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Everything here is based on the book [Arn78] by V. I. Arnol’d.

1 Newtonian mechanics

Studies the time evolution of systems of point particles in 3D space under a
potential. This section is based on the content of [Arn78, Chapter 1].

1.1 Basic principles

• (Space and time) Space is 3D and time is 1D.

The universe is a 4-dimensional affine space A4 and there is an affine linear
submersion t : A4 → A1 called time.

• (Inertial frames and Galilean relativity) There is a class of coordinate
systems called inertial frames such that the laws of physics are the
same in all of these at all times. The observer of any inertial frame differs
from the observer of any other by a uniform straight line motion.

There is a distinguished collection of coordinate systems A4 ' R1
t × R3

x

(identifying A1 with R1
t via the coordinate projection) such that any two

are related by an element of the group generated by

(t, x) 7→ (t+ t0, x) (1)

(t, x) 7→ (t, x+ x0 + tv0) (2)

(t, x) 7→ (t, Gx) (3)

where t0 ∈ R1, x0, v0 ∈ R3 and G ∈ SO(3). This symmetry group, called
the Galilean group, is a 10D Lie group.

• (Newton’s determinacy) The initial state of a system (i.e. the collection
of initial positions and initial velocities) completely determines the states
of the system for all time.

If the system has N particles and, in an inertial frame, their trajecto-
ries are given by x(t) = (x1(t), . . . , xN (t)), then there exists a (smooth)
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function F : R3N
x × R3N

v × R1
t → R3N

x such that Newton’s law

ẍ(t) ≡ F (x(t), ẋ(t), t) (4)

is obeyed. If this system is closed (e.g. represents the whole universe),
then Galilean invariance shows that we must have, for all t ∈ R1, x, v ∈
R3N and A ∈ SO(3),

F (x, v, t) = F (x, v) (5)

F (x, v) = F ({xi − xj}j<k, {vi − vj}j<k) (6)

F (Ax,Av) = AF (x, v) (7)

1.2 Some examples

Example 1 (Falling from a great height) Use x > 0 to denote the height of
the object of mass m above the earth’s surface. Then, using Newton’s law of
gravitation (experimental), we have

mẍ = − GMm

(R+ x)2
= −mg R2

(R+ x)2
(8)

where we note the (experimental) values

G ≈ 6.67× 10−11 Nm2/kg2 (9)

M ≈ 6× 1024 kg (10)

R ≈ 6.4× 106 m (11)

g =
GM

R2
≈ 9.8 m/s2. (12)

We would like to write the right side in terms of a potential function U(x), i.e.,
ẍ = −U ′(x). For x � R, we can take the potential to be U(x) = gx. For

general x, we can take the potential to be U(x) = − gR2

R+x . Note that the total
mechanical energy (kinetic + potential)

E = m( 1
2 ẋ

2 + U(x)) (13)

remains conserved throughout. If the object thrown with initial velocity v es-
capes to infinity (and has velocty v′ there), then

1

2
v2 − gR =

1

2
v′2 ≥ 0 (14)

which allows us to calculate the escape velocity

v0 =
√

2gR ≈ 11.2 km/s. (15)

Example 2 (mass on a spring) If a body of mass m is attached to a spring and
the spring is extended by a small amount x, then (experimentally)

mẍ = −kx (16)
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for some constant k > 0 characteristic of the spring (with units N/m). As
above, we introduce the potential function U(x) = 1

2kx
2 and find that the total

mechanical energy

E = 1
2mẋ

2 + 1
2kx

2 (17)

remains conserved. Introducing ω2 = k/m, we can solve the equation explicitly
to get x = A cos(ωt + ϕ) for some constants A > 0 (called the amplitude),
ϕ ∈ R/2πZ (called the phase) determined by the initial conditions. This motion
is sometimes called a simple harmonic motion.

1.3 Conservative mechanical systems

More generally, if for a mechanical system of N particles of masses m1, . . . ,mN ,
Newton’s law can be written as

miẍi = −∇xi
U (18)

for some function U = U(x) = U(x1, . . . , xN ) called the potential, then we say
that the system is conservative. We will mostly concentrate on conservative
systems. Introducing the total mechanical energy

E(x, ẋ) =

N∑
i=1

1
2miẋ

2
i + U(x1, . . . , xN ) (19)

we find that for a solution x = x(t) of Newton’s equation we have

d
dtE(x(t), ẋ(t)) =

∑N
i=1(miẍi +∇xi

U) ≡ 0 (20)

and thus, energy is conserved.

2 Solving the equations of motion

Solving Newton’s equation, also called the equations of motion, explicitly is very
hard except in some special but important cases. We study some of these cases
here. This section is based on [Arn78, Chapter 2].

