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ABSTRACT. In this note we explain how to derive an asymptotic formula for solutions of the 2d gravity water
waves system expressed in Eulerian coordinates, using some of the bounds obtained by the authors in [IPu13].
The main ingredients of the proof are: 1) the uniform estimates for the Fourier transform of the profile of
solutions obtained in [IPu13], 2) a refined linear estimate for the propagator exp(it|∂x|1/2), and 3) an argument
similar to the one used by Hayashi and Naumkin in [HN98] in the context of NLS type equations.

1. INTRODUCTION

Let Ωt be the region with free boundary occupied by a perfect fluid with velocity v(t, z), z ∈ Ωt. Assume
that Ωt ⊂ R2 is the region the graph of a function h : Rt×Rx → R, that is Ωt = {(x, y) ∈ R2 : y ≤ h(t, x)}
and St = {(x, y) : y = h(t, x)}. Let us denote by Φ the velocity potential: ∇Φ(t, x, y) = v(t, x, y), for
(x, y) ∈ Ωt. If φ(t, x) := Φ(t, x, h(x, t)) is the restriction of Φ to the boundary St, the equations of motion
reduce to the following system for the unknowns1 h, φ : Rt × Rx → R:

∂th = G(h)φ

∂tφ = −h− 1
2 |φx|

2 + 1
2(1+|hx|2)

(G(h)φ+ hxφx)2
(1.1)

with
G(h) :=

√
1 + |hx|2N (h) (1.2)

where N (h) is the Dirichlet-Neumann operator associated to the domain Ωt.

2. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR

Let N0 = 104 and N1 = N0
2 + 4. Let S = 1

2 t∂t + α∂α be the scaling vector field. Given a time interval
I and a function f : I × R→ C we define the norms

‖f(t)‖Xk
def
= ‖f(t)‖Hk + ‖Sf(t)‖Hk/2 . (2.1)

‖f(t)‖Z
def
= sup

ξ∈R

∣∣∣(|ξ|β + |ξ|N1+15
)
f̂(ξ, t)

∣∣∣ , (2.2)

where β = 10−2.
The following global existence result has been obtained in [IPu13, Theorem 1.1 (i)]:

Theorem 2.1. Let h0(x) = h(0, x) be the initial height of the surface S0, and let φ0(x) = φ(0, x) be the
restriction to S0 of the initial velocity potential. Assume that at the initial time one has

‖(h0,Λφ0)‖HN0+2 + ‖x∂x (h0,Λφ0)‖HN0/2+1 + ‖h0 + iΛφ0‖Z ≤ ε0 , (2.3a)

where Z is defined by (2.2) and Λ
def
= |∂x|1/2. Moreover, for x ∈ Ω0 let v0(x) = v(0, x), where v is the

irrotational and divergence free velocity field of the fluid, and assume that

‖|x|∇v0‖HN0/2(Ω0) ≤ ε0 . (2.3b)

Date: June 2013.
1We refer to [SS99, chap. 11] or [CS93] for the derivation of the water wave equations (1.1) from the free boundary Euler’s

equations.
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Then there exists ε0 small enough, such that for any ε0 ≤ ε0, the initial value problem associated to (1.1)
admits a unique global solution with

sup
t

[
(1 + t)−p0‖(h(t), φx(t))‖XN0

+ ‖h(t) + iΛφ(t)‖HN1+10 +
√

1 + t‖(h(t),Λφ(t))‖WN1+4,∞

]
. ε0 ,

where p0 = 10−4.

A similar global existence result has also been obtained by Alazard and Delort in [AD13]. The following
statement about modified scattering is also contained in In [IPu13, Theorem 1.1 (ii)]:

Proposition 2.2. With the above notations, let u(t)
def
= h(t) + iΛφ(t). Define

G(ξ, t) :=
|ξ|4

π

∫ t

0
|û(ξ, s)|2 ds

s+ 1
, t ∈ [0, T ] .

