf1,---, il}(§) = /(RQ)I_1 m(&,m2, ) i€ =)+ fioa (e — ) fi(m) dng . dny.
Then, for any exponents p,qi,...q € [1,00] satisfying q% +...+ % = %, we have
HLm[fl7 sy fl]HLp S ”F_l(m)|’500||fl||[zq1 et ||fl||qu- (82)
Given a multiplier m : (R?)? — C, we define the bilinear operator M by the formula
1 -~ ~
FIMI.9D)(E) = 15 [, m(&n) F& — mit . (83
With Q = 2102 — 201, we notice the formula
QM(f,g) = MIQf,g) + M[f, 9] + Mf.g). (8.4)
where M is the bilinear operator defined by the multiplier m(&, ) = (Q¢ + Q)m(&,m).
For simplicity of notation, we define the following classes of bilinear multipliers:
5% :={m: (R*)™ = C : m continuous and ||m||gee := || F'm/|11 < oo},
(8.5)

S :={m : (R*)? — C: m continuous and ||m||S€20 = sup ||(Qe + Qn)lmHSoo < o0}
<N

We will often need to analyze bilinear operators more carefully, by localizing in the frequency
space. We therefore define, for any symbol m,

mPRR2 (€ ) = (€ pr (€ = m)prs (M€, ). (8.6)

For any t € [0,T], p > —N3, and m > 1 let (t) = 1+t and let O, = Oy, p(t) denote the
Banach spaces of functions f € L? defined by the norms

1£0n,5 2= (D2 £ i+ (£ gvsen + (02N F s 2] - (8.7)

This is similar to the definition of the spaces O,,;, in Definition except for the supremum
over t € [0,T]. We show first that these spaces are compatible with S§ multipliers.

Lemma 8.2. Assume M is a bilinear operator with symbol m satisfying ||mk7k1’k2||g§o <1, for
any k,ki,ky € Z. Then, if p € [-N3,10], t € [0,T], and m,n > 1,

2
<t>126 HM[f7 g]HOrrH»n,p S HfHO'm,pHgHOn,p' (88)
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Proof. In view of the definition we may assume that m =n =1 and | f|o,,, = ll9llo,., = 1.
Therefore, we may assume that
. 2 . 2_
1l v+ + sup 1970 vgsn < (1) sup ||k, < (60, (8.9)
J<N1 J<N1/2

where h € {f(t),g(t)}. With F := M|[f(t),g(t)], it suffices to prove that

1Ellr2os + sup [0 Fllgmsn S )%
J<

S I P gy £ (0% w1
For k, k1, ke € Z let
Fio = PM[f(t),9()],  Frky gy = P[Py, f(t), Pryg(t)]-
For k € Z let
A= {(k1, ko) €EZ X T ky <k —8, |ky — k| <4},
A2 = {(k1,ko) EZXT:ky <k —8, |k — k| <4},
A2 = {(k1,ko) €Z x Z : min(ky, ko) > k — 7, |k1 — ko| < 20},
and let A, := Xkl U )(kz U X,f’. Let
ap = [|Pehllgrore, bk = sup [V Pphllgngin,  cri= sup [ Pehl[Grn,p,
0<j<Ny 0<j<N1/2
= S a2 00 G S a0 g Y g oo (S
mez mez mez
We can prove now . Assuming k € Z fixed we estimate, using Lemma (ii),
1 Fk o o | o S any (27402000 ) - f (ko) € A, (8.12)
| Fir ko Lot S any (2700 Dey) it (1 ko) € 0 U AR |
Since ) ;¢ < (t)30°=5/6 it follows that
ST I Fepkallvors S @3 0@, + 3 a2, (8.13)
(k1,k2)€Xy, >k
Therefore, since Y, ., a3 < ()25 it follows that
[ 1Rl s e, (814)
2k>(1+4¢)—10
To bound the contribution of small frequencies, 2¥ < ()71 we also use the bound
1 Fe ey 22 S 2k||Fk k1, szLl < 2%ax, ay,. (8.15)
when (ki1,k2) € X2, in addition to the bounds ( . Therefore
Do WFksallmvors (6% 00 +28 Y af, (8.16)

(k1,k2)€X), leZ
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if 28 < (t)710. It follows that

1/2 2_
> IBIEs] S @0, (8.17)
2k§(t)710

and the desired bound || F|| yng+r S (1 + £)69*=5/6 in (8.10)) follows.
The proof of the second bound in (8.10) is similar. We start by estimating, as in (8.12)),

1Y Fr ey o rvasr < o(Ns-+p)k* [bk12f(Ns+p)k1+ Ck22*(N2+p)k;r + kaQ*(Nﬁp)kz*ckl2*(N2+p)kfr]

for any j € [0,N;]. We remark that this is weaker than (8.12) since the Q derivatives can
distribute on either Py, f(t) or Py, (t), and we are forced to estimate the factor with more than
N1 /2 Q derivatives in L?. To bound the contributions of small frequencies we also estimate

197 Fi ey o[l e S 27505200 b

~

as in (8.15). Recall that No — N3 > 5. We combine these two bounds to estimate
S P v S (0025750 + S 02717 4 () 272 (Ve Nk
(k1,k2)eX; 1>k

When 2% < (1 +¢)7!0 this does not suffice; we have instead the bound
S 19 Pk kol S (82055 4 283 b7 4 (1) 2727 (Vo Nadhe g

~

(kl,kQ)EXk leZ

The desired estimate ||V F|| yng4p < (t)69=5/6 in (B.10) follows.

~

For the last bound in (8.10)), we estimate as before for any j € [0, N1/2],
. _ + _ + .
HQ]Fk,kl,kz|”V[7Ng+p < 2(N2+p)k+ckl2 (N2+p)k] Chy2 (N2+p)k; : HQ]Fk,k1,k2||WN2+p < 22kbk1bk2,
where the last estimate holds only for £ < 0. The desired bound follows as before. O

8.1.2. Paradifferential operators. We recall first the definition of paradifferential operators (see
[2-32): given a symbol a = a(x, () : R? x R? — C, we define the operator T, by

~

FALAE) = g [ x([E 2 a6 = n. (€ + my/2 Faan, (8.18)

where a denotes the partial Fourier transform of a in the first coordinate and x = ¢_29. We
define the Poisson bracket between two symbols a and b by

{a,b} :=V,aVeb—VeaVyb. (8.19)

We will use several norms to estimate symbols of degree 0. For ¢ € {2,000}, rr € Z, let
lalla,, ==sup|llal(.O)llzg, where lalo(z,¢) =Y [¢|®|0l0%a(x,0)l.  (8.:20)
¢ o +18l<r

At later stages we will use more complicated norms, which also keep track of multiplicity and
degree. For now we record a few simple properties, which follow directly from definitions:

labllat,q + I1ICHa b}, oy S Nallntg, [blMr gy, {00,403 = {1, g2},

- (8.21)
1Peallat,, S 27 Prall sty g q€{2,00}, k€L, s€Ly.

