
INTRODUCTION TO QUANTUM FIELD THEORY

SHILIN LAI

This talk will be a miscellaneous selection of topics surrounding quantum field theory. We will first explain
why it’s needed over classical quantum mechanics. We then briefly explain the operator/Heisenberg picture
before moving on to the path integral/Lagrangian formulation, restricting attention to (1 + 1)-dimensions.
We will compute the theory for fields S1 → S1 and recover T-duality. Finally, we reformulate everything in
terms of functorial field theory, which clarifies the underlying algebraic structures.

1. Why fields?

In classical Newtonian mechanics, a particle is described by a point in the phase space, and its motion is
determined by a background potential. In the case of gravity, the motion of a particle leads to an instant
change in this potential, which is problematic because we want locality, i.e. the behaviour of a system at a
point should only depend on the information near a point. In the Lagrangian formalism, we want the action
to be an integral of a Lagrangian which depends only on xi, ẋi, ẍi, . . ., but not on something like xi−xj since
they take place at separate points in space. We resolve this non-locality in classical mechanics by postulating
that long range forces are transferred at a finite speed via a field.

Example 1.1. We briefly recall classical electromagnetism. There are two fields: electric E : R3 → R and
magnetic B : R3 → R3. In a vacuum, they satisfy the Maxwell equations

∇ ·E = 0 ∇ ·B = 0

∇×E = −∂B
∂t

∇×B =
∂E

∂t

In the presence of matter, we need to couple the equation by introducing terms on the right hand side.
This system is clearly local, and the rearrange to give wave equations for E,B with propagation speed of 1
(because we let c = 1).

Another reason to introduce fields in the quantum setting is to ensure relativistic invariance. The operator
formulation of quantum mechanics fixes a specific time direction by singling out the Hamiltonian, so it is not
relativistic. Instead, what we will do is to describe a state of the system as a field with both time and space
parameters. An observable in this theory would be an operator valued field. To recover classical quantum
mechanics, the expected value of the operator at (x⃗, t) should be the probability density of finding the particle
at time t at position x⃗.

We will first work out the commutation relation for the operators using a process called canonical quan-
tization in the simple setting of free fields. It is not clear that the theory is relativistic, so we will later
reformulate everything in terms of path integrals, which makes the propagator a central object instead of
states and operators.

2. Canonical quantization

2.1. General set-up. We begin by setting up some physical terminologies. The background space-time for
us is a (d+1)-dimensional manifoldM . In physics, it has a Lorentzian metric with signature of (−1, 1, · · · , 1),
and we write a vector as (x0, x1, · · · , xd). Very soon, we will actually take M to be Riemannian by applying
a Wick rotation. In physics, everything is written in coordinates, and being relativistic just means something
is coordinate-independent.

A field will be a (sufficiently smooth) function M → (something), where the something can be Rn

(bosonic/scalar fields), an exterior algebra (fermionic fields), a principal G-bundle (gauge fields), as well as
other possibilities. We will focus on a single scalar field for now. Later, when we discuss T-duality, the target
will be a Riemanniann circle.
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The Lagrangian is a function L that takes a field and outputs a function on M . It should be local in the
sense of the previous section, i.e. its value at a point only depends on the field and its derivatives at that
point. The simplest example is the free field Lagrangian

Lfree(ϕ) = −1

2
∂µϕ∂µϕ

We can add a potential term V (ϕ). In a perturbative approach to calculations, a physicist would expand
V (ϕ) into a Taylor series around 0. In this sense, the next simplest Lagrangian is

LKG(ϕ) = −1

2
∂µϕ∂µϕ− 1

2
m2ϕ2

This is still a free field, which just means the equation of motion for ϕ is linear. The parameter m recovers
the mass. Any higher powers of ϕ would lead to a non-linear equation of motion, and physicists call them
interaction terms.

Given a Lagrangian, we can define the action to be the functional

S[ϕ] :=
∫
M

L(ϕ)dx

The classical principle of least action is that the actual field is a critical point of the action. We can derive
the Euler–Lagrange equation as usual. In particular, the Lagrangian LKG leads to the equation

(∂µ∂µ +m2)ϕ = 0

This is the Klein–Gordon equation.

