
3

The Ptolemaic universe

Hipparchus

Hipparchus, who lived in the second century BC,
1

built an observatory and
performed most of his work on the island of Rhodes and was perhaps the
greatest astronomer of antiquity. He used observations to produce geometrical
models with real quantitative predictive power. His theory of the motion of the
Sun was extremely accurate and he produced a model for the Moon that worked
well at new and full moons, thus enabling him to produce a theory of eclipses
which, in the case of lunar eclipses, was very successful.

All of Hipparchus’ works are lost except for his relatively unimportant Com-
mentary on the Phaenomena of Eudoxus and Aratus,

2
though Ptolemy quotes

his work often, sometimes verbatim. We also know of Hipparchus’ work on
the Sun through an introduction to astronomy written in AD first century by
Geminus of Rhodes. Part of the reason for the lack of extant work by Hipparchus
may well be the fact that Ptolemy’s subsequent writings superseded those of
his predecessor so totally, just as the existence of Euclid’s Elements rendered
obsolete all previous works on geometry.

Hipparchus attempted to use the eccentric circles and epicycles of Apollonius
to develop models for the motion of the heavenly bodies that, in contrast to
Babylonian theories, would enable future positions to be calculated for all
times. For the Sun and the Moon he found that he could use just one such
device, but for the planets he needed to combine the two. He was a great

1
Ptolemy refers to observations made by Hipparchus between 161 and 126 BC.

2
In about 275 BC, Aratus of Soli wrote a very popular poem (the Phaenomena, inspired by a
more technical, but now lost, work of Eudoxus) describing the risings and settings of stars and
weather signs in both heavenly and natural phenomena. It was later translated into Latin and
remained widely read for over 1000 years. Kidd (1997) contains a translation and commentary.
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52 The Ptolemaic universe

observational astronomer who improved the design of the instruments used for
observing the skies and used these instruments to compile a catalogue of about
850 stars.

As we have seen, quantitative calculations that arose from astronomical
problems often involved the solution of triangles, and it was for this reason that
the subject of trigonometry developed. In fact, trigonometry did not become
a branch of mathematics separate from astronomy until the fifteenth century.
Hipparchus, who is considered to be the founder of trigonometry, constructed
a table of chords (equivalent to a table of sines) though we do not know how
he did this.

3
He subdivided the circle into 360◦, an idea introduced into Greek

astronomy from Babylonia through the work of his contemporary, Hypsicles of
Alexandria.

One of Hipparchus’ greatest achievements was his discovery of the preces-
sion of the equinoxes. He discovered that the points at which the ecliptic crosses
the celestial equator move slowly with respect to the stars. He was able to do
this because Babylonian astronomical data became available in the Greek world
and he examined systematically old observations and compared them with his
new ones in order to discover changes that were too slow to be detected by
astronomers using only data gathered during their own lifetimes. The arrival of
large quantities of data covering observations made over many centuries helped
transform Greek astronomy. It was now possible to take the geometrical mod-
els that had been developed and use them to produce procedures for accurate
quantitative prediction. The work of Hipparchus, based as it was on a merging
of Greek and Babylonian approaches, marks the transition between qualitative
and quantitative mathematical astronomy.

4

Hipparchus’ contributions to astronomy were enormous. In the words of the
French astronomer J.-B. J. Delambre:

When we consider all that Hipparchus invented or perfected, and reflect upon the
number of his works and the mass of calculations which they imply, we must regard
him as one of the most astonishing men of antiquity, and as the greatest of all in the
sciences which are not purely speculative, and which require a combination of
geometrical knowledge with a knowledge of phenomena, to be observed only by
diligent attention and refined instruments.

5

3
Toomer (1974) contains a plausible reconstruction. Ptolemy also constructed a table of chords
and his method is preserved. This will be described later.

4
Babylonian arithmetical methods continued to be used in the Greek world right up to Ptolemy’s
time. Indeed, Hipparchus used them to compute both solar and lunar longitudes while
developing his geometrical schemes (see Jones (1991a)).

5
Delambre L’histoire de l’astronomie ancienne, I (1817). Translation from Berry (1961).
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The distances of the Sun and Moon 53

This is probably a bit over the top. Delambre tends to credit Hipparchus with
things that most modern scholars attribute to his successor, Ptolemy.

The distances of the Sun and Moon

In On Sizes and Distances, a work described by Pappus of Alexandria in his
commentary on Ptolemy’s Almagest, Hipparchus calculated the distances of the
Sun and Moon from the Earth, measured in Earth radii. His method was based
around the concept of diurnal solar parallax.

Just like the stellar parallax in a heliocentric universe (see Figure 2.6, p. 40),
the diurnal parallax is the change in the apparent position of an object (in this
case the Sun) as a result of the position of the observer. With stellar parallax it
is the position of the Earth in its orbit that causes the difference, whereas for
diurnal parallax it is the position of the observer on the Earth that is the cause.
Thus, the longitude of the object O in Figure 3.1 (which can be thought of as a
view from the celestial north pole) differs depending upon whether it is viewed
from P1 or P2, two points at different positions on the Earth. Two observers are
not required to determine this difference, however, since the object O takes part
in the daily rotation of the heavens and its longitude will thus be affected by the
time of day at which measurements are taken. Thus, if one makes observations
of the sun 6 h apart, for example, the longitudes will not differ by the amount
due to the motion of the Sun alone (which can, in principle, be calculated), but
there will be a small error (the angle marked in the diagram) corresponding to
the diurnal parallax. The solar parallax is a direct measurement of the distance
of the Sun from the Earth in terms of the size of the Earth – the greater the
distance of the Sun the smaller the parallax – but unfortunately Hipparchus was
unable to measure it due to its very small magnitude.

While it is true that Hipparchus could not measure any solar parallax, he knew
this did not mean it did not exist. Accordingly, he assumed a solar parallax of 7′,
on the basis that if it were bigger he would be able to measure it. From Figure 3.1,

E

Fig. 3.1. Diurnal parallax.
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54 The Ptolemaic universe

b a

Fig. 3.2. Hipparchus’ method for determining the relative distances of the Sun and Moon.

we see that if the marked angle is 7′, the distance to the Sun is 1/ tan 7′ ≈ 490
Earth radii, and this is the value Hipparchus used. He then obtained, using data
from lunar eclipses, a lunar distance of 67 1

3 Earth radii (which is just over 10
per cent too big) and hence, a ratio of the Sun’s distance to the Moon’s distance
of about 7 1

4 (which is worse than Aristarchus’ estimate). He also obtained the
lunar and solar radii as 1

3 and 2 1
3 Earth radii, respectively, the former being

quite close to the modern value of 0.27, although the latter is about 50 times
too small.

The method Hipparchus used is described by Ptolemy and is illustrated
in Figure 3.2.

6
The centres of the Sun, Moon and Earth are S, M and E ,

respectively, and the point G is on SH such that |EG| = |E M |. The lines S A,
MC and E D are all perpendicular to SH and intersect the circles representing
the Sun, Moon and Earth in A, C and D, respectively. The lines ADH and AC E
are then good approximations to the lines tangent to the Sun and Earth, and Sun
and Moon. The angle β (the apparent radius of the Moon) was determined
through observation, and then Hipparchus determined the length of the Earth’s
shadow from the length of lunar eclipses. He took α/β = 2 1

2 , where previously
Aristarchus had used 2.

It is convenient to work in units of Earth radii so that |E D| = 1. First, we
note that in reality α and β are very small, so that to a good approximation
α/β = tan α/ tan β = |FG|/|MC |. Now, M B, E D and FG are parallel so
that |M B| + |FG| = 2|E D| = 2, and, hence,

|BC | = |M B| − |MC | = 2 − |FG| − |MC | = 2 −
(

α

β
+ 1

)
|MC |.

(3.1)

Finally, we use similar triangles to obtain the result

1

|BC | = |E A|
|C A| = |E S|

|M S| = |E S|
|E S| − |E M |

6
Ptolemy Almagest, Book V, 11. Further details can be found in Swerdlow (1969).
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The motion of the Sun and precession 55

from which, using Eqn (3.1) and |MC | = |E M | tan β ≈ |E M | sin β, we obtain

|E S| = |E M |(
α
β

+ 1
)

|E M | sin β − 1
.