We start with some simple properties.
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Lemma 8.3. (i) Let a be a symbol and 1 < q < oo, then

1PeTafllLa < llallms o | Ple—2,642).f || 2o (8.22)
and

1PeTafllrz S Nallats ol Pir—o k2 £l oo - (8.23)

(ii) If a € Ms oo is real-valued then T, is a bounded self-adjoint operator on L2.
(iii) We have

Taf = Ta’fa where a’/(ya C) = CL(y, 7C) (824)
and

UTaf) = Ta(Qf ) + Tarf  where  a”(y,¢) = (Qa)(y, <) + (a)(y, (). (8.25)

Proof. (i) Inspecting the Fourier transform, we directly see that P,T,f = PyToPjp—212)f- By
rescaling, we may assume that kK = 0 and write

(ATuh,g) = C | 5(e)h(w)1(r.v)dady

M) = [ ale (e +m/eceentey (E20

0
|2£‘ 4 1) 0(€) dedpi

) ¢o(§) dndédz

_ / a2, € + 0/2) VI
RG
‘We observe that

(o= ol Pre) = [ SRR () e

X [(1 ~ Ag)2(1 - A£)2{ei9~<z—y>ei€'<f—y>}} dedods.

By integration by parts in £ and 6 it follows that
als(z,£+6/2)
1+ |z —y»?|(x, </ lals(z,€ +0/2)
(+le s Pl s [ GEEE
where |alg is defined as in (8.20)).
The bounds (8.22) and (8.23|) now follow easily. Indeed, it follows from (8.26) that
L+ [z =y (z, )] S llall v -

Therefore [(PoT,h, g)| S |lallms o Pl zallgll - This gives (8.22)), and (8.23) follows similarly.
Part (ii) and (8.24]) follow directly from definitions. To prove ({8.25)) we start from the formula

FOLIHO = 1 [0+ 00 (526 = .6+ /2 Fon)]an

P-4 (&) p<—10(0) d€dbdz, (8.26)

T’ €+l
and notice that (¢ + €y) [X(%)} = 0. The formula (8.25)) follows. O

The paradifferential calculus is useful to linearize products and compositions. More precisely:
Lemma 8.4. (i) If f,g € L? then
f9=Trg+Tyf +H(f,9)
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where H is smoothing in the sense that
I1PH(f, 9)|lLe S > min (|| Py fl|za || P gll oo, | P £ o< || P gl £a).-
Kk >k—40, |k — k' | <40

As a consequence, if f € Op, 5 and g € Oy, _5 then

O NH L, D) 0mins S 0w sllgllons- (8.27)

(i) Assume that F( ) = z+ h(z), where h is analytic for |z| < 1/2 and satisfies |h(z)| < |2|3.
If ||lu|| e < 1/100 and N 2 10 then

F(u) = Tpryu + E(u),
W NE@oys S lulldy o lullo, 5 <1
Proof. (i) This follows easily by defining H(f,g) = fg — Tyg — Ty f and observing that
PyH(Puw f, Perg) =0  unless K k" >k — 40, [K —K"| < 40.

The bound follows as in the proof of Lemma (the remaining bilinear interactions
correspond essentially to the set A}2)

(i) Since F' is analytic, it suffices to show this for F(x) = 2™, n > 3. This follows, however,
as in part (i), using the Littlewood—Paley decomposition for u. O

(8.28)

We show now that compositions of paradifferential operators can be approximated well by
paradifferential operators with suitable symbols. More precisely:

Proposition 8.5. Let 1 < ¢ < co. Given symbols a and b, we may decompose
T,T) = Toy + %T{&b} + E(a,b). (8.29)
The error E obeys the following bounds: assuming k > —100,
1PeE(a,0) fllLa S 272 lal mie oo Bl Mg oo | P55 Loy for g € {2,003, (8.30)

1PeE(a,b) fllz S 27 lal mygo 10l it oo 1 Pi—5, 545 f 1 2oc

1PE(a,0) fllz2 < 27 [l mig o 10l Mg 2 | Ppos s fll o
Moreover E(a,b) = 0 if both a and b are independent of x.

(8.31)

Proof. We may assume that a = P<k 100a@ and b = P<j_10p, since the other contributions can
also be estimated using Lemma i) and - In this case we write

(167 F { P(ToTy — Tup) £} (€) = 01 (€) /11%4 Fm)o<r—100(€ — 0)p<k—100(0 — )

§+9 n+0

x [ate — 0,55 0000 0, %) ~te — 0, ST o0 — 0, S5 )] s

Moreover, using the deﬁmtlon,

(167" F {Pu(i/2)T(apy [} (&) = 0r(£) /R4 Fm<k—100(€ — 0)p<r—100(0 — 1)

§+77

< [E 0w - 0. 50 -0 5 e -0, 5T 95y 0 -0, 5] ans
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Therefore
(1671 Py E(a,b)f = U f + U?f + U3,

. N , (8.32)
FU 1)) = (&) /R4 F(M)e<k—100(& — 8)p<r—100(0 — n)m’ (&, n,8) dnde,
where
ml(€n.0) = (e 0.5 S Do 0. T2 0) e 0. 5T i 0. ST
€+779 13 £+ (8.33)
— a6 — 0,2 —)——2(Vb) (0 — T)’
m?(&,m,0) :=a(& -9, “e)b(e—n,”ie)—5(5_9,5¥)'5(9—%777+9>
0 — E+n~ n+0 (8.34)
- S V@E -0, 5T bo -, ),
and
m(&,n0) = v M€95+%Wmmﬂ%$4m—m%¥ﬁ (8.59

It remains to prove the bounds ( and ) for the operators U7, j € {1,2,3}. The
operators U7 are similar, so we will only pr0v1de the details for the operator U'. We rewrite

miene) = [ ate-0 S5 IOk o B0 045" 00 s (830

Therefore
- [ 1K @) (8:37)

where

K'(z,y) :=C ” e~ WMo () p<r—100(€ — 0)p<k—100(0 — n)m* (&, 1, 0) dndode.