2.2. Free field. The picture so far is entirely classical. We now want to quantize a field described by the
Klein–Gordon equation. For simplicity, we work in flat (1 + 1)-dimensions, so M = Rt × Rx with the
Minkowski metric diag(−1, 1). The equation is explicitly written as(

−∂2t + ∂2x +m2
)
ϕ = 0

This is a wave equation, which can be solved by several standard methods. Our approach will be to use the
Fourier transform. Decompose ϕ in momentum modes

ϕ =
1

2π

∫
R

eipxϕ(p, t)dp

then each ϕ(p, t) satisfies the equation (∂2t + (p2 +m2))ϕ(p, t) = 0, which is a classical harmonic oscillator

with ωp =
√
p2 +m2. We recognize this as the relativistic energy of a particle of mass m and momentum p.

Therefore, we decomposed he classical system as an infinite collection of harmonic oscillators with different
frequencies. For quantization, we will use the quantum harmonic oscillators introduced in the previous talk.

For each p ∈ R, we can define the Hilbert space Hp with creation and annihilation operators a†p, ap. They

should satisfy [ap, a
†
p] = 1. The position, momentum, and Hamiltonian of the system are

x̂ =
1√
2ωp

(ap + a†p), p̂ = −i
√
ωp

2
(ap − a†p), Hp = ℏωp

(
a†pap +

1

2

)
so we can reconstruct the field of operators and its conjugate momentum by

ϕ(x) =
1

2π

∫
R

1√
2ωp

(ape
ipx + a†pe

−ipx)dp

Π(x) =
1

2π

∫
R

(−i)
√
ωp

2
(ape

ipx − a†pe
−ipx)dp

They should satisfy the following canonical commutation relations

[ϕ(x), ϕ(y)] = [Π(x),Π(y)] = 0, [ϕ(x),Π(y)] = δ(x− y)

After a computation, this reduces to the following

[ap, aq] = [a†p, a
†
q] = 0, [ap, a

†
q] = 2πδ(p− q)
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The natural space of states should be the L2-space over the moduli space of all fields. Having decomposed
the field into Fourier modes, we can replace it by the Fock space

HFock :=
(⊗

p

′Hp

)∧
where the restricted tensor product means such that the right hand side is generated by pure tensors which
is the vacuum state |0⟩ at all but finitely many places, and the (−)∧ means taking completion. Starting with
the vacuum state |0⟩, we can form states |p1 · · · pn⟩ := a†p1

· · · a†pn
|0⟩. This state is physically n free particles

travelling with momenta p1, · · · , pn respectively.
We can express the Hamiltonian in terms of creation and annihilation operators:

H =

∫
R

1

2

(
− ∂µϕ∂µϕ+m2ϕ2

)
dx

=
1

4π

∫
R

ℏωp(apa
†
p + a†pap)dp

There are two ways of seeing this. We can substitute in the expressions for ϕ and Π into the Hamiltonian,
or we can view the Hamiltonian operator as the sum of the Hamiltonians over each individual harmonic
oscillator. In any case, the vacuum energy is

H|0⟩ = 1

2

∫
R

ℏωpδ(0)dp |0⟩

This is infinity for two reasons. Firstly, δ(0) = ∞. By Fourier inversion, 1
2π

∫
R
eipxdp = δ(x), so δ(0) is really

the volume of space, which is infinite. This is known as infrared divergence because we are trying to sum up
modes with low energy. This problem is usually dealt with by compatifying space. Upon replacing Rx by a
flat circle of length L (i.e. imposing periodic boundary conditions), we resolve this infinity.

After compactifying space, the momenta are discretized to scales of L−1, so we need to replace the integral
with a sum. After rewriting m for mL, we get

H|0⟩ =
∞∑

n=0

√
n2 +m2 |0⟩

This is still infinity, which is called ultravioet divergence because it happens at high energy modes. For some
purposes, it is enough to say we only care about energy differences, which turns out to be equivalent to
reordering the terms in the Hamiltonian into the normal ordering a†pap.

We will not be satisfied with this because when we study T-duality, we need the whole partition function.
One solution is to use zeta function regularization, which means we replace the sum with

∑
n

√
n2 + (m′)2n−s

and evaluate at s = 0 in the sense of analytic continuation. We will see a related computation later.

3. Periodic field and T-duality

Now we impose periodicity on the field values too, so a field is a smooth map S1 × Rt → R/2πRZ.
For simplicity, we assume the source S1 to have radius 1 and the field is massless. The simple example of
T-duality we will study now is an equivalence of the system with parameter R and the system with parameter
1
R . For now, this means we will identify some observables and the energy spectrum. Later, there will be a
more robust reason why the two systems are physically equivalent.

