Problem 1: Let \(\{a_n\}_{n \in \mathbb{N}} \) and \(\{b_n\}_{n \in \mathbb{N}} \) be positive sequences.

(i) Show that
\[
\limsup_{n \to \infty} a_n b_n \leq \limsup_{n \to \infty} a_n \limsup_{n \to \infty} b_n.
\]

(ii) Give an example where the inequality in (i) is a strict inequality.

(iii) Show that if \(\lim_{n \to \infty} a_n = a \) and \(\lim_{n \to \infty} b_n = b \), then \(\lim_{n \to \infty} a_n b_n = ab \).

Problem 2: Let \(a_n = cr^n \), where \(c, r \in \mathbb{R} \setminus \{0\} \). Show that the series \(\sum_{n=1}^{\infty} a_n \) converges if and only if \(|r| < 1 \).

Problem 3: Tonelli’s theorem states: Let \(\{a_{n,m}\}_{n,m \in \mathbb{N} \times \mathbb{N}} \) be a sequence indexed by \(\mathbb{N} \times \mathbb{N} \). If \(a_{n,m} \geq 0 \), then
\[
\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} a_{n,m} \right) = \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} a_{n,m} \right).
\]
Show that the equality does not necessarily hold if the terms \(a_{n,m} \) are not assumed to be non-negative.

Problem 4: Let \(E \subset \mathbb{R} \). A function \(f: E \to \mathbb{R} \) is called Lipschitz if there exists a constant \(C \geq 0 \) so that for all \(x, y \in E \), the function satisfies \(|f(x) - f(y)| \leq C|x - y| \).

(i) Show all Lipschitz functions are continuous.

(ii) Show that \(f(x) = \sqrt{x} \) defined on \((0, 1) \) is not Lipschitz.

(iii) Let \(f: [0, 1] \to \mathbb{R} \) be a function. Show that if there exists a constant \(C \geq 0 \) so that for all \(x, y \in [0, 1] \)
\[
|f(x) - f(y)| \leq C|x - y|^2,
\]
then \(f \) is constant. Hint: Show that \(f \) is differentiable at every point in \([0, 1] \) (recall that a function is differentiable at \(x \) if \(\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \) exists).

Problem 5: Chapter 1.5, Question 44.