We use the formula (8.36|) and make changes to variables to rewrite
1
K'(z,y) = C/ ds(1 - 3)/ e~ W (S g i o) (E)p < 100(1) <k 100 (V)
0 R10

X (Or;0z,a)(2, € + p/2 +v/2)(0¢;0¢,b) (w, € + p/2 +v/2 + sp/2) dudvdédzdw.

We integrate by parts in &, u, v, using the operators (272% —A¢)?, (272 —A,)? and 272k —AL)2.
It follows that
272]{2 272k 272k

|wmms/
2 o @ PR T A e PR T 1w g

5 Fap(2,w) dzdw,

(8.38)
where, with p(X,Y, Z) := ¢o(X)p<-100(Y)p<-100(Z),

Fop(z,w) =20 /0 s /]R i

X (D, ey @) (20 € - /2 + 1/2) (0,06, 0)(w, € + /2 + /2 + 5p/2) } | dé ddv.

2—2k; _ A£)2(2_2k _ AM)2(2_2]€ _ Ay)2] {E(Q—kg’ 2—1@M7 2—ky)
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With |a|16 and |b|1¢ defined as in (8.20)), it follows that

1
Foa(er)] $ 272 [ s [ Jalio(e.§+ /24 /2 lio(. €+ /24 /2 + 530/2

_ _ _ dédudy
X 1,427 o< 1027 )< 10(27Y) 6256

The desired bounds (8.30) and (8.31)) for U! follow using also (8.37)) and (8.38)). O

We also make the following observation: if a = a(() is a Fourier multiplier, b is a symbol, and
f is a function, then

B (€)= 1z [ (a0 - a5 = S5 w5 ite - 0. S5 T,

T An? €+ 1) 2 2 2 2
Bl f6) = 123 [ (e (atn = a5 = 155 vt T it - 0. S Fnan,

8.2. Decorated norms and estimates. In the previous subsection we proved bounds on
paraproduct operators. In our study of the water wave problem, we need to keep track of
several parameters, such as order, decay, and vector-fields. It is convenient to use two compatible
hierarchies of bounds, one for functions and one for symbols of operators.

8.2.1. Decorated norms. Recall the spaces Oy, ) defined in (8.7). We define now the norms we
will use to measure symbols.

Definition 8.6. Forl € [—10,10], r € Zy, m € {1,2,3,4}, t € [0,T], and q € {2,000}, we define
classes of symbols MLy = MU (t) C C(R? x R? : C) by the norms

lal| o == sup  sup  sup <t>m(5/672052)+1662<C>—l|| |<’|5|8§3§Qi callzee, (8.40)
" GSN1/2]al+|BI<r (eR? ’
lall o = sup  sup sup () (DO 1 POZDRO) allp. (8.41)

JEN1 |af+|B|<r (cR?
Here
Qr,(“ = Qra+ Qca = ($16332 — @&El + C18<2 — Cgagl)a,

see (8.25)). We also define

lall g = Nall g, + llall s > 1 (3.42)

Note that this hierarchy is naturally related to the hierarchy in terms of Oy, ;. In this definition
the parameters m (the “multiplicity” of a, related to the decay rate) and [ (the “order”) will
play an important role. Observe that for a function f = f(z), and m € [1,4],

m S . :
1l i S 1Fllomy (8.43)
Note also that we have the simple linear rule
1Psall yprm S 2‘SkIIPkalle+n ,  k€Z,5>0,q€{2,00}, (8.44)
Ty r+s,q

~

and the basic multiplication rules

2
<t>26 [HabHerlJrlemlerz =+ HC{aa b}HMil:;l27m1+m2] 5 HaHMlTl,ml Hb”MlTQWQ . (8'45)
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8.2.2. Bounds on operators. We may now pass the bounds proved in subsection to decorated
norms. We consider the action of paradifferential operators on the classes Oy ,. We will often

use the following simple facts: paradifferential operators preserve frequency localizations,

PTof = PToPr—spraf = Pelu@.opania) )
the rotation vector-field §2 acts nicely on such operators, see ,
UTof) = To, of + Tu(Qf);
the following relations between basic and decorated norms for symbols hold:
19 cal@, ekl S 2% llal yyrm (67" E/O29DTI 0 < i < N2,
19 ¢l Op<h(Q)l | S 2 ]y ()~ VOO0 < <
A simple application of the above remarks and Lemma (i) gives the bound
1T fllie S (870720715 | w1 ] e
We prove now two useful lemmas:
Lemma 8.7. If q,q — | € [-N3,10] and m,my > 1 then
O T,0mq € Omsmygets  for ac M5
In particular, using also ,

1262
(t) TOml,flo Omq € Omtmi g-

(8.46)

(8.47)

(8.48)

(8.49)

(8.50)

(8.51)

Proof. The estimate (8.50|) follows using the definitions and the linear estimates (8.22]) and (8.23|)

in Lemma We may assume m = m; = 1. Using (8.22)) and (8.48]) we estimate
2NoH DR | BT, fl 2 S Ml ag o 2005 | P £

_ 2
(0755 al] g ANFDE Py £,

for any f € O 4. By orthogonality we deduce the desired bound on the H No norm.

