QUANTUM MECHANICS

1. MOTIVATION

Double-slit experiment: classical prediction is incorrect, particles can be wave-like. See
[Sha80, Ch.3]. Each particle is associated with a wave v, for which |1(x)|? gives the probability
density of finding the particle at x.

2. AXIOMS OF QUANTUM MECHANICS

The axioms will let us fill out the following chart.

Classical mechanics — Quantum mechanics
Particle (x(t),p(t)) |¢e) € A
Momentum P P =—ihV
Position x X mult. op., X¢(x) = z(x)
Hamiltonian ~ H=T+V = £ + V() H=-L2A4+V
{z,p} = [X, P] =ih
Time evolution T = %—?,p = —%—7; ih%mt) = H|{y)

We’ll assume that the Hamiltonian H = T + V has no time dependence. Axioms from
[Tes14]:

2.1. Axiom 1. The configuration space of a quantum system is a complex separable Hilbert
space . The possible states of the system are represented by elements of 7€ that have norm
one.

Usually 7 = L?(RY). The possible states ¢ are called “kets” and often written in bra-
ket notation as |1)), or |¢;) if considering time evolution. The norm squared, |1/|?, gives the
probability density for finding the particle in a certain region S, [ |v(2)|? da.

Some notation involving kets: The inner product is (f|g) = [ fg. Projection onto a state
) is P = [1)(¢|, i.e. Plyp) = [¥)(¢]p). For an orthonormal basis (¢;);, then the identity
can be written I =3, |¢;)(¢;|. For kets |¢)) where it makes sense to talk about ¢(z), there
is the notation (x|¢) = ¥(x), by viewing |z) as Dirac delta.

2.2. Axioms 2/3. (simplified) Observables correspond to self-adjoint operators. The expec-
tation value of an operator A, in the state ¥ € D(A), is

Ey(A4) = (v, Ay) = (Ay, ) € R.

In physics notation, the inner product is written (¢|A|¢). Since A is self-adjoint, there is
the spectral theorem A = fR)\dP)\. When A is unbounded it has to come with a domain
D(A) C A, which will not be discussed here.

The typical observables we are interested in are position, momentum, and total energy. For
this talk these will correspond to the operators X, P, and H in the table at the beginning. A
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2 QUANTUM MECHANICS

crucial observation is that X and P as operators do not commute! Defining the commutator
[X, P]:= XP — PX, we compute for ¢ nice enough,

(z[(XP = PX)|¢) = —ih(z - Vip(x) = V(z¢(x))) = ih(z[¢),
so that [X, P] = ih.

Remark 2.1. Since X P # PX, it is not immediately clear how to quantize classical expres-
sions involving both x and p, like zp or pz. However, one can choose a quantization method

such as Weyl quantization to handle quantization of general symbols a = a(x,p); see [Zwol2,
Ch.4] for the definition.

2.3. Axiom 4. The time evolution is given by a strongly continuous one-parameter unitary
group U(t). The generator of this group is the Hamiltonian H = % + V.

This axiom governs time evolution according to the Schrédinger equation: If the system
starts in the state |¢g) € D(H) at t = 0, then the Schrodinger equation asserts that

0

ma’%} = H|¢y).
The solution is .

[e) = = [abo).

We call U(t) = e~ H the propagator; this is the unitary group in Axiom 4 that governs time
evolution of the quantum system.

Theorem 2.1. Let A be self-adjoint and let U(t) = e, Then U(t) is a strongly continuous
one-parameter unitary group. If 1 € D(A), then lim;_ %(U(t)qb — ) = —iA.

Conversely, we have Stone’s theorem. It gives a one-to-one correspondence between (one-
parameter strongly continuous) unitary groups and self-adjoint operators.

Theorem 2.2 (Stone). Let U(t) be a weakly continuous one-parameter unitary group. Then
its generator A is self-adjoint and U(t) = e~"4,

(Note, weak continuity with the condition limsup [|U(¢)y| < ||U(to)y| implies strong
continuity.) The generator is given by Ay = limy,o L(U(t)y) — ), D(A) = { € H# :
limy 0 2(U ()1 — ¢) exists}.

To compute U(t), then one just needs to know the spectral data of H which determines
e wH by the spectral theorem. Thus we will be interested in solving the so-called time-
independent Schrodinger equation, H|y) = E|v), which is just the eigenvalue equation. While
many quantum systems have continuous spectrum as well, our main focus will be on eigen-
vectors.

Remark 2.2. Physicists usually don’t like to specify the Hilbert space. The Stone—von
Neumann theorem kind of justifies this as long as there is the commutation relation [X, P] =
ih. (See [Hall3] for details.) Morally, if [A, B] = ih and A, B act irreducibly on .7, then A
and B are unitarily equivalent to the position and momentum operators X and P on L?(R).
(There is a similar statement for L?(R™).) This isn’t exactly correct because of domain issues,
in fact we can get counterexamples, but we can fix it by requiring some stronger commutation
relations instead.

Theorem 2.3 (Stone-von Neumann). Let A, B be self-adjoint operators on F satisfying
[A, B] = ih. Suppose they also act irreducibly on 2, i.e. the only closed subspaces of A
invariant under ¢4 and e are {0} and S, and that they also satisfy the exponentiated
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commutation relations listed in [Hall3, Def.14.2/p.284]. Then there is a unitary map U :
A — L*(R) such that

UeitAU—l — eitX
UeitBU—l — eitP'
If A, B do not act irreducibly on 7€, we can decompose F€ as an orthogonal direct sum of

closed subspaces {V}} such that each Vi is invariant under e eB for all t, and there exist
unitary operators U : Vi — L*(R) such that

UleitAUfl _ eitX
=
UleitBU—l _ eitP
;= .
3. EXAMPLES
3.1. Particle in a box. In handwritten notes.