This expression is rearranged easily so as to give |E M | in terms of |E S|. Hip-
parchus substituted into this expression the vales |E S| = 490, β = 0; 16, 37◦

and α/β = 2 1
2 , from which he obtained the result |E M | = 67 1

3 Earth radii.

The motion of the Sun and precession

Perhaps Hipparchus’ greatest contributions concerned the motion of the Sun. In
On the Length of the Year he claimed that the length of the tropical year (the time
between identical equinoxes or solstices) was constant, and he measured it at
365 + 1

4 − 1
300 days (365 days 5 h 55 min 12 s) which exceeds the modern value

by about 6 1
2 minutes but, nevertheless, represents a significant improvement

over the previous value of 365 1
4 days. This probably was done by taking the

Babylonian value for the synodic month (i.e. 29; 31, 50, 8, 20 days) and using
the approximate equality given by the Metonic cycle (i.e. 19 years = 235
months) and then checking the result with observations.

7

Hipparchus was the first to attempt to calculate the parameters needed for
the eccentric circle theory of Apollonius to agree with observations of the
Sun’s position, and his model of the solar motion, and the basic principles by
which the parameters for the model were deduced, remained standard until the
seventeenth century. The success of Hipparchus’ solar model was due to being
mathematically simple and yet very accurate. Provided the parameters in the
model are calculated accurately, the errors in the predicted solar longitudes
will not be detectable from naked-eye observations. Hipparchus’ method for
determining the parameters is illustrated in Figure 3.3, in which E is the Earth
and the Sun S rotates around an eccentric circle centre O with an angular speed
of ω = 1 revolution per year ≈ 59′ 8′′ per day. The points P1, P2, P3, and P4

represent the position of the Sun at the vernal equinox, the summer solstice, the
autumnal equinox and the winter solstice, respectively. In order to be able to use
the model to compute the position of the Sun, we need to calculate the longitude
λ of the apogee A of the orbit of the Sun (the apogee is the point on the orbit
furthest from the Earth), which we choose to measure from the vernal equinox,
and the ratio of the eccentricity |E O| to the radius |O S| of the orbit of the Sun.

7
See Swerdlow (1979).
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56 The Ptolemaic universe

a a

b

b

l

Fig. 3.3. Hipparchus’ solar theory.

The technique Hipparchus used to do this can be described using modern
trigonometry as follows. First, consider the triangles E O P1 and E O P2. The
sine rule gives

|O P1|
sin λ

= |O E |
sin α

and
|O P2|
cos λ

= |O E |
sin β

.

From these equations it follows, since |O P1| = |O P2| = |O S|, that

tan λ = sin α

sin β
and

|E O|
|O S| = sin α

sin λ
. (3.2)

To obtain λ and |E O|/|O S| from these equations, Hipparchus needed to know
the time between the vernal equinox and the summer solstice and that between
the summer solstice and the autumnal equinox, and from his observations he was
able to improve the known values for the lengths of the seasons. He measured
the time taken for the Sun to travel from P1 to P2 as 94 1

2 days and from P2

to P3 as 92 1
2 days (the times from P3 to P4 and from P4 to P1 being 88 1

8 and
90 1

8 days, respectively). Hence, since � P1 O P2 = α + β + 90◦ and � P2 O P3 =
α − β + 90◦,

α + β + 90◦ = 189ω

2
and 2α + 180◦ = 187ω,
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The motion of the Moon 57

simultaneous equations that can be solved for α and β. Finally Eqn (3.2) can
be used to obtain the needed parameters. Hipparchus obtained the values

λ = 65◦ 30′ and
|E O|
|O S| = 1

24

which, given the rudimentary trigonometry at his disposal, are fairly impressive
(65◦ 25′ 39′′ and 1/24.17 are more accurate solutions to the equations). Modern
computations show that in Hipparchus’ time the true value of the longitude of
the Sun’s apogee was nearer to 66◦.

8

Hipparchus made another hugely significant discovery concerning the Sun’s
motion. By comparing his own observations of the longitudes of certain stars
with those made by Timocharis some 150 years previously, he discovered the
phenomenon now known as the ‘precession of the equinoxes’.

9
He noticed that

the sidereal year (the time for the Sun to return to a particular fixed star) was
slightly greater than the tropical year, and attributed this to a slow rotation of
the stars, from west to east, about the poles of the ecliptic. A consequence of
this is that the positions of the equinoxes on the celestial sphere gradually shift
with time. According to Ptolemy,

10
Hipparchus gave the value of this motion

as 1◦ per century (and Ptolemy used this value), although the actual value is
about 1◦ every 72 years. This numerical inaccuracy was to have a significant
influence over subsequent theories since, when precession was measured more
accurately about 1000 years later, the differing values led many astronomers to
believe that the rate of precession was a variable quantity.

The motion of the Moon

The motion of the Moon is much more complex than that of the Sun and it
cannot be described by a simple eccentric circle mechanism. The reasons for
this were known to Hipparchus and are stated by Ptolemy:

11
they are that first

the Moon moves with varying speed in such a way that over the course of time it
achieves its maximal speed for every value of its longitude λ, and, second, that

8
More details of how Hipparchus arrived at his solar model can be found in Jones (1991b), and
Maeyama (1998) has analysed the effect of observational errors on the underlying parameters
and hence on the predictions of the model. According to Jacobsen (1999) the maximum error
in Hipparchus’ theoretical values for the Sun’s longitude was about 22′.

9
A theory developed in the 1920s that credits the Babylonians with the discovery of precession
was shown to be false by Neugebauer (1950).

10
Ptolemy Almagest, Book VII, 2. Ptolemy stated that Hipparchus wrote a work (now lost)
entitled On the Displacement of the Solstitial and Equinoctial Points. Surprisingly perhaps,
Hipparchus’ discovery was mentioned by only a few Greek writers (see Dreyer (1953),
p. 203); it took on a much greater significance in later centuries.

11
Ptolemy Almagest, Book IV, 2.
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58 The Ptolemaic universe

the Moon does not move on the ecliptic, but instead has latitudes which vary
between ± 5◦ of the ecliptic in such a way that the Moon achieves its maximal
latitude for every value of λ. It is a simple matter to see that a model like that used
by Hipparchus for the Sun will lead always to the maximal speed occurring for
the same value of the longitude (at the perigee – the point on the orbit closest
to the Earth) and so cannot account for the first of these observations. The
second observation suggests that the orbit of the Moon is inclined at an angle
of about 5◦ to the ecliptic. However, if the line joining the intersections of the
Moon’s orbit and the ecliptic is fixed, the maximum latitude always will occur
for the same value of the longitude which is observed not to be the case. In
order for an eclipse to occur, the Moon must be near one of its nodes and thus
observations of eclipses can be used to give fairly accurate information on the
nodes of the Moon’s orbit. Lunar periods had been computed accurately by the
Babylonians, and Hipparchus, by comparing his own observations with earlier
ones, confirmed the Babylonian lunar periods as:

12

1 synodic month = 29; 31, 50, 8, 20 days,
251 synodic months = 269 anomalistic months,
5458 synodic months = 5923 draconitic months.

Hipparchus’ lunar model is illustrated in Figure 3.4. It consists of an epicycle
carrying the Moon, M , the centre C of which rotates around a deferent circle,
the deferent–epicycle system being inclined at an angle of 5◦ to the ecliptic
and intersecting that circle in the two nodes A and B. The nodal line AO B
was made to rotate in order to account for the fact that the longitude of the
position of maximum latitude of the Moon changes gradually. The motion on
the epicycle ensures that the Moon’s speed is variable and by making the period
of revolution of M around the epicycle different from the period of C around
the deferent, we ensure that the longitude of the position of maximal speed
(which occurs when M is at its closest to O) varies over time.

Hipparchus made the simplifying assumption that the motions in latitude
caused by the 5◦ angle of the orbit could be treated separately from the motion
in longitude due to the epicyclic system. This introduces only very minor errors.
The rotation of the nodal line thus becomes irrelevant for the longitude theory,
which is reduced to a simple two-dimensional deferent–epicycle system. In
order to use the theory, various parameters have to be computed. Thus, for the
longitude calculations, we require the rates of rotation of C around the deferent
and M around the epicycle as well as the ratio of the radii of the epicycle and

12
See Swerdlow and Neugebauer (1984), I, p. 198.
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The motion of the Moon 59

Fig. 3.4. Hipparchus’ lunar theory.

deferent, whereas for the latitude calculations we require simply the rate of
rotation of the nodal line. This latter parameter can be determined from direct
observations of eclipses. It turns out that in order to reproduce the observed
behaviour of the Moon, the nodal line must rotate approximately once every
18 years (the so-called ‘Saros period’).