To estimate the weighted norm we use (8.22)), , and ([8.48) to estimate

2NV RT, fll e S ) 2N [I|PTan o fI|, + | BT,

j—n
<
n<j/2 ‘

2]

S Z 2(Nsta—Dks (1927 call ms oo | P2,k 420 " Fll 1o + 1927 " all Mg o || P2 g ¥ £l o]

n<j/2

: — 2 j—n 2 n
S D 2O lal] g [T Py g YTl + (O P2 @ N ]

n<j/2
for every j € [0, N1]. The desired weighted L? bound follows since

9 712
[Z 2Ns DR | Py Y f||Lz]

kEZ kEZ

1/2
SRGRA DD SE A [ NP

62
S O* If oy,
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Finally, for the L> bound we use (8.22)) to estimate
2D BT, fl e S Y 2Nl P
J1,J2<N1/2

§<t>75/6+462||a|!Ml,1 > oWtk Py b QP
B <N 2

for any j € [0, N1/2]. The desired bound follows by summation over k. O

Lemma 8.8. Let E be defined as in Proposition[8.5. Assume that m,mi,mo > 1, ¢,q —l1,q —
la,q — 11 — lo € [—N3,10] and consider a € /\/lljo’ml, be M1220’W2. Then

2
<t>125 PZ—IOOE(G” b)Om,q - Om+m1+m2,qfl1712+27

(125 Po00(TuTh + ThTs — 2T0) Oy € O (852
2—100( alp +1plg ab) m,q = Ym+mi+ma,q—l1—1l2+2-
In addition,
2
<t>126 [Tme]Om,q g Om+m1+m2,q7l17l2+17 (8 53)
) :
<t>125 (TaTb - Tab)omq c Om+m1+m2,q—ll—l2+1-
Moreover, if a € Mgbml, be Mgbm2 are functions then
<t>1262 (TaTb - Tab)Om,—S - Om+m1+m2,5- (854)

Proof. We record the formulas

Opc(ab) = (Qcalb+a(@uch),  Dpc({a,b}) = {Quca,b} + {a, 2 b}, (8.55)
Therefore, letting U(a,b) := T, Ty — T,p, we have

[T, Tb] = U(a,b) = U(b,a),  E(a,b) = Ul(a,b) = (i/2)Tiap, (8.56)

T.T, + T, T, — 2T,, = E(a,b) + E(b,a),

and
QU(a,b)f) = U(Quca,b) f +Ula,Qcb) f + U(a, b)2f,
QTapyf) = Tio, capyf + Tia 0, oy f + Tiapy 2, (8.57)
Q(E(a,b)f) = E(Qpca,b) f + E(a,Qy b) f + E(a,b)2f.
The bound follows as in the proof of Lemma once we notice that

P l(TaTy — Tap) f] = > Pe[(Tp, aTPy,b — TPy api,b) f-
max(ki,k2)>k—40

The bounds (8.52)) follow from (8.30)—(8.31]) and (8.48)), in the same way the bound (8.50)) in
Lemma follows from (8.22))—(8.23]). Moreover, using (8.45|),

62
<t>12 H{a7 b}(xu C)‘PZ—QOO(OHM1118+12—17m1+M2 5 HGHM;O,"M HbHMlQ%»MQ~
Therefore, using (8.50)) and frequency localization,
2
()2 P _100T (0,61 Omig C Ot +ma g1 —lo+1- (8.58)
Therefore, using (8.56) and (8.52)),

2
<t>125 szl(JOU(a’ b)Om,q - Om+m1+m2,q—l1—l2+1.
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For (8.53)) it remains to prove that

()1 P<oU (0, 0)Omg € Ormm-tma gt —1o+1- (8.59)
However, using (8.50) and (8.45)),
<t>1262TaTbOm,q C Om+m1+m2,lI*11*127 <t>1262TabOm,q C Om+m1+m2,qflrlz7
and follows. This completes the proof of . O

9. THE DIRICHLET-NEUMANN OPERATOR

Assume (h, ¢) are as in Proposition[2.2Jand let Q := {(z,2) € R®: 2z < h(z)}. Let ® denote the
(unique in a suitable space, see Lemma/9.4)) harmonic function in Q satisfying ®(z, h(z)) = ¢(z).
We define the Dirichlet—Neumanrﬁ map as

G(h)p = 1+ |Vh2(v - V) (9.1)

where v denotes the outward pointing unit normal to the domain 2. The main result of this
section is the following paralinearization of the Dirichlet-Neumann map.

Proposition 9.1. Assume that t € [0,T] is fized and (h, ¢) satisfy
V) Bllow, + HVIY?6ll0,, S €1 (9.2)
Define

G(h)p +Vih- V¢
B := ,
1+ |Vh|?

Vi=V,6—BV,h, w:i=c¢—Tgh. (9.3)

Then we can paralinearize the Dirichlet-Neumann operator as
G(h)¢ = Trpyw — div(Tvh) + G2 + €505 39, (9.4)
recall the definition (8.7)), where
Apn = A 42O
AV (. ¢) o= V(L + [VAR)IC — (¢ VA2, (0.5)

1) .
0 o ((LEIVAR2 A C-Vh 1
N0 = (5 {1+\Vh|2’1+|Vh12}+2m)9”20(0'

The quadratic terms are given by

Gy = Go(h, [V|"?w) € {0y, Ga(6) = 15 /R (& mh(E =)l *B(n)dn,  (9.6)

where g is a symbol satisfying (see the definition of the class S&° in (8.5]))

1+ omin{k1,k2} >7/2

1+ omax{k1,k2} (97)

k,k1,k komin{ki,ko}/2
lgh™4 % (6, m)l g S 2F2minthrbad/2(

6To be precise this is y/1 4+ |Vh|? times the standard Dirichlet-Neumann operator, but we will slightly abuse
notation and call G(h)¢ the Dirichlet-Neumann operator.
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Remark 9.2. Using (9.5)), Definition[8.6, and (8.43)—(8.45) we see that, for any t € (0,77,
A= [ +etMyg ), AP eamy (9.8)

For later use we further decompose A\O) into its linear and higher order parts:

1 1(;(x0;0h
A0 =2 A0, A= [2Ah—2<j<'?gf2k Je20@ AP €M, (99)

According to the formulas in (9.5)) and we have:
>\DN — |C| — )\50) S S%Mll\i—?’ >\DN — )\(1) — )\go) S S?M%E_Q. (9.10)
The proof of Proposition relies on several results and is given at the end of the section.