Then there is 0 < p1 < p0 such that

(1 + t1)p1
∥∥∥(1 + |ξ|)N1

[
eiG(ξ,t2)eit2Λ(ξ)û(ξ, t2)− eiG(ξ,t1)eit1Λ(ξ)û(ξ, t1)

]∥∥∥
L2
ξ

. ε0 , (2.4)

for any t1 ≤ t2 ∈ [0, T ]. In particular, there is w∞ ∈ L2 with the property that

sup
t∈[0,∞)

(1 + t)p1
∥∥∥(1 + |ξ|)N1eiG(ξ,t)eitΛ(ξ)û(ξ, t)− w∞(ξ)

∥∥∥
L2
ξ

. ε0 . (2.5)

The purpose of this note is to show how to derive an asymptotic formula for the solution u(t, x) in
physical coordinates from the bounds proven in [IPu13], in the course of the proofs of Theorem 2.1 and
Proposition 2.2 above. More precisely, one can show

Proposition 2.3. Let u(t) := h(t) + iΛφ(t). Under the same assumption of Theorem 2.1 there exists a
uniformly bounded function f∞, such that∣∣∣∣∣u(t, x)− e−it|t/4x|√

1 + |t|
f∞

(x
t

)
exp

(
− i

64
|f∞ (x/t)|2

|x/t|5
log(1 + |t|)

)∣∣∣∣∣ . ε0(1 + |t|)−1/2−p1/2 . (2.6)

The same asymptotic formula above has been derived in [AD13] under slightly different assumptions2.
The proof of Proposition 2.3 is based on the following ingredients:

1. The bounds contained in [IPu13], which are stated in Propostion 4.1 below;
2. A refined linear estimate for the propagator eitΛ, essentially contained in the proof of Lemma 2.3 in the

author’s work [IPu12];
3. A simple argument used by Hayashi and Naumkin [HN98] to deal with NLS type equations, as well as

many other models, see for example [HN99a], [HN99b], and [HN99a]3.

3. LINEAR ESTIMATES

A important but simple ingredient in the proof of the Theorem 2.1, and in the result of [IPu12], was the
following linear estimate, proved by the authors in Lemma 2.3 of [IPu12]:

Lemma 3.1. For any t ∈ R we have

‖eitΛf‖L∞ . (1 + |t|)−1/2‖ |ξ|3/4f̂(ξ)‖L∞ξ + (1 + |t|)−5/8
[
‖x∂xf‖L2 + ‖f‖H2

]
. (3.1)

2In [AD13] the authors seem to assume stronger decay at spatial infinity than what is assumed in (2.3a). For example, a smooth
intial data of the form εu0 = ε(h0 + iΛφ0), with ε sufficiently small, and u0 behaving at spatial infinity like sin(x)/x2, satisfies
the hypotheses of Theorem 2.1. However, it does not comply with the hypotheses in [AD13], since (x∂x)2u0 /∈ L2.

3This argument appears to be quite standard, and together with refined liner estimates allows one to derive an asymptotic formula
for solutions in real space, from asymptotic statements about the fourier transform of their profiles. It seems to be applicable to
every situtation where there is a logarithmic phase correction to scattering which only depends on the modulus of the transform of
the solution.
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A careful inspection of the proof of the above lemma shows that the following refinement holds:

Lemma 3.2. For any t, x ∈ R we have∣∣∣∣∣e−itΛf(x)−
√

2√
πi(1 + |t|)

e−i
t2

4x
signx

t

(
t2

4x2

)3/4

f̂

(
t2

4x2

)∣∣∣∣∣
. (1 + |t|)−11/20

[
‖|ξ|3/4f̂‖L∞ + ‖f‖H3 + ‖x∂xf‖L2

]
.

(3.2)

For completeness we give below a detailed proof of the above statement.