The rates of rotation of the deferent and the epicycle also are easily obtained.
The former is simply the rate required for C to complete 1 revolution in 1
sidereal month which turns out to be about 13◦ 10′ 35′′ per day, and the latter
is chosen to ensure that the epicycle rotates once in each anomalistic month,
which implies a rate of 13◦ 3′ 54′′ per day. The final parameter, the ratio of the
radii of the epicycle and deferent, presents a far harder problem. Hipparchus
developed a geometrical method that enabled this ratio to be obtained from
three observations of the Moon

13
and he used it on two different sets of three

observations, obtaining different answers. There has been some debate as to
what value Hipparchus actually used

14
although, when the lunar model was

taken over later by Ptolemy, he computed a ratio of 5 1
4 : 60.

Hipparchus’ parameters were based on Babylonian observations of lunar
eclipses. As a result, the model worked well at full moons but, as Ptolemy
demonstrated 300 years later with observations of the Moon at other points in
its orbit, it did not work well away from the syzygies. With his solar and lunar
theories, Hipparchus created the first coherent theory of eclipses. Durations
could be determined about as accurately as they could be measured, but the
time at which the eclipse would occur was predicted less well. This situation
did not improve substantially until the work of Tycho Brahe at the end of the
sixteenth century.

13
See, for example, Pedersen (1974), p. 172.

14
See Neugebauer (1959), Toomer (1967), Pedersen (1974).
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60 The Ptolemaic universe

The motion of the planets

Hipparchus did not achieve a satisfactory theory for the motion of the five
planets. Partly this is due to the fact that he, unlike many of his predecessors, had
examined sufficiently many observations over a period of many years to realize
that the motions were exceedingly complex, with, for example, retrograde arcs,
the lengths of which vary according to the position of the planet in its orbit. As
Ptolemy later put it:

. . . Hence it was, I think, that Hipparchus, being a great lover of truth, for all the
above reasons, and especially because he did not yet have in his possession such a
groundwork of resources in the form of accurate observations from earlier times as
he himself has provided to us, although he investigated the theories of the sun and
moon, and, to the best of his ability, demonstrated with every means at his
command that they are represented by uniform circular motions, did not even make
a beginning in establishing theories for the five planets, not at least in his writings
which have come down to us. All that he did was to make a compilation of the
planetary observations arranged in a more useful way, and to show by means of
these that the phenomena were not in agreement with the hypotheses of the
astronomers of that time.

15

Ptolemy and the Almagest

Ptolemy (Latinized as Claudius Ptolemaeus) was one of the great scholars of
antiquity, and mathematical astronomy was dominated by his ideas for nearly
1500 years following his death. Little is known of his life, but he taught in
Alexandria and quoted the results of his observations made between AD 127
and 141. He was responsible for a number of great works, each of which place
him among the most important ancient authors. The earliest of these is his
masterpiece of mathematical astronomy, the Almagest,

16
and others include the

Tetrabiblos (on astrology) and the Geography (on mathematical geography).
These works exercised a colossal influence over mankind for the next 2000
years. Ptolemy’s very wide range of interests is indicated by his works on other
subjects, e.g. music, optics, and logic. His Harmony, in which he described
musical consonances and their relationship to an underlying universal harmony,
was later an inspiration to Kepler.

17

The name Almagest – which is the name by which his astronomical treatise
is usually known – is a corruption by medieval Latin translators of the Arabic

15
Ptolemy Almagest, Book IX, 2. Translation from Toomer (1984).

16
All quotations from the Almagest are taken from the translation by Toomer (1984).

17
See Martens (2000), Chapter 6.
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Ptolemy and the Almagest 61

word for ‘the greatest’, and was given to the book long after it was written.
The original Greek title translates as Mathematical Synthesis or Mathematical
Collection and the work, which survives in the original Greek, is sometimes
referred to as the Syntaxis. Most of our knowledge of Greek astronomy is
derived from this work, which was originally written around AD150, translated
into Latin in the twelfth century, and first printed in the sixteenth century.
The huge success of the Almagest resulted in the loss of most of the work of
Ptolemy’s predecessors, notably that of Hipparchus.

Ptolemy was, as far as we know, the first person to show how to convert
observational data into numerical values for the parameters so as to make ex-
isting planetary models fit the observations. Unlike mathematical astronomers
before him, who used unspecified observational data, Ptolemy used specific
dated observations – indeed, many of the observations Ptolemy used, which
span over 800 years, are only preserved through his work. The rigour with
which Ptolemy developed his theories in the Almagest set a very high standard
for future astronomical works.

The model of the Solar System as set out in the Almagest will be described
in detail below. The various geometrical models he used are quite complicated
and so, before describing these, we will begin with a brief description of the
overall structure. In Ptolemy’s universe, the spherical Earth is situated at the
centre of the heaven, which is itself spherical. The Sun, Moon and planets all
orbit the Earth and as to their order, Ptolemy wrote:

. . . we see that almost all the foremost astronomers agree that all the spheres are
closer to the earth than that of the fixed stars, and farther from the earth than that of
the moon, and that those of the three [outer planets] are farther from the earth than
those of the other [two] and the sun, Saturn’s being greatest, Jupiter’s the next in
order towards the earth, and Mars’ below that. But concerning the spheres of Venus
and Mercury, we see that they are placed below the sun’s by the most ancient
astronomers, but by some of their successors these too are placed above [the sun’s],
for the reason that the sun has never been obscured by them [Venus and Mercury]
either. To us, however, such a criterion seems to have an element of uncertainty,
since it is possible that some planets might indeed be below the sun, but
nevertheless not always be in one of the planes through the sun and our viewpoint,
but in another [plane], and hence might not be seen passing in front of it, just as in
the case of the moon, when it passes below [the sun] at conjunction, no obscuration
results in most cases.

18

Thus, Ptolemy decided to side with those astronomers who put Mercury and
Venus nearer than the Sun as this naturally separates those planets which can
be seen at any longitude with respect to the Sun and those which always remain

18
Ptolemy Almagest, Book IX, 1.
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62 The Ptolemaic universe

Sun

E

M

Fig. 3.5. A simplified view of Ptolemy’s world system.

close to the Sun. Ptolemy’s authority was such that the order of the planets that
he proposed (Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn) was accepted
by virtually all subsequent astronomers until the sixteenth century.

In the Almagest, the motion of each celestial body is considered in turn
and, if all the models are put together, we get the world system sketched in
Figure 3.5. The diagram illustrates the epicyclic nature of the planetary models,
but not the many other elements used by Ptolemy to reflect more accurately the
observational evidence. An important thing to note is the fact that, for Mercury
and Venus, the line joining the Earth to the centre of their epicycles is the same
as that joining the Earth to the Sun, whereas for the outer planets, which may
appear anywhere with respect to the Sun, the radius connecting the planet to
the centre of its epicycle is parallel to the Earth–Sun line. Thus, it is evident
that the Sun does not simply orbit the Earth like the other planets, but has a
much more significant role. The motion of the Sun also plays a role in the lunar
theory.

As the Sun has an important function in the theories of all the heavenly bod-
ies, it is logical to begin with a solar theory, and this is what Ptolemy does. He
goes on then to consider the Moon and, finally, the planets. For each celestial
body, Ptolemy describes the type of phenomena that must be accounted for,
goes on to propose a geometrical model suitable for the purpose, shows how
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Ptolemy and the Almagest 63

to use observations to derive the numerical values of the various geometrical
parameters and, finally, produces tables to enable others to determine the po-
sition of the body on a given date. Ptolemy obtained data easily for the Sun,
Moon, and all the planets from Venus to Saturn, but his over-reliance on the
poor available data for Mercury – much the most difficult of the then-known
planets to observe – led him to introduce a complicated geometrical device in
order accurately to reproduce erroneous data.