9.1. Linearization. We start with a result that identifies the linear and quadratic part of the
Dirichlet-Neumann operator.
We first use a change of variable to flatten the surface. We thus define

u(z,y) := ®(z, h(z) +y), (z,y) € R? x (=00, 0],

O(x,2) =u(z,z — h(x)). (0.11)
In particular wj,—g = ¢, dyu),—g = B, and the Dirichlet-Neumann operator is given by
G(h)¢ = (1+ |Vh|[*)dyupy—o — Vah - Vaup,—o. (9.12)
A simple computation yields
0=2:.0 =1+ |Veh|*)Oju+ Agu — 20, Vot - Voh — dyulh. (9.13)

Since we will also need to study the linearized operator, it is convenient to also allow for error
terms and consider the equation

(1+ [Veh|?)0ju+ Agu — 20, Vot - Voh — Oyulgh = dyeq + |V]ep. (9.14)
With R := |V|71V (the Riesz transform), this can be rewritten in the form
(35 - |V]2)u = ayQa + ‘V|Qb,
Qo :=Vu-Vh—|Vh[Opu+ea,  Qp:=R(IyuVh)+ e

To study the solution y we will need an additional class of Banach spaces, to measure functions
that depend on y € (—00,0] and x € R2. These spaces are only used in this section.

(9.15)

Definition 9.3. Fort € [0,T], p > —10, and m > 1 let Ly, ), = Ly (t) denote the Banach
space of functions g € C((—o0,0] : HY/*1/2) defined by the norm

1/2

19l = 1IV19l 20, + 1059 220, + VI Zgll 52 0m,- (9.16)

The point of these spaces is to estimate solutions of equations of the form (9, — |[V|)u = N,
in terms of the initial data u(0) = ¢. Tt is easy to see that if |V|'/?¢ € O, , then

1Y ¢l 2, S VIV ll00, (9-17)

To see this estimate for the Lf/Wé\h/z’Nﬁp

any c: Z X (—o0,0] — C. Moreover, if Q) € Lgom,p then

component we use the bound HCHng}C < HcH%L; for

0
Jrwp [ e - e ds, < @Rl (9.18)

. L3O p
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and o
—|y— 52
/o1 [ e - e a5 07 P1Rls0,., (919)
—00

Indeed, these bounds follow directly from the definitions for the L?-based components of the
space O, p, which are HNo+P and Hg LNsTP - For the remaining component one can control uni-

L20m,,

formly the Wg 1/2N21P 1 5rm of the function localized at every single dyadic frequency, without
the factor of (t)52/ 2 in the right-hand side. The full bounds follow once we notice that only the

frequencies satisfying 2¥ € [(t)~8, (t)®] are relevant in the Wg 1/2N2tp component of the space

O1p; the other frequencies are already accounted by the stronger Sobolev norms.
Our first result is the following:

Lemma 9.4. (i) Assume that t € [0,T)] is fived, ||(V)h|o,, S €1, as in (9.2), and
1952
IV 29llo,, < A<oo, leallrzo,, + lesllizo,, < Ast(t) ™, (9.20)
for some p € [—10,0]. Then there is a unique solution u € L1, of the equation

1 0
u(y) = (v =5 [ eTQus) ~ Quls)as)
0 - (9.21)
1
by [ e sty - 9)Qu(s) - Quls)ds,
where Qq and Qp are as in (9.15). Moreover, u is a solution of the equation (85 —|VPu =
0yQa + |V|Qp in (9.15) (and therefore a solution of (9.14) in R? x (—o0,0]), and

lullz,, = I1V]ullz0,, + 10yullz0,, + IV ulLz0,, S A (9:22)
(ii) Assume that we make the stronger assumptions, compare with (9.20)),
. . _ 52
IIV[Y2¢llo,, <A <0, (10elr20,,, + 105l rx0,, /-, < Aer(t) 2, (9.23)
fore e {eq, e} and j € {0,1,2}. Then
185 (Dyu = V[l 220, , + 105(Byu — (VW) l|1ge0,, .,y S Aet. (9.24)

Proof. (i) We use a fixed point argument in a ball of radius ~ A in L p, for the functional

0
D(u) s = eVl [y - % /Oo CAORIAOIEY (9.25)
0 .
+1 /_ e =1V (sign(y — 5)Qa(s) — Qu(s))ds.

Notice that, using Lemma and (9.20)), if [|ullz,, <1 then
—1262
1Qallz200, + 1@, , S Azi(6) 120

Therefore, using (9.17)—(9.19), ||®(u) — eyW‘@bHch < Ae;. Similarly, one can show that ||®(u) —
®(v)lz,, S etllu—wlg,,, and the desired conclusion follows.

(ii) The identity shows that
y
Fyu(y) — [V]u(y) = Qa(y) +/ V] IVH(Qy(s) = Qals))ds. (9.26)

—00
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Given (9.22)), the definition (9.15)), and the stronger assumptions in (9.23)), we have

_ 2
Q1 L20,, + 1QlLz0,, ., S Acr(t)™*, (9.27)
for @ € {Qq, Qp}. Using estimates similar to (9.18]) and (9.19)) it follows that
10yu — |Vl]ul 120, , + 10yu — [V|ullLz0,, ,,, S Ac1. (9.28)

To prove (9.24) for j € {1,2}, we observe that, as a consequence of (9.14)),
u— |V[Pu = (1+ |Voh|?) " (= |VPulVeh|* + 20, Vot - Voh + 0yulgh + Oyeq + | Vey). (9.29)
Using (9.22)) and (9.28)), together with Lemma it follows that

||a§u - |v’2uHL§(’)27p_1 + H(?;u - ’v|2u”L§°OQ,p73/2 S Agl‘
The desired bound (9.24) for j = 1 follows using also (9.28]). The bound for j = 2 then follows
by differentiating (9.29) with respect to y. This completes the proof of the lemma. O