Proof. We fix ϕ : R → [0, 1] an even smooth function supported in [−8/5, 8/5] equal to 1 in [−5/4, 5/4].
Let

ϕk(x) := ϕ(x/2k)− ϕ(x/2k−1), k ∈ Z, x ∈ R.
More generally, for any m, k ∈ Z, m ≤ k, we define

ϕ
(m)
k (x) :=

{
ϕ(x/2k)− ϕ(x/2k−1), if k ≥ m+ 1,
ϕ(x/2k), if k = m.

(3.3)

Let Pk, k ∈ Z, denote the operator on R defined by the Fourier multiplier ξ → ϕk(ξ), and let fk := Pkf .
We then write

e−itΛf(x) =
∑
k∈Z

1
2π

∫
R
eitΨ(ξ:x,t)f̂k(ξ) dξ with Ψ(ξ;x, t)

def
= −Λ(ξ) +

x

t
ξ . (3.4)

Sometimes we will just denote the phase by Ψ(ξ). Let ξ0 ∈ R denote the unique solution of the equation
Ψ′(ξ) = 0, i.e.

ξ0
def
= sign(t/x)

t2

4x2
. (3.5)

Set C0
def
=
√

2/
√
πi. For (3.2) it suffices to prove that∣∣∣∣∣∑

k∈Z

1
2π

∫
R
eitΨ(ξ)f̂k(ξ) dξ −

C0√
t
ei
t2

4x
signx

t |ξ0|3/4f̂ (ξ0)

∣∣∣∣∣ . 1 , (3.6)

for any t, x ∈ R, and any function f satisfying

(1 + |t|)−11/20
[
‖|ξ|3/4f̂‖L∞ + ‖x∂f‖L2 + ‖f‖H3

]
≤ 1 . (3.7)

Using only the bound ‖f‖H2 . (1 + |t|)11/20, we estimate first the contribution of small frequencies,∑
2k≤210(1+|t|)−11/10

∣∣∣ ∫
R
eiΨ(ξ;x,t)f̂k(ξ) dξ

∣∣∣ . ∑
2k≤210(1+|t|)−11/10

2k/2‖f̂k‖L2 . 1 ,

and the contribution of large frequencies,∑
2k≥2−10(1+|t|)11/50

∣∣∣ ∫
R
eiΨ(ξ;x,t)f̂k(ξ) dξ

∣∣∣ . ∑
2k≥2−10(1+|t|)11/50

2k/2‖f̂k‖L2 . 1 .

Therefore, for (3.6) it suffices to prove that∣∣∣ ∑
2k≤2−10(1+|t|)11/50
2k≥210(1+|t|)−11/10

1
2π

∫
R
eitΨ(ξ)f̂k(ξ) dξ −

C0√
t
ei
t2

4x
signx

t |ξ0|3/4f̂ (ξ0)
∣∣∣ . 1 . (3.8)
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We estimate first the nonstationary contributions. Using (3.7) we see that ‖P̂kf‖L2 + 2k‖∂(P̂kf)‖L2 .
|t|5/8. Note that if 2−k/2+4 ≤ |x/t| or |x/t| ≤ 2−k/2−4 one has |Ψ′(ξ)| & 2−k/2. Then we integrate by
parts to estimate ∣∣∣ ∫

R
eitΨ(ξ)f̂k(ξ) dξ

∣∣∣ . |t|−12k/2 · ‖∂(f̂k)‖L1 + |t|−12−k/2 · ‖f̂k‖L1 . 1.

Therefore, for (3.8) it suffices to prove∣∣∣∑
k

1
2π

∫
R
eitΨ(ξ)f̂k(ξ) dξ −

C0√
t
ei
t2

4x
signx

t |ξ0|3/4f̂ (ξ0)
∣∣∣ . 1, (3.9)

where the above sum is only over those indeces k such that

2k ∈ [210(1 + |t|)−11/10, 2−10(1 + |t|)11/50] ∩ [2−8t2/x2, 28t2/x2] .