The Almagest is a complete exposition of Greek mathematical astronomy
divided into thirteen books. As Ptolemy himself says:

We shall try to note down everything which we think we have discovered up to the
present time; we shall do this as concisely as possible and in a manner which can be
followed by those who have already made some progress in the field. For the sake
of completeness in our treatment we shall set out everything useful for the theory of
the heavens in the proper order, but to avoid undue length we shall merely recount
what has been adequately established by the ancients. However, those topics which
have not been dealt with [by our predecessors] at all, or not as usefully as they
might have been, will be discussed at length, to the best of our ability.

19

The first two books deal with the assumptions upon which the work is based
and with mathematical methods. Books III and IV deal with the motion of the
Sun and Moon, respectively. Book V contains a more advanced lunar theory
(and a discussion, among other things, of the construction of an astrolabe) and
in Book VI, Ptolemy presents his theory for eclipses. Books VII and VIII are
taken up largely with his star catalogue

20
and, finally, Books IX–XIII deal with

planetary motions. The organization is strictly logical, each book dependent
only on those preceding it.

By late antiquity, the Almagest had become the standard textbook on as-
tronomy, and remained as such for more than 1000 years. Perhaps the only
scientific work to achieve greater dominance in history is Euclid’s Elements.
Ptolemy does not mention any physical interpretation of his system: his aim

19
Ptolemy Almagest, Book I, 1.

20
In all, Ptolemy tabulated 1022 stars in 48 constellations, giving the longitude, latitude and
magnitude of each. He was very interested in the question of whether the stars move in relation
to each other and so he gave an extensive list of stars that lay in straight lines so that future
observations easily could reveal any relative motion that exists. There is evidence to suggest
that Ptolemy took the star catalogue of Hipparchus and added the correction in longitude given
by Hipparchus’ value for the precession. For the 2 2

3 intervening centuries this would amount to
2◦ 40′ which gives a good explanation of why Ptolemy’s longitude values are consistently
about 1◦ too small, since, had he used the correct value of the precession, he would have had to
add 3◦ 40′. However, there is no direct evidence that Hipparchus ever produced a systematic
catalogue of about 1000 stars as Ptolemy did. More details on this question can be found in
Evans (1987) and Shevchenko (1990) and an excellent historical survey of the debate on this
question, which has gone on for over 100 years, can be found in Evans (1998); (see also note
25 on p. 70).
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64 The Ptolemaic universe

solely is to represent the heavenly phenomena by purely kinematic hypothe-
ses. He returned to this question in a later work, the Planetary Hypotheses.
However, Ptolemy did use physical arguments to justify his choice of a fixed
Earth at the centre of the Universe. He realized that the diurnal rotation of the
heavens could equally well be accounted for by a rotating Earth, as espoused
by Heraclides, but this was ruled out on the grounds that it would contradict
Aristotelian physics.

Mathematics in the Almagest

It is unclear who first introduced the Babylonian system of numeration into
Greek work, but certainly Hipparchus was familiar with the sexagesimal posi-
tional system. Sexagesimal numeration is used throughout the Almagest, with
minor modifications to the basic Babylonian system, though Ptolemy used the
traditional Greek form for fractions where precision was unnecessary. There
is very little mathematical formalism in the Almagest; instead, Ptolemy gives
detailed accounts of the procedures used in actual calculations. The formu-
las given below are therefore a modern shorthand way of representing what
Ptolemy wrote out in words. The main mathematical interest in the Almagest
comes from Ptolemy’s use of trigonometry, a subject developed by the Greeks
specifically for the solution of problems arising in astronomy.

The only trigonometric function used in the Almagest is the chord, and
Ptolemy constructs a table of chords in Book I. It is almost certain that such
tables existed long before Ptolemy (Theon of Alexandria tells us that both
Hipparchus and Menelaus had written works on chords) but Ptolemy’s table
is the first surviving specimen and his account of its construction is the first
treatise on trigonometry known to us. The Greek chord function is illustrated in
Figure 3.6. Ptolemy’s aim is to calculate the length of the chord AC for a given
angle α, denoted in Eqn (3.3) by ch α and, in order to facilitate the use of the
sexagesimal system, he used a circle of radius 60. Since one-half of the chord
divided by the radius is just the sine of half the angle α, this chord function is
related to the modern sine function through

ch α = 120 sin 1
2α, (3.3)

though it should be remembered that the chord is a length, whereas the sine is
a ratio.

Ptolemy’s first step was to use well-known properties of regular polygons to
evaluate some special values of the chord function. In this way he obtained
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Mathematics in the Almagest 65

a

Fig. 3.6. The Greek chord.

ch 36◦ = 37; 4, 55, ch 60◦ = 1, 0; 0,

ch 72◦ = 1, 10; 32, 3, ch 90◦ = 1, 24; 51, 10,

from the properties of the decagon, hexagon, pentagon and square, respec-
tively. Pythagoras’ theorem and the fact that the angle inside a semicircle is a
right angle

21
show that ch2(180◦ − α) = 1202 − ch2 α, and from this Ptolemy

determined

ch 120◦ = 1, 43; 55, 23, ch 144◦ = 1, 54; 7, 37.

Next, Ptolemy proved what is now known as ‘Ptolemy’s theorem’ but which,
since it is so elementary, probably dates from an earlier period. Using argu-
ments based on similar triangles Ptolemy showed that in a cyclic quadrilateral
(a quadrilateral inscribed in a circle) the product of the diagonals is equal to the
sum of the products of the opposite sides, or (see Figure 3.7(a))

|DB| . |AC | = |AB| . |DC | + |AD| . |BC |.
Next, consider a cyclic quadrilateral with one side as diameter, as shown in
Figure 3.7(b). An application of Ptolemy’s theorem yields

ch β ch(180◦ − α) = 120 ch(β − α) + ch(180◦ − β) ch α.

Using Eqn (3.3), we see that this is equivalent to the modern trigonometric
formula

sin(x − y) = sin x cos y − cos x sin y,

where x = β/2, y = α/2. In a similar way, Ptolemy derived the equivalent of
the formulas

21
Euclid Elements, Book I, 47 and Book III, 31, respectively.
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66 The Ptolemaic universe

a
b

Fig. 3.7. Ptolemy’s theorem.

sin(x + y) = sin x cos y + cos x sin y

2 sin2 x = 1 − cos 2x .

With these formulas and the chords already computed, it is possible to construct
a table of chords in steps of 3◦ (or 3/2◦ or 3/4◦, etc.). However, Ptolemy’s aim
was to construct a table of chords in intervals of 1/2◦ and he achieved this with
an ingenious argument: that for acute angles α and β with ch α > ch β,

ch α

α
<

ch β

β
, (3.4)

a result known to Aristarchus and, since he had previously calculated

ch 3
2
◦ = 1; 34, 15, ch 3

4
◦ = 0; 47, 8,

Eqn (3.4) implies that

2
3 ch 3

2
◦

< ch 1◦ < 4
3 ch 3

4
◦
.

But to two sexagesimal places both 4
3 ch 3

4
◦

and 2
3 ch 3

2
◦

are equal to 1 ; 2, 50.
Hence, Ptolemy knew ch 1◦ and could compute

ch 1
2
◦ = 0; 31, 25.

Ptolemy was now able to construct a table of chords from 1/2◦ to 180◦ in steps
of 1/2◦ (equivalent to a table of sines from 1/4◦ to 90◦ in steps of 1/4◦) accurate
to two sexagesimal places.

With his table of chords, Ptolemy could use algorithms equivalent to the
modern formulas (following the standard convention that the side opposite
angle A is labelled a, etc.):
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Mathematics in the Almagest 67

sin A = a

c
, cos A ≡ sin(90◦ − A) = b

c
, tan A ≡ sin A

cos A
= b

a
.

Only right-angled triangles are solved in the Almagest, with oblique triangles
being decomposed into right-angled ones, and in this way Ptolemy can solve
any triangle (though somewhat clumsily by modern standards). Ptolemy’s style
throughout the Almagest suggests that this type of computation was fairly stan-
dard.