Let x be the spatial coordinate, which is a variable inR/2πZ. The field variable ϕ takes values inR/2πRZ,
and we will often view it as a function Rx ×Rt → R such that ϕ(x+ 2πn, t)− ϕ(x, t) ∈ 2πRZ. The action
is derived from the usual free field Lagrangian,

S[ϕ] =
∫
R/2πZ

1

2

(
− (∂tϕ)

2 + (∂xϕ)
2
)dx
2π

There are two conserved quantities for this system

p =
1

2π

∫
R/2πZ

∂tϕdx, w =
1

2π

∫
R/2πZ

∂xϕdx ∈ RZ
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The winding number w is already “quantized”, and the momentum will be quantized since we have a periodic
boundary condition. The state space H should once again be L2-functions on the space of all maps S1×Rt →
R/2πRZ. The analysis as in the previous section can be repeated to obtain a tensor product decomposition

H = Htop ⊗H0 ⊗
⊗
n ̸=0

′Hn

For n > 0, the space Hn is the state space for a harmonic oscillator with frequency |n|. For n = 0, the space
H0 is not a harmonic oscillator but a free field valued in R/2πRZ. Mathematically, this theory is equivalent
to a quantum particle in a periodic space, so it has a momentum operator p̂ with eigenvalues in 1

RZ. Finally,
we have a part Htop which describes the topology of ϕ. In our case it is decribed by the winding number.
Therefore, we also have the decomposition

H =
⊕
k,l∈Z

H(k,l)

where each H(k,l) decomposes into a restricted tensor product of harmonic oscillators H(k,l),n, with operators

an, a
†
n modifying particle numbers.

The spectrum of the system is usually packaged together into a function called the partition function

Z(β) :=
∑
E

e−βE

where the sum runs over all energy eigenvalues with multiplicity. When β ∈ iR>0, this can be viewed as the
trace of time evolution, i.e.

Z(it) = Tr(e−itH)

The fact that we are using parameter β instead of t is another instance of Wick rotation. In functorial field
theory, this will be the number attached to the torus with fundamental domain [0, 2π]× [0, t]. Our goal is to
compute Z(β) for our system. It is easy to check that the formation of Z(β) preserves algebraic operations,
so we have

Z =
∑
l,m

(
Z[H(l,m),0]

∏
n ̸=0

Z[H(l,m),n]
)

We can compute each term separately. All energies need to be multiplied by ℏ which is absorbed into β

Z[H(l,m),n] =

∞∑
k=0

e−β|n|
(
k+ 1

2

)
= e−

|n|β
2

1

1− e−|n|β

Z[H(l,m),0] = e−
β
2 ((l/R)2+(mR)2)

When we take product over all n ≥ 1, we get the divergent term
∏

n≥1 e
−nβ

2 = exp(−β
2

∑
n≥1 n), but

famously, the sum is equal to − 1
12 , so

Z = e−
β
12

∏
n ̸=0

1

1− e−|n|β

∑
(k,l)

e−
β
2 ((l/R)2+(mR)2) =

1

|η(iτ)|2
∑
(k,l)

q
1
2 ((l/R)2+(mR)2)

In the final expression, β = 2πτ , q = e−2πτ , and η is the Dirichlet η-function. Recall that the partition
function can be viewed as a number attached to a torus with fundamental domain [0, 1] × [0, β]. We can
change the structure of this torus by performing a space shift by τ ′ before gluing time slices t = 0 and
t = β together. The partition function for this torus is still given by the formula above, except now we are
replacing iτ by τ ′ + iτ everywhere. If we had not compactified the target, the partition function would just
be the first part, which is a modular form in τ , i.e. it only depends on the conformal structure of the torus.
Compactification introduces a length scale R, so it is natural that we see the size of the worldsheet too.

The key thing to note is that when R⇝ 1
R , the partition function remains the same, but the contribution

from H(l,m) is now coming from H(m,l). Physically, we have the same theory, except we need to interchange
certain sets of observables. .
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4. Path integral formulation

The theory so far does not appear to be relativistic, since we fixed a decomposition of spacetime. Making
it relativistic actually requires certain normalizing factors for ap and a†p. But it is relativistic since the
observables of the theory are propagators U(x, t; y, t′) (or more generally correlators). This is a complex
number whose norm is the probability density that a field concentrated at space-time coordinate (t, x) evolves
to a field concentrated at (t′, y). This can be computed and shown to satisfy the required properties.

