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1. Mechanics to Supersymmetry Bootcamp

We start by establishing some common vocabulary, and gaining some intuition about the
physicist’s mindset. As you might have seen, the word “quantization” has many meanings,
and the various meanings are related by loose reasoning. In this seminar, whenever someone
presents a“theory”, classical or quantum, we want to know with some precision what we’re
talking about. So our definition of a “quantum theory” will be one of the following: (1)
states and operators, (2) path integral, (3) functorial field theory. As physicists do, we will
learn how to use the one that’s most convenient given a particular situation, and see that
the transferring between perspectives sometimes gives/recovers interesting math.

(1) Introduction to classical mechanics (Eric). Introduce Lagrangian and Hamil-
tonian formulations of mechanics. Symmetries and Noether’s theorem, Euler-Lagrange
equations, symplectic/Poisson manifolds, the moment map, and symplectic reduction
(see, for example, Chapters 3,4,8 of [Arn74], and any other parts that interest you
or seem salient). Compute your favorite example to illustrate these concepts (e.g.
planetary motions).

(2) Introduction to quantization (Laura). Basic setup of quantum mechanics in the
Schrödinger and Hamiltonian pictures. Solve the harmonic oscillator completely, and
explain the role of the creation/annihilation action. Solve two finite square wells and
explain tunneling. For these examples you can look at Sections 2.3 and 2.6 in [Gri95];
the burden is to summarize the book (which is written for physics undergrads) using
these examples in math words.

(3) From particles to fields (Leo). “Classical fields are maps”. “Define” the path
integral for QFT (see Wikipedia and Chapters 2 and 3 of [Ski18] for inspiration) and
explain how this leads to the definition of functorial field theory (for example [Ati89]).
Explain basic examples of (1+1)-dimensional theories. Consider (1+1)-dimensional
theory of a scalar field on Σ = S1 ×Rt. Decouple into harmonic oscillator and solve.
Consider the same theory with target a circle of radius R, and exhibit T -duality in
this case. See Sections 11.1 and 11.2 of [HKK+03]. Optional: algebraic structure
of a (1 + 1)-dimensional theory, Dijkgraaf-Witten theory (finite gauge theory), and
Verlinde’s formula.

(4) The path integral (Shaoyun). The goal is to relate the nonrigorous path integral
to some of its rigorous manifestations in math. Explain the method of stationary
phase, and the meaning of semiclassical limit. Explain the relation with things like
Morse complex (Section 3 of [Wit82]) and Atiyah-Bott localization [AB84], highlight-
ing the role of symmetries that make the path integral rigorous.

(5) Electricity and magnetism (Linus). Start fromMaxwell’s equations (see Wikipedia)
and end up with U(1) Yang-Mills theory (in (3+1)-dimensions). What are its observ-
ables? Explain as many fancy perspectives of electric-magnetic duality as possible:
Fouier(-Mukai) transform, mirror symmetry of Hitchin moduli space, (abelian) Hodge
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theory. See Chapter 4 of [BZ21]. This talk will be swapped with talk (6), it will be
okay.

We saw that the path integral picture has an advantage of making symmetries of the
physical system manifest. Supersymmetry is just another type of symmetry, but it rotates
bosonic fields and fermionic fields into each other. This feels physically unlikely/unmotivated,
and it maybe is lol. But from a mathematical perspective we will see that many structures
we already know/want to know can be understood via SUSY theories.

(6) Witten’s Morse theory. Introduce supersymmetric quantum mechanics as the de
Rham complex, the Witten index and Chern-Gauss-Bonnet. Dirac operators, Dirac
spinors (at least in 4-dimensions), and a plausibility argument for the Atiyah-Singer
index theorem. See [Wit82], [AG83], and Chapter 3 in [Ton22b].

(7) Supersymmetry algebra. Define the supersymmetry algebra (SUSY) (with em-
phasis on dimension 4). Explain how to construct representations of SUSY and how
to build some of its representations, maybe with various other smaller dimensions
and number of supersymmetries for intuition. All of this can be found in [Ton22a],
but we have to translate it into math words. Relation with Hodge theory in the
Riemannian and Kähler cases. Start building any SUSY theory in a dimension of
your choice, you are allowed to fail, but the important thing is to point out what are
the necessary ingredients.

(8) Supersymemtric Maxwell theory. How to build a supersymmetric U(1) gauge
theory in dimension 4? Explain what twists mean, and single out what people call the
A-twist and B-twist. Explain the relationship with geometric Langlands (or geometric
class field theory in this case), in the sense of Kapustin-Witten/Elliott-Yoo.

(9) 2d supersymmetric sigma model. How to build a 2d supersymmetric sigma
model? Explain Witten’s A/B-twists, and how it leads to mirror symmetry at
the level of Gromov-Witten invariants and holomorphic periods. A good source is
[Wit98], but if you know of a more mathematical source please let me know.

2. Geometric Langlands

Now that we have some basic picture of supersymmetric theories, we spend the rest of our
time this semester (or maybe it will be the first thing we do next semester) looking at one spe-
cific supersymmetric theory: geometric Langlands. The main source here is um...Kapustin-
Witten [KW07], and I found Elliot-Yoo’s more algebraic interpretation also useful [EY18].

(10) Geometric Langlands I: compactification and SYZ. Start with a 4d super-
symmetric gauge theory with gauge group G. Explain compactification, and argue
that compactification along a Riemann surface produces a 2d supersymmetric sigma
model with target the Hitchin moduli space. State the hyperkähler properties of the
Hitchin moduli space, and SYZ mirror symmetry picture that leads to categorical
Langlands.

(11) Geometric Langlands II: branes and operators. Introduce type BBB and type
BAA branes, which are most relevant for number theory. Introduce Wilson and ’t
Hooft operators, and their eigenbranes. Try to be as sympathetic to number theorists
as possible.
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