Of course, many of the astronomical calculations Ptolemy needed to perform
concerned the angular distances between celestial bodies or, in other words, the
positions of bodies on a spherical surface, for which spherical trigonometry is
appropriate. Here, too, Ptolemy could use his table of chords. The geometry of
the sphere, particularly with reference to astronomy, was one of the subjects
taught within the Pythagorean quadrivium – and the subject was well advanced
long before Ptolemy’s time – but spherical trigonometry really came to promi-
nence with the work of Menelaus of Alexandria in about AD100. The treatment
of spherical trigonometry in the Almagest is based largely on the Sphaerica of
Menelaus. In the first of three books, Menelaus introduced the concept of a
spherical triangle – a figure formed by three arcs of great circles on a sphere,
each arc being less than a semicircle – and proved some theorems about such
triangles analogous to those Euclid had proved for plane triangles. The second
book is concerned chiefly with astronomy and only indirectly with spherical
geometry, while spherical trigonometry was the subject of the third book.

Ptolemy’s use of spherical trigonometry is based on two results (see Fig-
ure 3.8(a)). Suppose we have a spherical triangle AB E and another great circle
intersecting the sides of this triangle (produced where necessary) at D, F , and
C as in the figure, then

sin C E . sin DF . sin B A = sin AE . sin C F . sin DB,

sin C A . sin DF . sin B E = sin AE . sin C D . sin B F.

Here, sin C E means the sine of the angle subtended at the centre of the sphere
by the arc C E , etc., and therefore is related directly to the Greek chord function.
There are two other similar relations that can be derived, but Ptolemy did not
mention this. The proof of this theorem rests upon the corresponding theorem
for plane triangles, which is still referred to as Menelaus’ theorem, although it
probably predates Menelaus. The theorem (which is proved by Ptolemy) states
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68 The Ptolemaic universe

Fig. 3.8. Menelaus’ theorem (a) for spherical triangles, (b) for plane triangles, and
(c) Ptolemy’s use for right-angled spherical triangles.

(see Figure 3.8(b)), that

|C E |.|DF |.|B A| = |AE |.|C F |.|DB|,
|C A|.|DF |.|B E | = |AE |.|C D|.|B F |.

As in the case of plane triangles, Ptolemy actually considered only right-angled
spherical triangles, in which two of the great circles meet at 90◦. By subdividing
other triangles into two or more right-angled ones, he was able to solve them
using the above theorem.

22

For right-angled spherical triangles, Menelaus’ theorem can be reduced to a
relationship between three quantities. Thus, in Figure 3.8(c), ABC is a spherical
triangle with right angle at C . The point A is the pole of the great circle P Q, and
the arcs a, b and c are extended to meet this great circle in the points P , Q and
D, respectively. From the second version of Menelaus’ theorem for spherical
triangles given above, using the facts that Q P = C P = AD = 90◦, we obtain

sin BC = sin Q D . sin AB.

Since A is the pole of Q P , it follows that sin A = sin Q D,
23

and so this equation
can be written

sin a = sin A sin c.

Similarly, Ptolemy used algorithms equivalent to the formulas

tan a = sin b tan A, cos c = cos a cos b, tan b = tan c cos A.

22
Details of Ptolemy’s procedures can be found in Pedersen (1974) and Katz (1998) as well as in
the Almagest itself.

23
See, for example, Smart (1960).
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Solar theory 69

a

l
e d

Fig. 3.9. The determination of the declination δ and right ascension α of the Sun;
A is the vernal equinox and the Sun is at B.

As an example, consider Ptolemy’s determination of the declination δ and right
ascension α of the Sun for a given ecliptic longitude λ. In Figure 3.9, A is the
vernal equinox, the Sun is at B, and the angle ε is the obliquity of the ecliptic,
which Ptolemy took to be 23◦ 51′ 20′′.

24
The first and last of the four formulas

listed above then show that

sin δ = sin ε sin λ, tan α = tan λ cos ε.

Solar theory

After the mathematical preliminaries, Ptolemy discusses the motion of the Sun,
and here he uses exactly the same model as that developed by Hipparchus.
Ptolemy made some observations of the dates of the equinoxes so as to see
whether Hipparchus’ value for the length of the tropical year was still correct
after a 300-year period, and he concluded that it was and that it has the value
ascribed to it by Hipparchus, i.e. 365 days 5 h 55 min 12 s – about 6 1

2 minutes
too long.

Ptolemy also used his observations of the equinoxes to recompute the length
of the seasons and again found agreement with Hipparchus’ values of 94 1

2 days
for the length of the spring season and 92 1

2 days for the length of summer.
He thus obtained the same numerical parameters for the eccentric model of
the Sun, i.e. 65◦ 30′ for the longitude of the solar apogee as measured from
the vernal equinox, and 1/24 for the eccentricity of the orbit. The fact that
Ptolemy arrived at the same result for the solar apogee as Hipparchus had done

24
In the middle of Book I of the Almagest, between his construction of a table of chords and his
discussion of spherical trigonometry, Ptolemy discussed the angle that the ecliptic makes with
the celestial equator, the obliquity ε. He described how it can be calculated and claimed to
have found that 23 5

6
◦ < ε < 23 7

8
◦. Since the value he attributes to Eratosthenes, 22/83 of a

right angle (23◦ 51′ 20′′), lies in this range, this is the value he adopted (see Goldstein (1983)).
The actual value in Ptolemy’s time was about 10′ less than this (Wilson (1980), p. 63) and
Ptolemy’s failure to find a more accurate result, and hence perhaps discover the slow decrease
in the obliquity over time, can be explained by the crudity of his measuring devices (see
Britton (1969)).
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70 The Ptolemaic universe

300 years previously led him and other ancient astronomers to believe that this
was an astronomical constant, whereas in fact, because of the precession of the
equinoxes, in Ptolemy’s time the true value was approximately 70◦.

25

Ptolemy used the geometrical solar theory to produce a table so that the
position of the Sun at a given time can be calculated. From Figure 3.10 it is
clear that, viewed from the Earth E , the Sun’s longitude measured from its
apogee A is α (the so-called true anomaly) and the mean anomaly α is known,
since the Sun S rotates uniformly around the centre of the eccentric circle, O ,
completing 1 revolution in 1 tropical year. It is also clear that α = α ± δ (the
choice of sign depending on where the Sun is in its orbit) and so the position
of S can be found once δ is known as a function of α. This is what Ptolemy
tabulates. Ptolemy calls δ the prosthaphaeresis, which translates as the ‘amount
to be added and subtracted’ but, following medieval usage, it is more commonly
referred to as ‘the equation of centre’.

In general, the term ‘equation’ is used to refer to any angle that must be
added or subtracted from a mean motion in order to account for a particular
geometrical feature. This is Ptolemy’s style throughout – first the mean motions
are described, and then the various small corrections, the equations, are calcu-
lated. In the case of the Sun, there was one such equation, but for the Moon and
the planets there were more. Ptolemy’s quantitative solar theory was used not
only to determine the position of the Sun but was also an essential part of his
theory for the other planets.

Because the Sun moves non-uniformly around the ecliptic, which is itself
inclined to the celestial equator, the length of the solar day (the time between
local noon on successive days) is not constant. Thus, when calculating the
time difference in days between two events (such as a pair of eclipses) it is
necessary to correct for this variation. The effect, however, is quite small and,
until Ptolemy’s accurate quantitative astronomy, the resulting discrepancies

25
Some authors, notably Newton (1977), claim that Ptolemy must have fudged his data so as to
reproduce Hipparchus’ parameter values, but in fact Ptolemy’s errors are not large when one
takes into account that an error of 6 h in the length of the spring season can lead to an error of
about 7◦ in the solar apogee (Peterson and Schmidt (1967), Maeyama (1998)). In fact, this
demonstrates that the great accuracy achieved by Hipparchus was fortuitous. North (1994)
goes so far as to say ‘a modern tradition that Ptolemy was little more than a plagiarist of
Hipparchus is hardly worth refuting’ and Hamilton and Swerdlow’s review of Newton’s work
in the Journal for the History of Astronomy, 12 (1981), 59–63 is deeply critical of the latter’s
approach. On the other hand, Britton (1992) has demonstrated convincingly that Ptolemy must
have had access to rather more observations than are mentioned in the Almagest and that he
sometimes used these selectively so as to reproduce agreement with predetermined values.
Sheynin (1973b) suggests that Ptolemy might have selected those observations he believed to
be the least susceptible to random or systematic error. Whatever the truth of the matter – and
the debate continues (see Thurston (2002), Gingerich (2002)) – astronomers from the
eighteenth century onwards certainly realized that Ptolemy’s observations were not to be relied
upon (see, for example, Wilson (1984), also note 20 on p. 63 of this text).
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Solar theory 71

d
a

a

a

Fig. 3.10. The prosthaphaeresis angle δ.