9.2. Paralinearization. The previous analysis allows us to isolate the linear (and the higher
order) components of the Dirichlet-Neumann operator. However, this is insufficient for our
purpose because we also need to avoid losses of derivatives in the equation. To deal with this
we follow the approach of Alazard-Metivier [5], Alazard-Burg-Zuily [Il 2] and Alazard-Delort
[3] using paradifferential calculus. Our choice is to work with the (somewhat unusual) Weyl
quantization, instead of the standard one used by the cited authors. We refer to section (8 for a
review of the paraproduct calculus using the Weyl quantization.
For simplicity of notation, we set a = |Vh|? and let

w:=u—Ty,h. (9.30)
Notice that w is naturally extended to the fluid domain, compare with the definition (9.3). We

will also assume ({9.2)) and use Lemma Using (8.51) in Lemma [8.7| and (9.24)), we see that
HW - u”L%OQ,lmLZOOQJ S.z 5%' (931)
Using Lemma to paralinearize products, we may rewrite the equation as
Ti4a0jw + Aw — 2T Vyw — Tapdyw = Q +C (9.32)
where
—Q = —2H(Vh,Voyu) — H(Ah, Oyu),
—C = 0y(T4aTp2uh + Tau — 2T9nTwo,u — TanTo,u)h + 2(TozuTvn — TunTp2)Vh - (9.33)
+ Top H(Vh, Vh) + H(a, Gju).
Notice that the error terms are quadratic and cubic strongly semilinear. More precisely, using
Lemma Lemma and the equation (9.13)), we see that
Qc 8% [L?/OQA N L;OOQA], Ce 8? <t>71162 [L20374 N L;o0374}. (934)
We now look for a factorization of the main elliptic equation into
T1+a8§ + A — QTthay — TAhay
= (T 1750y — A+ B)(T i750y —A—B) + &
= \2/l+aa§ B {(AT\/ 14+ + T\/l—i-ozA) + [T\/l-i-a’ B]}ay + A2 - BZ + [A, B] +&
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where the error term is acceptable (in a suitable sense to be made precise later), and [A, 9,] =
0,[B, dy] = 0. Identifying the terms, this leads to the system

T oA + AT ji7g + [T i7a, Bl = 2Tic.wn + €,
A? B’ 4+ [A,B]=A+E&.
We may now look for paraproduct solutions in the form
A=iT,, a=aY+ad®  B=17, b=0bD4pO

where both a and b are real and are a sum of a two symbols of order 1 and 0. Therefore A
corresponds to the skew-symmetric part of the system, while B corresponds to the symmetric
part. Using Proposition and formally identifying the symbols, we obtain the system

2iav/T+ a +i{v1+a,b} = 2i¢ - Vh + 2 M2,
a® 4+ v* 4 {a,b} = ]C\2+€1MN3 g-

We can solve this by letting

(1. ¢ Vh ©.__ 1 g
a . \/m a . 2\/m{ +Oé7b }SOZO(C)?
1
b = /|¢|? - b = 7213(1)( —{a™,5M}o50(0)).
This gives us the following formulas:
-1 (.un — (¢-VR)(1+ &MY, (9.35)
¢ 1+ |Vh|? SN '
1+ [VA2)[C]2 = (¢ - Vh)?
- \/( | M\’vm; : = [¢(1 + MR, (9.36)
o - IJMU} ©>0(¢) = @20(Q)ef My, (9.37)
2/1+|VhZ T ° - s
1+ |Vh]2 . Vh CiCr0;Okh
v =~ 2b(’1) | {1 <+ yVhP’b(l)} p20(Q) = p20(O)| =y Y

We now verify that
(T\/1+a8y - iTa + Tb)(Tmay — iTa — Tb)

| 9.39)
= T1+a6§ - (2Ta T+a + T{ /;1+a,b(1)})7/ay - TQQ - Tb2 - T{a<1),b(1>}<p20(o + 57 (
where
€= (TraTyrra — Tiva)0y = (TaTyrra + TiraTe — 2T,y1va) 0y — [T yira Tyo) |0y

([T iza o] = iTyrapmy) 0y + (Taz = T2) + (Tye — T) + i[Ta, To] + Tia0) 0 ym0(0)-
We also verify that
2avT+ a+ {VI+a, bV} =2¢- Vh+ {V1+a, bW} 1(0),
a® +0° + {a, 6D }o50(¢) = [ + (alV)? + (b)),
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Lemma 9.5. With the definitions above, we have

(Tyr7a0y — 1Ta + To)(T 550y — 1Ta — Th)w = Qo +C, (9.40)
where
Ceedity=1 [Ly° 05175 N L O3], Qo € €3[Ly°Os3/2 N Ly Oy 9],
- 1 - - (9.41)
(&) = 473 [, (& WAL~ )l ) dn
s R2
and
_ le=nly (€l = D€l +Inl) 28 - —21éllnl ~ &+7 §+n
qo(&n)-—x(‘“m) 2 [ € +nl? 20y ) ety )} (9.42)
€ —n | 2 2 .
+[1- - - .
= x(ep) — xgg ) = 16l
Notice that (see for the definition),
Hqg’kl’k2 Hsgzo 5 2k222k1 [2_(2k2_2k1)1[—40,oo) (kZ - kl) + 1(—00,4]“£2)] ) (Qf + Qn)QO = 0. (943)

Proof. Using (9.32)) and (9.39) we have
(Tmay — iTa + Tb)(Tmay — iTa — Tb)w
=0+C+&w— T(a(o))2+(b(0))2w - T{\/H—%b(l)}@yl(oiayw.

The terms C, T(ao)2+(b(o))2w and T{m’b(l)}@<71(<)iayw are in 5?(1 +t)—11(52 [L;o0371/2 01@2,03,1]'
Moreover, using Lemma Lemma and ([9.35)(9.38), we can verify that
Ew — [Ty 0 = T Tyo — Tyo TigJw = [ilTcvn: Tigl + Tie-vnclieso©]@

CjCk|5j23kh
2|¢]
are already acceptable cubic errors; the last three terms become acceptable cubic errors after

removing the quadratic components corresponding to the symbols ¢ - VA in oM, |¢] in b, and
bgo) in b(®. As a consequence, Ew — Qg € 6‘%(15)‘1152 (L 051720 Lz21(9371], where

is an acceptable cubic error, where b(lo) = —p>0(() . Indeed, most of the terms in £

—~ 1 - ~ N
Q) = g [ x( )bl mite — matn.u) dn

_ In))? o 2
(€)= (€] = |nl) (If{;ﬁ;“);& U Iﬁl\nl)(pzo(&—;n (I¢] In!)z(\€|+|77l)¢g_l(§;r77)_

The desired conclusions follow, using also the formula Q = 2H(Vh,Voyu) + H(Ah,0yu) in
(9.33), and the approximations dyu ~ |V|u, w = u, up to suitable quadratic errors. O

)+

In order to continue we want to invert the first operator in (9.40) which is elliptic in the
domain under consideration.

