Homework assignment #6

Math 317

Due Friday, March 25

Part I: Solve All of the following [90 points/100]:

1. Solve the following problems from the textbook: P 141 ex. 2, P 153 ex. 1, P 156 ex. 7,

2. Let \(g(z) = \frac{1}{z(z-1)} \).

 (a) show \(g \) is analytic in \(\mathbb{C} \setminus \{0, 1\} \).

 (b) Let \(C \) be the positively oriented closed contour along the circle \(|z| = 1/2 \). Calculate \(\int_C g(z)dz \). \textbf{Hint:} use the formula
 \[
 \frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z} \quad \text{(0.1)}
 \]

 (c) deduce that \(g \) does not have an antiderivative in \(\mathbb{C} \setminus \{0, 1\} \).

 (d) find an antiderivative for \(g \) in the domain \(D = \mathbb{C} \setminus \{ x : x \text{ real, } 0 \leq x \leq 1 \} \).
 \textbf{Hint:} first find, using formula (0.1) an antiderivative for \(g \) in the smaller domain \(\mathbb{C} \setminus \{ x : x \text{ real, } -\infty < x \leq 1 \} \).

3. A set \(D \subset \mathbb{C} \) is said to be \textbf{convex} if for every \(z, w \in D \), all points of the line segment connecting \(z \) and \(w \) are in \(D \).

 Prove that if \(D \) is a convex domain (i.e. a domain that is also convex), \(f \) a continuous function on \(D \), and if \(\int_C f(z)dz = 0 \) for every \textbf{triangular} contour completely in \(D \) then \(f \) has an antiderivative in \(D \).

 \textbf{Hint:} in class we proved that if \(\int_C f(z)dz = 0 \) over every closed contour then \(f \) has an antiderivative in \(D \) (our proof is essentially identical to the one in the textbook in section 42). If you define \(F(z) \), the candidate for an antiderivative of \(f \) correctly, the proof of this exercise is very similar.
Part II: Solve AT LEAST ONE of the following questions. Solve more for a BONUS.

1. [10 points] Let $D = \{ z : 100 < |z| < 101 \}$. Find a function f so that $\int_C f(z)dz = 0$ for every triangular contour completely in D but f does not have an antiderivative in D (don’t forget to prove your function works!). Why doesn’t this contradict (3) of Part I?

2. [25 points] complete the proof of Goursot’s theorem for a rectangle given in class. Write it down like we did it in class, where we reduced everything to a question whether a certain algorithm terminates in a finite number of steps. You are welcome to look at the textbook (or at any other source), as long as your answer follows the outline I gave in class.

Please write down a complete proof.

ENJOY YOUR BREAK!