(which never amount to more than about half an hour) were of little signif-
icance. Local time is determined by the position of the Sun with respect to
meridians (great circles perpendicular to the celestial equator) and so the sim-
plest way to appreciate the cause of the variation in the length of the day
is to introduce the concept of the equatorial mean sun, a point that trav-
els around the celestial equator at a uniform rate, once per tropical year.

26

This then leads to the idea of the mean solar day, a concept Ptolemy
introduced.

Thus, in Figure 3.11, when the actual Sun is at S, the equatorial mean sun
will be at S which, because S moves non-uniformly around the ecliptic and α

is nonlinearly related to λ (see Figure 3.9), will at different times of the year
be sometimes ahead of and sometimes behind A. The arc AS (the difference
between the right ascension of the equatorial mean sun and that of the Sun
itself) is known as the ‘equation of time’. The discovery of the equation of time
by Greek astronomers is just one example of the high level of sophistication
they achieved, as it was deduced as a theoretical consequence of Hipparchus’
solar theory, rather than from observation.

26
The equatorial mean sun should not be confused with the mean sun, which is another
important astronomical concept. The latter rotates uniformly around the ecliptic once each
tropical year. The two clearly are related since they move around their respective circles at
precisely the same rate. In fact, the right ascension of the equatorial mean sun is equal to the
ecliptic longitude of the mean sun.
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72 The Ptolemaic universe

l

a
e

Fig. 3.11. The cause of the equation of time. The Sun is at S and S is the equatorial
mean sun.

Lunar theory

By virtue of its proximity, small irregularities in lunar motion are discernible
more easily than those of the planets, and Ptolemy was the first to discover that
the Moon was subject to an anomaly that had not been detected by Hipparchus.
As we have seen, Hipparchus treated the longitude and latitude theories for the
Moon separately, and Ptolemy did the same but, whereas the latitude theory
was not modified by Ptolemy, he found the longitude theory to be inadequate
away from the syzygies.

As far as concerns the [moon’s] syzygies . . . we find that the hypotheses set out
above for the first, simple anomaly is sufficient, even if we employ it just as it is,
without any change. But for particular positions [of the moon] at other sun-moon
configurations one will find that it is no longer adequate, since . . . we have
discovered that there is a second lunar anomaly, related to its distance from the
sun.

27

Ptolemy showed that the discrepancy between the observed longitude of the
Moon and that predicted by Hipparchus’ theory depended on the position of the
Moon relative to the Sun and was greatest at the quadratures, i.e. half moons.
Thus, the Moon was subject to a second, independent irregularity in its motion
which has become known as ‘evection’.

28
In order to rectify the theory, Ptolemy

introduced a mechanism by which the Moon’s epicycle was brought closer to
the Earth at the quadratures than at new and full moon. This device had the
effect of incorporating the theory of the Sun into that for the Moon.

His solution is illustrated in Figure 3.12, and involves an epicycle on a defer-
ent which is no longer centred on the earth E but is instead placed eccentrically.
Moreover, the centre of the deferent O rotates around the Earth in a small circle
with a constant angular speed with respect to the position of the mean sun, S.
This has the effect of moving the apogee of the deferent A from east to west

27
Ptolemy Almagest, Book V, 1.

28
The terminology is due to Ismael Boulliau in 1645.
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Lunar theory 73

Fig. 3.12. Ptolemy’s lunar theory.

relative to the mean sun. The centre of the Moon’s epicycle C rotates around
the deferent circle in such a way as to keep the angles AE S and SEC equal.
Thus, relative to the mean sun, C rotates once around the deferent in an anti-
clockwise direction (i.e. from west to east) in a synodic month, while O rotates
around a circle, centred at E , at exactly the same rate in the opposite direction.
Equivalently, if one considers the motion of the epicycle relative to the line E A,
C rotates around the deferent twice each synodic month. At the syzygies, C
and A coincide, whereas at the quadratures C and P coincide. It is clear that
in the lunar model, the deferent rotates with uniform speed around the Earth, a
point that is not its centre, and so Ptolemy was violating one of the fundamental
principles on which Greek mathematical astronomy had been built, i.e. uniform
circular motion. This radical shift, which Ptolemy did not even mention, was
later a major source of criticism.

From observations
29

Ptolemy was able to determine the relative sizes of
the circles in his lunar theory needed accurately to reproduce the phenomena.
Letting |E A| be 60 units, Ptolemy’s skill with trigonometry enabled him to
show that |O E | should be 10; 19 and the radius of the epicycle was 5; 15.

30
In

29
The claim that Ptolemy never made any lunar observations, in support of the general thesis of
Newton (1977), is made by Goldstein (1982).

30
Details can be found in Pedersen (1974).
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74 The Ptolemaic universe

the first version of his lunar theory, the Moon M was made to rotate around its
epicycle at a uniform rate with respect to the line EC B (see Figure 3.12) once
in each anomalistic month, exactly as in Hipparchus’ theory. The angle BC M
thus was a given linear function of time. In order to calculate the longitude of
the Moon for a given time, Ptolemy had first to compute the longitude of the
point C (the mean moon) from the mean lunar motion. Then he could calculate
the angle C E S̄, since the solar theory provided the longitude of the mean sun.
Next, the distance |C E | can be computed by solving the triangle E OC and,
finally, � C E M (the prosthaphaeresis angle for the Moon) can be found by
solving the triangle C E M .

31

The overall effect of Ptolemy’s scheme was to leave the longitude at conjunc-
tion and opposition unchanged from that given by Hipparchus (since � C E A = 0
in these cases) and the theory accounted well for the observed position of the
Moon at the quadratures. However, Ptolemy found that there were still notice-
able errors at the octants – the points midway between the quadratures and the
syzygies – and decided that a further modification was necessary. He did this
by making the Moon rotate around its epicycle at a non-uniform rate with re-
spect to EC B, but uniform with respect to NC B ′, where the point N is such
that E is the midpoint of O N . For this new scheme, it is the angle B ′C M that
is a given linear function of time, so in order to compute the prosthaphaeresis
angle, Ptolemy first had to calculate � BC B ′ = � NC E . This he could do by
solving the triangle NC E once the length |EC | had been determined. This
final peculiarity in Ptolemy’s lunar theory, which has no effect on the position
of the Moon at the syzygies or at quadrature and which was another source of
criticism by later astronomers, is known as prosneusis. In actual fact, the effect
of prosneusis was to make things better some of the time but worse at others.
Ptolemy did not test his final theory against new observations away from the
octant points.

32

The lunar theory is not without its problems. One defect is that the ratio of the
maximum to minimum lunar distances implied by the model is 64; 15/34; 7 ≈
1.9 and so one should observe a doubling of the Moon’s apparent diameter as it
circles the Earth, whereas in actual fact a change of only 14 per cent is observed.
Another objection that was raised by later astronomers was the fact that the
epicyclic model seems to be incompatible with the phenomenon – mentioned

31
The calculations involved in applying this procedure are very laborious and in order to make
the application of his theory more straightforward Ptolemy produced (not just for the Moon but
for all the celestial bodies) tables of values corresponding to the modern concept of functions
of one or two variables. To make the computation of the tables less time-consuming he used
various methods of interpolation (see Pedersen (1974), van Brummelen (1994)).

32
The accuracy of Ptolemy’s lunar theory is described in detail in Peterson (1969).
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Planetary theory 75

by Aristotle in On the Heavens – that the same side of the Moon is always
visible to us. One plausible reason why neither of these ‘defects’ concerned
Ptolemy is that he regarded his theory simply as a device for computing the
latitude and longitude of the Moon rather than as a physical model of reality.
However, this seems to be contradicted by the way Ptolemy later treated his
models in the Planetary Hypotheses (see p. 81).