Feynman’s path integral approach makes relativity clear by making propagators the primary objects. The
starting point is a reformulation of the action principle. Keeping the same general set-up, we can consider
two arbitrary spacelike hypersurfaces M0,M1 and ask for the propagator between them. The path integral
action principle states that the field takes all possibilities, weighed by the action

U(ϕ0, ϕ1) =

∫
ϕ:ϕ|Mi

=ϕi

exp

(
− i

ℏ
S[ϕ]

)
Dϕ

We can view this as a linear operator from functions of fields on M0 to functions on fields of M1. As ℏ → 0
in the above integral, only the critical points contribute by the method of stationary phase, so we recover
the classical principle of least action in the classical limit. We can also write the partition function in a
particularly simple form

Z =

∫
exp

(
− i

ℏ
S[ϕ]

)
Dϕ

where the integral is over all fields on M . This is a number as opposed to a function between two function
spaces of fields. IfM is formed by taking its parts “between”M0 andM1 and gluing the end points together,
the partition function is just the trace of the propagator. This is more clearly explained when we talk about
functorial field theory. In particular, from this point of view, the Heisenberg picture only occurs on manifolds
with boundaries.

The issue now is nothing we wrote down made sense. To solve this problem, we apply a Wick rotation: we
change the time variable t to iτ , makingM into a Riemannian manifold. In other words, along the imaginary
time axis, the transition amplitude is ∫

ϕ:ϕ|Mi
=ϕi

exp

(
−S[ϕ]

ℏ

)
Dϕ

The factor of i disappears since we integrated over time for S. The Lagrangian has a quadratic term which
is now positive definite, so we get exponential decay away from the classical path. This is much better than
cancellation coming from rapid oscillation. People who develop stochastic calculus can define the Wiener
measure, which is essentially the non-existent path integral measure weighted by a Gaussian. Using analytic
continuation, we can recover the supposed value of the oscillatory integral. From now on, we will do everything
with a Riemannian metric.

One further subtlety is that the action involves derivatives of ϕ, but the Wiener measure is supported
on nowhere differentiable paths. Let’s not worry about it, but this is how path integral recovers non-
commutativity in the operator picture.

To illustrate how to formally work with them, we re-derive T-duality where the spacetime is a general
Riemann surface Σ with metric gµν . Write ϕ = Rφ, then φ is periodic with period 2π, and the action is

SR[φ] =
R2

4π

∫
Σ

∂µφ∂νφd
2σ

Here d2σ =
√
gdxµdxν is the volume form. We will define a new theory containing three fields which

specialize to the above action for R and 1
R by taking the path integrals in different orders. To explain

this point physically, suppose we are starting with a theory with fields φ,φ′, but we are only interested in
observations involving φ, we can perform an integration over φ′ first and define an effective action

Seff [φ] = − log

∫
S[φ,φ′]Dφ′

The two theories are identical from our point of view since we can’t observe φ′. This is a fundamental process
in physics to derive observable consequences from high energy theories.
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When physicists derive T-duality, they consider the following theory with three fields: φ, θ are two periodic
fields valued in R/2πZ, and A = (A1, A2) is a gauge field valued in R2

S[φ, θ,A] = R2

4π

∫
Σ

(∂µφ+Aµ)(∂µφ+Aµ)d
2σ − i

2π

∫
Σ

Aµϵ
µν∂νθd

2σ

where ϵµν is the tensor ϵ01 = 1, ϵ10 = −1, ϵ00 = ϵ11 = 0. In mathematical language, the field A introduces
the 1-form A = Aµdx

µ, giving rise to a connection on the tangent bundle. The first term is then the inner
product of ∇Aφ with itself. The second term is the integral of A∧ dθ, which is a Lagrange multiplier to “fix
the gauge”. To see what this means, we perform the path integral

∫
Dθ. This again requires keeping track

of topological invariants. Write

dθ = dθ0 +

2g∑
i=1

2πniω
i

where {ω1, · · · , ω2g} ⊆ H1
dR(Σ,R) is the dual basis to a basis {γ1, · · · , γ2g} of H1(Σ,Z). The coefficients ni

describe the induced map θ∗ : H1(Σ,Z) → H1(R/2πZ,Z). They are all integers.
Now the second term of the action is i

2π times∫
Σ

A ∧

(
dθ0 +

2g∑
i=1

2πniω
i

)
= −

∫
Σ

θ0dA+

2g∑
i=1

2πni

∫
Σ

A ∧ ωi

First perform the path integral over all θ0, which is now over all functions Σ → R∫
exp