3.2. Tunneling. In handwritten notes. Agmon reference is [Agm82].

4. HARMONIC OSCILLATOR

This mostly follows [Sha80, §7.4-7.5]. The harmonic oscillator Hamiltonian in 1D is

n? 02 , 1 5,
Note that H > 0. We will find all the eigenvalues and eigenvectors of H using the “algebraic
method”. The idea, due to Dirac, is that H ~ P? + X? ~ (X —iP)(X + iP), so we can try

to “factor” the Hamiltonian. Define

mw\ 1/2 . 1 1/2
“= <7ﬁ) X+ (2mwh> P

1/2
fo (ML
@ (25) X=\omon) ©

One can check that [a, aT] =1, so they don’t commute in the “factorization”, but still afa =
%H — %, which leads to the key observation,

H = (aTa—F%)hw.

For convenience, define H := % =ala+ % We want to solve for eigenvalues and eigenvalues,

H|e) = ele), where ¢ is the eigenvalue and |¢) is the corresponding cigenvector. First we will
find the eigenvalues.

4.1. Eigenvalues. Why are a and a' useful? Given an eigenstate of H , the operators a and

al generate other eigenstates. To see this, first it is useful to compute [a, H] = [a, ala + 3=
[a,afa) = a and [af, H] = —a'. Then given an eigenstate |¢), consider the vector ale), and
compute

Hale) = (aH — [a, H))|e) = (aH — a)|e) = (¢ — 1)ale).
Thus ale) is a (possibly unnormalized) eigenvector with eigenvalue € — 1. Letting |¢ — 1) be
a normalized state, then we have ale) = C.le — 1) for a constant C. to be determined later.
Similarly,
Halle) = (a'H — [af, H))|e) = (a'H + al)|e) = (e + 1)a[e),
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so that aT]€> is an eigenvector with eigenvalue € + 1. Thus a is called the lowering operator or
destruction operator, and a' is called the raising operator or creation operator. (They create
or destroy energy hw.)

Now if € is an eigenvalue of f[, thensoaree+1,64+2,...ande—1,6—2,.... But we know
that H > 0, so the bottom ladder chain cannot continue to —oo; there must be some state
|eo) where aleg) = 0, the zero vector. Again using the ladder operators a and af, we can solve
for this eq:

~ ~ 1
aleo) =0 = alaleg) =0 = (H —1/2)|eo) => Hleop) = 5\50%

S0 g9 = % is the lowest energy, or ground state. Thus we know that H has at least the
eigenvalues F,, = (n + 1/2)hw for n € Ny. In fact by finding a full eigenbasis for these
eigenvalues, we will show that this is the entire spectrum of H.

4.2. Eigenvectors. It will be convenient to index the states by n, so that H|n) = (n+1/2)|n),
and |n) is the result of starting in a ground state |0) and applying the raising operator, af,

n times and normalizing. Now we will need to compute these normalizing constants. Recall
aln) = Cy|n —1). Then

Col = llaln)| = (nlaaln)/2 = (n|H —1/20)"/2 = (njnjn)!/2 = n!/2.
By convention, we choose C,, = n'/2 real. The computation for af is similar, and results in
aln) = n'?ln — 1)
atln) = (n+1/2)Y2|n +1)
ataln) = a’n'?ln — 1) = n|n).

Because of the last equation, N = a'a is called the number operator since it returns the state
number n.

Remark 4.1. Assuming that these vectors indexed by n form a basis, this makes it easy

to compute matrix elements of X = (272“))1/2 (a+a') and P = z'(mT“’h)l/2 (af — a) in the

eigenbasis, using for example that (n|a|n) = n'/26,/,_1.

Now we compute the eigenvectors in the position basis and show they form a complete
(Schauder) basis. These will be denoted 1y, (x) = (z|n).
mw

First, we can find the ground state |0). To simplify the constants, let y := (—)1/ ?2. Then

h
a= %(y + 8%) and af = %( - 8%) (since a% is anti-hermitian). Letting ¢o(x) = (x|0), the

equation a|0) = 0 becomes,

(y + ;y) Yo(y) =0

ai/wo(y) — yo(y)

mw > /4 mwa?
—_— e 2h
mh

— doly) = Ce ™2 = (

Since

In) = WIW
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then

(41) o) = ol = i |55 (=55 )| () e

The Hermite polynomials are defined by
n
e (-

and the first few Hermite polynomials are

They satisfy the recurrence relation H,,1+1(y) = 2yH,(y) —2nH,_1(y). The eigenfunctions v,
in (4.1) are then Hermite polynomials times 6_3”2/2, which span D := span(xke_z2/2, k € Np),
with just finite linear combinations. To show the orthonormal system of eigenfunctions is a
basis for L2(R), we show D is dense, which also shows that if (¢[t,) = 0 for all n € Ny, then
©=0. Let o € D+, so (1)) = 0 for all 9p € D. Then

/‘p(ﬂf)xke_xQ/Q dx =0, VkeNp.

—2?/2 jg

R - o [ S i
7=1

by dominated convergence, so @(x)e*xz/ 2 =0and ¢ = 0. Thus the eigenfunctions in (4.1)
form an orthonormal (Schauder) basis for L?(R).

The Fourier transform of @(x)e

4.3. Propagator. Now that we know an eigenbasis for H, the propagator is

U(t) _ ef%H _ Z efi(n+1/2)wt’¢n><wn|'

n=0
This sum is difficult to evaluate, but we will later obtain an easy formula from the path

integral method. One can also compute e~ i by computing the heat kernel (z|e~*|y) using
the Feynmann—Kac formula, then plugging in ¢ — it.
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