Two aspects of the lunar model are of particular interest. The coupling be-
tween Sun and Moon is a major shift from previous theories, and so is Ptolemy’s
abandonment of uniform circular motion. Prior to Ptolemy, uniform circular mo-
tion always had implied angular rotation around a circular path uniform with
respect to the circle’s centre. But in Ptolemy’s final lunar scheme, the Moon
revolves with uniform speed with respect to a different point. As we shall see,
many later astronomers objected to this, the most notable being Copernicus.

Having now described his theories for the motion of the Sun and Moon,
Ptolemy was in a position to give a detailed theory of lunar and solar eclipses,
which he did in Book VI of the Almagest. He began with a discussion of lunar
parallax, which is significant when making observations of the Moon, and from
his measurements he arrived at the conclusion that the radius of the deferent in
his lunar model is about 49 Earth radii. Once he had a value for the distance
to the Moon in terms of the size of the Earth, he was in a position to calculate
the distance to the Sun by reversing the procedure used by Hipparchus for
calculating the lunar distance from an assumed solar distance.

33
His final result

was that the mean distance to the Sun is 1210 Earth radii (corresponding to a
parallax of about 3′), which is about 19 times too small.

Planetary theory

Books IX–XIII of the Almagest are devoted to the motion of the planets, with
longitudes and latitudes being considered separately. For the longitude theories,
there are two anomalies to model. The first is manifested by the varying speed
of the planet as it travels round the ecliptic and is thus similar to the anomaly in
the Sun’s motion. This suggests an eccentric deferent as a suitable geometrical
scheme to account for the irregularity. The second anomaly is the phenomenon
of retrograde motion and this ultimately is linked to the motion of the Sun. The
superior planets always reach the centre of their retrograde arcs when they are

33
See p. 54. Ptolemy’s method is described in detail in van Helden (1985). Unlike the procedure
adopted by Hipparchus, Ptolemy’s approach is extremely sensitive to errors in the measured
parameters.
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76 The Ptolemaic universe

in opposition to the Sun, whereas this happens at conjunction for the inferior
planets. As Apollonius had shown, retrograde motion can be modelled by an
epicyclic theory, and so some combination of eccentric deferent and epicycle
suggests itself.

However, it turns out that this is insufficient by itself accurately to predict the
correct positions at which the retrograde motions begin and the correct angular
widths of the retrograde arcs.

34
To solve the problem, Ptolemy introduced a fur-

ther modification to Apollonius’ scheme and separated the centre of the deferent
circle from the centre of uniform rotation. Thus, he introduced a new point – the
equant – about which the centre of the deferent rotated with uniform angular
speed. Nowhere does Ptolemy state how he devised this construction, but it
works astonishingly well – a Ptolemaic equant produces planetary longitudes
differing from modern theory by less than 10′ of arc, even for the compara-
tively large eccentricity of Mars. The discovery of the equant mechanism thus
represents one of the major achievements of Greek mathematical astronomy.

35

Brilliant it may have been, but the incorporation of the equant introduced a
major problem into the science of astronomy because it violated the principle
of uniform circular motion. To Ptolemy, it clearly was more important to repro-
duce accurately the phenomena than to stick rigidly to accepted philosophical
dogma. Others did not necessarily share Ptolemy’s attitude and the status of the
equant was one of the main concerns of future astronomers.

Although Ptolemy described his theories for the inferior planets first, it is
perhaps more helpful to begin with his scheme for the superior planets – Mars,
Jupiter and Saturn – since the Mercury theory is relatively complicated. The
geometrical model that Ptolemy finally arrived at is shown in Figure 3.13. Each
planet P is carried round a deferent circle, centre O , on an epicycle, centre C ,
which rotates in the same sense as the motion of C around the deferent. Just
as in the theory of the Moon, the Earth E is not situated at O , and the distance
between the Earth and the deferent centre |E O| is known as the ‘eccentricity’
of the model. The motion of C around the deferent is uniform with respect to
the new point Q – the equant – which is chosen so that O bisects E Q.

36
The

mean longitude λ (measured from the vernal equinox V ) increases at a uniform

34
A nice explanation of why this is the case is given in Evans (1984).

35
Did Ptolemy devise it? It is not possible to say with certainty and he certainly does not claim
explicitly that it is his idea. On the other hand, Ptolemy is good at giving credit where credit is
due and he does not mention anyone else as the discoverer of the equant idea. For a strident
defence of the idea that this construction was not due to Ptolemy, see Rawlins (1987).

36
It is unclear as to why Ptolemy chose to put the centre of the deferent exactly equidistant from
the Earth and the equant. It seems most likely (see Wilson (1973), Pedersen (1974)) that the
observations suggested that this was the best position for the Venus model and he extended it
to the superior planets by analogy.
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Planetary theory 77

m

l

l

Fig. 3.13. Ptolemy’s theory for the superior planets.

rate, with the epicycle rotating once around the deferent in the time it takes the
planet to make one circuit around the ecliptic (its zodiacal period), i.e. 687 days
for Mars, 11.86 years for Jupiter and 29.46 years for Saturn. The motion of the
planet around its epicycle is uniform relative to the line QC , so that the angle µ

in Figure 3.13 (the mean epicyclic anomaly) increases uniformly with time t .
For each of the superior planets, observations show that the zodiacal and

synodic periods, Tc and Tp respectively, satisfy (see Table 1.2, p. 9)

1

Tc
+ 1

Tp
= 1

T
,

where T is the tropical year. In order to incorporate this feature into his model,
Ptolemy made the planet rotate once around its epicycle each synodic period.
We have then (ignoring irrelevant constants) λ = t/Tc and µ= t/Tp and, hence,
the longitude of the mean sun S is given by

t/T = λ + µ.

Some elementary geometry reveals that this ensures that the line C P is always
parallel to the line connecting the Earth E to the mean sun. The point A at
which the line E O Q extended intersects the celestial sphere is the apogee of
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78 The Ptolemaic universe

the deferent, and in Ptolemy’s model it is assumed fixed with respect to the stars.
In other words, its longitude λa increases slowly due to the effect of precession.

Finally, Ptolemy needed to determine the relative dimensions of his model,
and he found that, with a deferent radius of 60, the required double eccentricities
were given by |E Q| = 12 for Mars, |E Q| = 5; 30 for Jupiter and |E Q| = 6; 50
for Saturn. The values Ptolemy used for the radii of the epicycles were 39; 30
for Mars, 11; 30 for Jupiter, and 6; 32 for Saturn. By using a complicated series
of trigonometrical calculations, Ptolemy could then compute the true longitude
of the planet (the angle V E P in Figure 3.13) at any given time.

The above geometrical arrangement is inappropriate for the inferior planets
(Mercury and Venus) since they follow the Sun as it travels around the heavens,
never deviating from it by more than about 29 and 47◦, respectively. The mean
positions of these planets are the same as that of the Sun, and so in Ptolemy’s
models for the inferior planets the centre C of the epicycle rotates uniformly
around an equant Q, such that QC is parallel to the line connecting the Earth
E to the mean sun S. Ptolemy’s model for Venus is shown in Figure 3.14, and
it can be seen that, apart from the different treatment of the coupling to the
motion of the Sun, the scheme has the same essential features as his theories
for the superior planets. The epicycle is carried around a deferent, the centre O
of which is not the Earth, and the motion is uniform with respect to an equant
Q which again is chosen so that O is the midpoint of E Q. It is interesting to
note that in his model for Venus, Ptolemy in effect introduced an equant for
the motion of the Sun, something he had not found to be necessary in the solar
theory itself. He was, of course, unaware that the solar deferent and the deferent
of Venus represent one and the same motion – the rotation of the Earth around
the Sun. The apogee of the deferent A is assumed fixed with respect to the stars,
exactly as before.

With a deferent radius of R = 60, the epicycle’s radius was taken to be
r = 43; 10 and the double eccentricity as |E Q| = 2; 30. The required size of
the epicycle can, at least approximately, be determined from the maximum
elongation (i.e. angular distance from the Sun) of the planet. Assuming zero
eccentricity so that E and O coincide, the maximum elongation θ occurs when
� O PC is a right angle, i.e. when r/R = sin θ . Ptolemy’s values give

θ = sin−1 43; 10

60
≈ 46◦,

in agreement with the value given by the Roman writer Pliny in AD first century.
The effect of a non-zero value for the eccentricity on this simple argument is,
however, quite complex.
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Planetary theory 79

Fig. 3.14. Ptolemy’s theory for Venus.