In these cases clearly |ξ0| ≈ 2k. Let l0 denote the largest integer with the property that

2l0 ≤ 23k/4|t|−9/20

and estimate the left-hand side of (3.9) by∣∣∣∑
k

1
2π

∫
R
eitΨ(ξ)f̂k(ξ) dξ −

C0√
t
e−i

t2

4x
signx

t |ξ0|3/4f̂ (ξ0)
∣∣∣ ≤ |Jl0 |+ k+100∑

l>l0

|Jl| , (3.10)

where, with the notation in (3.3), we have defined

Jl(t, x)
def
=
∫

R
eitΨ(ξ)f̂k(ξ)ϕ

(l0)
l (ξ − ξ0) dξ , for l > l0 ,

Jl0(t, x)
def
=
∫

R
eitΨ(ξ+ξ0)f̂k(ξ + ξ0)ϕ(l0)

l0
(ξ)− C0√

t
e−i

t2

4x
signx

t |ξ0|3/4f̂ (ξ0) dξ .
(3.11)

To estimate Jl for l > l0, notice that |Ψ′(ξ)| & 2−3k/22l whenever |ξ| ≈ 2k and |ξ − ξ0| ≈ 2l. We can
then integrate by parts to estimate

|Jl| .
1

|t|2−3k/22l
[
2−l‖f̂k(ξ) · 1[0,2l+4](|ξ − ξ0|)‖L1

ξ
+ ‖∂(f̂k)(ξ) · 1[0,2l+4](|ξ − ξ0|)‖L1

ξ

]
. |t|−123k/22−l

[
‖f̂k‖L∞ξ + 2l/2‖∂(f̂k)‖L2

]
. |t|−9/2023k/42−l + |t|−9/202k/22−l/2 . 1 .

(3.12)

To estimate Jl0 we first notice that since Ψ′(ξ0) = 0 then∣∣Ψ(ξ + ξ0)−Ψ(ξ0)− ξ2/(8ξ3/2
0 )

∣∣ . 2−5k/2|ξ|3 .
Therefore, if we define

J1
def
= eitΨ(ξ0) 1

2π

∫
R
eitξ

2/(8ξ
3/2
0 )f̂k(ξ + ξ0)ϕ(ξ/2l0) dξ

we see that ∣∣Jl0 − J1

∣∣ . |t|2−5k/227l0/2‖f̂k‖L2 . 1 , (3.13)

having used the L2 bound in (3.7).
We then define

J2
def
= eitΨ(ξ0) 1

2π

∫
R
eitξ

2/(8ξ
3/2
0 )f̂(ξ0)ϕ(ξ/2l0) dξ

and estimate ∣∣J1 − J2

∣∣ . 23l0/2‖∂f̂k‖L2 . 1 , (3.14)
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having used the weighted L2 bound in (3.7).
Eventually, for (3.9) it suffices to show∣∣J2 −

C0√
t
e−i

t2

4x
signx

t |ξ0|3/4f̂ (ξ0) dξ
∣∣ . 1 . (3.15)

Using the general formula ∫
R
e−ax

2
dx =

√
π/
√
a , a ∈ C , Re a > 0 ,

we see that ∫
R
eitξ

2/(8ξ
3/2
0 )e−ξ

2/2l0 dξ = 2|ξ0|3/4
√

2π/
√
it+O

(
23k/2t−9/10

)
,

so that

J2 = eitΨ(ξ0) 1
2π

∫
R
eitξ

2/(8ξ
3/2
0 )f̂(ξ0)ϕ(ξ/2l0) dξ

=
e−i

t2

4x
sign t

x

√
i2πt

2|ξ0|3/4f̂(ξ0) +O
(
‖|ξ|3/4f̂‖L∞23k/4t−9/10

) (3.16)

The desired bound (3.9) follows from (3.10)-(3.11), the estimates (3.12), (3.13), (3.14), and the identity
(3.16) which gives (3.15). This completes the proof of the lemma. �

4. ASYMPTOTIC BEHAVIOR IN PHYSICAL SPACE

4.1. Notations and bounds from [IPu13]. Here we gather some of the bounds proved by the authors in
[IPu13], which hold for the global solutions of the water wave system obtained in Theorem 2.1. We refer to
section 4 of [IPu13] for the precise statement containing these estimates. We will then use these bounds in
the final section to prove Proposition 2.3.