2.1 Systems with one degree of freedom

If Newton’s equation takes the form ẍ = f(x) for some function f : R → R
called the force, then we say that the system has one degree of freedom. As
usual, we can introduce the kinetic energy

T = 1
2 ẋ

2 (21)

and the potential energy

U(x) = −
∫ x

x0

f(ξ) dξ. (22)
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Based on Newton’s principle of determinacy, if we consider the phase space
R2
x,y of all possible intial conditions (x(0), y(0) = ẋ(0)) of the system, then we

have a flow ϕt on this space determined by the vector field (x, y) 7→ (y, f(x)).
This is called the phase flow. For a solution x = x(t) of Newton’s equation,
we have

(x(t), ẋ(t)) = ϕt(x(0), ẋ(0)). (23)

By conservation of energy, the flow lines are confined to the energy level sets

1
2y

2 + U(x) = c. (24)

Equilibrium points are those points of the phase space where this vector field
vanishes (in particular, the velocity y at such a phase point is zero).

By the implicit function theorem, each energy level set is smooth curve near
any non-equilibrium point. This means that the qualitative study of trajectories
is essentially reduced to studying energy level sets.

For example, the phase plane of ẍ = −x is shown below [Arn78, Figure 9].

For a more interesting example, consider the following [Arn78, Figure 10].
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Using the conservation of energy, we can write

ẋ = ±
√

2(E0 − U(x)) (25)

where E0 is the energy level of the trajectory. This allows us to find the depen-
dence of x on t by integration.

For example, suppose that we have a trajectory x(t) on an energy level E0

and satisfies x(t0) = x0 and x(t1) = x1 on some time interval [t0, t1] on which
the motion is in the direction of increasing x. Then, separating variables and
integrating gives the time duration of the path from x0 to x1:

t1 − t0 =

∫ x1

x0

dx√
2(E0 − U(x))

. (26)

The concept of phase space and phase flow of course make sense even when
there is more than one degree of freedom.

2.2 Motion in a central field

We look at a unit mass particle moving in the plane R2 under the influence of
a central field, i.e.,

ẍ = −∇xU, U = U(r). (27)

where r, ϕ are polar coordinates on R2. Introduce the orthonormal frame

er = (cosϕ, sinϕ), eϕ = (− sinϕ, cosϕ). (28)

Then, for a path x = x(t), written in polar coordinates as (r(t), ϕ(t)), we verify
that

ẋ = ṙer + rϕ̇eϕ (29)

ẍ = (r̈ − rϕ̇2)er + (2ṙϕ̇+ rϕ̈)eϕ. (30)

and for a trajectory, the equations of motion become

r̈ − rϕ̇2 = −U ′(r) (31)

2ṙϕ̇+ rϕ̈ = 0 (32)

The second equation says that the angular momentum M = r2ϕ̇ is conserved.
Said differently, the particle sweeps out equal areas in equal times – this
is Kepler’s 2nd law originally derived by careful observation. Using the conserved
quantity M , we can rewrite the first equation of motion as

r̈ = −V ′(r) (33)

by introducing the effective potential energy V (r) = U(r) + M2

2r2 . This
reduces us to the case of one degree of freedom!

Using this reduction, we can derive the elliptical orbits of planetary motion
with the gravitational potential function U(r) = −kr . See [Arn78, Section 8E]
for the details.
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3 Lagrangian mechanics

Describes the motion of a mechanical system using a configuration space (a
manifold) and a Lagrangian function (defined on the tangent bundle of this
manifold). The resulting equations of motion are invariant under the action of
the diffeomorphism group of the configuration manifold. This section is based
on [Arn78, Chapters 4 and 5].

3.1 Euler–Lagrange equations

Let M be a smooth manifold and let L : TM × Rt → R be a smooth function
called the Lagrangian. It is customary to denote local coordinates on M by q
and the induced local coordinates on TM as (q, q̇). Write L = L(q, q̇, t).

This notation can be quite confusing when q̇ can be mistaken for the time
derivative of q in which case it doesn’t appear as an independent variable. We
will try to avoid this ambiguity though physics texts typically do not bother.

Given a path γ : [t0, t1] → M , with x0 = γ(t0) and x1 = γ(t1), define the
action of the path γ to be the quantity

L[γ] =

∫ t1

t0

L(γ(t), γ̇(t), t) dt. (34)

Regard L as a functional on the space P of all smooth paths [t0, t1]→M with
fixed boundary conditions ti 7→ xi for i = 0, 1. We want to characterize critical
points γ of this functional.

We have TγP = Γ∗([t0, t1], γ∗TM) where Γ∗ indicates smooth sections van-
ishing on the boundary, i.e., {t0, t1}. Then, the linearization

δL[γ] : TγP → R (35)

is determined by how it acts on sections η which are supported on (sufficiently
small) closed subintervals [a, b] ⊂ [t0, t1] and vanish at a and b. For simplicity,
we do the computation after replacing [t0, t1] by such a subinterval over which
γ maps into a coordinate patch in M with local coordinate q. Let η ∈ TγP. We
compute in local coordinates

δL[γ]η =

∫ t1

t0

(
∂L

∂q
(γ, γ̇, t) · η +

∂L

∂q̇
(γ, γ̇, t) · η̇

)
dt (36)

=

∫ t1

t0

(
∂L

∂q
(γ, γ̇, t)− d

dt

(
∂L

∂q̇
(γ, γ̇, t)

))
η dt (37)

where we integrated by parts and used η(ti) = 0 for i = 0, 1. Thus, γ is a critical
point if and only if

∂L

∂q
=

d

dt

(
∂L

∂q̇

)
(38)

along γ in some (and therefore all) local coordinates q. This is called the Euler–
Lagrange equation associated to the functional L. This coordinate invariance
is very useful in practice.
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3.2 Hamilton’s principle of least action

Motions of mechanical systems coincide with critical points of the
action functional L where we take L = T − U . Here, T is the kinetic
energy and U is the potential energy (which depends only on q and not q̇).

