Homework assignment #5

Math 317

Due Friday, March 11

Solve the following problems from the textbook:

1. P. 94 ex. 6, P. 96 ex. 2

2. P. 116 ex. 7. Show in addition that P_n is a polynomial of degree n in x.

3. P. 121 ex. 5, P. 130 ex. 10, P. 134 ex. 6, 7 (in 7(a) prove the two stated inequalities), P. 142 ex. 3

Additional questions:

1. Let C be the closed positively oriented contour along $|z| = 1$. Prove that for any function $g(z)$,
 \[
 \int_C g(z)dz = \int_C \overline{g(z)}z^{-2}dz.
 \]

2. Let C be a contour in $\mathbb{C} \setminus \{0\}$, given by the parametrization $z(s)$, $0 \leq s \leq T$. For every $0 \leq t \leq T$ consider the contour C_t given by $z(s)$, $0 \leq s \leq t$. We define $I(t) = \int_{C_t} \frac{dz}{z}$.

 (a) by using P. 121, ex. 5 and the fundamentals theorem of the calculus, show that the function $g(t) = \exp(I(t))/z(t)$ satisfies $g'(t) = 0$, i.e. is a constant.

 (b) conclude that for any contour C between a point z_0 and a point $z_1 \in \mathbb{C}$ that avoids 0
 \[
 \exp \int_C \frac{dz}{z} = \frac{z_1}{z_0}.
 \]
(c) deduce that if C is a closed contour avoiding 0,
\[
\int_C \frac{dz}{z} = 2\pi i n
\]
for some integer n. This integer is called the index or winding number of C around zero.

(d) (BONUS) try proving (0.1) using antiderivatives. You may need to restrict the type of contours you are considering.