(
−
∫
Σ

θ0dA

)
Dθ0

By Laplace’s method, this is a measure concentrated at dA = 0, so what we have done is impose this condition
in the original theory. We can write A = df +

∑2g
i=1 aiωi, where f is a function and ai ∈ R. The remaining

action is now
i

2π

∑
1≤i,j≤2g

2πnjai

∫
Σ

ωi ∧ ωj

The “path integral” over the remaining modes is just a sum over all ni ∈ Z. Symbolically, one such sum
looks like ∑

n∈Z

e−ina = 2π
∑
m∈Z

δ(a− 2πm)

Therefore, we have the further constraint that ai ∈ 2πZ, or equivalently, A = dψ for a periodic field ψ. This
can be absorbed into φ to recover the original action. Now, the integral over all fields A is just multiplication
by the “volume” of the space of all fields. Whatever this means, it can be normalized in the end. Therefore,
we have shown that Seff,θ,A[φ] = SR[φ].

On the other hand, we can integrate out φ first and calculate the effective action for θ and A. Note that
a change of variable φ 7→ φ + λ and Aµ 7→ Aµ − ∂µλ leaves the theory invariant, so the integral over φ is
equal to setting φ = 0 and multiplying by a certain normalizing volume term. Now,

Seff,φ[θ,A] =
R2

4π

∫
Σ

AµAµd
2σ − i

2π

∫
Σ

Aνϵ
µν∂µθd

2σ

=
R2

4π

∫
Σ

(
AµAµ − 2i

R2
Aνϵ

µν∂µθ
)
d2σ

The action has a critical point at Aµ = i
R2 ϵ

µν∂νθ. The classical method of stationary phase is exact for the
Gaussian integral, so we assume that it is also exact. Therefore, up to a normalizing constant, we just need
to substitute the critical point into the expression to obtain the effective action

Seff,φ,A[θ] =
1

4πR2

∫
Σ

∂µθ∂µθd
2σ = S 1

R
[θ]

which is the action for the σ-model with a target circle of radius 1
R . This recovers a strong form of T-

duality. Using the relations we have derived between A, θ, φ, one can also show that this duality interchanges
momentum and winding numbers, as seen before.
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5. Functorial field theory

We have seen that it is difficult to make the notion of path integrals rigorous. To take mathematical
advantage of this notion, we will forget the analytic difficulties by axiomatizing the construction.

To start with, suppose we have a manifold M of dimension d + 1 with boundary ∂M = M0 ⊔M1. The
propagator was something sending field configurations on M0 to field configurations on M1, so we have the
following assignments

Md
i ⇝ Hi, i = 0, 1, Md+1 ⇝ f ∈ Hom(H0,H1)

If we have another (d+1)-dimensional manifold M ′ with boundary M1⊔M2, then they can be glued to form
M ∪M1

M ′ with boundary M0 ⊔M2. The propagator should just be a composition of the two propagators,
so we have a functor

Bordd → Vect, Md ⇝ (states), Md+1 ⇝ (propagator)

Definition 5.1. The d-borsim category Bordd is the category with objects given by oriented d-manifolds
(together with ∅) and morphisms Mor(M0,M1) given by (d + 1)-manifolds with boundary M0 ⊔ (−M1). It
has a tensor product given by disjoint union making it a symmetric monoidal category.

We have also seen that physicists like to attach a number called the partition function to a closed (d+1)-
dimensional manifold. To see this in our current point of view, the functor should attach the empty d-manifold
to the 1-dimensional space C, so a closed (d + 1)-manifold is a function C → C, which is a single number.
This can be also seen from a cut-and-paste construction, as we have seen in the case of the torus in our
discussion of T-duality. In the functorial formulation, this defines a function Mor(∅, ∅) → C, so what we are

actually doing is exploiting the monoidal structure of Bordd.

Definition 5.2. A quantum field theory in dimension d is a symmetric monoidal functor from the d-bordism
category (with extra structure) to the category of vector spaces.

This is enough for topological quantum field theory, where the action does not depend on the metric.
Sometimes we want the theory to also depend on additional structures of M such as the metric structure,
as we have seen in the path integral derivation of T-duality. This is reflected by putting the appropriate
structures on objects in Bordd. For example, T-duality is the equivalence of two QFTs on the 1-bordism
category of Riemannian manifolds.