Proposition 4.1. Let h = h(t) and φ = φ(t) be the global solutions given by Theorem 2.1. The following
hold:

1) (Proposition 4.1 of [IPu13]). There exist bilinear operators A and B such that if

H
def
= h+A(h, h) , Ψ

def
= φ+B(h, φ) , (4.1)

then the function V defined by

V
def
= H + iΛΨ (4.2)

satisfies
∂tV + iΛV = C (h, |∂x|φ) (4.3)

where C is a nonlinearity consisting of cubic and higher order terms.
2) (Estimate (5.27) in the proof of Proposition 4.2 of [IPu13]). The bilinear operators A and B above
satisfy the following bounds:

‖A(h, h)‖WN1+4,∞ + ‖ΛB(h, φ)‖WN1+4,∞ . ε0(1 + t)−4/5 . (4.4)

3) (Proposition 4.3 of [IPu13]). Let V be the function defined by (4.2) and satisfying (4.3), and define

f(t, x)
def
=
(
eitΛV (t)

)
(x) . (4.5)

Then, there exists p0 ≤ 10−3 such that

sup
t∈[0,T ]

(1 + t)−5p0
[
‖x∂xf(t)‖HN0/2−20 + ‖f(t)‖HN0/2−20

]
. ε0 . (4.6)
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4) (Lemma 6.1 of [IPu13]). Let

L(ξ, t)
def
=
|ξ|4

π

∫ t

0
|f̂(ξ, s)|

2 ds

s+ 1
,

g(ξ, t)
def
= eiL(ξ,t)f̂(ξ, t).

(4.7)

Then there exists p1 > 0 such that, for any m ∈ {1, 2, . . .} and any t1 ≤ t2 ∈ [2m − 2, 2m+1],∥∥∥(|ξ|β + |ξ|N1+15) (g(ξ, t2)− g(ξ, t1))
∥∥∥
L∞ξ

. ε02−p1m . (4.8)

4.2. Proof of Proposition 2.3. The proof of Proposition 2.3 relies on the bounds listed in the previous
section, and on an argument similar to the one used by Hayashi and Naumkin to treat nonlinear Schrödinger
equations, see [HN98, pp. 381-383], and several other models, see for example [HN99a], [HN99b], and
[HN99a].

Step 1: Consequences of (4.8). First notice that from the definition of g in (4.7), |f̂(ξ, t)| = |g(ξ, t)|.
Therefore, (4.8) implies that for any m ∈ {1, 2, . . .} and any t1 ≤ t2 ∈ [2m − 2, 2m+1],∥∥∥(|ξ|β + |ξ|N1+15)

(
|f̂(ξ, t2)|

2
− |f̂(ξ, t1)|

2
)∥∥∥

L∞ξ

. ε02−p1m . (4.9)

From the estimate (4.8) we see that g as defined in (4.7), is a Cauchy sequence in time, with values in
L∞ξ . We can then define its limit

g∞(ξ)
def
= lim

t→∞
g(ξ, t) .

This satisfies the property∥∥∥(|ξ|β + |ξ|N1+15)
(
g(ξ, t)− g∞(ξ)

)∥∥∥
L∞ξ

. ε0(1 + t)−p1 (4.10)

and ∥∥∥(|ξ|β + |ξ|N1+15)
(
|f̂(ξ, t)|

2
− |g∞(ξ)|2

)∥∥∥
L∞ξ

. ε0(1 + t)−p1 . (4.11)

Step 2: Convergence of the phase L(t). For notational convenience we define the space

Lk def= L∞
(
(1 + |ξ|k)dξ

)
. (4.12)

Set

A(ξ, t)
def
=
|ξ|4

π

∫ t

0

(
|f̂(ξ, s)|2 − |f̂(ξ, t)|2

) ds

s+ 1

= L(ξ, t)− |ξ|
4

π
|f̂(ξ, t)|2 log(t+ 1) .

