MAT 320: PROBLEM SET 3

DUE MONDAY SEPTEMBER 27

Problem 1: Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be positive sequences.

(i) Show that

$$\limsup_{n \to \infty} a_n b_n \le \limsup_{n \to \infty} a_n \limsup_{n \to \infty} b_n.$$

- (ii) Give an example where the inequality in (i) is a strict inequality.
- (iii) Show that if $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, then $\lim_{n\to\infty} a_n b_n = ab$.

Problem 2: Let $a_n = cr^n$, where $c, r \in \mathbb{R} \setminus \{0\}$. Show that the series $\sum_{n=1}^{\infty} a_n$ converges if and only if |r| < 1.

Problem 3: Tonelli's theorem states: Let $\{a_{n,m}\}_{n,m\in\mathbb{N}\times\mathbb{N}}$ be a sequence indexed by $\mathbb{N}\times\mathbb{N}$. If $a_{n,m} \geq 0$, then

$$\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} a_{n,m}\right) = \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} a_{n,m}\right).$$

Show that the equality does not necessarily hold if the terms $a_{n,m}$ are not assumed to be non-negative.

Problem 4: Let $E \subset \mathbb{R}$. A function $f: E \to \mathbb{R}$ is called Lipschitz if there exists a constant $C \ge 0$ so that for all $x, y \in E$, the function satisfies $|f(x) - f(y)| \le C|x - y|$.

- (i) Show all Lipschitz functions are continuous.
- (ii) Show that $f(x) = \sqrt{x}$ defined on (0, 1) is not Lipschitz.
- (iii) Let $f: [0,1] \to \mathbb{R}$ be a function. Show that if there exists a constant $C \ge 0$ so that for all $x, y \in [0,1]$

$$|f(x) - f(y)| \le C|x - y|^2,$$

then f is constant. **Hint:** Show that f is differentiable at every point in [0, 1] (recall that a function is differentiable at x if $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ exists).

Problem 5: Chapter 1.5, Question 44.