Lemma 9.6. Let U := (T 750y — iT, — Ty)w € e1[L° Oy _1 /5 N L2O1 0], so
(T /a0y — Ta + Ty)U = Qo +C. (9.44)
Define

MlFal(©) = gz [, mol€nfi6 —natmdn.  molén) = BED (05
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Then, recalling the notation (8.7), and letting Uy := Ujy=0, U0 := Ujy—o = ¢, we have

PZ—IO (UO — Mo[h,uO]) € 6%<t>_620373/2. (9.46)
Proof. Set
- ~ b—1ia 0,1
U:= T(1+a)1/4U S El[Ly 01’71/2 N LZOLO]’ g = \/ﬁ = |C’(1 + ElMNgfl)' (947)

Using (9.44) and Lemma and leting f := (1 + a)'/* — 1 € €304, we calculate
Tiiqay/a (Oy + To)fj = Qo + Cy,
Ci = C~+ [T}% — sz]ayU + [Tf+1TUTf+1 — T(f_H)QJ] Ue €?<t>71162 [Lgoog,l/Q N LZO?,J].

Let g = (14 f)~' —1 € €304 and apply the operator T}, to the identity above. Using Lemma
it follows that

Oy +T)U = Qo +Ca,  Ca€ed(t) M [LX05, /5N L205,]. (9.48)
Notice that, using Lemma (9.43), (9.45) and Lemma
MO [h, U] S E% [LZOOQ,S/2 N L§0273]’ M()[h, 8y’lL] S 5% [L?0273/2 N L;OQ,Q]. (949)

We define V := U — Mylh, u]. Since
V =Ty payssU — Molh,u] = Ty oysa (U = Molh,ul) +C', € € e}ty LEO 30,
for it suffices to prove that
Ps_2V(y) € e3(t) O35/ forany ye (—00,0]. (9.50)
Using also we verify that
Oy + To)V = (8 + To)U — (9y + V) Mo[h, u] — Tiy— ¢y Molh, u]
= Ca + Mo[h, |V|u — 9yu] — Ti5—c;yMolh, u] (9.51)
= Cy € e{(t) (L 0310 N Ly 03],
Letting o/ := o — |¢| and V}, := PV, k € Z, we calculate
(Oy + Ti¢|)Vi = PiC3 — PyTyV.
We can rewrite this equation in integral form,

Vi(y) = /_ ! eV PLCs(s) — PyT,V (s)] ds. (9.52)

To prove the desired bound for the high Sobolev norm, let, for k € Z,

Xj, := sup 2V FDE [V () | 2.
y<0

Since o’ /|¢| € €1M(])\};_1, it follows from Lemma that, for any y <0,

Yy
2(N0+3/2)k:/ ||e(s—y)\V|kaa,V(s)HL2 ds
—0o0

S No+3/2 Z / (s—y)2k— 42kHPk’ (3)HL2 ds 561 Z X

|k/ k|<4 k' —k|<4
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It follows from ((9.52)) that, for any k € Z

XeSer Do Xy sup2ota2k / 2 P (s) | 12 ds
|k —k| <4 = >

0 1/2
S X2 [ pe)lds]
I/ —k|<4 -

We take [? summation in k, and absorb the first term in the right-hand sideﬂ into the left-hand
side, to conclude that

0 1/2
1/2 11482 _ 9082 2
(o))" [ Moh [ ncas)lfaas] " s et 1 ) 2O (53
keZ kEZ -

where the last inequality in this estimate is a consequence of C3 € &3 (t)*1152L50371. The desired
bound || Ps_o0V ()| gaosare S €3 (8) 110 (£)=2(5/6-200%)+6% iy ([§50)) follows.
The proof of the bound for the weighted norms is similar. For k € Z let

Y = = sup 2NV H8/2K NIV ()| 2.
ys J<N1
As before, we have the bounds,
Y .
2(N3+3/2)k/ ||€(s—y)|V|QJPkTU,V(S)||L2 ds < &1 Z Vi + <t>652Xk/],
> |k —k|<4
for any y € (—o0,0] and j < Ny, and therefore, using (9.52]),
0 . 1/2
YeSer Y Yuta®® D X+ Y 200k [/ |27 PCs(s)]1F2 ds| .

|k —k|<4 |k —k| <4 J<Ny -
As before, we take the [2 sum in k and use (9.53) and the hypothesis C3 € si”(t>_1152 Lz(’)371. The
desired bound [P a0V ()| o vz S 4067 (1) 20/0-200144" iy @50) follows.

~

Finally, for the L* bound, we let, for k € Z,

Zy, = sup 22 F3DE N 10TV (y) | e
y=0 J<N1/2

As before, using (9.52)) it follows that
0 . 1/2
Zise > Zu+ Y 2 [ jeines)eds]
|k’ —k|<4 J<Ni/2 -
After taking [?> summation in & it follows that

(Zzlg)l/z < Z [Z2Q(N2+1)k/ ||Q]Pkc3( )||%oo ds} 1/2 < 5?<t>_1152 (t)_5/2+4552,

keZ J<N1/2  keZ

"To make this step rigorous, one can modify the definition of X}, to X}, := Sup, < o(No+3/2) min(k, K0 177 (4))]| 12,
in order to make sure that >, (X})? < 0o, and then prove uniform estimates in K and finally let K — oo.
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where the last inequality is a consequence of C3 € &} (t>*1152L503,1. The desired bound on

HPZ_QOV(y)HWNl/z,N2+3/2 in ([9.50) follows, once we recall that only the sum over 2/¥ < (£)8
Q

is relevant when estimating the Wév 1/2:N2+3/2 norm; the remaining frequencies are already ac-

counted for by the stronger Sobolev norms. O

We are now ready to obtain the paralinearization of the Dirichlet-Neumann operator.

Proof of Proposition[9.1. Recall that G(h)¢ = (1+|Vh|?)dyuy—o — Vh- Vi, see (9.12)), and
B = Oyuj,—g. All the calculations below are done on the interface, at y = 0. We observe that,

using Corollary
Peg((1+|Vh[*)Oyu — Vh - Vu) = P<g (Oyu — Vh - Vu) + £503 3/

= P<¢ (|V|w — div(Tyh)) + P<g (div(Tyh) + |V|Tigjwh + Qh,w]) + €103 3.
Thus low frequencies give acceptable contributions. To estimate high frequencies we compute

(1+|Vh[*)0yu — Vh-Vu

= T4+a0yu — TypVu — Ty, Vh + Tayuoz + H(a, 8yu) — H(Vh,Vu)

=T11a0yw — TopVw — Tg, Vh + Ty Ty, Vh

+ (To,ux — 21115, Vh) + T1+aT8§uh — TvnTve,uh + H(a, Oyu) — H(Vh, Vu).