(4.13)

From the definition of A we have

A(ξ, t2)−A(ξ, t1)

=
|ξ|4

π

∫ t2

t1

(
|f̂(ξ, s)|2 − |f̂(ξ, t2)|2

) ds

s+ 1
− |ξ|

4

π
log(1 + t1)

[
|f̂(ξ, t1)|2 − |f̂(ξ, t2)|2

]
so that using (4.11) above we get

‖A(ξ, t2)−A(ξ, t1)‖LN1+1

.
∫ t2

t1

ε0(1 + s)−p1
ds

s+ 1
+ ε0 log(1 + t1)(1 + t1)−p1 . ε0(1 + t1)−p1/2 .
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Therefore, A(ξ, t) is a Cauchy sequence in time, and we can define its limit

A∞(ξ)
def
= lim

t→∞
A(ξ, t) ,

satisfying the property

‖A(ξ, t)−A∞(ξ)‖LN1+1 . ε0(1 + t)−p1/2 .

From this, the definition of A in (4.13), and (4.11), it follows that∥∥∥∥∥L(ξ, t)−A∞(ξ)− |ξ|
4

π
|g∞(ξ)|2 log(t+ 1)

∥∥∥∥∥
LN1+1

. ε0(1 + t)−p1/2 . (4.14)

Step 3: Convergence of f̂(t) and definition of α(t). From the definition of g and L in (4.7), and the bounds
(4.10) and (4.14) it follows that∥∥∥∥∥|ξ|3/4f̂(ξ, t)− |ξ|3/4g∞(ξ) exp

(
−iA∞(ξ)− i |ξ|

4

π
|g∞(ξ)|2 log(t+ 1)

)∥∥∥∥∥
LN1

. ε0(1 + t)−p1/2 .

(4.15)

Setting

α∞(ξ)
def
= |ξ|3/4g∞(ξ) exp (−iA∞(ξ)) (4.16)

we have∥∥∥∥∥|ξ|3/4f̂(ξ, t)− α∞(ξ) exp

(
−i |ξ|

5/2

π
|α∞(ξ)|2 log(t+ 1)

)∥∥∥∥∥
LN1

. ε0(1 + t)−p1/2 . (4.17)

Step 4: Asymptotics for V (t). Let V be the function defined by (4.2), and related to f via (4.5). Combining
the linear dispersive estimate (3.2) with (4.17) above, and the bounds (4.6) on the Sobolev and weighted
Sobolev norms of f , one see that∣∣∣∣∣V (t, x)−

√
2√

πi(1 + t)
eit|t/x|α∞

(
t2/4x2

)
exp

(
−i |t/2x|

5

π

∣∣α∞ (t2/4x2
)∣∣2 log(t+ 1)

)∣∣∣∣∣
. ε0(1 + t)−1/2−p1/2 .

(4.18)

Step 5: Asymptotics for u = h+ iΛφ. Eventually, one can easily obtain an asymptotic estimate like (4.18)
for the actual solution u(t, x). Indeed, using the relations (4.1) and (4.2), together with the L∞ bounds given
by (4.4), one sees that

‖u(t)− V (t)‖WN1,∞ .‖A(h, h) + iΛB(h, φ)‖WN1,∞ . ε0(1 + t)−4/5 .

The proof of (2.3) follows by the triangular inequality, and appropriately defining

f∞(ξ)
def
=
√

2√
πi
α∞

(
1/(4ξ2)

)
The proof of Proposition 2.3 is complete. 2
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