Indeed, in Cartesian coordinates, writing L =
∑N
i=1

1
2miẋ

2
i − U(x1, . . . , xN )

Then, the Euler–Lagrange equations reduce to Newton’s equations

miẍi = −∇xi
U. (39)

Probably better to call it something like “the principle of extremal action”
but “least action” is the customary name. The key point of formulating the
laws of motion in this way is that the Euler–Lagrange equations are indepen-
dent of coordinates and thus, we can choose good coordinate systems (e.g. to
take advantage of known conserved quantities). Some standard terminology in
mechanics is recorded below for later reference.

• L: the Lagrangian,

• qi: generalized coordinates,

• q̇i: generalized velocities,

• pi = ∂L
∂q̇i

: generalized momenta,

• Fi = ∂L
∂qi

: generalized forces,

•
∫ t1
t0
L(q, q̇, t) dt: action,

• dpi
dt = Fi: Lagrange’s equations.

A generalized coordinate qi is called cyclic if the Lagrangian doesn’t depend
on it, i.e., the corresponding generalized force Fi = ∂L

∂qi
vanishes. If qi is cyclic,

then the corresponding generalized momentum pi is conserved along motions of
the system.

3.3 Legendre transform

Let y = f(x) be a smooth convex function, i.e., f ′′(x) > 0. We construct
new function g = g(p) called the Legendre transform of f as follows. De-
fine F (p, x) = xp − f(x). Given p, find the point x = x(p) where f ′(x) = p
(equivalently, F (p, x) has a maximum here) which is unique if it exists. Define
g(p) = F (p, x(p)). See below [Arn78, Figure 43].
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The key example for us is f(x) = 1
2mx

2 and g(p) = p2

2m . It’s a fact that
the Legendre transform applied to a convex function yields a convex function
and applying it twice results in the original function. We also have Young’s
inequality almost by definition

px ≤ f(x) + g(p) (40)

for all x, p.
For many variables, there are analogous definitions. Explicitly, consider any

smooth convex function f : V → R on a vector space V and suppose that
f ′ : V → V ∗ is bijective (and therefore a diffeomorphism by convexity). Define
F (p, x) = 〈p, x〉 − f(x) for p ∈ V ∗ and x ∈ V . Then, for any p ∈ V ∗, we define
g(p) = F (p, x(p)), where x(p) is the unique point satisfying f ′(x) = p.

The important point for us is that one-half of a positive definite quadratic
form (i.e., corresponding to an inner product) on V is sent by the Legendre
transform to one-half of the quadratic form corresponding to the dual inner
product on V ∗.

3.4 Hamilton’s equations

By a Legendre transform, we convert Lagrange’s equations ṗ = ∂L
∂q (with p =

∂L
∂q̇ ) to Hamilton’s equations which are much more symmetric.

3.4.1 Derivation

Work in generalized coordinates q ∈ Rn. Assume that the Lagrangian function
L = L(q, q̇, t) is convex as a function of q̇ (and that the equation p = ∂L

∂q̇

determines q̇ as a function of p, q, t).
The Legendre transform of L with respect to q̇ is the function H = H(p, q, t)

given by the formula

H(p, q, t) = pq̇ − L(q, q̇, t) (41)

where we express q̇ as a function of p, q, t via the relation p = ∂L
∂q̇ . Now, compute

dH as the total differential of pq̇ − L to get

dH = q̇ dp+ p dq̇ − ∂L

∂q
dq − ∂L

∂q̇
dq̇ − ∂L

∂t
dt (42)

= q̇ dp− ∂L

∂q
dq − ∂L

∂t
dt (43)

which gives

∂H

∂p
= q̇,

∂H

∂q
= −∂L

∂q
,

∂H

∂t
= −∂L

∂t
. (44)
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Thus, if Lagrange’s equations ṗ = ∂L
∂q are satisfied by a path q(t) then the system

q̇ =
∂H

∂p
(45)

ṗ = −∂H
∂q

(46)

called Hamilton’s system of equations is satisfied by the corresponding path
(q(t), p(t)). Conversely, given a solution (a(t), b(t)) of Hamilton’s equations, we
must verify the identity

b(t) =
∂L

∂q̇
(a(t), ȧ(t), t) (47)

to establish the equivalence of Lagrange’s and Hamilton’s equations.
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