Using Lemma 9.6\ with U = (T 7750y — 1o — Tp)w and (9-49), Lemma and Lemma we
find that

(9.54)

Tiva8yw = T, g (iTaw + Tow + Molh,u] +C') + (Tia — To55)0yw
=T ji5(Tp + iTo)w + My[h, u] + C”,
where C” satisties P>_¢C" € €103 3/2. Therefore, with V = Vu — 9,uVh,
(14 |VA[*)0yu — Vh - Vu =T 5 (Th + iTy)w + Mo[h,u] + C”
— TypVw — div(Tyh) + C1 + Co — H(Vh, Vu),
with cubic terms Cy,Cy given explicitly by
C1 = (To,ux — 2191 T5,,Vh) + H(a, Oyu),
C2 = (Taivv + Ti+aTo2u — TonTvo,u)h + (TonTo,u — To,uvn) Vh.
Notice that divV + (1 + a)@ﬁu — VhVdyu = 0, as a consequence of ([9.13). Using also Lemma

it follows that C1,Cy € 6?0373/2.
Moreover, using the formulas (9.36)), (9.38]), Lemma (8.5]), and Lemma we see that

7
Tmew = Tbmw + 5T{\/m7b}w + E(\/ 14+a— 1, b)w

(9.55)

i
= Thow + Tyo yrmaw + 5 TyFasmyw + 1033/
where A(1) is the principal symbol in (9.5)). Similarly, using (9.35)), (9.37),
. : 1 .
iT grglow — TopVw = Tic.vpw — TopVw + 0T 0) g7qw — §T{ Traa)@ T iIE(V1+a—1,a)w

1 ) 1
= iTAhw + ’LTa(o)mw — QT{m7a(1)}w + 6:130373/2.
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Summing these last two identities and using (9.35))-(9.38)) we see that
Tmew + ’iTmTaw - thVw = T)\(1)w + me + 6?0373/2 (956)

where

m:=b01+a— %{\/1 +a,aD} + %Ah

1+ A ¢ Vh 1 ¢-Vh 1

S { Ha,Ha}@ZO(o—E{\/ua, ﬁ1+7a}+§Ah (9.57)
0 1 G Vh Ah

N0 = H{VIF @ S b 1O+ e (0)

We conclude from (9.55)) and (9.56)) that
Po7((1+ |Vh[})0yu — VhVuU) = Poq(Ty,yw — div(Tyh) + Mo[h,u] — H(Vh, Vu) + €305 3)5).
Moreover, the symbol of the bilinear operator Mylh,u] — H(Vh,Vu) is

QO(§>77)+[17X(’5_77|)7X( In| |)](£777).7]’

&1+ [nl €+ 2§ —n
where ¢g is defined in (9.42). The symbol bounds (9.7) follow. Combining this with (9.54)), we
finish the proof. O

9.3. Taylor expansion. We conclude this section with a simple expansion of the Dirichlet—
Neumann operator that identifies the linear and the quadratic terms.

Corollary 9.7. (i) Assume that |(V)h|lo, , +[[|V]*/*¥] o,
w as in Lemma[9.4 Then we have an expansion

_ 2
Oyu = |Viu+Vh-Vu+ No[h,u] + D, IED |20, mrco, ,, SEHTT, (958
where

PNl 6I16) = 105 [ ma(€nlh(E—mam dn. maféon)i=€-n—lellnl. (959

In particular,

<e1 ande, =0, ¢, =0, and define

~

Gy = V1 = Nolh, 9], S R (9.60)

Moreover .
[y 152 | g < 2mintikatoke Qe 4 O Yng = 0. (9.61)

(ii) As in Proposition assume that (h, ¢) € C([0,T) : HNo+1 5 FNo+1/2.1/2) 45 4 solution
of the system (2.1)) with g =1 and o =1, t € [0,T)] is fized, and (9.2) holds. Then

|10:(G(h)9) = V|0 |, , S et (9.62)

Proof. (i) Let u® := e¥Vly and le) = Vul) . Vh, Ql()l) = R(ayu(l)Vh). It follows from
(9.18)-(9.19) and Lemma [9.4] (more precisely, from (9.22)), (9.24)), and (9.27))) that

VY2 (= uM)| 00,0 + 11V I(w = u) [ 220,
(9.63)
+ |9y (u — U(l))”L;OOQ,,W + [|10y (u — U(l))HLchQ,O Sei

Therefore, using Lemma, for d € {a, b},

1 1 _ 2
1Qa = QP 20, 1o + 1Qa — QP 1120, S €31) 72, (9.64)
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Therefore, using ((9.18)—(9.19) and (9.26]),

v 2
Joyu = 191u = Vi vu [ Wi ) - Q1 (s))ds| < )1,

L§O3’OQLZOO3V,1/2

Since

A6 - QPO = 11 [ [ €= = = pi]fce - me T an

we have

]-"{ /_io |V|€_|S‘y”v|(le)(s) _ le)(s))ds}(g)

errg - [77-(5—77)—5'(

= F{Na[h,uM]}(€).

Moreover, using the assumption [[(V)h|lo, ,

£—n) IS nl 7
h(& —n)e!y(n) d
ol g e - el dn

< €1 and the bounds (9.63)), we have

~

1162
IN2 (R w = e[| 20, orLse 0y S 18T,

as a consequence of Lemma The desired identity (9.58]) follows. The bound follows

using also the identity (9.12)).
(ii) We define u = u(z,t,y) as in (9.11), let v = dyu, differentiate (9.13)) with respect to ¢, and
find that v satisfies (9.14) with

¢o = Vau - Vi0ith — 20,uVh - V,0:h, ¢p = R(0yuV50.h).
In view of ,
||ath||01,_1/2 + ||at¢||01,71 S €1-

Therefore the triplet (0;¢, ¢4, ¢) satisfies (9.23|) with p = —3/2. Therefore, using ((9.24)),

”ayv - |V”UHL50(92’_2 < E%,
and the desired bound (9.62) follows using also ((9.12)). O
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