When it came to Mercury, however, Ptolemy found that he could not use
the same geometrical scheme. Of the planets known to Ptolemy, Mercury is by
far the hardest to observe, and its orbit deviates significantly from a circle. The
observations Ptolemy used for his theory of Mercury – some of which were very
inaccurate – led him to believe that Mercury’s orbit had two perigees. Thus, he
came up with a geometrical device that modelled this phenomenon, and this is
shown in Figure 3.15. The line E QO points to the apogee of Mercury’s orbit,
the longitude of which is fixed with respect to the stars, and the equant Q is
the midpoint of E O . The centre of the epicycle C rotates uniformly around the
equant, following the mean sun, in such a way that it lies always on a deferent
circle, the centre D of which is rotating in the opposite sense around a small
circle centred on O . The rates of rotation are chosen so that the angles DO A
and AQC always are equal. This construction causes C to move in an oval orbit
that has two points of closest approach to the Earth, P1 and P2. For a deferent
radius of 60, Ptolemy calculated the radius of Mercury’s epicycle as 22; 30
and |E Q| as 6; 0. Based on the simple argument described above for Venus, an
epicycle radius of 22; 30 corresponds to a maximum elongation of 22◦, which is
again the value quoted by Pliny.

37
In his later work, the Planetary Hypotheses,

37
Detailed discussions of the empirical basis for Ptolemy’s theories of the inferior planets can be
found in Wilson (1973), Swerdlow (1989), and the accuracy of the Mercury model is
investigated in Nevalainen (1996).
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80 The Ptolemaic universe

Fig. 3.15. Ptolemy’s theory for Mercury.

Ptolemy justified the increased complexity of the motion of Mercury, as well
as that of the Moon, by pointing out that these two celestial bodies are closest
to the Earth and, hence, closest to the changeable air.

The planetary theories described above are all dedicated to the determination
of longitudes; latitudes are treated separately in Book XIII of the Almagest.
Unlike the simple latitude theory for the Moon, Ptolemy’s theory for planetary
latitudes is cumbersome and complicated. This is hardly surprising since the
plane of the orbit of the Moon passes (very nearly) through the centre of the
Earth, whereas the planes of the planetary orbits pass through the centre of
the Sun, and Ptolemy was attempting to construct a geocentric latitude theory.
For the superior planets, Ptolemy accomplished this by tilting the deferent with
respect to the ecliptic and also inclining the plane of the epicycle with respect
to the deferent. Now, for these planets we know that the motion of the planet
around the epicycle actually is modelling the motion of the Earth around the
Sun, so the epicycle should be in a plane parallel to the ecliptic. Ptolemy had no
such knowledge, of course, and so had to determine two inclinations for each
planet. The system Ptolemy used for the inferior planets was similar, except
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The Handy Tables and the Planetary Hypotheses 81

in this case the inclination of the deferent with respect to the ecliptic was an
oscillatory function of time.

38

The Almagest represents the culmination of 500 years of Greek mathemat-
ical astronomy, and the result is ingenious, mathematically sophisticated and
tolerably accurate. It formed the foundation for subsequent developments and
for the teaching of astronomy, and was the dominant influence in theoretical as-
tronomy until the sixteenth century. As a scientific theory it is still ad hoc in that
it explains only those phenomena built into the model, and new observations
can be accommodated simply by tweaking the parameters.

The Handy Tables and the Planetary Hypotheses

After writing the Almagest, Ptolemy wrote two further astronomical works, the
Handy Tables and the Planetary Hypotheses. The former contains the proce-
dures that need to be followed to compute the positions of heavenly bodies from
Ptolemy’s theories, but with no discussion of the theoretical models on which
they are based, while the latter contains his physical interpretations of the math-
ematical models developed in the Almagest. In the Planetary Hypotheses, parts
of which have only become well known in the West fairly recently,

39
Ptolemy

made two assumptions. The first was that the geometrical devices he had devised
accurately to predict the observed phenomena actually exist in the heavens. The
second was that he assumed there were no empty spaces between the mech-
anisms for each of the heavenly bodies. As some of the geometrical schemes
Ptolemy had used in the Almagest contradicted Aristotelian natural philoso-
phy – notably the equant construction – the first of his assumptions came under
repeated attack during the Middle Ages. The second was not so controversial,
but Ptolemy himself actually violated it by leaving an empty space between
Venus and the Sun. Many later astronomers repeated Ptolemy’s calculations to
determine the dimensions of the Universe and managed, one way or another,
to remove this void from the theory. Ptolemy’s world view was as influential in
the field of cosmology as the Almagest was in theoretical astronomy.

In the Planetary Hypotheses, Ptolemy deliberately simplified some of his
geometrical constructions so as to make them easier to understand; some of
the simplifications just take the form of approximating parameters by more
convenient values, but there are also some changes of substance, notably in the
latitude theories for the planets, which actually were improved in the process.

38
Details of Ptolemy’s latitude theories for the planets can be found in, for example, Pedersen
(1974), Riddell (1978), Jacobsen (1999).

39
See Goldstein (1967).
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82 The Ptolemaic universe

Fig. 3.16. Ptolemy’s physical interpretation for a superior planet.

A schematic illustration of Ptolemy’s physical interpretation of the motion of
a superior planet is shown in Figure 3.16. The figure depicts four spherical
surfaces: S1 and S4 centred on the Earth E (the centre of the Universe) and S2

and S3 centred on O (the centre of the deferent (see Figure 3.13)). The planet P
is situated on a sphere (the epicycle) which is confined to the spherical annulus
between S2 and S3. The shaded regions between S1 and S2 and between S3

and S4 are filled with the ether, which serves to transmit the required motion
between the various spheres.

If we consider the diagram as representing the motion of Saturn, then Ptolemy
now could fit his whole planetary scheme together without spheres intersecting
simply by placing Jupiter inside S4, and so on. On the assumption that the
spheres fit as closely together as possible, we thus have a method for calculating
the size of the Universe and this was done by Ptolemy (see Table 3.1).

40
In the

Almagest, Ptolemy had already calculated the distances of the Sun and the
Moon, and so he began with the Moon and worked outwards arriving at a
maximum distance for Venus of 1079 Earth radii. But the minimum distance
to the Sun was 1160 Earth radii, and so Ptolemy was forced to leave a gap
between the spheres of Venus and the Sun.

41
Working outwards from the Sun,

he arrived at a distance to the outer sphere of Saturn of 19 865 Earth radii
(about 120 000 000 km in modern units, less than the true value for the radius
of the Earth’s orbit) and he rounded this to 20 000 Earth radii as the distance

40
The figures are quoted from Goldstein and Swerdlow (1970).

41
Ptolemy was aware that minor adjustments to some of the measured parameters could be used
to close the unwanted gap, but he did not bother to make them (see van Helden (1985), p. 23).
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Table 3.1. Greatest and least distances,
measured in Earth radii, according to Ptolemy.

dmin dmax

Moon 33 64
Mercury 64 166
Venus 166 1 079
Sun 1 160 1 260
Mars 1 260 8 820
Jupiter 8 820 14 187
Saturn 14 187 19 865
Fixed stars 20 000

to the fixed stars. From a modern perspective, Ptolemy’s value for the size of
the Solar System is hopelessly wrong but, seen in the context of his own time,
he was actually the first person to suggest that the dimensions of the Universe
were unimaginably large. The number of spheres necessary to construct the
whole system was thirty-four, and Ptolemy thus claimed that he had produced
a simpler system than any of his predecessors. Despite its many deficiencies,
Ptolemy’s cosmology reigned supreme – with modifications as to its detail –
until the demise of geocentric astronomy in the seventeenth century.

No Greek astronomer after Ptolemy made any significant advance on
Ptolemy’s work. People were becoming more sceptical about the value of this
type of endeavour, and working conditions for those involved in rational sci-
entific enquiry gradually deteriorated. Commentaries on the Almagest were
written in AD fourth century by Theon of Alexandria and by Pappus, but they
added little. Progress in mathematical astronomy had to wait until the revival
of scholarly activity in the Islamic civilization that grew up following the death
of Mohammed in AD 632.
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